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Abstract  This paper considers a formal method, known 
as axiomatic semantics, used to prove the correctness of a 
computer program. This formal method extracts, using some 
proof rules, the mathematical verification conditions from a 
computer program. The axioms of program flow, including, 
sequential flow, iteration, and alternation flows are presented. 
Using the axiomatic basis the completeness of two variants 
of integer multiplication program is proved. Results show 
that computer programs can actually be verified sufficiently 
for correctness without necessarily testing them, or more 
practically put, to complement their testing. 
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1. Introduction 
Computer programming is consisted in the designing, 

writing, testing, debugging, and maintaining of the source 
code of computer programs. It employs one or more 
programming languages. Programming occurs at the 
implementation phase of the software development life cycle 
(SDLC) [1]. 

Usually, the choice of a programming language is subject 
to, amongst other factors, the task for which the program is 
meant, and the efficiency with which the language helps 
programs written in it to execute. Different programming 
languages support different style of programming  

Basically, there are fundamental properties that must be 
satisfied by every program. Some of these include reliability, 
which is a measure of the correctness of the program result; 
usability, depicting the ease of use of the program for its 
intended purpose; portability, the ability of a program to run 
on different platforms; maintainability, the ability of a 
program to be modified, upgraded, or improved upon [1]; 
and robustness, the ability of a program to withstand unusual 
conditions [2]; to mention but few. Reliability is closely tied 
to the correctness of the algorithm, and the amount of errors 
present in the program codes. Its validity relies on the 
variable values before the initiation of the program [3]. 

Hence, considering the preconditions and post conditions, 
one can prove the correctness of a program (or part of it). 
This system is known as axiomatic semantics [4]. This paper 
focuses on self-evident basis for proofs of some program 
properties.  

1.1. Background of Study 

In the software development lifecycle (SDLC), one of the 
most important stages is the test phase, as shown in Figure 1. 
At this phase, the software is verified to ascertain its 
capability to do what it is expected to do under all conditions. 
It is at this stage that design and implementation flaws are 
supposed to be detected [5]. Testing thus incorporates 
debugging, which is the process of finding and removing 
errors (bugs) in a program [6]. 

 

Figure 1.  A general software development lifecycle [5] 

The higher the algorithmic complexity of a program is, 
which invariably determines how complex a program is, the 
more likely there would be errors in the program. Program 
testing is often rigorous, especially for very large and 
complex programs. Except in small programs, testing cannot 
prove the correctness of a program. Testing only exposes 
errors in the codes. And in most cases, errors in a program 
never cease to be exhausted. 

Consequently, the need for other complementary methods 
of achieving correctness of program cannot be overemphasi
zed. These formal methods and the intuitive judgment of 
programmers can mutually support each other [7] 
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One of the formal methods used for proving program 
correctness is the axiomatic method [7]. The word axiomatic 
connotes self-evidence, obviousness. An axiomatic method 
has the potency of providing basis for measuring the quality 
of a programming language [7]. 

1.2. Statement of Problem 

The conventional way of ascertaining the correctness of 
programs has always been through the testing for error 
detection and removal. The less the amount of error detected 
and successfully removed the more correct the program is 
deemed. However, for large and complex programs, this 
method has never proved adequate. In addition to the rigor 
usually associated with the exercise, it hardly exposes all the 
bugs (errors) in the program codes. Therefore, it is expedient 
to seek other methods of establishing program correctness.  

A formal method of proving correctness of a computer 
program involves the use of axioms of discrete mathematics 
as basis for logical reasoning to extract from and prove the 
mathematical verification conditions of the program.  

2. Review of Related Works 
There have been considerable advances in the quantity and 

quality of methods deduced to prove the correctness of 
programs. While each had some strengths there were always 
limitations in their uses. For instance, though recursion 
induction, structural induction, and interpretation of 
flowcharts methods were applicable for proving correctness 
of programs that contained repetitions, the first two dealt 
with programs that achieved repetition by recursion, while 
the last one with programs that achieved by jumps and 
assignment [8]. Floyd’s method has been used in proving 
correctness of programs in flow diagram form [9], 
Floyd-Hoare logic in proving imperative programs [10]. 
Burstall [9] extended Floyd’s method to handle lists 
processing commands, while [11] used the inductive 
assertion method for multiprocess programs. 

