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Abstract

In the evaluation of experiments often the problem arises of how to compare the predictive success of competing
probabilistic theories. The quadratic scoring rule can be used for this purpose. Originally, this rule was proposed
as an incentive compatible elicitation method for probabilistic expert judgments. It is shown that up to a positive
linear transformation, the quadratic scoring rule is characterized by four desirable properties.
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1. Introduction

Probabilistic theories for experimental decision situations need to be compared with respect
to their predictive success. We may, for example, think of a learning experiment, in which
in each of T periods 1, . . . , T a subject has to choose an action. The set of available actions
may not be the same one in every period; it may depend on previous history, and even the
number of actions may be history dependent. Suppose we want to compare two learning
theories that make probabilistic predictions for all choice situations that may arise in the
course of an experiment. If we look at the actions of a specific subject in periods 1, . . . , T ,
we may ask which of both theories is more successful in the prediction of the subject’s
behavior.
If the theories to be compared were deterministic, one could just count the numbers of

correct predictions. An easy generalization to the case of probabilistic predictions suggests
itself: one forms the sum of all probabilities specified for observed choices and takes it as
a measure of predictive success. This method has been referred to as the linear scoring
rule (Stael von Holstein, 1970). The linear scoring rule has bad properties. Therefore
several alternatives have been proposed in the literature (Brier, 1950; Roby, 1965; Toda,
1963; Winkler, 1969; Murphy and Winkler, 1970; Stael von Holstein, 1970; Matheson and
Winkler, 1976; Friedman, 1983). One of these alternatives is the quadratic scoring rule. As
far as the author knows, Brier (1950) was the first one who described this rule. He discussed
it in the context of weather forecasting.
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A scoring rule measures the predictive success of a theory for every period separately.
For every period a score is computed that depends on the predicted probabilities and the
actually observed action. Suppose that the true probabilities are known, and assume that
at least two of them are positive and that one of the actions—say, action j—has a higher
probability than all the other alternatives. Aswe show in Section 2, in this situation the linear
scoring rule has the undesirable property that the highest expected score is not obtained by
the correct probabilistic theory but by the wrong deterministic theory that predicts action j
with certainty. This has been pointed out already by Brier (1950).
Incentive compatibilty—in the sense that the correct theory always is the only one that

obtains the highest expected score—is a minimal requirement for a scoring rule. A scoring
rule that is accepted as an instrument for the evaluation of competing probabilistic theories
should not drive theoretical research in a wrong direction. It should provide incentives to
search for a theory that comes as near to reality as possible.
The quadratic scoring rule is based on the idea that the score should reflect nearness of the

predicted probability distribution to the observed outcome. In order to be able to measure a
distance, the observation is interpreted as a frequency distribution: The relative frequency
is 1 for the observed action and zero for every other alternative. The score is equal to 1
minus the squared distance between the predicted probability distribution and this relative
frequency distribution. As we show in Section 2, the quadratic scoring rule is incentive
compatible. This, too, has been pointed out by Brier (1950).
The quadratic scoring rule is not the only incentive-compatible one. Another example

is the logarithmic scoring rule of Toda (1963). The logarithmic score is the logarithm of
the predicted probability of the observed action or, in other words, the likelihood of the
observation. The logarithmic scoring rule has a close connection to themaximum likelihood
principle. However, in spite of this theoretical advantage, the logarithmic scoring rule is
not really recommendable. On the one hand, it is too sensitive with respect to differences
between very small probabilities and, on the other hand, it is sometimes not sensitive
enough, in the sense that in some situations it does not matter whether the truth is near to
the prediction or far from it.
In Sections 2.5 and 2.6 the undesirable properties of the logarithmic scoring rule are

described in detail. In Section 2.7 we describe a whole family of incentive compatible
scoring rules containing the quadratic scoring rule as a special case. Moreover, an additional
rule first proposed by Roby (1965), the spherical scoring rule is described in Section 2.8.
In Section 4 it is shown that up to a positive linear transformation, the quadratic scor-

ing rule is characterized by four axioms. These axioms are introduced and discussed in
Section 3. Axiom 1 requires symmetry with respect to a renumbering of the actions. The
second axiom concerns the consequences of adding a new action whose predicted probabil-
ity is zero. It is required that this operation does not change the scores of old alternatives.
However, nothing is said about the score for the new alternative.
The remaining two axioms are expressed in terms of the expected score loss of a predicted

