
Universal Journal of Computational Mathematics 1(3): 67-72, 2013 http://www.hrpub.org
DOI: 10.13189/ujcmj.2013.010301

Axiomatic Basis for Computer Programming

Lauretta O. Osho1, Francisca Ogwueleka2, Oluwafemi Osho3,*

1Department of Computer Science, Federal University of Technology, Minna, Nigeria
2Department of Computer Science, Federal University, Wukari, Nigeria

3Department of Cyber Security Science, Federal University of Technology, Minna, Nigeria
*Corresponding Author: femi.osho@futminna.edu.ng

Copyright © 2013 Horizon Research Publishing All rights reserved.

Abstract This paper considers a formal method, known
as axiomatic semantics, used to prove the correctness of a
computer program. This formal method extracts, using some
proof rules, the mathematical verification conditions from a
computer program. The axioms of program flow, including,
sequential flow, iteration, and alternation flows are presented.
Using the axiomatic basis the completeness of two variants
of integer multiplication program is proved. Results show
that computer programs can actually be verified sufficiently
for correctness without necessarily testing them, or more
practically put, to complement their testing.

Keywords Computer, Computer Programming,
Axiomatic, Completeness, Correctness

1. Introduction
Computer programming is consisted in the designing,

writing, testing, debugging, and maintaining of the source
code of computer programs. It employs one or more
programming languages. Programming occurs at the
implementation phase of the software development life cycle
(SDLC) [1].

Usually, the choice of a programming language is subject
to, amongst other factors, the task for which the program is
meant, and the efficiency with which the language helps
programs written in it to execute. Different programming
languages support different style of programming

Basically, there are fundamental properties that must be
satisfied by every program. Some of these include reliability,
which is a measure of the correctness of the program result;
usability, depicting the ease of use of the program for its
intended purpose; portability, the ability of a program to run
on different platforms; maintainability, the ability of a
program to be modified, upgraded, or improved upon [1];
and robustness, the ability of a program to withstand unusual
conditions [2]; to mention but few. Reliability is closely tied
to the correctness of the algorithm, and the amount of errors
present in the program codes. Its validity relies on the
variable values before the initiation of the program [3].

Hence, considering the preconditions and post conditions,
one can prove the correctness of a program (or part of it).
This system is known as axiomatic semantics [4]. This paper
focuses on self-evident basis for proofs of some program
properties.

1.1. Background of Study

In the software development lifecycle (SDLC), one of the
most important stages is the test phase, as shown in Figure 1.
At this phase, the software is verified to ascertain its
capability to do what it is expected to do under all conditions.
It is at this stage that design and implementation flaws are
supposed to be detected [5]. Testing thus incorporates
debugging, which is the process of finding and removing
errors (bugs) in a program [6].

Figure 1. A general software development lifecycle [5]

The higher the algorithmic complexity of a program is,
which invariably determines how complex a program is, the
more likely there would be errors in the program. Program
testing is often rigorous, especially for very large and
complex programs. Except in small programs, testing cannot
prove the correctness of a program. Testing only exposes
errors in the codes. And in most cases, errors in a program
never cease to be exhausted.

Consequently, the need for other complementary methods
of achieving correctness of program cannot be overemphasi
zed. These formal methods and the intuitive judgment of
programmers can mutually support each other [7]

68 Axiomatic Basis for Computer Programming

One of the formal methods used for proving program
correctness is the axiomatic method [7]. The word axiomatic
connotes self-evidence, obviousness. An axiomatic method
has the potency of providing basis for measuring the quality
of a programming language [7].

1.2. Statement of Problem

The conventional way of ascertaining the correctness of
programs has always been through the testing for error
detection and removal. The less the amount of error detected
and successfully removed the more correct the program is
deemed. However, for large and complex programs, this
method has never proved adequate. In addition to the rigor
usually associated with the exercise, it hardly exposes all the
bugs (errors) in the program codes. Therefore, it is expedient
to seek other methods of establishing program correctness.

A formal method of proving correctness of a computer
program involves the use of axioms of discrete mathematics
as basis for logical reasoning to extract from and prove the
mathematical verification conditions of the program.

