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Abstract. A design methodology for the vibration confinement of axial vibrations in nonhomogenous rods is proposed. This is

achieved by a proper selection of a set of spatially dependent functions characterizing the rod material and geometric properties.

Conditions for selecting such properties are established by constructing positive Lyapunov functions whose derivative with respect

to the space variable is negative. It is shown that varying the shape of the rod alone is sufficient to confine the vibratory motion.

In such a case, the vibration confinement requires that the eigenfunctions be exponentially decaying functions of space, where

the notion of spatial domain stability is introduced as a concept dual to that of the time domain stability. It is also shown that

vibration confinement can be produced if the rod density and/or stiffness are varied with respect to the space variable while the

cross-section area is kept constant. Several case studies, supporting the developed conditions imposed on the spatially dependent

functions for vibration confinement in vibrating rods, are discussed. Because variation in the geometric and material properties

might decrease the critical buckling loads, we also discuss the buckling problem.
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1. Introduction

Flexible structures, such as aerospace and ship structures, large communication antennas, and seismically excited

buildings and bridges, are exposed to vibration due to various external and/or internal excitations. They often excite

unwanted structural resonances, which can cause damage or transmission of vibrational energy to distant parts or

regions where they cannot be tolerated. Therefore, it may be of interest to remove the vibrational energy from

the more sensitive parts of the structure and transfer it to the less sensitive parts. The sensitive parts of flexible

structures are defined to be a set of spatial regions in which vibrations must be eliminated to ensure a better structural

performance and less chances of destructing these structures. The sensitive parts include end-effectors of flexible

robot manipulators.

Allaei investigated the feasibility of developing an efficient vibration-control methodology based on mode local-

ization and termed it as vibration control by confinement [1]. The advantage of the confinement approach over con-

ventional control in isolating the sensitive parts of a structure was demonstrated with several examples by Allaei [2].

The eigenvector assignment has been demonstrated to be an efficient tool for vibration control [3,19,22]. It is a

means of redistributing the vibrational energy in the structure, and thus allowing the sensitive parts to converge to

their steady-state values at fast rates.
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The eigenstructure assignment procedure has found application in a wide variety of control problems, such as

those associated with flight-control design [13,21] and the control of vibrating structures [15]. An extensive literature
is concerned with the development of algorithms for the computation of feedback gains that yield a desired set of
closed-loop eigenvalues and eigenvectors [9–11,15,23].

Another design technique known as ‘Inverse Eigenvalue Problem’ arises in control-system design, system identifi-
cation, structural analysis, mechanical system simulation, etc. . . The essential idea of an inverse eigenvalue problem
is to reconstruct a matrix from prescribed spectral data, which may consist of the complete or only partial information

of the eigenvalues or eigenvectors [7]. The objective of an inverse eigenvalue problem is to construct a matrix that
maintains a specific structure and satisfies given spectral properties. Ram and Elhay have presented a method that
constructs tridiagonal symmetric quadratic damping and stiffness matrices based on a given set of eigenvalues [17].

Sivan and Ram have treated the problem of determining structural alteration from a given set of eigenvalues and
eigenvectors in the presence of model uncertainties [20]. Ram has synthesized control forces for shifting some
poles of a vibrating rod to prescribed locations while keeping the other poles unchanged [16]. Ram and Elhay have

reconstructed the shape of a rod with varying cross-section [18]. Their reconstruction is based on a discretized model
of the rod leading to a specially structured matrix pencil.

Recently, Choura and Yigit have developed a strategy for the confinement of vibrations in flexible structures by

distributed actuators [5]. The strategy consists of altering the original mode shapes of a flexible structure using
feedback. The altered mode shapes are exponentially decaying functions of space that nearly vanish at the structural
region where the vibrational energy is to be removed and transferred to the remaining parts. They have shown

that it is possible to use an equivalent set of discrete actuators for confining the vibration [24]. The concept of
using a reduced number of point actuators has been treated in [6]. As compared to the procedure of eigenstructure
assignment offered by Shaw and Jayasuriya [19] and Song and Jayasuriya [22], Choura has developed a detailed
assignment procedure for the purpose of vibration confinement [3]. Feedback forces have been used to allow parts of

a structure reach their equilibria at fast rates at the expense of slowing down the convergence of the remaining parts
to zero. The control strategy has been used to investigate the confinement and suppression of vibrations resulting
from an initial energy distribution using feedback forces whose number is equal to that of the dimension of the

discretized model. The strategy of vibration confinement by passive means has been applied to seismically excited
structures [4].

In this paper, we consider the reconstruction (for existing structures) or design (for new structures) of rods

with spatially varying shape and material properties by a proper selection of their cross-sectional areas, their
modulii of elasticity, and/or their densities. The key idea of such a selection is to setup the ordinary-differential
equation associated with the eigenfunctions as a space-domain stability problem dual to that of time-domain stability.

Therefore, design techniques, such as pole placement and Lyapunov energy functions, can be used to determine the
necessary conditions for assigning the spatially varying shape and material properties of the vibrating rod.

