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AXIALLY SYMMETRICAL JET MIXING OF A COMPRESSIBLE FLUID*

BY

S. I. PAI

Institute for Fluid Dynamics and Applied Mathematics, University of Maryland

1. Introduction. The problem of turbulent jet mixing of an incompressible fluid was

first analyzed successfully by Tollmien1 in 1926 by the application of Prandtl's mixing

length theory. He solved the following three problems:—

(1) Mixing of a parallel stream with the adjacent fluid at rest.

(2) Two-dimensional jet from a very narrow opening issuing into medium at rest.

(3) Axially symmetrical jet escaping from very small opening into medium at rest.

The corresponding laminar problem has been theoretically analyzed by Schlichting3

in 1933. Neither of these solutions, however, holds for finite opening, i.e. at a short

distance from the opening.

Kuethe,3 in 1935, extended Tollmien's results to the case of a two-dimensional jet

issuing into a medium not at rest and also worked out an approximate method for'the

computation of the velocity profile in the initial part of a round jet issuing into medium

at rest. Squire and Trouncer,4 in 1944, extended Kuethe's results to the case of a

round jet issuing into a uniform stream by assuming certain velocity profiles across the

jet. Abramovich,5 in 1939, extended Tollmien's problem, i.e. the mixing of a parallel

stream with the adjacent medium at rest, to the case of a compressible fluid. He

considered the effects of compressibility due to high temperature and those due to

high subsonic speed separately and obtained some approximate solutions. Reichardt,0

in 1941, from the experimental data, suggested the constant exchange coefficient over

each cross-section of the mixing zone for the free turbulence problem and Gortler,7 in

1942, reexamined Tollmien's problems by the application of Reichardt's theory and

obtained some improvement in the velocity profiles.

In 1949, the present author,8 investigated the problems of the flow of a two-dimen-

sional jet from a finite opening of a compressible fluid exhausting into uniform stream

and of the mixing of two uniform streams of compressible fluid. Both the laminar and

the turbulent cases were considered. The effects of compressibility due to large tem-

perature difference and those due to high velocity were considered simultaneously.

In the present paper, this analysis is extended to the case of an axially symmetrical

jet of a compressible fluid exhausting into a uniform stream. The flow of the jet is

assumed to be under full expansion from a nozzle, i.e. the pressure of the flow at the exit

of the nozzle is exactly equal to that of the surrounding stream. The pressure gradient

in the jet is assumed to be negligible. Both the laminar and the turbulent cases will

be considered.

The first part of this paper is concerned with the laminar flow. The usual assump-

tions of boundary layer theory adopted to simplify the Navier-Stokes equations. A

solution by the method of small perturbations is first obtained. Then the exact solution

is examined. A numerical integration method is used to compute the velocity and the

temperature distributions in the jet for the exact solution.
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The second part of the paper is concerned with the turbulent flow. The fundamental

equation of motion of an axially symmetrical jet is derived by using Taylor's hypothesis

concerning the transport of vorticity and Reichardt's assumption of free turbulence,

i.e. the assumption that the exchange coefficient over each cross-section of the mixing

zone is constant. By suitable transformation of variables, the equations of turbulent

flow become identical to those of laminar flow. Hence the solution of Part I can be used

to the turbulent flow provided that the empirical quantity of eddy viscosity has been

evaluated experimentally.

The Laminar Jet Mixing

2. Fundamental equations. The equations of motion for the mixing of an axially

symmetrical jet in a viscous compressible fluid are

du . du 1 tl / du\ /1S

pUVx + pV^=r¥r\"rTr) (1)

f=0 (2,
These equations are obtained under the usual assumptions of boundary layer theory,

and the pressure p is assumed to be constant. The x axis is taken along the axis of the

jet, and r is the radial distance. The quantities u and v are the x and r components of

the velocity, respectively, p is the density, and n is the coefficient of viscosity of the fluid.