2. Review of Related Works
There have been considerable advances in the quantity and

quality of methods deduced to prove the correctness of
programs. While each had some strengths there were always
limitations in their uses. For instance, though recursion
induction, structural induction, and interpretation of
flowcharts methods were applicable for proving correctness
of programs that contained repetitions, the first two dealt
with programs that achieved repetition by recursion, while
the last one with programs that achieved by jumps and
assignment [8]. Floyd’s method has been used in proving
correctness of programs in flow diagram form [9],
Floyd-Hoare logic in proving imperative programs [10].
Burstall [9] extended Floyd’s method to handle lists
processing commands, while [11] used the inductive
assertion method for multiprocess programs.

Some methods focused on the type of programs.
Nakamura [12] proved the correctness of functional
programs using Mizar, a popular proof checker. Basically,
proof checkers contain library of mathematical models,
lemmas and theorems. The checker works by relating the
semantics of programs to the models. On the other hand, [10]
considered modular functional programs.

Another method of classifying these methods is in whether
they prove partial or total correctness of programs. Total
correctness simply is consisted in partial correctness plus
termination of loops [10,13,14]. Floyd-Naur’s and structural
induction methods, and Hoare logic are used for partial
correctness, while Floyd’s method, the extended Hoare logic
is used for total correctness [14].

3. Mathematical Foundations

Axiomatic basis for information flow in computer
programming was considered. The axioms (proof rules) for
sequential program flow, considering the assignment
statement; iteration program flow, considering the
while…do and do…while statements; and the decision
(alternation) flow, considering the if…else statement are
presented.

3.1. Axiomatic Definitions for Integers

The integers are a system consisting of a set ℤ together
with two symbols, ‘+’ and ‘∙ ’, denoted by (ℤ, +, ∙), which
maps ℤ × ℤ → ℤ. They satisfy the following [15,16]:

1. (𝑥𝑥 + 𝑦𝑦) + 𝑧𝑧 = 𝑥𝑥 + (𝑦𝑦 + 𝑧𝑧) (associativity of addition)
2. (𝑥𝑥 ∙ 𝑦𝑦) ∙ 𝑧𝑧 = 𝑥𝑥 ∙ (𝑦𝑦 ∙ 𝑧𝑧) (associativity of

multiplication)
3. 𝑥𝑥 + 𝑦𝑦 = 𝑦𝑦 + 𝑥𝑥 (commutativity of addition)
4. 𝑥𝑥 ∙ 𝑦𝑦 = 𝑦𝑦 ∙ 𝑥𝑥 (commutativity of multiplication)
5. ∃0 ∈ ℤ such that 0 + 𝑥𝑥 = 𝑥𝑥 = 𝑥𝑥 + 0 ∀𝑥𝑥 ∈ ℤ

(additive identity element)
6. ∃1 ∈ ℤ such that 1 ∙ 𝑥𝑥 = 𝑥𝑥 = 𝑥𝑥 ∙ 1 ∀𝑥𝑥 ∈ ℤ

(multiplicative identity element)
7. ∀𝑥𝑥∃ − 𝑥𝑥 ∈ ℤ such that 𝑥𝑥 + (−𝑥𝑥) = 0 = (−𝑥𝑥) + 𝑥𝑥

(additive inverse)
8. 𝑥𝑥 ∙ (𝑦𝑦 + 𝑧𝑧) = 𝑥𝑥 ∙ 𝑦𝑦 + 𝑥𝑥 ∙ 𝑧𝑧 (left distributive law)
9. (𝑥𝑥 + 𝑦𝑦) ∙ 𝑧𝑧 = 𝑥𝑥 ∙ 𝑧𝑧 + 𝑦𝑦 ∙ 𝑧𝑧 (right distributive law)

Further, there is an order relation ≤ on ℤ, such that:
1. 𝑥𝑥 ≤ 𝑥𝑥 ∀𝑥𝑥 ∈ ℤ
2. If x ≤ 𝑦𝑦 and y ≤ 𝑥𝑥, then 𝑥𝑥 = 𝑦𝑦
3. If 𝑥𝑥 ≤ 𝑦𝑦 and 𝑦𝑦 ≤ 𝑧𝑧, then 𝑥𝑥 ≤ 𝑧𝑧
4. ∀𝑥𝑥,𝑦𝑦 ∈ ℤ, either 𝑥𝑥 ≤ 𝑦𝑦 or 𝑦𝑦 ≤ 𝑥𝑥

3.2. Definition of Notations

ⅰ.𝐴𝐴{𝐵𝐵}𝐶𝐶 is used to express relationship between a
precondition (A), a program {B}, and a
postcondition (C). It is interpreted “If the assertion
A is true before initiation of a program B, then the
assertion C will be true on its completion” [3].

