
Axially equilibrated displacement-based beam element for
simulating the cyclic inelastic behaviour of RC members

Danilo Tarquini1,*,† , João P. Almeida2 and Katrin Beyer3

1Earthquake Engineering and Structural Dynamics Laboratory (EESD), School of Architecture, Civil and Environmental
Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), EPFL ENAC IIC EESD, GC B2 495, Station

18, CH-1015 Lausanne, Switzerland
2Earthquake Engineering and Structural Dynamics Laboratory (EESD), School of Architecture, Civil and Environmental
Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), EPFL ENAC IIC EESD, GC B2 484, Station

18, CH-1015 Lausanne, Switzerland
3Earthquake Engineering and Structural Dynamics Laboratory (EESD), School of Architecture, Civil and Environmental
Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), EPFL ENAC IIC EESD, GC B2 504, Station

18, CH-1015 Lausanne, Switzerland

SUMMARY

Distributed plasticity beam elements are commonly used to evaluate limit state demands for performance-
based analysis of reinforced concrete (RC) structures. Strain limits are often preferred to drift limits because
they directly relate to damage and are therefore less dependent on member geometry and boundary condi-
tions. However, predicting accurately strain demands still represents a major simulation challenge. Tension
shift effects, which induce a linear curvature profile in the plastic hinge region of RC columns and walls, are
one of the main causes for the mismatch between experimental and numerical estimates of local level quan-
tities obtained through force-based formulations. Classical displacement-based approaches are instead suit-
able to simulate such linear curvature profile. Unfortunately, they verify equilibrium only on an average
sense due to the wrong assumption on the axial displacement field, leading to poor deformation and force
predictions. This paper presents a displacement-based element in which axial equilibrium is strictly verified
along the element length. The assumed transversal displacement field ensures a linear curvature profile,
connecting accurately global displacement and local strain demands. The proposed finite element is vali-
dated against two sets of quasi-static cyclic tests on RC bridge piers and walls. The results show that curva-
ture and strain profiles for increasing ductility demands are significantly improved when axially equilibrated
rather than classical displacement-based or force-based elements are used to model the structural members.
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1. INTRODUCTION

Performance-based assessment of structures is based on the definition of clear limit states, from
which economical losses can be estimated for various ground motion intensities. Limit states can
be based either on global element drift/chord rotation limits or on local material strain limits,
which are deemed to be a better indicator of structural damage [1]. The difficulty in defining
element-related drift/chord rotation limits for bi-directional loading is not faced if material strain
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demands can be directly computed and verified. In reinforced concrete (RC) structures, damage

concentrates in plastic hinge regions, and therefore efficient models should accurately simulate the

main sources of deformation associated to the plastic hinge development. The classical

interpretation of such mechanism, at least for well-detailed members, considers three main

components, namely the moment gradient, tension shift and anchorage slip (or strain penetration)

effects [2].

Although several modelling approaches are available, the attractive compromise between accuracy

and computational cost renders beam element models one of the most widely employed numerical

tools in engineering practice, especially when complex and multi-member structures such as

buildings or bridges are involved. Beam element models are typically divided into lumped and

distributed plasticity approaches. The former are more performant from the computational

viewpoint as they typically lump the three above mentioned components of the plastic hinge at

pre-defined member locations. This is accomplished by using the concept of equivalent plastic

hinge length, which therefore often features three terms [2]. On the contrary, each of those terms

can be individuated in the so-called distributed plasticity elements. Anchorage slip can be

accounted for by a zero-length element, such as that developed by Zhao and Sritharan [3] or any

other appropriately calibrated relation [4, 5]. The moment gradient is explicitly simulated because

the development of plasticity is not restrained to a specific member location but can spread along

several integration points (IPs) in which the finite element (FE) is typically discretized. Up to the

present moment, tension shift effects due to inclined cracking caused by shear force—see

Figure 1(a)—have not been explicitly addressed in the pre-peak phase of the force–displacement

member response, although their influence will necessarily affect the comparison between

experimental and numerical results at the global (i.e. member displacement) level [6, 7]. In the

post-peak branch, the need to use a regularization length makes it possible to indirectly account

for them [8, 9]. This paper shows that models based on distributed plasticity elements and

classical beam theory can also be adapted to directly incorporate tension shift effects whilst

verifying strictly axial equilibrium, thus significantly strengthening the accuracy of these

approaches at the local scale.

Put simply, distributed plasticity elements can be mainly subdivided in displacement-based (DB)

and force-based (FB) formulations [10] depending on the type of the imposed independent fields. As

Figure 1. RC member subjected to top vertical and horizontal load: (a) qualitative sketch of inclined cracks
due to tension shift effects; (b) structural discretization with FB and DB elements; qualitative experimental
versus numerical curvature and axial strain profiles: FB element models—(c) and (e); DB element models—

(d) and (f).
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their name suggest, displacement and force distributions along the element length are assigned in the

former and latter case. The hypotheses governing the beam kinematics control the number of

sectional deformations that arise. The current work considers only Euler–Bernoulli (EB) beam

hypothesis because: (i) it is simple and allows to model most of the structural members in a RC

structure; (ii) linear and nonlinear EB beam elements are available in roughly all the commonly used

structural analysis software (e.g. [11, 12]). Linear and Hermitian polynomial functions are employed

in classical DB formulations to characterize axial and transversal displacement fields. These

assumptions provide an exact solution only for linear elastic material and nodal loads. On the other

hand, constant and linear shape functions are used to define axial force and bending moment

distributions in FB formulations, which results in an exact solution regardless of the development of

material nonlinear response. Additionally, in FB formulations, equilibrium is strictly verified along

the element length—see Figure 1(d)—whereas in DB approaches, equilibrium is only verified in an

average sense [13]—see Figure 1(f). As a consequence, whilst a single FB element usually suffices

to simulate the nonlinear response of a structural member, member discretization in several FEs is

required if DB elements are used—see Figure 1(b).

The state determination of DB formulations is simpler and less computationally demanding than

their FB counterpart as the element end forces and tangent stiffness matrix are directly obtained by

integration of the sectional responses, hence avoiding the intra-element iterations needed for FB

approaches. However, the superiority of the latter in terms of theoretical accuracy and significant

size reduction of the resulting global structural stiffness matrix has led to a gradual reduction in the

use of DB formulations over the past 15–20 years.

More recently, experimental measurements from accurate instrumentation systems [14] applied to

nonlinearly responding RC members have confirmed important limitations of the FB formulations.

Disregarding the effects of tension shift in the pre-peak phase was proven to be one of the most

relevant. The latter cause a linear distribution of plastic curvatures inside the plastic zone of the

structural member ([15–18], see Figure 1), and, as pointed out by Priestley et al. [2], it represents

the first reason for the mismatch between the force–displacement response as obtained from a FB

element (which verifies equilibrium in an exact form) and experimental results. Furthermore, the

previously mentioned test campaign [14] has shown that the intersection between plastic and elastic

curvature profiles occurs at an increasing height for larger ductility demands.

DB formulations offer a solution for the analytical simulation of the above physical phenomena

and thus provide a bypass to the limitations brought about by FB approaches. In fact, the

observed linear curvature profiles in the plastic hinge region of RC members can be simulated by

imposing appropriate lateral displacement fields to the beam FE, which is the natural framework

of DB and not FB formulations—see Figure 1(c) and (e). This paper represents a first step to

reflect the discussed experimental findings in beam element models with a view to predict more

confidently the performance of RC structures. To accomplish such goal, a fundamental drawback

of the classical DB formulations is addressed beforehand. As already mentioned, the imposed

linear axial displacement field implies that axial equilibrium is only verified in an average sense,

which results in case of material nonlinearity in different values of the axial force for distinct

integration sections. This leads to a misevaluation of the moment capacity of the structural

member and therefore to a poor local and global performance of the FE [13]. In this paper, an

enhanced DB element for the inelastic simulation of RC members is proposed in which the axial

equilibrium is strictly verified (hence emulating the advantages of a FB formulation in this

respect) through the use of an iterative procedure. It will be shown that the use of such an

element, combined with a convenient structural discretization, leads to an important improvement

in the simulation of global and, more importantly, local level quantities when compared with

models employing classical DB or FB approaches.