2. Problem formulation

Consider the axial vibration of a rod, shown in Fig. 1, with variable cross-sectional area A (x), variable Young’s
modulus of elasticity, E (x) and variable mass density per unit length ρ (x), and governed by

∂

∂x

[

E (x)A (x)
∂u

∂x

]

− ρ (x)A (x)
∂2u

∂t2
= 0 (1)

where the neutral axis is assumed to be linear.
It is known that the vibratory energy is equally distributed over the spatial domain of a rod having constant

cross-section and constant material properties. One way to redistribute the energy in such a rod is to apply active
control employing distributed force actuators [5] or point force actuators [24]. This paper proposes an alternate way
for the redistribution of energy by modifying the rod’s geometric and material properties. From a practical point

of view, the designer is allowed to modify an already existing rod by adding and/or removing material. Therefore,
the objective of this study is to determine a set of functions A (x), E (x), and ρ (x) such that the rod preserves a
localization or confinement behavior during its vibrational motion in which certain parts of the rod will experience

lower vibration amplitudes.
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Fig. 1. Rod with variables cross section and variable material properties.

The axial displacement is expressed in the following form:

u (x, t) = U (x) ejω t (2)

where U (x) is the eigenfunction, ω is the natural frequency of axial vibration, and t is the time variable. Substituting

Eq. (2) into Eq. (1) yields

d

dx

[

E (x) A (x)
dU (x)

dx

]

+ ω2ρ (x) A (x) U (x) = 0 (3)

Vibration confinement can be defined as reducing the absolute value of U (x) in the sensitive parts; that is,

|U (x)| < ε for ∀x ∈ D1∪D2 . . . ∪ Dn (4)

where ε is a small positive constant and the Di, i = 1,2,. . . ,n correspond to the spatial intervals associated with the

parts that are sensitive to vibration.

The strategy for vibration confinement proposed in this study converts the eigenfunctions of the original structure

into exponentially decaying functions of the spatial coordinate x. If the size of the structure is large (i.e., the

dimension of the rod’s length L is large), then spatial confinement of vibration becomes dual to time domain stability.

It is, therefore, possible to design the functions A (x), E (x), and ρ (x) in Eq. (3) utilizing the classical pole

placement techniques, such as using the Routh-Hurwitz criterion or the Lyapunov stability technique, and applying

them to the spatial domain. In particular, the coefficients in Eq. (3) must be properly selected in order to “stabilize”

the spatial dynamics, where the concept of spatial domain stability is introduced as a concept dual to that of the

time-domain stability. Next, a strategy for selecting the above functions is developed for the general case followed

by particular cases.

3. Conditions for vibration confinement

Consider the axial vibration of bars in which the cross-section area A = A (x), Young’s modulus of elasticity

E = E (x), and mass density per unit length ρ = ρ (x) are all taken as variables. In this case, Eq. (3) can be

rewritten as

[p (x)U ′]
′
+ ω2 q (x)

p (x)
U = 0 (5)

where p (x) and q (x) are positive functions for all x and given by

p (x) = E (x) A (x) q (x) = ρ (x) E (x) A2 (x) (6)

In order to “stabilize” the spatial dynamics, a set of functions A (x),E (x), and ρ (x) can be found using the

following candidate Lyapunov function:

V (x) = U2 +
1

ω2q (x)
[p (x) U ′]

2
> 0 (7)
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Using Eq. (5), we simplify the derivative of V (x) with respect to x to

V ′ (x) = − q′ (x)

ω2q (x)
[p (x) U ′]

2
(8)

which implies that

q′ (x) = [ρ′ (x) E (x) + ρ (x) E′ (x)] A2 (x) + 2ρ (x) E (x) A (x) A′ (x) > 0 (9)

Equation (9) regulates the choice of the rod parameters and provides a relationship among them. It provides condi-

tions on the choice of the physical and geometric parameters that lead to vibration confinement in the neighborhood

of x = 0. Conditions on these parameters for vibration confinement at an arbitrary point in the spatial domain are

given later in this paper. From Eq. (9), it follows that the following cases are possible:

a. keep both of the cross-section area and the density constant across the rod and vary the modulus of elasticity

provided that its spatial derivative with respect to x is positive for all x. This implies that the rod stiffness

increases and becomes larger in the neighborhood of the right end,

b. keep both of the cross-section area and the modulus of elasticity constant across the rod and vary the rod density

provided that its spatial derivative with respect to x is positive for all x. This implies that the rod density

increases and becomes larger in the neighborhood of the right end,

c. keep the cross-section area constant across the rod and vary both of the modulus of elasticity and the density

provided that the spatial derivative of their product with respect to x is positive for all x. This implies that

both of the rod stiffness and density increase simultaneously or one of them decreases and the other increases

more rapidly. This is the case of a Functionally Graded Material (FGM), which is essentially a two-phase

nonhomogeneous particulate composites synthesized in such a way that the volume fractions of the constituent

materials, such as ceramic and metal, vary continuously along a spatial direction to give a predetermined

composition profile, resulting in a relatively smooth variation of the mechanical properties [8].

Because variations in the geometric and material properties might decrease the critical buckling loads, we

investigate the effect of the distributed geometric and physical properties on the buckling of a fixed-fixed rod. For a

constant axial load, the static buckling problem associated with the rod is described by

d2

dx2

(

E (x) I (x)
d2w

dx2

)

+ P
d2w

dx2
= 0 w (0) = w (L) = 0;

dw

dx
(0) =

dw

dx
(L) = 0 (10)

It follows from this boundary-value problem that only the modulus of elasticity and the second moment of area

affect the buckling load P . The absence of the mass density shows that the cross-section area and the modulus of

elasticity can be designed first to satisfy certain design conditions for the buckling problem. The mass density can

then be designed to compensate for the confinement problem. This is demonstrated through a study case discussed

later in this paper. Next, we give some examples of rods with spatially varying geometric and/or physical properties

that demonstrate the validity of condition Eq. (9) and we also address the buckling problem for each example.