ⅱ.𝐴𝐴 ⊢ 𝐵𝐵 means A yields B [1].
ⅲ.𝐴𝐴1,…𝐴𝐴𝑛𝑛

𝐵𝐵
 implies that if logical statements A1,…An are

true, then so is B [17].

3.3. Axiom of Assignment

Consider an assignment statement:

𝑥𝑥 = 𝑓𝑓

Where 𝑥𝑥 is a variable identifier, and 𝑓𝑓 is an expression
of a programming language.

The precondition entails an assertion A(f), which must
have been true of the expression f , before the assignment is
made. With this in place, A(x) is said to be true.

This is expressed as:

⊢ 𝐴𝐴0{𝑥𝑥 = 𝑓𝑓}𝐴𝐴(𝑥𝑥)

where,

 Universal Journal of Computational Mathematics 1(3): 67-72, 2013 69

𝐴𝐴0 = 𝐴𝐴(𝑓𝑓)

3.4. Axiom for Iteration (while…do)

Consider the statement:
while P do Q
To deduce an axiom, suppose L is an assertion invariant over
execution of P. P becomes false when the iteration
terminates. Hence, the axiom for iteration is given as:

𝐿𝐿∧𝑃𝑃{𝑄𝑄}𝐿𝐿
𝐿𝐿{𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑃𝑃 𝐝𝐝𝐝𝐝 𝑄𝑄} 𝑃𝑃∧𝐿𝐿

 (1)

L is called the loop invariant. It is an assertion that is
usually true before the loop is initiated; it remains true after
every execution of the loop; and also at the end of the loop.

3.5. Axiom for Iteration (do…while)

Consider the statement:
do Q while P

This is similar to the case in the while…do statement
except that in this case the statement in the loop would have
been executed first before the condition is tested. This means
that if the condition is found to be false at the end of the first
iteration, the embedded statement would have been executed
once. This is given as:

𝐿𝐿{𝑄𝑄}𝐿𝐿
𝐿𝐿{𝐝𝐝𝐝𝐝 𝑄𝑄 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑃𝑃} 𝑃𝑃∧𝐿𝐿

 (2)

3.6. Axiom for Alternation

Consider the statement:
if P then Q1 else Q2
Axiomatically, this is represented as:

𝐿𝐿∧𝑃𝑃{𝑄𝑄1}𝐵𝐵,𝐿𝐿∧ 𝑃𝑃{𝑄𝑄2}𝐵𝐵
𝐿𝐿{𝐰𝐰𝐢𝐢 𝑃𝑃 𝐭𝐭𝐰𝐰𝐰𝐰𝐭𝐭 𝑄𝑄1 𝐰𝐰𝐰𝐰𝐞𝐞𝐰𝐰 𝑄𝑄2}𝐵𝐵

 (3)

4. Prove of Correctness of Program for
Integer Multiplication

Two different programs for integer multiplication are
proved using some of the axioms for integers. The first one
uses the method of repeated addition.

Although simple programs are used here, using axioms to
prove correctness of programs, on a large scale, basically
complements the intuitive judgment of programmers in
program testing.

4.1. Program for Integer Multiplication by Repeated
Addition

{𝐵𝐵 ≥ 0}

𝑥𝑥 = 𝐴𝐴; 𝑦𝑦 = 𝐵𝐵; 𝑝𝑝 = 0;

while 𝑦𝑦 > 0 do
𝑝𝑝 = 𝑝𝑝 + 𝑥𝑥;

𝑦𝑦 = 𝑦𝑦 − 1;

end while

{𝑝𝑝 = 𝐴𝐴 × 𝐵𝐵}

4.1.1. Axiomatic Proof
Based on the axiomatic definition for iteration (also

known as loop):
𝐿𝐿 ∧ 𝑃𝑃{𝑄𝑄}𝐿𝐿

𝐿𝐿{𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑃𝑃 𝐝𝐝𝐝𝐝 𝑄𝑄} 𝑃𝑃 ∧ 𝐿𝐿

We look for a loop invariant that is true before, within and
outside the loop. This, when combined with the exit
condition, produces the assertion that follow the loop (that is,
the postcondition). The structure is illustrated in Figure 2
(redrawn from [18]):

Figure 2. Structure of the while Rule

The loop invariant involves a relationship between
unvarying variables within the loop. In a while condition, it
also incorporates the loop condition, however, in a modified
form. The modification is often necessary to accommodate
the exit case of the loop [18].