The new element and its state determination are described in Section 2 along with an application

example describing its main features and relative performance with respect to classical DB

formulations. Section 3 benchmarks the performance of the new beam element against two sets of

experimental tests on RC bridge piers and RC walls. Comparison at the global and local levels,

namely curvature and strain profiles, are provided and limitations of the proposed formulations

discussed. Conclusions are drawn in Section 4.
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2. AXIALLY EQUILIBRATED DISPLACEMENT-BASED ELEMENT: FORMULATION AND

STATE DETERMINATION

The beam formulation herein proposed is a plane frame element, which implies that in the global

reference system (X,Y) six components are required to characterize the vector of nodal forces (P)

and displacements (U). Three components suffice instead to describe the basic forces and

displacements ( pbsc ¼ pbsc1 ; pbsc2 ; pbsc3

� �T
and ubsc ¼ ubsc1 ; ubsc2 ; ubsc3

� �T
) in the member-bound

reference system without rigid-body modes (x,y), which are shown in Figure 2.

The concept of a DB element satisfying axial equilibrium was originally proposed by Izzudin et al.

[19] for nonlinear-elastic problems. No plasticity was considered in their work, and explicit

expressions were derived for both sectional forces and stiffness matrix. Further, shape functions

were not defined for the axial displacement field while a quartic formulation was used for the

transversal displacement field. The element end forces pbsc and tangent stiffness matrix K were then

obtained according to the principle of virtual work and by direct differentiation of each individual

component, respectively.

The formulation presented in this manuscript features the following distinctive aspects with respect

to the one above: (i) material constitutive laws including plastic deformations and cyclic behaviour

were considered in the derivation and validation phases; (ii) Hermitian polynomials for the

transversal displacement field are used, which results in linear curvature profiles as in classical DB

approaches. This assumption, as already discussed, is sought in order to numerically account for

tension shift effects; and (iii) a variational approach is employed to determine the element end forces

and the tangent stiffness matrix. In particular, differences were obtained with respect to [19] in the

components of the tangent stiffness matrix referring to the derivatives of the basic axial force pbsc1

with respect to the vector of basic displacements ubsc.

A similar procedure to the one proposed by Izzudin et al. [19] was used to achieve axial equilibrium

of the element. The latter is discussed in subsection 2.1, while subsection 2.2 focuses on the state

determination algorithm. Finally, in subsection 2.3, the main features of the proposed FE

formulation are explored, and the new beam element is compared against classical DB formulations

with the aid of an application example.

2.1. Axial equilibrium

In a beam subjected to nodal loads, equilibrium considerations impose the axial force N(x) to be

constant along the beam axis x and equal to the nodal axial basic force pbsc1 . As discussed in

Section 1, this is not the case for classical DB elements employing nonlinear material constitutive

laws. In fact, the linear shape function approximating the axial displacement field u(x) ensures axial

equilibrium only in an average sense, which yields different values of the axial force at distinct IPs

(i.e. NIPj≠NIPj + 1).

The main idea behind the axial equilibrium procedure consists in correcting the set of sectional axial

strains ε
IPj
0 such that the value of the axial force is the same in all IPs (NIPj=NIPj + 1). Given the intrinsic

nonlinearity of the problem, an iterative procedure is required to attain this goal, which is discussed in

the following paragraphs and schematically represented in the flowchart of Figure 3.

Consider a Newton–Raphson (NR) cycle n within an arbitrary load step l, for which a vector of

displacement increments in the basic reference system Δubsc is imposed. The steps to be performed

Figure 2. Element forces and displacements in the basic reference system.
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to go from the basic to the global reference system require classical structural analysis operations, i.e.

the rotation of the coordinate system as well as the use of linear or nonlinear compatibility and

equilibrium relations [20], and will thus be omitted in this work. Shape functions employed in

classical DB formulations (linear and Hermitian polynomials for the axial and transversal

displacement fields) are initially used to obtain, after differentiation, the corresponding increments of

sectional deformations ΔeIPj at all IPs along the element. The sectional deformations are calculated

from the basic nodal displacements through pre-multiplication by the matrix BDB/c, where the

subscript DB/c underlines that classical DB shape functions are considered. Once the sectional axial

strain and curvature increments are known (Δε
IPj
0 and ΔϕIPj), the EB hypothesis and the sectional

constitutive law enable to compute the generalized sectional forces sIPj. The differences between the

Figure 3. Flowchart for the element state determination of the axially equilibrated displacement-based element.
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axial forces recorded in two successive IPs are then calculated. Axial equilibrium is considered to be

satisfied if the cumulative sum of these differences throughout all pairs of IPs in the element is

below a certain tolerance. It is noted that this convergence criterion is different from the one

proposed by Izzudin et al. [19], where strain differences were checked. If such axial equilibrium is

verified, the state determination proceeds as for the classical DB formulation; otherwise, intra-

element iterations (identified with the index m in Figure 3) on the increment of sectional axial

strains at each IP (Δε
IPj
0 ) are performed.

Two conditions need to be fulfilled: (i) the axial force should be equal in all IPs, and (ii) the integral

of the axial strains along the element length must correspond to the basic axial displacement ubsc1 . They

are expressed in equations (1) and (2), respectively:

�

N IPj þ k
IPj
11 �Δε

IPj
0 ¼ N IPjþ1 þ k

IPjþ1
11 �ΔεIPjþ1

0 for j ¼ 1 to no: IPs� 1 (1)

∑
no: IPs

j¼1

wIPj�L

2
� ε

IPj
0 þ Δε

IPj
0

� �

¼ ubsc1 (2)

where k
IPj
11 is the first row-first column component of the sectional stiffness matrix evaluated at IPj, w

IPj

is the integration weight of the jth IP (it is assumed that the sum of the integration weights is equal to 2)

and L is the element length. As it can be noticed, conditions (1) and (2) provide a linear system of

equations; the number of equations corresponds to the number of IPs. The equations can be solved

at each IP to obtain the axial strain increments Δε
IPj
0 as function of the current set of axial forces.

These relationships are provided in equations (3) and (4) for the first and the remaining IPs:

ΔεIP1

0 ¼

2�ubsc
1

L
�∑no: IPs

j¼1 wIPj� ε
IPj

0 þ N IP1�N IPj

k
IPj

11

� �

∑no: IPs
j¼1 wIPj�

k
IP1
11

k
IPj

11

(3)

Δε
IPj

0 ¼
N IP1 � N IPj
	 


þ kIP1

11 �ΔεIP1

0

k
IPj

11

(4)

The so computed strain increments Δε
IPj

0 are used to update the total axial strains ε
IPj

0 from the

previous intra-element iteration, and new sectional forces are computed. As shown in Figure 3, the

procedure is repeated until the resulting axial forces N IPj are equilibrated. In other words, this

internal iterative procedure corrects the constant axial strain profile as obtained from the classical

DB approach to ensure the same value of the axial force along the element. Note that the curvature

profile remains linear as imposed in classical DB formulations.