Some methods focused on the type of programs. 
Nakamura [12] proved the correctness of functional 
programs using Mizar, a popular proof checker. Basically, 
proof checkers contain library of mathematical models, 
lemmas and theorems. The checker works by relating the 
semantics of programs to the models. On the other hand, [10] 
considered modular functional programs. 

Another method of classifying these methods is in whether 
they prove partial or total correctness of programs. Total 
correctness simply is consisted in partial correctness plus 
termination of loops [10,13,14]. Floyd-Naur’s and structural 
induction methods, and Hoare logic are used for partial 
correctness, while Floyd’s method, the extended Hoare logic 
is used for total correctness [14]. 

3. Mathematical Foundations 

Axiomatic basis for information flow in computer 
programming was considered. The axioms (proof rules) for 
sequential program flow, considering the assignment 
statement; iteration program flow, considering the 
while…do and do…while statements; and the decision 
(alternation) flow, considering the if…else statement are 
presented. 

3.1. Axiomatic Definitions for Integers 

The integers are a system consisting of a set ℤ together 
with two symbols, ‘+’ and ‘∙ ’, denoted by (ℤ, +, ∙), which 
maps ℤ × ℤ → ℤ. They satisfy the following [15,16]: 

1. (𝑥𝑥 + 𝑦𝑦) + 𝑧𝑧 = 𝑥𝑥 + (𝑦𝑦 + 𝑧𝑧) (associativity of addition) 
2. (𝑥𝑥 ∙ 𝑦𝑦) ∙ 𝑧𝑧 = 𝑥𝑥 ∙ (𝑦𝑦 ∙ 𝑧𝑧) (associativity of 

multiplication) 
3. 𝑥𝑥 + 𝑦𝑦 = 𝑦𝑦 + 𝑥𝑥 (commutativity of addition) 
4. 𝑥𝑥 ∙ 𝑦𝑦 = 𝑦𝑦 ∙ 𝑥𝑥 (commutativity of multiplication) 
5. ∃0 ∈ ℤ such that 0 + 𝑥𝑥 = 𝑥𝑥 = 𝑥𝑥 + 0  ∀𝑥𝑥 ∈ ℤ 

(additive identity element) 
6. ∃1 ∈ ℤ such that 1 ∙ 𝑥𝑥 = 𝑥𝑥 = 𝑥𝑥 ∙ 1  ∀𝑥𝑥 ∈ ℤ 

(multiplicative identity element) 
7. ∀𝑥𝑥∃ − 𝑥𝑥 ∈  ℤ such that 𝑥𝑥 + (−𝑥𝑥) = 0 = (−𝑥𝑥) + 𝑥𝑥 

(additive inverse) 
8. 𝑥𝑥 ∙ (𝑦𝑦 + 𝑧𝑧) = 𝑥𝑥 ∙ 𝑦𝑦 + 𝑥𝑥 ∙ 𝑧𝑧 (left distributive law) 
9. (𝑥𝑥 + 𝑦𝑦) ∙ 𝑧𝑧 = 𝑥𝑥 ∙ 𝑧𝑧 + 𝑦𝑦 ∙ 𝑧𝑧 (right distributive law) 

Further, there is an order relation ≤ on ℤ, such that: 
1. 𝑥𝑥 ≤ 𝑥𝑥  ∀𝑥𝑥 ∈ ℤ 
2. If x ≤ 𝑦𝑦 and y ≤ 𝑥𝑥, then 𝑥𝑥 = 𝑦𝑦 
3. If 𝑥𝑥 ≤ 𝑦𝑦 and 𝑦𝑦 ≤ 𝑧𝑧, then 𝑥𝑥 ≤ 𝑧𝑧 
4. ∀𝑥𝑥,𝑦𝑦 ∈ ℤ, either 𝑥𝑥 ≤ 𝑦𝑦 or 𝑦𝑦 ≤ 𝑥𝑥 

3.2. Definition of Notations 

ⅰ.𝐴𝐴{𝐵𝐵}𝐶𝐶 is used to express relationship between a 
precondition (A), a program {B}, and a 
postcondition (C). It is interpreted “If the assertion 
A is true before initiation of a program B, then the 
assertion C will be true on its completion” [3]. 

ⅱ.𝐴𝐴 ⊢ 𝐵𝐵 means A yields B [1]. 
ⅲ.𝐴𝐴1,…𝐴𝐴𝑛𝑛

𝐵𝐵
  implies that if logical statements A1,…An are 

true, then so is B [17]. 