We first consider axial vibrations of a rod of length L with variable cross-section area and constant physical

properties; that is, E (x) = E0 and ρ (x) = ρ0. In this case, we search for possible forms of the cross-section that

allow confinement of vibrations in preferred regions of the rod when the material properties are kept constant. In

this case, Eq. (9) reduces to

q′ (x) = 2ρ E A (x) A′ (x) > 0 (11)

which requires the cross-section area to be an increasing function of space over the domain 0 < x < L.

4. An exponentially varying cross-section area

In this case, the cross-section area is distributed according to the following exponential function:

A (x) = A0e
αx A (0) = A0 and A (L) = AL (12)
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where α = 1
L

ln
(

AL

A0

)

. It follows from Eq. (12) that the area increases as the spatial variable x increases. It can be

shown that Eq. (3) simplifies to

U ′′ + α U ′ +
ρ0

E0
ω2 U = 0 (13)

which in turn yields the characteristic equation

λ2 + αλ +
ρ0

E0
ω2 = 0 (14)

Thus, the general solution is given by:

U (x) = C1 eλ1x + C2 eλ2x (15)

λ1,2 = −1

2
α ±

√

1

4
α2 − ρ0ω2

E0
(16)

Next, we consider the cases of fixed-fixed and fixed-free rods, starting with the first.

For a fixed-fixed rod, the boundary conditions are given by u (0 , t) = 0 and u (L , t) = 0, and the normalized

eigenfunctions are given by

Um (x) =

√

eαL (α3L2 + 4αm2π2)

2 (eαL − 1) m2π2
e−

1
2 αxsin

(mπ

L
x
)

(17)

The scalar α must satisfy 0 < α < 2
√

ρ0

E0
ω1 and the natural frequencies are given by

ω2
m =

E0

ρ0

[

m2π2

L2
+

1

4
α2

]

, m = 1, 2,3,. . . (18)

For a fixed-free rod, the boundary conditions are u (0 , t) = 0 and u ′ (L , t) = 0. The solution of equation

(13) that satisfies the boundary condition u (0 , t) = 0 is given by

Um (x) = Cme−
1
2αxsin (ηx) (19)

where

η =

√

ρ0ω2
m

E0
− 1

4
α2 (20)

Imposing the boundary condition u ′(L, t) = 0 yields the characteristic equation

cot(ηL) =
α

2η
(21)

Equation (21) does not have a closed-form solution and, therefore, either numerical or asymptotic methods are
needed for approximating the natural frequencies. The large roots of the characteristic equation can be obtained

using asymptotic methods as follows. When η is large, the right-hand side of Eq. (21) can be neglected and hence

we obtain cot (ηL) = 0 whose solution is given by

ηL =

(

m +
1

2

)

π (22)

where m is an integer. Then the solution of Eq. (21) can be sought in the form

ηL =

(

m +
1

2

)

π + δ (23)

Substituting Eq. (23) into Eq. (21) yields

cot

[(

m +
1

2

)

π + δ

]

=
αL

(2m + 1)π + 2δ
(24)
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Using trigonometric identities, we rewrite Eq. (24) as

cot
[(

m + 1
2

)

π
]

− tan (δ)

1 + tan (δ) cot
[(

m + 1
2

)

π
] =

αL

(2m + 1)π + 2δ
(25)

or

− tan (δ) =
αL

(2m + 1)π + 2δ
(26)

For small δ, Eq. (26) yields

δ = − αL

(2m + 1)π
(27)

Therefore, to the second approximation,

ηL =

(

m +
1

2

)

π − αL

(2m + 1)π
(28)

Substituting Eq. (28) into Eq. (20), we obtain, to the second approximation, the natural frequencies

ρ0ω
2
m

E0
=

1

2
α2 +

1

L2

[(

m +
1

2

)

π − αL

(2m + 1)π

]2

(29)

Equation (19) shows that the mode shapes are exponentially decaying functions of the spatial variable x. Higher

values of α lead to faster decay of these eigenfunctions, and therefore a better confinement of the vibrational energy

in the neighborhood of x = 0. Figure 2 shows the first three modes and time response to an initial time velocity

distribution with constant physical and geometric properties of a 10-meter aluminum rod (E = 1.5 × 10 6 N / m2,

ρ = 8760 kg, and A = 0.01322 m2). Clearly, the vibratory energy is distributed throughout the rod at all times.

Figures 3 and 4 show the shape of a square cross-section area, the first three eigenfunctions, and the time response to

an initial time velocity distribution for fixed-fixed and fixed-free 10-meter aluminum rods (E 0 = 1.5 × 106 N / m2,

ρ0 = 8760 kg, A0 = 10−4 m2, AL = 9 × 10−2 m2 and α = 0.68). As expected, the vibratory motion is

confined in the left region of the rod. We note that the frequencies shown in figure 4 correspond to the exact values.

The first three approximate frequencies obtained from Eq. (29) are, respectively, 6.8605, 10.6816, and 14.6745,

which are close to the exact values.