2.2. Element state determination

The present subsection discusses the state determination for the axially equilibrated DB element, which

consists in the evaluation of the element end forces pbsc and tangent stiffness matrix Kbsc for a given

increment of basic displacements Δubsc. Once the axial force is equilibrated according to the method

previously discussed, the generalized deformations eIPj at a generic IP can be decomposed as:

eIPj ¼ B
IPj

DB=c�u
bsc þ e

IPj
AE with e

IPj
AE ¼

ε
IPj
0;AE

0

8

>

<

>

:

9

>

=

>

;

(5)

where the first term B
IPj

DB=c�u
bsc represents the contribution associated to the classical DB shape

functions, while the second e
IPj
AE corresponds to the sum of the incremental corrections of the

sectional axial strain computed during the internal iterative process, identified as ε
IPj
0;AE in equation (5).
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The element end forces are determined by application of the principle of virtual displacements

(PVD), which can be written as follows:

δubsc
� �T

�pbsc ¼ ∫L δe xð Þ½ �T � s xð Þ dx (6)

The numerical integration of the expression above over the total number of IPs yields:

δubsc
� �T

�pbsc ¼ ∑
no: IPs

δeIPj
� �T

�sIPj �wIPj �
L

2
(7)

For the axially equilibrated DB element, the PVD can be specialized by using equations (5) and (7):

δubsc
� �T

�pbsc ¼ δubsc
� �T

� ∑
no: IPs

B
IPj

DB=c

h iT

�sIPj �wIPj �
L

2
þ ∑

no: IPs
δe

IPj

AE

h iT

�sIPj �wIPj �
L

2
(8)

The previous equations should be valid for any virtual increment δ, which results in the following

system of two equations that have to be satisfied simultaneously:

�

pbsc ¼ ∑
no: IPs

B
IPj

DB=c

h iT

�sIPj �wIPj �
L

2
(9)

∑
no: IPs

δe
IPj

AE

h iT

�sIPj �wIPj �
L

2
¼ 0 (10)

The verification of equation (2) directly demonstrates equation (10) for any δe
IPj

AE, while equation (9)

shows that the basic end forces pbsc are computed from the internal section forces s(x) as in classical

DB formulations.

The element tangent stiffness matrix Kbsc is then straightforwardly obtained by deriving the element

end forces pbsc with respect to the element basic displacements ubsc. With the aid of the chain rule of

derivation and considering that the matrix BDB/c does not depend on ubsc, the following equation is

derived:

Kbsc ¼
∂pbsc

∂ubsc
¼ ∑

no: IPs

B
IPj

DB=c

h iT

�
∂sIPj

∂eIPj
�
∂eIPj

∂ubsc
�wIPj �

L

2
(11)

where the partial derivatives of the sectional forces with respect to generalized strains ∂sIPj=∂eIPj

correspond, by definition, to the sectional stiffness matrix k. The partial derivatives ∂ε
IPj

0 =∂ubsc at

each IP can be calculated from equations (3) and (4), making additional use of the conditions

expressed in (1) and (2):

∂εIP1

0

∂ubsck

¼

∂

∂ubsc
k

2�ubsc
1

L

� �

�∑no: IPs
j¼1 wIPj�

k
IP1
12

�∂ϕ
IP1

∂ubsc
k

�k
IPj

12
�∂ϕ

IPj

∂ubsc
k

k
IPj

11

 !

∑no: IPs
j¼1 wIPj�

k
IP1
11

k
IPj

11

(12)

∂ε
IPj

0

∂ubsck

¼
kIP1

12 � ∂ϕ
IP1

∂ubsc
k

� k
IPj

12 �
∂ϕIPj

∂ubsc
k

� �

þ kIP1

11 �
∂ε

IP1
0

∂ubsc
k

k
IPj

11

(13)

where the subscript k is used to indicate the component of ubsc with respect to which the derivation

is performed. The derivatives of the curvatures are not presented here because they are similar to

those obtained from classical DB approaches. The state determination procedure summarized in

the flowchart of Figure 3 depicts the application of the expressions presented in the current

subsection.
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2.3. Axially equilibrated versus classical DB element

The axially equilibrated DB (DB/ae) formulation was implemented in the finite element software

SAGRES (Software for Analysis of GRadient Effects in Structures), which also includes in its

library classical DB (DB/c) and FB elements [21]. In this subsection, the main features of the

proposed FE are presented resorting to an application example. Namely, models using DB/ae and

DB/c elements are compared both at the global and local level in order to highlight their relative

advantages and drawbacks.

A 3-m RC cantilever column, subjected to an axial load ratio of about 1.25% and an incremental

lateral displacement Δ, served as reference structure. The RC section was 300mm large and 400mm

deep (bending direction), and 20-mm concrete cover was assumed in both directions. The

longitudinal reinforcement was formed by 16 Ø10-mm steel bar corresponding roughly to a

reinforcement ratio of about 1%. A schematic representation of the reference structure as well as of

the sectional discretization used in all FE models herein considered is shown in Figure 4(a). The

mathematical relation proposed by Popovics [22] was used for both confined and unconfined

concrete (Ec=30GPa, f 0c=37MPa, εc=0.002, f 0cc=42MPa, εcc=0.003), while a bilinear

constitutive law was assigned to the longitudinal reinforcement (Es=200GPa, fy=480MPa, b=0.005).

The influence of mesh refinement on the global-level response is investigated in Figure 4(b), which

displays pushover curves, in the form of a dimensionless lateral resisting force VN= (V×Ls)/(N× h)

versus horizontal drift Δ/Ls. Models employing one, two and three DB elements (both DB/ae and

DB/c), as well as a single FB element, were considered. DB elements featured two Gauss–Legendre

IPs, while five Gauss–Lobatto IPs were used for the FB element model. As discussed in Calabrese

et al. [13], FB elements are sensitive to the element discretization, and a minimum number of four

IPs is generally required for good-accuracy solutions under strain hardening response. DB/c element

models, on the other hand, are only sensitive to the structural discretization, and hence it is not

justifiable to use more than two IPs per element. For comparison purposes, the same number of IPs

is used as well for DB/ae elements, even though, as discussed below with respect to Figure 4(c), a

larger number would be required for a closer-to-objective response.

The model with a single DB/c element shows, as expected, the strongest and stiffest response due to

the constraints imposed in both the axial and transversal displacement fields. By removing the

constraint on the axial displacement field through the iterative procedure introduced in subsection

2.1, the model using one DB/ae element provides a considerably softer response, causing a

reduction in the simulated lateral strength. However, it can be noted that the latter is still

overestimated when compared to the solution provided by the FB formulation, where no

displacement fields are assigned and exact equilibrium is satisfied. By increasing the mesh

refinement, both DB formulations tend to the FB solution, although the DB/ae element model

converges much faster than the one using classical displacement shape functions (e.g. the response

with one DB/ae element is superior to the one provided by two DB/c elements).

Figure 4. Application example: (a) structural representation and sectional discretization. Global-level re-
sponse of DB/ae models: (b) influence of mesh refinement; (c) influence of element discretization.
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The impact of the number of IPs on the force–displacement response of the DB/ae element is shown

in Figure 4(c). Different combinations of IPs and schemes (Gauss–Legendre/Gauss–Lobatto) were

considered using a single FE to discretize the structural member. The figure shows that the pushover

curves tend to a unique, objective solution—represented by the highly refined nine IPs Gauss–

Lobatto model—as the number of IPs increases. Further, a relatively low number of IPs, e.g. three

Gauss–Legendre or four Gauss–Lobatto IPs, suffices to provide a satisfactory response. Even if two

Gauss–Legendre or three Gauss–Lobatto are used, a relatively small numerical error of about 10% at

peak response is observed for this example. Figure 4(c) also shows a further particular feature: while

FB and DB formulations always provide an upper and lower bound for the strain energy,

respectively, the proposed formulation does not offer a bound for this quantity. This relates to the

exact verification of equilibrium, which is only achieved throughout the element for the axial force

but not for the bending moment. Finally, the issue of localisation for softening sectional behaviour

will not be addressed in the present document, although such pathology should occur for this

formulation as it occurs for DB/c and FB approaches [10].