3.3. Axiom of Assignment 

Consider an assignment statement: 

𝑥𝑥 = 𝑓𝑓 

Where 𝑥𝑥 is a variable identifier, and 𝑓𝑓 is an expression 
of a programming language. 

The precondition entails an assertion A(f), which must 
have been true of the expression f , before the assignment is 
made. With this in place, A(x) is said to be true. 

This is expressed as: 

⊢ 𝐴𝐴0{𝑥𝑥 = 𝑓𝑓}𝐴𝐴(𝑥𝑥) 

where, 
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𝐴𝐴0 = 𝐴𝐴(𝑓𝑓) 

3.4. Axiom for Iteration (while…do) 

Consider the statement: 
while P do Q 
To deduce an axiom, suppose L is an assertion invariant over 
execution of P. P becomes false when the iteration 
terminates. Hence, the axiom for iteration is given as: 

𝐿𝐿∧𝑃𝑃{𝑄𝑄}𝐿𝐿
𝐿𝐿{𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑃𝑃 𝐝𝐝𝐝𝐝 𝑄𝑄} 𝑃𝑃∧𝐿𝐿

               (1) 

L is called the loop invariant. It is an assertion that is 
usually true before the loop is initiated; it remains true after 
every execution of the loop; and also at the end of the loop. 

3.5. Axiom for Iteration (do…while) 

Consider the statement: 
do Q while P 

This is similar to the case in the while…do statement 
except that in this case the statement in the loop would have 
been executed first before the condition is tested. This means 
that if the condition is found to be false at the end of the first 
iteration, the embedded statement would have been executed 
once. This is given as: 

𝐿𝐿{𝑄𝑄}𝐿𝐿
𝐿𝐿{𝐝𝐝𝐝𝐝 𝑄𝑄 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑃𝑃} 𝑃𝑃∧𝐿𝐿

               (2) 

3.6. Axiom for Alternation 

Consider the statement: 
if P then Q1 else Q2 
Axiomatically, this is represented as: 

𝐿𝐿∧𝑃𝑃{𝑄𝑄1}𝐵𝐵,𝐿𝐿∧ 𝑃𝑃{𝑄𝑄2}𝐵𝐵
𝐿𝐿{𝐰𝐰𝐢𝐢 𝑃𝑃 𝐭𝐭𝐰𝐰𝐰𝐰𝐭𝐭 𝑄𝑄1 𝐰𝐰𝐰𝐰𝐞𝐞𝐰𝐰 𝑄𝑄2}𝐵𝐵

            (3) 

4. Prove of Correctness of Program for 
Integer Multiplication 

Two different programs for integer multiplication are 
proved using some of the axioms for integers. The first one 
uses the method of repeated addition. 

Although simple programs are used here, using axioms to 
prove correctness of programs, on a large scale, basically 
complements the intuitive judgment of programmers in 
program testing. 

4.1. Program for Integer Multiplication by Repeated 
Addition 

{𝐵𝐵 ≥ 0} 

𝑥𝑥 = 𝐴𝐴; 𝑦𝑦 = 𝐵𝐵; 𝑝𝑝 = 0; 

while 𝑦𝑦 > 0 do 
𝑝𝑝 = 𝑝𝑝 + 𝑥𝑥; 

𝑦𝑦 = 𝑦𝑦 − 1; 

end while 

{𝑝𝑝 = 𝐴𝐴 × 𝐵𝐵} 

4.1.1. Axiomatic Proof 
Based on the axiomatic definition for iteration (also 

known as loop):  
𝐿𝐿 ∧ 𝑃𝑃{𝑄𝑄}𝐿𝐿

𝐿𝐿{𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝑃𝑃 𝐝𝐝𝐝𝐝 𝑄𝑄} 𝑃𝑃 ∧ 𝐿𝐿
 

We look for a loop invariant that is true before, within and 
outside the loop. This, when combined with the exit 
condition, produces the assertion that follow the loop (that is, 
the postcondition). The structure is illustrated in Figure 2 
(redrawn from [18]): 

 

Figure 2.  Structure of the while Rule 

The loop invariant involves a relationship between 
unvarying variables within the loop. In a while condition, it 
also incorporates the loop condition, however, in a modified 
form. The modification is often necessary to accommodate 
the exit case of the loop [18]. 