Next, we address the buckling problem; the second moment of area is given by I (x) = I 0e
2αx. Hence, Eq. (10)

becomes

d2

dx2

(

e2αx d2w

dx2

)

+ κ2 d2w

dx2
= 0 w (0) = w (L) = 0;

dw

dx
(0) =

dw

dx
(L) = 0 (30)

where κ2 = P
E0I0

and I=
0

A2
0

12 . The general solution of Eq. (30) can be expressed as

w (x) = C1 + C2x + C3J0

(κ

α
e−αx

)

+ C4Y0

(κ

α
e−αx

)

(31)

where Jn and Yn are the Bessel functions of the first and second kinds of order n, respectively. Applying the

boundary conditions and using Mathematica, we find that the characteristic equation leads to the following lowest

five critical axial loads: P1 = 20.5E0I0, P2 = 39.1E0I0, P3 = 77.8 E0I0, P4 = 114.2E0I0, and P5 = 171.9E0I0.

For comparison purposes, we investigate the buckling problem associated with a 10-meter aluminum rod having

constant physical and geometric properties (E (x) = E0 and I (x) = 17466I0) where the second moment of area

is calculated by assuming that the material volumes of both rods are the same. For the uniform beam, the buckling

problem is given by

d4w

dx4
+ κ2 d2w

dx2
= 0; w (0) = w (L) = 0;

dw

dx
(0) =

dw

dx
(L) = 0 (32)

The general solution of Eq. (32) can be expressed as

w (x) = C1 + C2x + C3 cos (κ x) + C4 sin (κ x) (33)
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Fig. 2. First three eigenfunctions and time response of an aluminum fixed-fixed rod.

Applying the boundary conditions, we obtain the characteristic equation

κL sin(κL) + 2 cos(κL) = 2 (34)

Using asymptotic methods, we find that the large roots of Eq. (34) are given by

κL = nπ +
2[1 − cos (nπ)]

nπcos (nπ)
for n � 2 (35)

The lowest five exact and approximate roots are:

Exact roots: κL =6.2832, 8.9868, 12.5664, 15.4505, and 18.8496

Approximate roots: κL =6.2832, 9.0004, 12.5664, 15.4533, and 18.8496

We note that the roots in Eq. (35) corresponding to even values of n are exact and those corresponding to odd

values of n are approximate. The lowest five critical buckling loads obtained numerically as well as from the

asymptotic solution are:

P1 = 39.48E0I, P2 = 80.65E0I, P3 = 157.91E0I, P4 = 238.68E0I, and P5 = 355.31E0I .
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Fig. 3. Shape, first three eigenfunctions and time response of an aluminum fixed-fixed rod.

But I = 17466I0, therefore the lowest five critical buckling loads are:

P1 = 689534E0I0, P2 = 1410612E0I0, P3 = 2758135E0I0, P4 = 4169471E0I0, and P5 = 6205803E0I0.

Comparison of the set of critical axial loads associated with a rod having spatially varying cross-section area
with the above values reveals that the first critical value is decreased remarkably. This constitutes a disadvantage

in the sense that improving vibration confinement results in a weak rod resistance to buckling in case the material
volume is kept the same for both rods. This observation is valid only for rods having constant material properties
and variable geometric properties. On the other hand, if the cross-section area is kept at the smallest value associated
with the spatially varying rod A0, then the first five critical axial loads become: P1 = 0.81E0I0, P2 = 2.39E0I0,

P3 = 4.76E0I0, P4 = 7.91E0I0, and P5 = 11.86E0I0. In such a case, varying the cross-section area improves
simultaneously the confinement of vibration and the rod resistance to buckling.

In order to avoid the decrease in the critical buckling loads, we investigate possibilities of varying the material
properties with or without varying the geometric properties. This is discussed thoroughly in Sections 6–8.

5. Linearly varying cross-section area

For generally varying cross-section areas,



S. Choura et al. / Axial vibration confinement in nonhomogenous rods 185

0 5 10
-0.2

-0.1

0

0.1

0.2

x

b
e
a
m

 s
h
a
p
e

0 5 10
0

0.1

0.2

0.3

0.4

0.5

x

F
ir
s
t 

m
o
d
e
 s

h
a
p
e

0 5 10
-0.2

0

0.2

0.4

0.6

x

S
e
c
o
n
d
 m

o
d
e
 s

h
a
p
e

0 5 10
-0.2

0

0.2

0.4

0.6

0.8

x

T
h
ir
d
 m

o
d
e
 s

h
a
p
e

0 
2 

4 
6 

8 
10 0 

0.5 

1 

1.5 

0 
0.00025 
0.0005 

0.00075 

0 
2 

4 
6 

8 
10 x 

u(x,t) t 

 

7.26=1ω  

10.81=2ω 14.65=3ω  

Fig. 4. Shape, first three eigenfunctions and time response of an aluminum fixed-free rod.

A (x) = A0e

∫

x

0
f(σ)dσ

(36)

and Eq. (3) takes the form

U ′′ + f (x) U ′ +
ρ0

E0
ω2 U = 0 (37)

According to the spatial stability condition given in Eq. (11), the function f (x) must be positive for all x. This

condition implies that the cross-section is monotonically increasing function of x.

Next, we consider the case of linearly varying cross-section areas; that is,

A (x) = A0 + (AL−A0)
L

x corresponding to f (x) = AL−A0

A0L+(AL−A0)x
, where AL > A0 and α = AL−A0

LA0
.