The local-level performance of models with a single DB/ae element (four Gauss–Lobatto IPs) and one

DB/c element (two Gauss–Legendre IPs) is compared in the following. Figure 5(a) starts by showing, for

three different values of lateral drift, that curvature profiles are linear irrespective of the employed DB

formulation. This is unsurprising because Hermitian shape functions are employed in both DB/ae and

DB/c approaches to define the element transversal displacement field. Note, however, that the

curvature profiles of the DB/ae element are not quantitatively equal to those of a DB/c element. In fact,

although both DB/c and DB/ae elements are constrained to curvature linearity, the DB/ae formulation

verifies the principle of virtual work—as expressed by equation (9)—under a constant member axial

force, while the DB/c approach satisfies it by assuming a constant axial strain profile. This is shown in

Figure 5(b), and, as expected, on account of the shifting of the neutral axis towards the compression

side of the section, positive strain values (tension), which increase with drift demands, are observed.

The figure also depicts the strain profiles for the DB/ae element, which evidence different values for

distinct integration sections resulting from the iterative procedure to obtain a constant axial force along

the column. The highest tensile average strain is recorded at the bottom IP, while at the element top, in

correspondence of the inversion in sign of the curvature profile that takes place for large inelastic

demands, small unrealistic tensile axial strains can be perceived. The constraint on the curvature

profile is responsible for this effect. Overall, the DB/ae element better adheres to reality than the DB/c

element as the shifting of the neutral axis is expected to occur at the cantilever base where the bending

moment is largest. Finally, Figure 5(c) shows the evolution of the axial force at distinct IPs with lateral

drift. After an initial elastic phase, different IP axial forces occur in the DB/c element, which are

symmetric around the value of the imposed axial load (N IPj ¼ N � ΔN ). This conservation of average

equilibrium, which was noted elsewhere [10, 13], leads to an incorrect estimation of the flexural

capacity of the structural member. This bias is not introduced by the DB/ae element, wherein the axial

force in the four IPs is constant and equal to the external applied axial load.

Figure 5. Comparison between DB/ae and DB/c element models at the local level: (a) curvature profiles; (b)
vertical strain profiles; (c) axial force history in different IPs.
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The numerical performance of DB/ae and DB/c formulations is analysed in Figure 6(a) by

comparing the number of NR iterations required to attain convergence. Two models providing

similar accuracy at the global level response, as shown in Figure 4, were selected: a single DB/ae

element with four Gauss–Lobatto IPs and two DB/c elements with two Gauss–Legendre IPs per

element. Two to four iterations were typically necessary for both models, with the DB/ae

converging faster on average. This observation is corroborated by the fact that a total of about

2700 and 3400 NR iterations were needed for the DB/ae and DB/c model, respectively, see

Figure 6(c). Although this could be expectable because only one DB/ae element is used, it is an

encouraging indicator of the dependability of the element tangent stiffness matrix derived in

equation (11). The DB/ae total and average number of internal axial equilibrium iterations per NR

cycle at each load step are displayed in Figure 6(b) with black crosses and a grey line, respectively.

An average of 2.5 iterations per NR cycle is required throughout the entire simulation, which

represents an acceptable increase in computational time. However, as the classical DB formulations

do not require this iterative procedure, they remain comparatively more performant time-wise, see

Figure 6(c).

3. VALIDATION EXAMPLES

The accuracy of the DB/ae formulation is herein benchmarked against experimental data from two

series of quasi-static cyclic tests on RC bridge piers (subsection 3.1) and RC walls (subsection 3.2).

Models employing DB/c and FB elements are included in the comparison in order to point out the

strengths and weaknesses of the proposed approach. The numerical results are compared against the

experimental results with regard to global and local quantities.

3.1. Tests on RC bridge piers

The ability of the DB/ae element to predict the nonlinear response of RC members is validated against

a selection of quasi-static cyclic tests on circular RC bridge piers performed by Goodnight et al. [23].

The test units, which are listed in Table I, were selected to be representative of the largest possible

spectrum of shear spans Ls/D∈ [4 , 8.67] and axial load ratios N= f ’c�Ag

	 


∈ 5% ; 20%½ � . The

longitudinal and lateral reinforcement layout was common to all the specimens and consisted of 10

#6 rebars (≈Ø19mm) and a #3 (≈Ø10mm) spiral at 2 inches (≈50mm) pitch, corresponding to

vertical and lateral reinforcement ratios that ranged between ρl∈ [1.6% , 1.7%] and

ρw∈ [1% , 1.3%]. A qualitative sketch of one of the test units, labelled as T9, is given in Figure 7(a).

All columns were subjected to a standard cyclic loading protocol with three cycles at each

displacement amplitude. Target markers attached to the longitudinal rebars in the plastic hinge

Figure 6. Numerical performance of the DB/ae formulation: (a) DB/ae versus DB/c-Global NR iterations;
(b) intra element iterations; (c) summary of results.
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region tracked the displacements during the test and allowed to isolate the main deformation

contributions to the total lateral displacement, namely base rotation and flexural displacements. Due

to the relatively large shear span ratio of the considered test units, the impact of shear deformations

was negligible.

The whole set of test units described in Table I was simulated with models employing DB/ae, DB/c

and FB elements, following the four schemes depicted in Figure 7(b). Two models used a single FB

element with three and five Gauss–Lobatto integration sections. The former represents the minimum

number of IPs to simulate the linear response with a FB beam column element without under-

integration [24]. However, not less than four IPs are recommended to simulate the nonlinear

hardening response of structural members [25]. Despite such consideration, a discretization with

three IPs was selected as it ensured for the studied specimens an influence length of the bottom IP

similar to the measured extent of plasticity as discussed below. The fulfilment of this condition is

recommended to optimize the agreement between the numerical results for FB elements and the

experimental measurements at the local level [10]. For what concerns DB/c and DB/ae, models

featuring one and two FEs per structural member were selected. Four Gauss–Lobatto IPs were used

within each DB element for two reasons: (i) the Gauss–Lobatto quadrature rule allows to have an

integration section at the element ends, which is useful if base curvatures are to be compared; and

(ii) although the DB/c formulation is insensitive to element discretization [13], this is not the case

for DB/ae elements, which requires around four IPs as shown in Figure 4. For the cases where the

structural member is discretized with two FEs, the length of the base element is selected as the

Table I. Test matrix used for the validation of the proposed formulation (taken from [18]).

Test D [mm] Ls/D [–] Longitudinal reinforcement (ρl) Confining reinforcement (ρw) N/(f 0c ×Ag) [–]

T9 610 4 16 Ø19 (1.6%) Ø10 @50mm (1%) 5.5%
T19 457a 5.33 16 Ø19 (1.7%) Ø10 @50mm (1.3%) 10%
T20 457a 5.33 16 Ø19 (1.7%) Ø10 @50mm (1.3%) 5%
T23 457a 8.67 16 Ø19 (1.7%) Ø10 @50mm (1.3%) 5%
T24 457a 8.67 16 Ø19 (1.7%) Ø10 @50mm (1.3%) 10%
T27 610a 4 16 Ø19 (1.6%) Ø10 @50mm (1%) 10%
T28 457a 5.33 16 Ø19 (1.7%) Ø10 @50mm (1.3%) 15%
T29 457a 5.33 16 Ø19 (1.7%) Ø10 @50mm (1.3%) 20%

D, column diameter; Ls, shear span.
aNominal diameter, not accounting for the fact that cover concrete was not present in the instrumented region.

Figure 7. Test series by Goodnight et al. [23]: (a) sketch of test unit T9; (b) element formulation and
discretization; (c) sectional discretization of test unit T9.
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upper bound of the measured extent of plasticity—Lprt in Figure 7(b), which is given by the following

equation [26]:

Lprt ¼ 2kLs þ 0:75D (14)

where k= 0.2× (fu / fy)�1< 0.08 is the factor accounting for the moment gradient as suggested by [2],

Ls is the shear span and D is the column diameter. The same sectional discretization consisting of 80

confined concrete and 10 steel fibres is used to model the columns. They had no cover concrete in

the plastic hinge region, and therefore no unconfined concrete fibres were defined. The exception

was specimen T9, for which 16 unconfined concrete fibres had to be included as well for the

sectional discretization as represented in Figure 7(c). The relationship proposed by Popovics-Mander

[22] and Menegotto-Pinto [27] were used for the mechanical characterization of concrete and steel.