probability distribution p = (p1, . . . , pn) comparedwith predicting the true probability dis-
tribution r = (r1, . . . , rn). Incentive compatibility, required by axiom 3, can be expressed
by saying that the expected score loss of p at r should always be positive for p "= r .
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Axiom 4 postulates that the expected score loss of p at q is equal to the expected score
loss of q at p. This means that in a comparison between two theories p and q the mistake
of predicting p if q is right is not judged to be more or less severe than the opposite mistake
of predicting q if p is right. It seems to be natural to require that a reasonable scoring rule
exhibits this kind of neutrality.
At the end of Section 4 the role of the axioms in the proof of the main result is discussed

and the question is answered which of the scoring rules described in Section 2 satisfies
which of the axioms. The paper ends with some concluding remarks in Section 5.

2. Preliminaries

In this section we first introduce some definitions and notational conventions. Then we
look at specific scoring rules and examine whether they are incentive compatible or not.

2.1. Definitions and notational conventions

For n = 1, 2, . . . the symbol !n denotes the set of all probability distributions p =
(p1, . . . , pn) over the integers 1, . . . , n, where pi stands for the probability of i . For
mathematical reasons it is convenient not to exclude the trivial case n = 1. The distribution
p = (1) is the only element of !1. We make use of the Kronecker symbol defined as
follows for pairs of integers i and j :

δi j =
{1 for i = j
0 for i "= j

The ith unit n-vector δ(i, n) is defined as follows:

δ(i, n) = (δi1, . . . , δin).

This vector has 1 at its i th place and zeros everywhere else. As has been explained in the
introduction, δ(i, n) can be interpreted as the observed relative frequency distribution over
the available actions 1, . . . , n, if action i has been taken.
For any two distributions p = (p1, . . . , pn) and r = (r1, . . . , rn) a convex linear combi-

nation of p and r is a distribution q = (q1, . . . , qn) with

qi = (1− α)pi + αri for i = 1, . . . , n

where α is a real number with 0 ≤ α ≤ 1. We also express this relationship between r , p,
and q by

q = (1− α)p + αr.

2.1.1. Scoring rules. For i = 1, 2, . . . the union of all!n with n = i, i + 1, . . . is denoted
by $i . A scoring rule is a sequence S = S1, S2, . . . of scoring functions Si such that Si
assigns a score Si (p) to every p ∈ $i . Here Si (p) is either a real number or−∞. A scoring
rule is real valued, if Si (p) is always a real number. (The general definition permits the
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score −∞ in order to cover the case of the logarithmic scoring rule.) Formally a scoring
rule S = S1, S2, . . . also assigns a score. S1(p) to the only element p = (1) of !1, even if
this is without practical significance.

2.1.2. Expected scores and expected score losses. The concepts of expected score and
expected score loss will be first defined for real valued scoring rules. The definition will be
extended to other scoring rules later. Let S = S1, S2, . . . be real valued. Let r = (r1, . . . , rn)
and p = (p1, . . . , pn) be two probability distributions over 1, . . . , n. We interpret r as the
true distribution and p as the predicted one. The expected score of p at r for a real valued
scoring rule S = S1, S2, . . . is defined as follows:

V (p | r) =
n∑

i=1
ri Si (p).

For the sake of brevity the notation V (p | r) does not express the dependence on the scoring
rule. The expected score loss L(p | r) of p at r is the difference

L(p | r) = V (r | r) − V (p | r).

2.1.3. Extension to general scoring rules. We now extend the definition of expected score
and expected score loss to scoring rules which are not real valued. This extension will be
based on the same formulas as in the case of the real valued scoring rules, complemented
by conventions about the evaluation of terms involving −∞. The following convention
applies to the evaluation of the right-hand side of the equation for V (p | r):

ri Si (p) =
{

−∞ for ri > 0 and Si (p) = −∞
0 for ri = 0 and Si (p) = −∞

V (p | r) has the value −∞ if at least one of the terms ri Si (p) is evaluated as −∞. If all
terms are real the expected score loss is the sum of all these terms. The convention for the
evaluation of the right hand-side of the equation for L(p | r) is as follows:

L(p | r) =






+∞ if V (r | r) > −∞ and V (p | r) = −∞
−∞ if V (r | r) = −∞ and V (p | r) > −∞
0 if V (r | r) = V (p | r) = −∞

The formula for L(p | r) is directly applied if V (r | r) and V (p | r) are both real.