For this problem, we can discover the loop invariant be 
examining how 𝐴𝐴 × 𝐵𝐵  is derived. If we let 𝐴𝐴 = 3  and 
𝐵𝐵 = 4, we have:  
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We can deduce that 𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 . Also, we 
modify our loop condition to accommodate the exit case, 
= 0 . Hence, we have 𝑦𝑦 ≥ 0. We can therefore say that our 
loop invariant is: 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0} 

To show that the loop invariant is initially true, we derive 
it from the initialization commands and the precondition. 
Initialization: 

{𝐵𝐵 ≥ 0} ⊂ 

{𝐴𝐴 = 𝐴𝐴 ∧ 𝐵𝐵 = 𝐵𝐵 ≥ 0 ∧ 0 = 0} 

𝑥𝑥 = 𝐴𝐴; 𝑦𝑦 = 𝐵𝐵; 𝑝𝑝 = 0 
{𝑥𝑥 = 𝐴𝐴 ∧ 𝑦𝑦 = 𝐵𝐵 ≥ 0 ∧ 𝑝𝑝 = 0} ⊂ 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0} 

Preservation: 
To prove that the loop invariant is preserved, we combine 

the loop invariant and the entry condition at the top of the 
loop, and from the bottom of the loop, we ‘push back’ 
invariant through the body of the loop. We have thus: 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0 ∧ 𝑦𝑦 > 0} ⊃ 
{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 > 0} 

𝑝𝑝 = 𝑝𝑝 + 𝑥𝑥; 𝑦𝑦 = 𝑦𝑦 − 1; 
{𝑝𝑝 + 𝑥𝑥 + [𝑥𝑥 × (𝑦𝑦 − 1)] = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 − 1 > 0} ⊂ 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0} 
Completion: 

Finally, we must prove the assertion after the while loop 
(that is, the postcondition, {𝑝𝑝 = 𝐴𝐴 × 𝐵𝐵}) can be derived from 
( 𝑃𝑃 ∧ 𝐿𝐿), where L is the loop invariant, and P, the while 
loop test condition:  

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0 ∧  (𝑦𝑦 > 0)} ⇒ 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0 ∧  𝑦𝑦 ≤ 0} ⇒ 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧  𝑦𝑦 = 0} ⇒ 

{𝑝𝑝 = 𝐴𝐴 × 𝐵𝐵 ∧  𝑦𝑦 = 0} ⇒ 

{𝑝𝑝 = 𝐴𝐴 × 𝐵𝐵} 

4.2. More Efficient Program for Integer Multiplication 

{𝑚𝑚 = 𝐴𝐴 ∧ 𝑛𝑛 = 𝐵𝐵 ≥ 0} 

𝑥𝑥 = 𝑚𝑚; 𝑦𝑦 = 𝑛𝑛; 𝑝𝑝 = 0; 

While 

𝑦𝑦 > 0 

do 
if 2 × (𝑦𝑦 2⁄ ) ≠ 𝑦𝑦 then 

𝑝𝑝 = 𝑝𝑝 + 𝑥𝑥; 

end if 

𝑥𝑥 = 2 × 𝑥𝑥; 

𝑦𝑦 = 𝑦𝑦 ∕ 2; 

end while 

{𝑝𝑝 = 𝐴𝐴 × 𝐵𝐵} 

Hint: consider the two cases where 𝑦𝑦 is even (𝑦𝑦 = 2𝑘𝑘) 
and 𝑦𝑦  is odd (𝑦𝑦 = 2𝑘𝑘 + 1) . Remember that / denotes 
integer division.  

4.2.1. Axiomatic Proof 
For this problem, to get the loop invariant, we also see 

how 𝐴𝐴 × 𝐵𝐵  is calculated, using small numbers. We 
consider both possible cases consequent upon the if 
statement. If we let 𝐴𝐴 = 3 and 𝐵𝐵 = 4, we have: 

 

On the other hand, If we let 𝐴𝐴 = 4 and 𝐵𝐵 = 3, we have: 

 

We can also deduce that 𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 . 
Modifying our loop condition, we have 𝑦𝑦 ≥ 0 . We 
discover in this case too that our loop invariant is: 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0} 

Initialization: 

{𝑚𝑚 = 𝐴𝐴 ∧  𝑛𝑛 = 𝐵𝐵 ≥ 0} ⊂ 

{𝑚𝑚 = 𝐴𝐴 ∧  𝑛𝑛 = 𝐵𝐵 ≥ 0 ∧ 0 = 0} 

𝑥𝑥 = 𝑚𝑚; 𝑦𝑦 = 𝑛𝑛; 𝑝𝑝 = 0; 