In this case, the rod is stiffer in the vicinity of the right end. Then, the solution of Eq. (37) that vanishes at the left

end is given by

Ui (x) = Ci

[

J0

(√

ρ
E

ωi

α
(1 + αx)

)

J0

(√

ρ
E

ωi

α

) − Y0

(√

ρ
E

ωi

α
(1 + αx)

)

Y0

(√

ρ
E

ωi

α

)

]

i = 1, 2, 3, . . . (38)

Then the corresponding characteristic equation is

J0

(
√

ρ

E

ωi

α
(1 + αL)

)

Y0

(
√

ρ

E

ωi

α

)

− J0

(
√

ρ

E

ωi

α

)

Y0

(
√

ρ

E

ωi

α

)

(1 + αL) = 0 (39)
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Fig. 5. Shape, first five eigenfunctions, and time response of an aluminum fixed-fixed rod with a linearly increasing area.

Figure 5 shows the rod shape and the first five eigenfunctions for (E 0 = 1.5 106 N / m2, ρ0 = 8760 kg,

A0 = 10−4 m2, and AL = 9 10−2 m2). The time response of the aluminum rod for an initial time velocity

distribution, shown in the same figure, depicts that the vibrations are confined towards the left end (x = 0).

In this case, the associated buckling problem is given by

d2

dx2

[

(1 + αx)
2 d2w

dx2

]

+ κ2 d2w

dx2
= 0 w (0) = w (L) = 0;

dw

dx
(0) =

dw

dx
(L) = 0 (40)

The general solution of Eq. (40) can be expressed as

w (x)=C1+C2x+
√

1 + αx

(

C3cos

[√
4κ2 − α2ln (1 + αx)

2α

]

+C4sin

[√
4κ2 − α2ln (1 + αx)

2α

])

(41)

Applying the boundary conditions to Eq. (41) yields the characteristic equation

L
(

2κ2 − α2
)

sin
[√

4κ2−α2 ln(1 + αL)
2α

]

+ (2 + αL)
√

4κ2 − α2 cos
[√

4κ2−α2 ln(1 + αL)
2α

]

= 2
√

(1 + αL) (4κ2 − α2)
(42)
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Fig. 6. First five eigenfunctions and time response of an aluminum fixed-free rod with an exponentially increasing modulus of elasticity.

The large roots of Eq. (42) are given by

P

E0I0
=

1

4
α2 +

4n2π2α2

ln2 (1 + αL)
− 8n2π2α

[

2 + αL − 2
√

1 + αL cos (nπ)
]

L ln (1 + αL)
[

4n2π2 − ln2 (1 + αL)
] (43)

The characteristic Eq. (42) leads to the following first five critical axial loads:P 1 = 6710E0I0, P2 = 15020E0I0,

P3 = 27382E0I0, P4 = 42585E0I0, and P5 = 61857E0I0.
For comparison purposes, we investigate the buckling problem associated with a 10-meter aluminum rod with

constant physical and geometric properties (E (x) = E0 and I (x) = 202950.25 I0). The second moment of area

is found on the basis that the material volume of both rods is the same. The associated characteristic equation
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leads to the following first five critical axial loads: P1 = 80122E0I0, P2 = 163909E0I0, P3 = 320486E0I0,

P4 = 484479E0I0, and P5 = 965230E0I0. Comparison of the two sets of critical axial loads shows that the relative

differences are reduced remarkably in this case. The buckling problems in Sections 4 and 5 reveal that the spatial

variation of the cross-section area plays a major role in controlling the relative differences in the critical buckling

loads.

6. Exponentially varying modulus of elasticity

In this case, A (x) = A0, ρ (x) = ρ0, E (x) = E0eαx with α = 1
L

lnEL/E0 and EL > E0; that is, the

rigidity increases exponentially with respect to x making the rod stiffer in the vicinity of the right end. In practice,

this could be the case of an FGM with constituent materials having the same density but different moduli of elasticity.

Thus, Eq. (3) reduces to

d

dx

[

eαx dU

dx

]

+ ω2 ρ0

E0
U = 0 (44)

For a fixed-fixed rod, the eigenfunctions are given by

Ui (x) = Cie
− 1

2αx

⎡

⎣

J1

(

κie
− 1

2αx
)

J1 (κi)
−

Y1

(

κie
− 1

2αx
)

Y1 (κi)

⎤

⎦ i = 1, 2, . . . (45)

where κ2
i =

4ρ0ω2
i

α2E0
. The corresponding characteristic equation is

J1

(

κie
− 1

2αL
)

Y1 (κi) − J1 (κi)Y1

(

κie
− 1

2αL
)

= 0 (46)

For a 10-meter aluminum rod (E0 = 1.5 106 N / m2, EL = 1.5 108 N / m2, ρ0 = 8760 kg, L = 10 m,

and A0 = 10−4 m2), Fig. 6 shows the first five eigenfunctions and the time response for an initial time velocity

distribution. This simulation confirms the confinement of vibrations in the neighborhood of the left end (x = 0).

As in previous cases, the associated buckling problem is defined as

d2

dx2

[

eαx d2w

dx2

]

+
P

E0I0

d2w

dx2
= 0 w (0) = w (L) =

dw

dx
(0) =

dw

dx
(L) = 0 (47)

It can be verified that the solution associated with the above boundary-value problem can be expressed as

w (x) = C1 + C2x + C3J0

(

λe−
1
2αx

)

+ C4Y0

(

λe−
1
2αx

)

(48)

where λ2 = 4P
α2E0I0

. Applying the boundary conditions and letting L = 10 m, we obtain from the characteristic

equation the following first five critical axial buckling loads: P1 = 2.68E0I0, P2 = 5.30E0I0, P3 = 10.47E0I0,

P4 = 15.65E0I0, and P5 = 23.40E0I0.