The enhancement in concrete strength and strain at peak strength due to confinement were computed

according to Mander’s model [28]. The main material parameters used to characterize the concrete

and steel stress–strain laws were derived from the actual material tests reported by Goodnight et al.

[23], which differed for each tested specimen.

Table II reports the parameters used to model unit T9. Due to space constraints, the comparison

between the numerical and experimental results shown in the next figures refers to this specimen alone.

The force–displacement F–Δ response for all the models discussed above is depicted in Figure 8 and

compared with the experimental measurements. A different graph is provided for each type of element

formulation. Flexural displacements are reported on the bottom x-axis. These correspond to the total

displacements of the numerical model; the experimental flexural displacements are computed by

subtracting the displacement due to base rotation from the total displacement. The lateral

displacement ductilities corresponding to the imposed demands of the cyclic loading protocol are

shown in the top x-axis. The following observations can be made: (i) the FB models match

satisfactorily the experimental data, with the model FB 3IPs slightly underestimating the actual

response, which is typical for the bottom-up type of convergence of FB formulations [13]; (ii) both

DB models using a single element overestimate the experimental F–Δ curve, although the error

Table II. Main material parameters used in the numerical models of test T9.

Concrete Reinforcing steel

f 0c [MPa] εc [‰] Ec [GPa] f 0cc [MPa] εcc [‰] fy [MPa] fu [MPa] Es [GPa] b [‰]

46.9 2 34.3 62.6 5.3 470 640 199.8 7.3

Figure 8. Experimental versus numerical force–displacement response for test T9: (a) FB, (b) DB/c and (c)
DB/ae models.
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associated to the DB/ae is sensibly lower; and (iii) a good match of the experimental F–Δ curve is

obtained by using two DB elements per member, both for the DB/c and the DB/ae approaches.

The DB/c and DB/ae with two elements per member and the FB element with five IPs (FB 5IP) are

seen to perform better at the global level, which is the reason why they are chosen for the following

comparison at the local level. The experimental and numerical curvature profiles for different levels

of displacement ductility are shown in Figure 9. Taking into account the symmetry of the system,

only the curvature profiles in the positive direction of loading were analysed. Increasing

displacement ductility levels from yielding (μΔ=1) up to μΔ=8 were considered. Within each

element, the obtained curvatures at the successive IPs are connected with a straight line. For DB

elements, where the linearity of curvatures is imposed, this representation of the curvature profiles is

exact; for FB elements, it corresponds instead to a slight overestimation of the real curvature

distribution along the element. The better match of the DB/ae formulation is apparent: (i) the model

FB 5IPs tends to overestimate the base curvature, and markedly so for large drift levels. As an

example, the relative error1 corresponding to the base curvature (ηϕb) for a ductility demand μΔ=8

is approximately 110%; (ii) the opposite trend applies to the DB/c model, which underestimates the

experimental base curvature (ηϕb=50% for μΔ=8). Moreover, when such elements are employed, it

is worthy to notice how the numerical curvature profiles are not continuous along the member

length, which originates from the non-strict verification of equilibrium along each FE; (iii) the match

between observed and calculated curvature profiles is remarkably improved when DB/ae are used,

showing a relative error for the base curvature at μΔ=8 smaller than 5%. The agreement between

analytical and experimental base curvature appears to decrease with the attained ductility level, with

a maximum relative error of 35% for μΔ=2. This can be attributed to the use of a constant bottom

element length, which does not reflect the experimentally observed decrease on the extent of

plasticity with ductility demand [18]. Finally, observe that the strict verification of axial equilibrium

almost completely eliminates the discontinuity in curvature between the bottom and upper element.

The vertical strains are depicted in Figures 10 and 11 for the two outmost rebars in tension (N3) and

compression (S3), which are indicated in Figure 7(c). Once again, for both cases, the DB/ae provides

improved strain predictions with respect to DB/c and FB elements models, which tend to underestimate

and overestimate, respectively, the maximum experimental strains. If base strains are averaged over all

ductility levels, the following relative errors are obtained: ηN3
εb =75% and ηS3εb =65% for FB, ηN3

εb =44%

Figure 9. Experimental versus numerical curvature profiles for test T9 at positive ductility levels: (a) FB 5
IPs, (b) two-element DB/c and (c) two-element DB/ae models.

1Relative error: ηυ ¼ 1�
υexp
υnum
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and ηS3εb =37% for DB/c, ηN3
εb =9% and ηS3εb =25% for DB/ae models. The errors for DB/ae reduce to ηN3

εb

=2% and ηS3εb =18% if only large ductility levels are considered (μΔ=6 and μΔ=8). The discrepancy

between numerical and experimental strains obtained for the rebar in compression with respect to

the one in tension is due to the following reasons: (i) compression strain profiles are not as linear as

their counterpart in tension as they are more influenced by phenomena occurring at the micro-level;

(ii) the height at which compression strains deviate from linearity is smaller than the extent of

plasticity (Lprt) used to discretize the structural member. A different (shorter) length of the bottom

DB/ae element would therefore be needed to improve the simulation of compressive strain profiles.

For this reason, in the framework of plastic hinge models, Goodnight et al. [26] proposed a different

Figure 10. Experimental versus numerical vertical strain profiles of rebar N3 for test T9 at positive ductility
levels: (a) FB 5 IPs, (b) two-element DB/c and (c) two-element DB/ae models.

Figure 11. Experimental versus numerical vertical strain profiles of rebar S3 for test T9 at positive ductility
levels: (a) FB 5 IPs, (b) two-element DB/c and (c) two-element DB/ae models.
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plastic hinge length Lprc (to be used in conjunction with a bilinear curvature profile) to reliably

evaluate limit state displacements based on compression strains. Nevertheless, changing the length

of the base DB/ae element would then inevitably lead to a poorer prediction of both the curvatures

and tensile strains. The latter have a more clear influence on the measured curvatures because, for

the same level of top displacement, they are in absolute value considerably larger than compression

strains.

As a further local level investigation, the comparison between the experimental vertical strains of

rebar N3 monitored at the bottom of the RC column and the numerical ones (measured at the

bottom IP) is shown in Figure 12. Again, the DB/ae model offers the best agreement between

simulation and test data, especially regarding the tensile peak strain levels. An underestimation of

Figure 12. Experimental versus numerical vertical strain history of rebar N3 measured at the base section of
test T9 for positive ductility levels: (a) FB 5 IPs, (b) two-element DB/c and (c) two-element DB/ae models.

Table III. Numerical error in the calculation of the base curvature for all the models and selected test units
tested by Goodnight et al. [23] at different ductility levels.

Test

Ductility
level
(μΔ)

Base curvature average relative error: η
avg
ϕb ¼ 1

2
1�

ϕþ
b;anð Þ

ϕþ
b;exp

�

�

�

�

�

�

�

�

þ 1�
ϕ�

b;anð Þ
ϕ�

b;exp

�

�

�

�

�

�

�

�

� �

FB 3IPs FB 5IPs DB/c 1 ele. DB/c 2 ele. DB/ae 1 ele. DB/ae 2 ele.