2.1.4. Comment. The convention applied to V (p | r) seems to be reasonable in view of

lim
si → −∞

ri Si =
{

−∞ for ri > 0
0 for ri = 0

Thefirst and the second line of the convention for L(p | r) have an analogous straightforward
interpretation. The third line is based on the idea that no expected score loss results by the
transition from r to p or vice versa, if the expected score is −∞ for both of them.
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2.1.5. Incentive compatibility. A scoring rule S1, S2, . . . is called incentive compatible if
for all p, r ∈ !n with p "= r the expected score loss L(p | r) for S is positive (+∞ counts
as positive).
Note that incentive compatibility does not exclude the possibility of two distributions

p, r ∈ !n with V (r | r) > −∞ and V (p | r) = −∞. In this case L(p | r) is evaluated as
+∞ by the first line of the convention for L(p | r). However, it is clear that the conditions
of the second and the third lines are excluded by incentive compatibility.

2.2. The linear scoring rule

The scoring rule S = S1, S2, . . . with

Si (p) = pi

for all p = (p1, . . . , pn) ∈ $i with i = 1, 2, . . . is called the linear scoring rule. In the
following S = S1, S2, . . . denote this rule. We now show that the linear scoring rule is not
incentive compatible.
Assume that in r = (r1, . . . , rn) ∈ $i one of the probabilities ri—say, r j— is greater

than each of the other ones but smaller than 1. Consider the distribution δ( j, n), which
concentrates all the probability on j . We have

L(δ( j, n) | r) = −r j +
n∑

i=1
r2i < −r j +

∑

i
ri r j = r j

[

−1+
∑

i
ri

]

= 0.

Therefore, the linear scoring rule fails to be incentive compatible. Under mild assumptions
on the true distribution r , the deterministic theory that predicts the most probable action j
with certainty achieves a higher expected score than the correct stochastic theory. It can
also be seen without difficulty that this wrong deterministic theory maximizes the expected
score.

2.3. The quadratic scoring rule

The scoring rule S = S1, S2, . . . with

Si (p) = 1−
n∑

j=1
(δi j − p j )2

for every p = (p1, . . . pn) ∈ $i and i = 1, 2, . . . is called the quadratic scoring rule. In the
following S = S1, S2, . . . will denote the quadratic scoring rule. The definition determines
the score of p as 1 minus the squared Euclidean distance of p and the i th unit n vector
δ(i, n). It can be seen easily that the formula for Si (p) can be rewritten as follows:

Si (p) = 2pi −
n∑

j=1
p2j .
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We now show that the quadratic scoring rule is incentive compatible. The second formula
for Si (p) yields

V (p | r) =
n∑

i=1
2ri pi −

n∑

j=1
p2j

V (p | r) =
n∑

i=1
r2i −

n∑

i=1
(ri − pi )2

L(p | r) =
n∑

i=1
(ri − pi )2.

This shows that the quadratic scoring rule is incentive compatible. Moreover, the expected
score loss is the squared Euclidean distance between r and p.

2.4. The logarithmic scoring rule

The scoring rule S = S1, S2, . . . with

Si (p) = ln pi

for every p = (p1, . . . , pn) ∈ !i and i = 1, 2, . . . is called the logarithmic scoring rule.
For pi = 0, the right-hand side is interpreted as −∞. In the following, S = S1, S2, . . .
denotes the logarithmic scoring rule.
We now show that the logarithmic scoring rule is incentive compatible. For this purpose

we prove that L(p | r) has its maximum with respect to p at p = r and nowhere else. Let
P(r) be the set of all p ∈ !n with pi = 0 if and only if ri = 0. It will be shown that for
every p ∈ !n not in P(r) we can find a q ∈ !n such that the expected score of q is greater
than that of p. In this way the task of maximizing the expected score V (p | r) over !n is
reduced to that of maximizing it over P(r).
Assume that p ∈ !n does not belong to P(r). First, consider the case that pi = 0

holds for some i with ri > 0. In this case the expected score is −∞. The score becomes
a real number if all pi with pi = 0 and ri > 0 are slightly increased and some positive
components of p are slightly decreased in a way which does not reduce them to zero and
keeps the distribution within !n . If the resulting distribution q = (q1, . . . , qn) does not
belong to P(r), it must have the property that for at least one i we have qi > 0 and ri = 0.
In this case, we can increase the expected score by changing all these components of q to
zero and by increasing all q j with q j < r j to an extent that keeps them below r j . It is clear
that this can be done in a way which results in a distribution belonging to P(r). We have
reduced the task of maximizing the expected score to the task of maximizing it over P(r).
It can be seen immediately that within P(r) the expected score V (p | r) is a continuously