For comparison purposes, we investigate the buckling problem associated with a 10-meter aluminum rod with

constant physical and geometric properties (E (x) = E0 and I (x) = I0). The second moment of area is kept

the same since the material volume of both rods is kept the same. The first five critical axial loads are found to

be P1 = 0.81E0I0, P2 = 2.39E0I0, P3 = 4.76E0I0, P4 = 7.91E0I0, and P5 = 11.86E0I0. In this case, the

first critical axial load is enhanced, and therefore, a proper spatial variation of the modulus of elasticity produces

simultaneous improvement in the vibration confinement and resistance to buckling.

We note that the homogeneous rod uses the minimum value of the spatially varying modulus of elasticity

E (x) = E0 eαx. In case the average value 1
2 (E0 + EL) = 50.05 E0 is employed, then the critical buckling

loads become P1 = 40.54E0I0, P2 = 119.62E0I0, P3 = 238.24E0I0, P4 = 395.90E0I0, and P5 = 593.59E0I0.

In this case, the critical loads associated with the spatially varying rod are lower than those of a homogeneous rod.
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7. Exponentially varying density

In this case, A (x) = A0, E (x) = E0, ρ (x) = ρ0 eβ x with β = 1
L

lnρL

ρ0
and ρL > ρ0; that is, the density

increases exponentially with respect to x making the rod more dense in the vicinity of the right end. In practice, this
could be the case of an FGM with constituent materials having the same modulus of elasticity but different densities.
Thus, Eq. (3) reduces to

d2U

dx2
+

ρ0ω
2

E0
eβxU = 0 (49)

For a fixed-fixed rod with, the eigenfunctions satisfying Eq. (49) are given by

Ui (x) = Ci

⎡

⎣

J0

(

κie
1
2βx

)

J0 (κi)
−

Y0

(

κie
1
2βx

)

Y0 (κi)

⎤

⎦ i = 1, 2, 3, . . . (50)

where κ2
i =

4ρ0ω2
i

β2E0
. The corresponding characteristic equation is

J0

(

κie
1
2βL

)

Y0 (κi) − J0 (κi) Y0

(

κie
1
2 βL

)

= 0 (51)

Figure 7 shows the first five eigenfunctions and the time response for an initial time velocity distribution for a rod
with the properties: E0 = 1.5 106 N / m2, ρ0 = 8760 kg, ρL = 87600 kg, L = 10 m, and A0 = 10−4 m2. This
figure clearly shows that the vibrations are confined towards the left end (x = 0).

8. Exponentially varying density and modulus of elasticity

In this case, A (x) = A0 , ρ (x) = ρ0eβx and E (x) = E0eαx ; that is, all physical properties increase
exponentially with respect to x making the rod stiffer and denser in the vicinity of the right end. In practice, this
could be the case of an FGM with constituent materials having different densities and different moduli of elasticity.
Thus, Eq. (3) reduces to

d

dx

[

eαx dU

dx

]

+
ρ0ω

2

E0
eβxU = 0 (52)

For a fixed-fixed rod, the eigenfunctions satisfying Eq. (52) are given by

Ui (x) = Cie
− 1

2αx

⎡

⎣

Jν

(

κie
− 1

2 (α−β)x
)

Jν (κi)
−

Yν

(

κie
− 1

2 (α−β)x
)

Jν (κi)

⎤

⎦ i = 1, 2, 3, . . . (53)

where ν = α
α − β

, κ2
i =

4ρ0ω2
i

(α − β)2E0
, and α �= β. The corresponding characteristic equation is

Jν

(

κie
− 1

2 (α−β)L
)

Yν (κi) − Jν (κi)Yν

(

κie
− 1

2 (α−β)L
)

= 0 (54)

When α = β, the eigenfunctions that satisfy the left boundary condition can be expressed as

Ui (x) = Ci e−
1
2αxsin

[

√

ρ0ω2
i /E0 − α2x

]

i = 1, 2, 3, . . . (55)

Therefore, the natural frequencies are given by

ωi =

√

E0

ρ0

(

n2π2

L2
+ α2

)

i = 1, 2, 3, . . . (56)

Figure 8 shows the first five eigenfunctions and time response for an initial time velocity distribution for a rod
with the properties: E0 = 1.5 × 106 N / m2, ρ0 = 8760 kg, and A0 = 10−4 m2, α = β = ln (10) /10. As it
can be seen, the vibrations are confined in the vicinity of the left end (x = 0). The associated buckling problem is
defined by Eq. (47) whose solution is given by Eq. (48).
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Fig. 7. First five eigenfunctions and time response of an aluminum fixed-fixed rod with an exponentially increasing density.

9. Exponentially varying density, modulus of elasticity, and cross-section area

This case presents an example of a rod in which all geometric and physical parameters vary with the spatial variable

x as A (x) = A0 eγx , ρ (x) = ρ0 eβ ’x, E (x) = E0 eα ’x; that is, all material and geometric properties

increase exponentially with x making the rod stiffer, thicker, and denser in the vicinity of the right end. Then, the
solution to this case is the same as in the preceding case with α = α ’ + γ and β = β ’ + γ. Figure 9 shows

the first five eigenfunctions and time response for an initial time velocity distribution for a rod with the properties:
E0 = 1.5 106 N / m2, ρ0 = 8760 kg, A0 = 10−4 m2, and α ’ = β ’ = γ = (ln10) /10. As it can be seen, the

vibrations are confined in the vicinity of the left end (x = 0).