For this problem, we can discover the loop invariant be
examining how 𝐴𝐴 × 𝐵𝐵 is derived. If we let 𝐴𝐴 = 3 and
𝐵𝐵 = 4, we have:

70 Axiomatic Basis for Computer Programming

We can deduce that 𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 . Also, we
modify our loop condition to accommodate the exit case,
= 0 . Hence, we have 𝑦𝑦 ≥ 0. We can therefore say that our
loop invariant is:

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0}

To show that the loop invariant is initially true, we derive
it from the initialization commands and the precondition.
Initialization:

{𝐵𝐵 ≥ 0} ⊂

{𝐴𝐴 = 𝐴𝐴 ∧ 𝐵𝐵 = 𝐵𝐵 ≥ 0 ∧ 0 = 0}

𝑥𝑥 = 𝐴𝐴; 𝑦𝑦 = 𝐵𝐵; 𝑝𝑝 = 0
{𝑥𝑥 = 𝐴𝐴 ∧ 𝑦𝑦 = 𝐵𝐵 ≥ 0 ∧ 𝑝𝑝 = 0} ⊂

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0}

Preservation:
To prove that the loop invariant is preserved, we combine

the loop invariant and the entry condition at the top of the
loop, and from the bottom of the loop, we ‘push back’
invariant through the body of the loop. We have thus:

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0 ∧ 𝑦𝑦 > 0} ⊃
{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 > 0}

𝑝𝑝 = 𝑝𝑝 + 𝑥𝑥; 𝑦𝑦 = 𝑦𝑦 − 1;
{𝑝𝑝 + 𝑥𝑥 + [𝑥𝑥 × (𝑦𝑦 − 1)] = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 − 1 > 0} ⊂

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0}
Completion:

Finally, we must prove the assertion after the while loop
(that is, the postcondition, {𝑝𝑝 = 𝐴𝐴 × 𝐵𝐵}) can be derived from
(𝑃𝑃 ∧ 𝐿𝐿), where L is the loop invariant, and P, the while
loop test condition:

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0 ∧ (𝑦𝑦 > 0)} ⇒

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0 ∧ 𝑦𝑦 ≤ 0} ⇒

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 = 0} ⇒

{𝑝𝑝 = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 = 0} ⇒

{𝑝𝑝 = 𝐴𝐴 × 𝐵𝐵}

4.2. More Efficient Program for Integer Multiplication

{𝑚𝑚 = 𝐴𝐴 ∧ 𝑛𝑛 = 𝐵𝐵 ≥ 0}

𝑥𝑥 = 𝑚𝑚; 𝑦𝑦 = 𝑛𝑛; 𝑝𝑝 = 0;

While

𝑦𝑦 > 0

do
if 2 × (𝑦𝑦 2⁄) ≠ 𝑦𝑦 then

𝑝𝑝 = 𝑝𝑝 + 𝑥𝑥;

end if

𝑥𝑥 = 2 × 𝑥𝑥;

𝑦𝑦 = 𝑦𝑦 ∕ 2;

end while

{𝑝𝑝 = 𝐴𝐴 × 𝐵𝐵}

Hint: consider the two cases where 𝑦𝑦 is even (𝑦𝑦 = 2𝑘𝑘)
and 𝑦𝑦 is odd (𝑦𝑦 = 2𝑘𝑘 + 1) . Remember that / denotes
integer division.