T9 μΔ=� 2 43.6% 18.3% 65.1% 55.5% 59.9% 35.6%
μΔ=� 4 28.3% 92.7% 61.2% 47.2% 54.6% 15.6%
μΔ=� 6 19.5% 124.8% 58.1% 41.8% 50.0% 5.8%

T19 μΔ=� 2 45.2% 5.9% 64.6% 53.9% 61.4% 35.1%
μΔ=� 4 37.6% 53.9% 64.1% 49.7% 60.2% 22.5%
μΔ=� 6 32.7% 68.5% 62.3% 46.1% 57.7% 16.1%

T20 μΔ=� 2 49.0% 6.3% 67.4% 58.0% 63.6% 38.5%
μΔ=� 4 33.6% 58.7% 62.6% 48.1% 57.5% 17.6%
μΔ=� 6 33.1% 46.8% 62.9% 48.4% 57.7% 16.8%

T23 μΔ=� 2 52.1% 5.6% 69.4% 56.0% 65.8% 34.9%
μΔ=� 4 39.0% 45.9% 65.5% 45.0% 60.9% 11.2%
μΔ=� 6 35.6% 26.2% 64.7% 42.7% 59.6% 4.2%

T24 μΔ=� 2 51.0% 5.4% 68.2% 54.2% 65.2% 34.8%
μΔ=� 4 40.1% 47.5% 65.5% 44.5% 61.7% 12.9%
μΔ=� 6 38.1% 55.9% 65.4% 42.4% 61.1% 8.4%

T27 μΔ=� 2 32.4% 44.2% 58.1% 47.3% 53.9% 23.4%
μΔ=� 4 17.7% 111.6% 53.8% 38.9% 48.3% 5.9%
μΔ=� 6 16.5% 119.7% 54.2% 38.3% 47.9% 5.0%

T28 μΔ=� 2 35.0% 34.0% 58.5% 45.3% 55.7% 21.9%
μΔ=� 4 30.8% 79.9% 59.8% 44.1% 56.5% 13.7%
μΔ=� 6 30.0% 88.5% 60.3% 43.4% 56.4% 12.3%

T29 μΔ=� 2 37.0% 31.7% 59.2% 45.8% 57.4% 24.8%
μΔ=� 4 31.6% 78.7% 59.3% 43.5% 57.2% 14.7%
μΔ=� 6 30.2% 90.8% 59.3% 42.3% 56.7% 12.5%

Note: minimum values of η
avg

ϕb for each test unit and ductility level are displayed in bold
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the residual strains at zero displacement level is instead common to all three models, indicating that the

accumulation of plastic reinforcement strains over multiple cycles is not well captured. However, this

issue is not directly related to the element formulation and could arguably be addressed with more

advanced steel and concrete constitutive relationships for cyclic response.

Finally, Table III compares the experimental base curvatures of the entire dataset units with all the

employed models for three distinct values of displacement ductility (μΔ=2, μΔ=4 and μΔ=6). The

comparison is made in terms of average relative error (η
avg
ϕb ), which is defined as the mean of the

relative base curvatures errors for the positive and negative directions of loading. For each test unit

and ductility level, the minimum value of η
avg
ϕb is highlighted in bold in Table III. For most cases,

the model composed of two DB/ae elements per structural member provides the best simulation of

base curvatures. The η
avg
ϕb predicted by such model results generally smaller than 20% and tends to

decrease for increasing inelastic demands. Values of η
avg
ϕb larger than 30% are obtained only for

μΔ=2 in tests T9, T19, T20, T23 and T24, in which cases the model FB 5 IPs leads to the best

predictions. For larger values of μΔ, the experimental base curvatures are consistently and largely

overestimated by the model FB 5IPs, as confirmed by Figure 9.

3.2. Tests on RC structural walls

Five out of the six RC walls (labelled WSH1 to WSH6) from the experimental campaign carried out by

Dazio et al. [29] are used in this subsection for validation purposes. Wall WSH1 was disregarded due

to the poor ductility properties of the longitudinal reinforcement which led the specimen to fail at a low

level of inelasticity. Moreover, only manual measurements were employed to evaluate local level

quantities of WSH1, which were judged less reliable than those of all the other tests where hard

wired instruments were used.

The main geometrical and loading characteristics of the test specimens are shown in Table IV. A

constant vertical load was applied at the top of the specimens, which were then subjected to a

standard cyclic loading protocol [30]. The test units differed mainly with regard to the layout and

content of both longitudinal and horizontal reinforcement, as well as to the applied axial load ratio.

Local deformations were obtained from linear variable differential transformers (LVDTs) and

Demec measurements, allowing to isolate the different contributions to the total lateral displacement,

namely due to flexure, base rotation and shear. The latter played a non-negligible role (up to a

maximum of around 10% of the total deformation) due to the small shear span ratios and thus could

not be disregarded. In the framework of EB beam theory, shear deformations are not considered,

and therefore, in order to compare consistently numerical and experimental results, their contribution

had to be removed from the total lateral displacement. However, this does not represent a limitation

to the present validation example because (i) the proposed formulation can be extended to a more

general one accounting for shear deformations, e.g. Timoshenko beam theory; and (ii) shear

deformation can be included separately as a ratio of the flexural displacement [2, 31–33].

The same models described in the previous subsection 3.1—i.e. FB 5IPs, FB 3IPs, one and two-

element DB/c, one and two-element DB/ae—are employed to simulate the set of chosen RC walls.

Table IV. Main properties of test units by Dazio et al. [29] used for validation of the DB/ae formulation.

Test unit

Ls h Ls/h t N/(f 0c ×Ag) ρl,bound ρl,web ρh Conf. BE

[mm] [mm] [–] [mm] [%] [%] [%] [%] [–]

WSH2 4560 2000 2.28 150 5.7 1.32 0.30 0.25 ✓

WSH3 4560 2000 2.28 150 5.8 1.54 0.54 0.25 ✓

WSH4 4560 2000 2.28 150 5.7 1.54 0.54 0.25 ✗

WSH5 4560 2000 2.28 150 12.8 0.67 0.24 0.25 ✓

WSH6 4520 2000 2.20 150 10.8 1.54 0.54 0.25 ✓

Ls, shear span; h, wall length; t, wall thickness; N/(f
0c×Ag), axial load ratio; ρl,bound, boundary elements longitu-

dinal reinforcement ratio; ρl,web, web longitudinal reinforcement ratio; ρh, horizontal reinforcement ratio; Conf. BE,
additional confining and stabilizing reinforcement in the boundary elements (hoops and ties).
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Due to space constraints, only test unit WSH6 is used in the following paragraphs to show and discuss

the comparison between numerical and experimental results, both at the global and local levels. The

summary of the response of the entire set of RC walls is included in a table provided at the end of

the present subsection.

The geometry and cross-sectional reinforcement layout of wall WSH6 are depicted in Figure 13(a)

and (b). Well-confined boundary elements were present to increase the flexural capacity of the

structural member. The longitudinal reinforcement consisted of 22 Ø8-mm and 6 Ø12-mm bars for

the web (ρw=0.54%) and boundary elements (ρb=1.54%). The shear reinforcement was composed

of Ø6-mm bars spaced 150mm while Ø6-mm and Ø4.2-mm hoops at 50mm were employed to

properly confine the wall edges. The fibre sectional discretization used in the numerical models is

displayed in Figure 13(c). As in the previous subsection, the material models proposed by Popovics-

Mander [22] and Menegotto-Pinto [27] were adopted to characterize the concrete and steel stress–

strain laws. Different confinement factors were computed according to the model by Mander et al.

[28] for the core concrete in the web and in the boundary elements. The main material parameters

are given in Table V. When two elements were employed to discretize the structural member (DB/c

and DB/ae), the length of the one at the bottom was taken as the height of the plastic zone Lpz,

which is defined by Dazio et al. [29] as the height at which the plastic curvature profile is equal to

the yield curvature.

The experimental and numerical force–displacement responses of wall WSH6 are contrasted in

Figure 14. On the bottom x-axis, flexural displacements Δf were calculated by subtracting the

displacements due to base rotation and shear deformations from the total lateral displacements.