In this case, the solution to the buckling problem is similar to that in Section 8 where 2α = α ’ + 2γ. The first
five critical loads are: P1 = 9.41E0I0, P2 = 18.01E0I0, P3 = 35.86E0I0, P4 = 52.74E0I0, and P5 = 79.29E0I0.

As compared to the preceding case, the critical loads are enhanced, and therefore, a proper spatial variation of all
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Fig. 8. First five eigenfunctions and time response of an aluminum fixed-fixed rod with an exponentially increasing density and modulus of

elasticity.

parameters is capable of producing a simultaneous improvement of vibration confinement and rod resistance to
buckling.

10. Confinement at an interior region

If one wishes to confine the vibrations about an arbitrary point x 0 instead of the origin, then the feedback force

must be altered as follows: first, we shift the origin to x0, the point about which the vibrations to be confined. Now,
the boundary-value problems associated with the rod are:

[p (x) U ′]
′

+ ω2 q (x)

p (x)
U = 0 − x0 < x < 0 (57)
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Fig. 9. First five eigenfunctions and time response of an aluminum fixed-fixed rod with an exponentially increasing cross-sectional area, density

and modulus of elasticity.

[p (x) U ′]
′

+ ω2 q (x)

p (x)
U = 0 0 < x < L − x0 (58)

The Lyapunov function and its space derivative given in Eqs (7) and (8) can be employed for the above boundary-

value problems, but different conditions are obtained. Equation (9) becomes
{

q′ (x) = [ρ′ (x) E (x) + ρ (x) E′ (x)] A2 (x) + 2ρ (x) E (x)A (x)A′ (x) < 0 − x0 < x < 0
q′ (x) = [ρ′ (x) E (x) + ρ (x) E′ (x)] A2 (x) + 2ρ (x) E (x)A (x)A′ (x) > 0 0 < x < L − x0

(59)

For particular cases, the above two conditions can be interpreted physically as follows:
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Fig. 10. Shape of a rod producing vibration confinement at the middle point.

1. keep both of the modulus of elasticity and the density constant across the rod and vary the cross-section

area provided that its spatial derivative with respect to x is negative for − x0 < x < 0 and positive for

0 < x < L − x0. This implies that the rod shape decreases up to x0 and then increases up to the right end

of the rod,

2. keep both of the modulus of elasticity and the cross-section area constant across the rod and vary the density

provided that its spatial derivative with respect to x is negative for − x0 < x < 0 and positive for

0 < x < L − x0. This implies that the rod density decreases up to x0 and then increases up to the right

end of the rod,

3. keep both of the density and cross-section area constant across the rod and vary the modulus of elasticity

provided that its spatial derivative with respect to x is negative for − x0 < x < 0 and positive for

0 < x < L − x0. This implies that the rod stiffness decreases up to x0 and then increases up to the right

end of the rod.

Figure 10 shows a particular shape of the rod that produces vibration confinement at the middle of the rod (both

modulus of elasticity and density are constant and the cross-section area is variable). As another illustration, let us

consider a beam whose modulus of elasticity varies according to the following distribution function:

E (x) =

⎧

⎨

⎩

E0e

(

ln
Ex0
E0

)

x

x0 0 < x < x0

Ex0e

(

ln
EL

Ex0

)

(x−x0)

L−x0 x0 < x < L
(60)

where E0 > Ex0 and EL > Ex0 . This implies that the modulus of elasticity is an exponentially decaying function

of x for 0 < x < x0 and is an exponentially increasing function of x in the interval x 0 < x < L. For

a rod of constant density (ρ0 = 8760 Kg / m3), constant cross-section area (A0 = 10−4 m2), L = 10 meter,

x0 = 5 meter, E0 = EL = 1.5 × 108N / m2, and Ex0 = 1.5 × 106N / m2, Fig. 11 shows the first five mode

shapes associated with the distribution given by Eq. (60). Applying the boundary conditions associated with the

buckling problem, the characteristic equation leads to the following first five critical axial loads: P 1 = 0.54E0I0,

P2 = 3.91E0I0, P3 = 8.58E0I0, P4 = 14.31E0I0, and P5 = 16.27E0I0. Compared to the case of constant

material and geometric properties, we conclude that the first critical buckling load is reduced by 33% while the

second, third, fourth, and fifth critical loads are increased by 64%, 80%, 81% and 37%, respectively.

11. Conclusions

This paper is concerned with the design of spatially-dependent functions characterizing structure material and

geometric properties for the confinement of rod axial vibrations. The aim is to develop a set of rod parameters

that lead to reallocating its vibratory energy so that vibrations are reduced in the sensitive parts and increased in

the remaining parts. The selection of such properties is accomplished by constructing positive Lyapunov functions

whose derivative with respect to the space variable is negative. In case both of the density and modulus of elasticity

are kept constant while the cross-section area is varied, vibration confinement requires that the eigenfunctions be

exponentially decaying functions of space, where the notion of spatial domain stability is introduced as a concept dual

to that of time-domain stability. Thus, varying the shape of the rod alone is sufficient to confine the vibratory motion.