4.2.1. Axiomatic Proof
For this problem, to get the loop invariant, we also see

how 𝐴𝐴 × 𝐵𝐵 is calculated, using small numbers. We
consider both possible cases consequent upon the if
statement. If we let 𝐴𝐴 = 3 and 𝐵𝐵 = 4, we have:

On the other hand, If we let 𝐴𝐴 = 4 and 𝐵𝐵 = 3, we have:

We can also deduce that 𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 .
Modifying our loop condition, we have 𝑦𝑦 ≥ 0 . We
discover in this case too that our loop invariant is:

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0}

Initialization:

{𝑚𝑚 = 𝐴𝐴 ∧ 𝑛𝑛 = 𝐵𝐵 ≥ 0} ⊂

{𝑚𝑚 = 𝐴𝐴 ∧ 𝑛𝑛 = 𝐵𝐵 ≥ 0 ∧ 0 = 0}

𝑥𝑥 = 𝑚𝑚; 𝑦𝑦 = 𝑛𝑛; 𝑝𝑝 = 0;

{𝑥𝑥 = 𝐴𝐴 ∧ 𝑦𝑦 = 𝐵𝐵 ≥ 0 ∧ 𝑝𝑝 = 0} ⊂

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0}

Preservation:
Case 1: 𝑦𝑦 is even. That is, 𝑦𝑦 = 2𝑖𝑖 > 0 for some

integer 𝑖𝑖 ≥ 0.
Consequently, the if condition is false. Hence,

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0 ∧ 𝑦𝑦 > 0} ⊃

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 > 0}

𝑥𝑥 = 2 × 𝑥𝑥; 𝑦𝑦 = 𝑦𝑦 2⁄ ;

{𝑝𝑝 + �2 × 𝑥𝑥 ×
𝑦𝑦
2
� = 𝐴𝐴 × 𝐵𝐵 ∧ (

𝑦𝑦
2

) > 0} ⇒

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 > 0} ⊂

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0}

Case 2: 𝑦𝑦 is odd. That is, 𝑦𝑦 = 2𝑖𝑖 + 1 > 0 for some
integer 𝑖𝑖 ≥ 0.
Consequently, the if condition is true, that is, (2 × 𝑦𝑦/2) ≠

 Universal Journal of Computational Mathematics 1(3): 67-72, 2013 71

𝑦𝑦. Hence,

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0 ∧ 𝑦𝑦 > 0} ⊃

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 > 0}

𝑝𝑝 = 𝑝𝑝 + 𝑥𝑥; 𝑥𝑥 = 2 × 𝑥𝑥; 𝑦𝑦 = 𝑦𝑦 2⁄ ;

{𝑝𝑝 + 𝑥𝑥 + �2 × 𝑥𝑥 ×
𝑦𝑦
2
� = 𝐴𝐴 × 𝐵𝐵 ∧ (

𝑦𝑦
2

) > 0} ⇒

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 > 0} ⊂

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0}

Completion:
We prove that 𝑝𝑝 = 𝐴𝐴 × 𝐵𝐵 is derived from (𝑃𝑃 ∧ 𝐿𝐿)

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0 ∧ (𝑦𝑦 > 0)} ⇒

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0 ∧ 𝑦𝑦 ≤ 0} ⇒

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 = 0} ⇒

{𝑝𝑝 = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 = 0} ⇒

{𝑝𝑝 = 𝐴𝐴 × 𝐵𝐵}

5. Summary and Conclusion

5.1. Summary

In this paper, some axioms of program properties,
including, sequential flow, iteration (for while…do and
do…while control statements), and alternation flows were
stated. And using the axioms as basis the completeness of
two variants of integer multiplication program was proved.

5.2. Conclusion

The use of axioms and rules of inference to prove the
correctness of a program (or part of it), are meant to
complement the intuitive judgment of programmers. As a
matter of fact, both are best utilized when they mutually
support each other.

Today, there are other methods for establishing program
correctness. These include new branches of applied discrete
mathematics to formalize programming concepts, and
different forms of logic to simplify reasoning. For
corecursive programs, they can be proved using fixpoint
induction, coinduction, approximation lemma, or fusion
methods [19]. As a matter of fact, there are currently
computer applications used for proving correctness of
programs. These include ESC/Java [20], SPARK, eCv
(MISRA-C), Spec# [21], and Dafny [22].

This paper primarily focuses on the axiomatic method of
proving correctness. Further works may include using the
same method to prove more complex programs, or using
other methods to verify the correctness of the two integer
multiplication programs presented.