differentiable and strictly concave function of all pi with ri > 0. Therefore, a p ∈ P(r)
at which the first-order conditions for an extremum of the expected score are satisfied with
respect to these pi must be a maximizer of V (p | r) over P(r). Moreover, there can be
only one such maximizer. An easy Lagrange argument yields the following first-order
conditions:

ri
pi

= λ for all pi with ri > 0.



P1: SAD
Experimental Economics KL581-02-Selten April 28, 1998 10:37

AXIOMATIC CHARACTERIZATION OF THE QUADRATIC SCORING RULE 49

These conditions are satisfied at p = r with λ = 1. It follows that the expected score
V (p | r) is maximized over P(r) and therefore over!n at r = p and nowhere else. We can
conclude that the logarithmic scoring rule is incentive compatible.

2.5. An insensitivity property

Consider a predicted distribution p and a true distribution r . Suppose that r is a convex
linear combination of p and a distribution q different from p:

r = (1− α)q + αp with 0 ≤ α < 1

Obviously r is the nearer to p in any reasonable sense, the greater α is. Therefore, it seems
to be a desirable property of a scoring rule that the expected score loss L(p | r) is decreased
by an increase of α. However, the logarithmic scoring rule is insensitive for some p, q,
in the sense that L(p | r) is not changed by an increase of α. We now formally state this
insensitivity property.

Insensitivity property. Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be two distributions
in !n where n is an integer greater than 1. Assume that for at least one j we have q j > 0
and p j = 0. Then we have

L(p | (1− α) q + αp) = +∞ for 0 ≤ α < 1.

We shall show that every incentive compatible scoring rule S = S1, S2, . . . with

Sj (p) = −∞ for p j = 0

has the insensitivity property. Let S = S1, S2, . . . be a scoring rule satisfying these con-
ditions. Obviously the logarithmic scoring rule is a special case of such a scoring rule.
Incentive compatibility means that we must always have

V (r | r) > V (p | r) for p "= r.

Obviously this cannot be true in the case V (r | r) = −∞. Therefore the expected score
with respect to S must satisfy the condition

−V (r | r) > −∞ for every r.

Let p and q be as described in the insensitivity property and let j be an integer with q j > 0
and p j = 0. The j th component of (1− α)q + αp is (1− α)q j and therefore positive. In
view of Sj (p) = −∞ it follows that we have

V (p | (1− α)q + αp)) = −∞ for 0 ≤ α < 1.

This together with V (r | r) > −∞ yields the insensitivity property.
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Result. Let S = S1, S2, . . . be an incentive compatible scoring rule with Sj (p) = −∞
in the case that p j = 0 holds for the j th component of p. Then S has the insensitivity
property.

Remark. The result implies that the logarithmic scoring rule has the insensitivity property.

2.6. Hypersensitivity of the logarithmic scoring rule

In this section, too, S = S1, S2, . . . stands for the logarithmic scoring rule. In the following
we discuss a property of the logarithmic scoring rule called hypersensitivity. Roughly
speaking, hypersensitivity means that the expected score reacts very strongly to small
differences of small probabilities.
We use the notation |r− p| for the Euclidic distance between two distributions r, p ∈ !n

with n = 1, 2, . . .. The hypersensitivity property can be formally expressed as follows.

Hypersensitivity. For n = 2, 3, . . . the following two assertions (a) and (b) hold: (a)
let r, p ∈ !n be two distributions with r j > 0 and p j = 0 for at least one j; then
V (p | r) = −∞; (b) for every ε > 0 and every M > 0, we can find r, p ∈ !n with ri > 0
and pi > 0 for i = 1, . . . , n such that |r − p| < ε and L(p | r) > M.

We now show that the logarithmic scoring rule has this property. Assertion a is an
immediate consequence of Si (p) = −∞ for pi = 0. We turn our attention to b. Let
r = (r1, . . . , rn) and let p = (p1, . . . , pn) be as follows:

r1 = ε1, ri > 0 for i = 2, . . . , n
p1 = ε2, p2 = r2 + ε1 − ε2, pi = ri for i = 3, . . . , n

with

0 < ε2 < ε1 <
ε

2
.