We have also shown that vibration confinement can be produced if one (or both) of the rod density and stiffness is

varied with respect to the space variable while the cross-section area is kept constant. Several cases, supporting the

developed conditions imposed on the spatially-dependent functions, are discussed and simulated. Because variations
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Fig. 11. First five eigenfunctions of an aluminum fixed-fixed rod with an exponentially decreasing-increasing modulus of elasticity.

in the geometric and physical properties of rods might affect their buckling, we have also addressed the buckling

problem.

We believe that the outcome of this study for the axial vibration of rods can be extended for the vibratory motion

of general 1-D and 2-D flexible structures, such as the flexural vibrations of beams and plates. This constitutes the

focal point of the authors’ future research in the area of passive control of flexible structures by confinement of

vibrations.

Acknowledgement

This work was supported by the National Science Foundation under Grant No. INT-0138083.

References

[1] D. Allaei, Application of localized modes in vibration control, Proceedings of the 2nd International Congress on Recent Development of

Air and Structure Borne Sound and Vibration, Auburn, Alabama, 1992.

[2] D. Allaei, Performance comparison between vibration control by confinement and conventional control techniques, Proceedings of the

ASME 16th Biennial Conference on Mechanical Vibration and Noise, Sacramento, California, 1997.

[3] S. Choura, Control of flexible structures with the confinement of vibrations, ASME Journal of Dynamic Systems, Measurement, and Control

117(2) (1995), 155–164.

[4] S. Choura, S. El-Borgi, A. Abichou and A.H. Nayfeh, Control of seismically excited structures by passive confinement of vibrations, The

3rd World Conference on Structural Control, April 7–11, Como, Italy, 2002.



S. Choura et al. / Axial vibration confinement in nonhomogenous rods 195

[5] S. Choura and A.S. Yigit, Vibration confinement in flexible structures by distributed feedback, Journal of Computers and Structures 54(3)

(1995), 531–540.

[6] S. Choura and A.S. Yigit, Confinement and suppression of structural vibrations, ASME Journal of Vibration and Acoustics 123 (October,

2001), 496–501.

[7] M.T.C. Chu, Inverse eigenvalue problems, SIAM Review 40 (1998), 1–39.

[8] F. Erdogan, Fracture Mechanics of Functionally Graded Materials, Composites Engineering 5 (1995), 753–770.

[9] M.M. Fahmy and J. O’Reilly, On eigenstructure assignment in linear multivariable system, IEEE Transactions on Automatic Control

AC-27(3) (1982), 690–693.

[10] J.N. Juang, K.B. Lim and J.L. Junkins, Robust eigensystem assignment for flexible structures, Journal of Guidance, Control, and Dynamic

12 (1989), 311–317.

[11] J. Kautsy, N.K. Nichols and O. Van Dooren, Robust pole assignment in linear state Feedback, International Journal of Control 41(5)

(1985), 1229–1245.

[12] T. Kobori and S. Kamagata, Dynamic intelligent buildings-active seismic response control, Intelligent Structures-2, 1992, pp. 279–282,

Y.K. Wen, ed., Elsevier Applied Science, New York.

[13] B.S. Liebst and W.L. Garrard, Application of eigenspace techniques to design of aircraft control systems, Proceedings of the 1985 American
Control Conference, June 1985, pp. 475–480, Boston, Massachusetts.

[14] P.G. Maghami and S. Gupta, On the eigensystem assignment with dissipativity constraints, Proceedings of the 1993 American Control

Conference, June 1993, pp. 1271–1275, San Francisco, California.

[15] P.G. Maghami, J. Juang and K.B. Lim, Eigensystem assignment with output feedback, Journal of Guidance, Control, and Dynamics 15

(1993), 531–536.

[16] Y.M. Ram, Pole assignment for the vibrating rod, Quarterly Journal of Mechanics and Applied Mathematics 51(3) (1998), 477–492.

[17] Y.M. Ram and S. Elhay, An inverse eigenvalue problem for the symmetric tridiagonal quadratic pencil with application of damped

oscillatory systems, SIAM Journal on Applied Mathematics 56(1) (1996), 232–244.
[18] Y.M. Ram and S. Elhay, Constructing the shape of a rod from eigenvalues, Communications in Numerical Methods in Engineering 14(7)

(1998), 597–608.

[19] J. Shaw and S. Jayasuriya, Arbitrary assignment of eigenvectors with state feedback, ASME Journal of Dynamic Systems, Measurement

and Control 114 (1992), 721–723.

[20] D.D. Sivan and Y.M. Ram, Physical modifications to vibratory systems with assigned eigendata, ASME Journal of Applied Mechanics

66(2) (1999), 427–432.

[21] K.M. Sobel, E.Y. Shapiro and A.N. Andry Jr., Eigenstructure assignment, International Journal of Control 59 (1994), 13–37.

[22] B.K. Song and S. Jayasuriya, Active vibration control using eigenvector assignment for mode localization, Proceedings of the 1993
American Control Conference, June 1993, 1020–1024, San Francisco, California.

[23] R.F. Wilson, J.R. Cloutier and R.K. Yedaveli, Control design for robust eigenstructure assignment in linear uncertain systems, IEEE Control

Systems Magazine 12(5) (1992), 29–34.

[24] A.S. Yigit and S. Choura, Vibration confinement in flexible structures via alteration of mode shapes using feedback, Journal of Sound and

Vibration 179 (1995), 553–567.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