Appendix – List of Symbols

Symbol Meaning/Definition

ℤ Integer

∃ There exist

∈ Member of

∀ For all

⊢ Proves (implies, yields)

 Not (negation)

< Less than

≤ Less than or equal to

≥ Greater than or equal to

∧ Logical and
⊃
⊂
⇒

Superset of (includes in set)
Subset of
Implies

REFERENCES
[1] http://en.wikipedia.org/wiki/Computer_Programming

[2] The Linux Information Project (2005). Retrieved from:
http://www.linfo.org/robust.html

[3] Hoare, C. A. R. (1969). An Axiomatic Basis for Computer
Programming. Communications of the ACM, Vol. 12, No. 10.
pp. 576 – 583.

[4] Lusth, J. C. (2011). Programming Languages: Axiomatic
Semantics. Retrieved from
http://rra.cs.ua.edu/proglan/axiom2.html

[5] Owens, D. Integrating Software Security into the Software
Development Life Cycle. System Securities, San Diego, CA
62123, USA.

[6] Program Testing. Retrieved from:
http://www.cse.unsw.edu.au/~billw/testing.html

[7] Hoare, C. A. R. (2009). Retrospective: An Axiomatic Basis
for Computer Programming. Communications of the ACM,
Vol. 52, No. 10. pp. 30 – 32.

[8] Burstall, R. M. (1968). Proving Properties of Programs by
Structural Induction.

[9] Burstall, R. M. Some Techniques for Proving Correctness of
Programs which Alter Data Structures. University of
Edinburgh.

[10] Owens, C. A. (1999). Proving Correctness of Modular
Functional Programs. University of Edinburgh.

[11] Lamport, L. (1977). Proving the Correctness of Multiprocess
Programs, IEEE Transactions on Software Engineering, Vol.
SE-3, No. 2.

[12] Nakamura, Y. (2007). Proving the Correctness of Functional

72 Axiomatic Basis for Computer Programming

Programs Using Mizar. Studies in Logic, Grammar, and
Rhetoric, 10 (23).

[13] Capretta, V. G52DOA – Total Correctness. Available on:
http://www.cs.nott.ac.uk/~vxc/g52doa /total_correctness.pdf

[14] Cousot, P. Methods and Logics for Proving Program. In
``Handbook of Theoretical Computer Science’’, J. van
Leeuwen (Ed.), vol. B `` Formal Models and Semantics’’, Ch.
15, pp. 843--993, Elsevier, 1990.

[15] Greenleaf, F.P. (2000-2008). Algebra I (Section 2: The
System of Integers). Retrieved from
www.cims.nyu.edu/~naor/homepage%20files/integers.pdf

[16] Thunder, J. (2009). Axioms for Integers. Retrieved from
http://www.math.niu.edu/~jthunder/Courses
/2009Fall/420/sec1/aug24/intaxioms.pdf

[17] Andrews, G. R., and Reitman, R. P. (1980). An Axiomatic
Approach to Information Flow in Programs. ACM
Transactions on Programming Languages and Systems, Vol.
2, No. 1. Pages 56-76

[18] Slonneger, K. and Kurtz, B. L. (1995). Formal Syntax and
Semantics of Programming Languages: a Laboratory Based
Approach (Chapter 11: Axomatic Semantics). Addison
Wesley Publishing Company, Inc.

[19] Gibbons, J. and Hutton, G. (2005). Proof Methods for
Corecursive Programs, Fundamenta Informaticae XX (2005)
1–14, IOS Press.

[20] Ouimet, M. Formal Software Verification: Model Checking
and Theorem Proving. Retrieved from:
http://webdocs.cs.ualberta.ca/~piotr/Courses/662/Reading/E
SL-TIK-00214.pdf

[21] Ireland, A. Rigorous Methods for Software Engineering
Program Specification. Retrieved from:
http://www.macs.hw.ac.uk/~air/rmse/lectures/lec-6-prog-spe
c.pdf

[22] Leino, M. Dafny: An Automatic Program Verifier for
Functional Correctness. Retrieved from:
http://research.microsoft.com/en-us/um/people/leino/papers/
krml203.pdf

	1. Introduction
	2. Review of Related Works
	3. Mathematical Foundations
	4. Prove of Correctness of Program for Integer Multiplication
	5. Summary and Conclusion
	Appendix – List of Symbols
	REFERENCES