{𝑥𝑥 = 𝐴𝐴 ∧ 𝑦𝑦 = 𝐵𝐵 ≥ 0 ∧ 𝑝𝑝 = 0} ⊂ 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0} 

Preservation: 
Case 1: 𝑦𝑦  is even. That is, 𝑦𝑦 = 2𝑖𝑖 > 0  for some 

integer 𝑖𝑖 ≥ 0. 
Consequently, the if condition is false. Hence,  

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0 ∧ 𝑦𝑦 > 0} ⊃ 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 > 0} 

𝑥𝑥 = 2 × 𝑥𝑥; 𝑦𝑦 = 𝑦𝑦 2⁄ ; 

{𝑝𝑝 + �2 × 𝑥𝑥 ×
𝑦𝑦
2
� = 𝐴𝐴 × 𝐵𝐵 ∧ (

𝑦𝑦
2

) > 0} ⇒ 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 > 0} ⊂ 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0} 

Case 2: 𝑦𝑦 is odd. That is, 𝑦𝑦 = 2𝑖𝑖 + 1 > 0 for some 
integer 𝑖𝑖 ≥ 0. 
Consequently, the if condition is true, that is, (2 × 𝑦𝑦/2) ≠
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𝑦𝑦. Hence, 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0 ∧ 𝑦𝑦 > 0} ⊃ 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 > 0} 

𝑝𝑝 = 𝑝𝑝 + 𝑥𝑥; 𝑥𝑥 = 2 × 𝑥𝑥; 𝑦𝑦 = 𝑦𝑦 2⁄ ; 

{𝑝𝑝 + 𝑥𝑥 + �2 × 𝑥𝑥 ×
𝑦𝑦
2
� = 𝐴𝐴 × 𝐵𝐵 ∧ (

𝑦𝑦
2

) > 0} ⇒ 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 > 0} ⊂ 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0} 

Completion: 
We prove that 𝑝𝑝 = 𝐴𝐴 × 𝐵𝐵 is derived from ( 𝑃𝑃 ∧ 𝐿𝐿) 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0 ∧  (𝑦𝑦 > 0)} ⇒ 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧ 𝑦𝑦 ≥ 0 ∧  𝑦𝑦 ≤ 0} ⇒ 

{𝑝𝑝 + (𝑥𝑥 × 𝑦𝑦) = 𝐴𝐴 × 𝐵𝐵 ∧  𝑦𝑦 = 0} ⇒ 

{𝑝𝑝 = 𝐴𝐴 × 𝐵𝐵 ∧  𝑦𝑦 = 0} ⇒ 

{𝑝𝑝 = 𝐴𝐴 × 𝐵𝐵} 

5. Summary and Conclusion 

5.1. Summary 

In this paper, some axioms of program properties, 
including, sequential flow, iteration (for while…do and 
do…while control statements), and alternation flows were 
stated. And using the axioms as basis the completeness of 
two variants of integer multiplication program was proved. 

5.2. Conclusion 

The use of axioms and rules of inference to prove the 
correctness of a program (or part of it), are meant to 
complement the intuitive judgment of programmers. As a 
matter of fact, both are best utilized when they mutually 
support each other.  

Today, there are other methods for establishing program 
correctness. These include new branches of applied discrete 
mathematics to formalize programming concepts, and 
different forms of logic to simplify reasoning. For 
corecursive programs, they can be proved using fixpoint 
induction, coinduction, approximation lemma, or fusion 
methods [19]. As a matter of fact, there are currently 
computer applications used for proving correctness of 
programs. These include ESC/Java [20], SPARK, eCv 
(MISRA-C), Spec# [21], and Dafny [22]. 

This paper primarily focuses on the axiomatic method of 
proving correctness. Further works may include using the 
same method to prove more complex programs, or using 
other methods to verify the correctness of the two integer 
multiplication programs presented. 

Appendix – List of Symbols 

Symbol Meaning/Definition 

ℤ Integer 

∃ There exist 

∈ Member of 

∀ For all 

⊢ Proves (implies, yields) 

 Not (negation) 

< Less than 

≤ Less than or equal to 

≥ Greater than or equal to 

∧ Logical and  
⊃ 
⊂ 
⇒ 

Superset of (includes in set) 
Subset of  
Implies  
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