Displacement ductility μΔ and lateral resisting force V are instead represented on the top x-axis and

vertical y-axis. The two DB models using two elements per structural member satisfactorily

reproduce the experimental results. Namely, the force capacity at all displacement reversals is

adequately captured, with relative errors ηV< 5%. FB models are slightly less accurate,

underestimating the resisting force at loading reversals (ηV up to 12%). As expected, the DB models

using a single FE overestimate the strength capacity of the structural member, although this effect is

significantly less pronounced for the DB/ae model.

Figure 13. Test unit WSH6: (a) sketch of geometry and applied loading, (b) reinforcement layout and (c)
sectional discretization.

Table V. Main material parameters used in the numerical models of test WSH6, derived from the properties
reported by Dazio et al. [29].

Concrete Reinforcing steel

f 0c [MPa] εc [‰] Ec [GPa] f 0cc [MPa] εcc [‰] fy [MPa] fu [MPa] Es [GPa] b [‰]

Web 45.6 2 36.9 48.4 2.6 Ø8mm 576 675 200 9.3
Boundary 45.6 2 36.9 53.5 5.1 Ø12mm 583 714 200 8.4
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At the local scale of analysis, the numerical versus the experimental curvature and strain profiles of

corner rebars are displayed in Figures 15 and 16. Only the models yielding the best match at the global

level are included in the comparison, i.e. FB 5IPs, DB/c and DB/ae with two elements per structural

member. Several displacement ductility demands are considered, each one corresponding to a point

of reversal in the hysteretic force–displacement response of Figure 14. Due to the symmetry of both

specimen cross section and loading protocol, only curvature and strain profiles relative to positive

top displacements are shown.

The DB/ae element model best matches the experimental curvatures, with ηϕb<10% for all ductility

levels. For large values of μΔ, the base curvatures are greatly underestimated by the DB/c model

(e.g. ηϕb>40% for μΔ=8) and overestimated by the FB 5IPs model (e.g. ηϕb>120% for μΔ=8). Similar

comments apply regarding the tensile strain profiles of Figure 16. Strain profiles in compression are

instead best captured by the model FB 5IPs. Although the DB/ae model performs slightly better

than the DB/c, both underestimate the recorded maximum compressive strain. As discussed in

subsection 3.1, this is a direct consequence of the assumed FE discretization of the structural

Figure 14. Experimental versus numerical force–displacement response for test WSH6: (a) FB, (b) DB/c and
(c) DB/ae models.

Figure 15. Experimental versus numerical curvature profiles for test WSH6 at positive ductility levels: (a)
FB 5 IPs, (b) two-element DB/c and (c) two-element DB/ae models.
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member. A smaller length for the base element would have improved the comparison at the price of

worsening both the simulated curvatures and tensile strains. The good fit from the model FB 5IPs is

however not a general rule, as confirmed by the results obtained in the previous subsection (Figure 11).

Finally, numerical and experimental base curvatures for the entire set of employed models and

selected RC walls are compared in Table VI in terms of the average relative error (η
avg
ϕb ), which is

calculated at three distinct ductility levels. Similar to the results of the previous subsection

(Table III), the DB/ae model with two elements per structural member generally leads to the highest

precision. Once again, the worst results are obtained at the lowest ductility level (μΔ=2), reaching a

Figure 16. Experimental versus numerical vertical strain profiles of corner rebars for test WSH6 at positive
ductility levels: (a) FB 5 IPs, (b) two-element DB/c and (c) two-element DB/ae models.

Table VI. Numerical error in the calculation of the base curvature for all the models and selected test units
tested by Dazio et al. [29] at different ductility levels.

Test

Ductility
level
(μΔ)

Base curvature average relative error: η
avg

ϕb ¼ 1
2
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FB 3IPs FB 5IPs DB/c 1 ele. DB/c 2 ele. DB/ae 1 ele. DB/ae 2 ele.

WSH2 μΔ =� 2 17.1% 16.8% 55.1% 7.7% 40.0% 0.2%
μΔ =� 4 34.1% 58.3% 68.3% 27.4% 58.1% 10.1%
μΔ =� 6 56.4% 15.7% 80.0% 52.2% 73.2% 22.7%

WSH3 μΔ =� 2 29.8% 76.1% 28.0% 25.8% 23.1% 30.9%
μΔ =� 4 24.5% 89.7% 61.0% 44.2% 51.2% 8.8%
μΔ =� 6 35.1% 79.5% 68.1% 53.2% 59.6% 22.2%

WSH4 μΔ =� 2 20.4% 37.2% 52.8% 27.4% 41.7% 3.0%
μΔ =� 4 35.2% 70.2% 67.0% 44.4% 58.5% 15.0%
μΔ =� 6 N/A N/A N/A N/A N/A N/A

WSH5 μΔ =� 2 14.9% 20.7% 27.8% 12.2% 23.0% 30.3%
μΔ =� 4 20.9% 36.9% 59.2% 20.6% 49.8% 13.4%
μΔ =� 6 38.8% 57.5% 70.8% 36.4% 62.7% 6.8%

WSH6 μΔ =� 2 12.1% 63.0% 34.4% 9.2% 21.7% 17.9%
μΔ =� 4 25.0% 86.2% 60.9% 40.9% 53.0% 6.1%
μΔ =� 6 19.4% 124.8% 59.1% 36.6% 50.9% 10.7%

Note: minimum values of η
avg

ϕb for each test unit and ductility level are displayed in bold
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value of η
avg
ϕb around 30%. This is sensibly smaller than the relative errors obtained with any of the other

models, where the maximum η
avg
ϕb ranged from 50% to 120%.

3.3. Limitations

The validation examples presented in the previous sub-sections have shown that the DB/ae formulation

can be effectively used in the simulation of the cyclic-nonlinear response of RC members with an

encouraging match occurring also at the local strain level. Namely, it was shown that the linear

curvature profile that develops in the plastic hinge region of a member in single bending due to

tension shift effects can be captured by employing two DB/ae elements, and assigning a length for

the bottom element equal to the extent of plasticity. This quantity is not usually available for

engineering practice applications, and further research is yet required on the subject. A first

approximation to estimate the extent of plasticity, which appears to be reasonably accurate for the

present case studies, can be obtained by multiplying the ‘equivalent plastic hinge length’ as

proposed by Priestley et al. [2] by a factor of two. This factor intends to account for the fact that the

curvature profile is not constant but rather approximately linear within the inelastic region.

Additionally, as observed by Goodnight et al. [26], the length of plastification increases for

increasing ductility demands, which is not accounted for in the present formulation. This contributes

to a worse agreement between numerical and experimental local quantities for small ductility levels.

Another limitation is that different lengths should be assigned to the bottom DB/ae element in order

to optimally simulate tensile or compressive strain demand profiles. Because tension shift effects do

not play a relevant role for compressive strains, a shorter length than the extent of plasticity would

be required. However, this modelling issue is not specific to the present formulation as discussed by

[26] in the context of plastic hinge analysis. Finally, it is noted that the entire set of test units used

for validation showed a hardening behaviour of the structural member. Further research is required

to investigate the softening response of the proposed DB/ae model.

4. CONCLUSIONS

Recent experimental tests on cantilever RC piers have confirmed that tension shift effects play an

important role in the distribution of local level quantities such as strains and curvature profiles.

Namely, linear curvatures are generated in the plastic hinge region due to inclined shear cracks,

which intersect the elastic curvature profile at a certain height above the member foundation. These

effects cannot be captured by current force-based formulations that satisfy equilibrium exactly,

which consider only the effect of the moment gradient. Displacement-based formulations provide

the natural framework to account additionally for tension shift effects as the linear plastic curvature

distribution observed within the plastic region can be reproduced by imposing appropriate

transversal displacement fields to the beam element.

However, the linear axial displacement profile used in classical displacement-based elements is a

fundamental limitation to the accuracy of this approach when inelastic material behaviour is

considered. The resulting axial forces are equilibrated only in an average sense, resulting in poor

simulations of the experimental force–displacement response, as well as curvature and strain profiles.