The equation of continuity is

+ (3)
dx r dr

The equation of energy is

P» £ (C,T) + „ I (C,T) - 11 (xr f) + „(!)" (4)

where CP is the specific heat at constant pressure, X is the coefficient of heat conduction,

and T is the temperature.

If the Prandtl's number Cvn/\ is assumed to be unity and C„ to be constant, the

temperature becomes a function of velocity only, i.e.

T = A + Bu - ~ (5)

where A and B are constants determined by the boundary conditions. The relation (5)

is well-known for the two-dimensional case,8 but it is interesting to find that it holds

true also for axially symmetrical flow.

The pressure is assumed to be constant; hence

* P _ TO 1_ /pN

P Po T T*' ( )

where the subscript 0 represents some reference conditions.

The coefficient of viscosity may be expressed as

_ JL _ (T\m — r*m

Mo \ToJ
m* = - = l^r) = T*m, (7)
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where m may be taken as a constant less than or equal to one depending on the tem-

perature range investigated.

3. Solution by the method of small perturbations. In some practical cases, both the

velocity and the temperature in the jet differ only slightly from those of the surrounding

stream. It is advisable to find some approximate solution for this special case first.

Write

U = U0 + Ui , V = Vi ,

(8)
P = Po + Pi , M = Mo + Mi

(9)

where ut <3C u0 , vY ~ , pi <3C p0 and Hi <3C Mo •

Substituting Eq. (8) into Eq. (1) neglecting the higher order terms, one has

dui

dx

where

^2   MO

UoPo

The initial conditions at the exit of the nozzle may be assumed as follows:

x= 0

Mi = «io = constant, 0 < r < r0 (10)

Mi = 0, r > r0 .

The solution of Eq. (9) with the boundary conditions of Eq. (10) is9

Uio
= r0 [ e x'0!',Vo(Xr)J1(Xro) d\, (11)

Jo

where J0 and Ji are the Bessel functions of zero and first order respectively. The results

are plotted in Fig. 1.

At x — 0

r 1. r» > r,
^ = r„ J0(\r)J1(\ra) d\ = (12)
Ul° Jo 0, r0 < r.Mio

u, i0 ^ i.

. 10This is the well-known discontinuous integral of Weber and Schafheitlin . Thus the

boundary condition (10) is satisfied.

4. Exact solution. To solve the problem more rigorously, one has to resort to Eqs. (1)

and (3). By introducing the stream function which is defined by

= P*u*r*, 0 = — p*v*r*, (13)

where p* = p/p0 , u* — u/u0 , r* — r/r0 and x* = x/r0 ; the equation of continuity,

Eq. (3), is automatically satisfied.

If the independent variables x and r are changed to x* and ip. Equation (1) becomes

du* d ( * „ _ +2du*\

M = w {» > •" W)' (14)
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Fig. 1. Velocity distributions in axially symmetrical jet by small perturbation solution.

where x* = ax*. The initial conditions are now

x* = 0, T* = T*0(\p), u* = u*(tf (15)

Equation (14) can be integrated numerically by a finite difference method starting

from the initial conditions (15) with the help of (5), (6) and (7). In the numerical

integration, besides (15), the condition on the axis of the jet must be known which is

found to be:—

du* _ 2m* dV , .
dx* p*u* dr*2

As soon as u* and p* are found in terms of ip at given x*, the radial distance r* can be

computed by the following formula

'* df
r*2 - 2 r (17)

Jo p*U*
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A typical example has been set up for IBM Machine calculation by Dr. H. Polachek

and Mr. T. S. Walton of the Naval Ordnance Laboratory. The boundary condition at

the exit of nozzle (a;* = 0) are

u* = l.l\ u* = l.o'

T* = 2.0 \r* <1; T* — 1.0 }r* > 1

p* = 0.5/ p* = 1.0,

The following relations were also used in the numerical example:

T* = -9.66 + 11.26u* - 0.60m*2, m* = 71*0"76.