In view of the above, this paper presents a displacement-based element that strictly satisfies axial

equilibrium. An intra-element iterative scheme that automatically adjusts the axial strain profile is

implemented to attain constant axial forces in all integration points, and equal to the applied axial

load. The curvature profiles are instead kept linear as in classical displacement-based elements,

although they result quantitatively different on account of the axial equilibrating procedure. The

principle of virtual work is employed to obtain the element basic forces and a consistent stiffness matrix.

The axially equilibrated displacement-based element is validated against two sets of cyclic tests on

RC cantilever piers and walls. Assuming an appropriate member discretization, it provides accurate

results in terms of global and local scale response. Namely, the simulation of experimental

curvatures and strains shows a significant improvement when compared with models using classical

force-based or displacement-based elements. As an example, when base curvatures over different
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ductility levels are considered, the model using the proposed formulation provides the best estimation

in about 80% of the cases. Nevertheless, due to the different length of the plastic region over which

tensile and compressive strains develop, different levels of accuracy are obtained for these

quantities. The improved predictions come at the cost of slightly increased computational time with

respect to the classical displacement-based formulation.

ACKNOWLEDGEMENTS

The research presented in this paper is part of a project funded by the Swiss Federal Roads Office
(FEDRO) under project number AGB 2015/002. Additionally, the authors would like to thank
Dr. Michele Godio and Dr. Nuno Pereira as well as two anonymous reviewers for their insightful
suggestions and inspiring comments.

REFERENCES

1. Berry MP, Lehman DE, Lowes LN. Lumped-plasticity models for performance simulation of bridge columns. ACI
Structural Journal 2008; 105:270–279.

2. Priestley MJN, Calvi GM, Kowalsky MJ. Displacement-based Seismic Design of Structures. IUSS Press, 2007.
3. Zhao J, Sritharan S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures.

ACI Structural Journal 2007; 104:133–141.
4. Monti G, Spacone E. Reinforced concrete fiber beam element with bond-slip. Journal of Structural Engineering

2000; 654–661.
5. Spacone E, Filippou FC, Taucer FF. Fibre beam-column model for non-linear analysis of R/C frames: Part 1. Formu-

lation. Earthquake Engineering and Structural Dynamics 1996; 25:711–725.
6. Yazgan U, Dazio A. Simulating maximum and residual displacements of RC structures: I. Accuracy, Earthquake

Spectra 2011; 27:1187–1202.
7. Yazgan U, Dazio A. Simulating maximum and residual displacements of RC structures: II. Sensitivity, Earthquake

Spectra 2011; 27:1203–1218.
8. Almeida JP, Das S, Pinho R. Adaptive force-based frame element for regularized softening response. Computers and

Structures 2012; 102–103:1–13.
9. Scott MH, Hamutcuoglu OM. Numerically consistent regularization of force-based frame elements. International

Journal for Numerical Methods in Engineering 2008; 76:1612–1631.
10. Almeida JP, Tarquini D, Beyer K. Modelling approaches for inelastic behaviour of RC walls: multi-level

assessment and dependability of results. Archives of Computational Methods in Engineering 2016;
23:69–100.

11. SeismoSoft, SeismoStruct—a computer program for static and dynamic nonlinear analysis of framed structures,
(2013).

12. McKenna F, Fenves GL, Scott MH, Jeremic B. Open System for Earthquake Engineering Simulation (OpenSees).
California, USA: Berkeley, 2000.

13. Calabrese A, Almeida JP, Pinho R. Numerical issues in distributed inelasticity modeling of RC frame elements for
seismic analysis. Journal of Earthquake Engineering 2010; 14:38–68.

14. Goodnight JC, Kowalsky MJ, Nau JM. Effect of load history on performance limit states of circular bridge columns.
Journal of Bridge Engineering 2013; 18:1383–1396.

15. Hines EM. Seismic performance of hollow rectangular reinforced concrete bridge piers with confined corner ele-
ments. PhD Thesis, Univ. Calif. (2002).

16. Hose YD, Seible F, Priestley MJN. Strategic relocation of plastic hinges in bridge columns. Struct. Syst. Res. Proj.
97/05, Univ. Calif. 1997.

17. Chai YH, Priestley MJN, Seible F. Flexural retrofit of circular reinforced concrete bridge columns by steel jacketing:
experimental studies. Struct. Syst. Res. Proj. 91/06, Univ. Calif. 1991; 151.

18. J.C. Goodnight, M.J. Kowalsky, J.M. Nau, A new look at strain limits and plastic hinge lengths for reinforced
concrete bridge columns, in: 10th U.S. Natl. Conf. Earthq. Eng., Anchorage, 2014.

19. Izzuddin B, Karayannis C, Elnashai A. Advanced nonlinear formulation for reinforced concrete beam-columns.
Journal of Structural Engineering 1994; 120:2913–2934.

20. De Souza R. Force-based finite element for large displacement inelastic analysis of frames. Ph.D. Diss. Dep. Civ.
Environ. Eng. Univ. California, Berkeley, USA. 2000.

21. Almeida JP, Tarquini D. SAGRES: Software for Analysis of GRadient Effects in Structures. Progr. Dev. Matlab.
2016.

22. Popovics S. A numerical approach to the complete stress–strain curve of concrete. Cement and Concrete Research

1973; 3:583–599.
23. Goodnight JC, Feng Y, Kowalsky MJ, Nau JM. The effects of load history and design variables on performance limit

states of circular bridge columns. Volume 2: Experimental Observations, Report, Alaska Dep. Transp. Public Facil.
Res. 4000 2015.

24. Scott MH, Fenves GL. Plastic hinge integration methods for force-based beam–column elements. Journal of Struc-
tural Engineering 2006; 132:244–252.

AXIALLY EQUILIBRATED DISPLACEMENT-BASED ELEMENT FOR RC MEMBERS

Copyright © 2017 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2017)
DOI: 10.1002/eqe



25. Neuenhofer A, Filippou FC. Evaluation of nonlinear frame finite-element models. Journal of Structural Engineering
1997; 123:958–966.

26. Goodnight JC, Kowalsky MJ, Nau JM. Modified plastic-hinge method for circular RC bridge columns. Journal of
Structural Engineering 2016. DOI:10.1061/(ASCE)ST.1943-541X.0001570.

27. Menegotto M, Pinto PE. Method of analysis for cyclically loaded RC plane frames including changes in geometry
and non-elastic behaviour of elements under combined normal force and bending. in: IABSE Symp. Resist. Ultim.
Deform. Struct. Acted by Well Defin. Repeated Loads—Final Rep, 1973.

28. Mander JB, Priestley MJN, Park R. Theoretical stress–strain model for confined concrete. Journal of Structural
Engineering 1988; 114:1804–1826.

29. Dazio A, Beyer K, Bachmann H. Quasi-static cyclic tests and plastic hinge analysis of RC structural walls. Engineer-
ing Structures 2009; 31:1556–1571.

30. Park R. Ductility evaluation from laboratory and analytical testing. in: Proc. 9th World Conf. Earthq. Eng, 1988.
31. Hines EM, Restrepo JI, Seible F. Force–displacement characterization of well-confined bridge piers. ACI Structural

Journal 2004; 101:537–548.
32. Beyer K, Dazio A, Nigel Priestley MJ. Shear deformations of slender reinforced concrete walls under seismic load-

ing. ACI Structural Journal 2011; 108:167–177.
33. Mergos PE, Beyer K. Modelling shear–flexure interaction in equivalent frame models of slender reinforced concrete

walls. The Structural Design of Tall Special Buildings 2014; 23:1171–1189.

D. TARQUINI, J. P. ALMEIDA AND K. BEYER

Copyright © 2017 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2017)
DOI: 10.1002/eqe

http://doi.org/10.1061/(ASCE)ST.1943-541X.0001570