This represents a hot jet of flow in a cold stream. The result is shown in Fig. 2. To

compare with the small perturbation solution, it shows that the velocity on the axis of

1.0 _r 15 20 2.5
r0

Fig. 2. Velocity distributions in axially symmetrical jet by numerical integration.
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the jet decreases more rapidly for the case of the hot jet. These results is qualitatively

the same as that in case of two-dimensional jet flow.8

The Turbulent Jet Mixing

5. Fundamental equations for turbulent jet mixing. The differential equation of mo-

tion for steady axially symmetrical flow of free turbulence, where viscous force can be

completely neglected, is

du . dv dp
+ (I8>

If we put

u = um + u', v = vm + v',

(19)
P = Pm + p', P = Pn, + V',

where u, v, p, p are the instantaneous values of the x and r components of velocity,

pressure, and' density, respectively, um , vm , pm , pm , the corresponding mean values and

u', v', p', p the corresponding fluctuating values.

Substituting (19) into (18) and averaging it, one has

+ '-'-(f) J + [(pV,-(i)_

+"-("' It).+I").] + [('v,-(l).

+ «-{'■ %). +>{'■%)} + [<"'»' S).
=-(ii »

where ( )m denotes the mean value of the quantity in the parenthesis.

By comparison of the order of magnitude and using the ordinary boundary layer

assumptions one has

PnMr fx) m + ("v)»(fr)m + p-{v' = -(!)„ (2,)

In order to find the relation between du'/dr and the mean flow, we use Taylor's

modified vorticity transport theory,11 i.e.

du' A ,1 a
—— = Aw = l~ —
or r dr

'(111 (22)

where Aco is the change of vorticity of mean flow in r direction and I is the mixing length.

Furthermore we put

- <2). (23)
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Substituting (22) and (23) into (21) and put (dp/dx)m = 0, one has

" * r 1 MS).] (24)
where e = — (lv')m is the exchange coefficient of the turbulent flow. According to Reich-

ardt's assumption, we assume that e is independent of r in free turbulence problem. Hence

/du\ Idu\ 1 d f (du\
pmUm\dx)m + pmVm\dr)m ~ rdr Jp,"r\ dr)m_

(25)

From (25) we see that the turbulent shearing stress of compressible fluid in the present

problem may be defined as

r„ = 6p„(f) = ~Pm(uV)m (26)

where

" '(I).'
The expression of (26) is in agreement to that obtained by Frankl,12 but we use

different assumptions. In Frankl's analysis, he assumed that p' is small by comparison

with pm which is not a good assumption in high speed flow.

The energy equation for free turbulence case is (from hereon we drop the subscript

m for mean values)

pit
d(CvT) d{CvT) 13/ dT\ (duY

+ PV ~dT = ~rdr \rC*tp -fr) + (27)

According to mixing length theory, the Prandtl number for free turbulence is equal to

unity, equation (5) holds true for turbulent flow too.

6. Solutions of the equations. According to similar arguments for two-dimensional

case,8 we may write

(28)

where e0 is a constant to be determined by experiments.

Equation (25) becomes

du du n 1 3 / du\ . .
pUdx + pvfr=*°x* rfr{prTr) (29)

Under the assumption of small perturbation equation (29) becomes

(30)

In terms of variables x* and equation (29) becomes

—  — r*" — ( n*"li*r*2 C311
" u0r0 X di\p UT di)
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Now we introduce the new independent variable

*(n + l>

x (32)

for x*, equations (30) and (31) become respectively

~ = — \ ~ (r* (33)
dX u0r0 r* dr* \ dr* 1

and

du* «o

dX u0r0 dxpI (AV <£) (34)
Equations (33) and (34) are identical to equations (9) and (14) respectively, provided

that «0 is used for /x0/p0 , X for x* and p* for /x*. Therefore the solutions of the laminar

jet mixing can be applied to the problem of the turbulent jet mixing of the same boundary

conditions, provided that proper characteristic constants e0 and n are chosen.
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