It can be seen easily that |r − p| < ε holds. We have

L(r | p) = ε1 ln
ε1

ε2
+ r2 ln

r2
r2 + ε1 − ε2

.

For ε2 → 0, the expression on the right-hand side approaches the limit +∞. This shows
that b holds.

Comment. Part a of the hypersensitivity property shows that any theory that wrongly ex-
cludes an action as impossible has no chance to be judged to be better than any other theory
that predicts positive probabilities for all actions, if sufficiently many data are collected. In
this respect it makes no difference how improbable the excluded action is.
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A theorist who is guided by the logarithmic scoring rule is well advised not to specify
zero probabilities for very improbable actions. In this way one can protect oneself against
the consequences of part a. However, in general, it will be very difficult to judge how
small a very small probability should be. Usually there will be no good theoretical reasons
to specify a probability as 10−5 rather than 10−10. However, in view of part b of the
hypersensitivity property, such differences can be of crucial importance for the comparison
of the two theories. The example used for the proof of b illustrates this point.
The use of the logarithmic scoring rule implies the value judgment that small differences

between small probabilities should be taken very seriously and that wrongly describing
something extremely improbable as having zero probability is an unforgivable sin. The
author thinks that this value judgment is unacceptable. Therefore, he looks at the hyper-
sensitivity property as a very undesirable one.

2.7. The power rule family

Let α be a real number with α > 1. Consider the scoring rule S = S1, S2, . . . with

Si (p) = α pα−1
i − (α − 1)

n∑

j=1
pα
j

for every p = (p1, . . . , pn) ∈ $i and for i = 1, 2, . . .We call S the α-power scoring rule.
Obviously, one obtains the quadratic scoring rule as a special case for α = 2.
We now show that every α-power scoring rule with α > 1 is incentive compatible. Let

S = S1, S2, . . . be one of these scoring rules. S is real valued. In order to prove incentive
compatibility, it is sufficient to show that for r ∈ $n with n = 1, 2, . . . the expected score
V (p | r) is maximized over$n with respect to p at p = r and nowhere else. The expected
score V (p | r) for r, p ∈ $n can be written as a sum of n functions fi (pi ):

V (p | r) =
n∑

i=1
fi (p)

with

fi (pi ) = riα pα−1
i − (α − 1)pα

i for i = 1, . . . , n.

The derivatives of these functions are as follows:

f ′
i (pi ) = α(α − 1)[ri − pi ]pα−2

i for i = 1, . . . , n.

Obviously, f ′
i /(pi ) is positive for 0 < pi < ri and negative for pi > ri . This shows that

fi (pi ) attains its maximum at ri = pi and nowhere else. It follows that V (p | r), too, attains
its maximum at r = p and nowhere else. Therefore every α-power scoring rule with α > 1
is incentive compatible.



P1: SAD
Experimental Economics KL581-02-Selten April 28, 1998 10:37

52 SELTEN

2.8. The spherical scoring rule

For n = 1, 2, . . . and every p = (p1, . . . , pn) ∈ $n , let

|p| =

√√√√
n∑

i=1
p2i

the norm of p. The scoring S = S1, S2, . . . with

Si (p) = pi

|p|

for i = 1, . . . , n and every p ∈ $i is called the spherical scoring rule. The name is due to
the fact that the mapping from p to the score vector (S1(p), . . . , Sn(p)) transforms p to a
point on the unit sphere by multiplying p by the factor 1/|p|. The greater this factor is the
more sensitive the spherical scores Si (p) are with respect to small changes of |p|. At the
corners of $n this factor 1/|p| is equal to 1. It attains its maximum within this simplex at
the midpoint (1/n, . . . , 1/n) of$n . There 1/|p| has the value

√
n. Unlike the logarithmic

scores the spherical ones do not exhibit any hypersensitivity with respect to changes of very
small probabilities. On the contrary, for fixed n the spherical scores are most sensitive near
the center of $n .
It will now be shown that the spherical scoring rule is incentive compatible. For this rule

we have

L(p | r) = 1
|p|

[

|r | |p| −
n∑

i=1
piri

]

.

It is a well-known fact, called Cauchy’s inequality (see, e.g., Ostrowski, 1965: 217) that

[
n∑

i=1
ri pi

]2
<

n∑

i=1
r2i

n∑

i=1
p2i

holds for vectors r = (r1, . . . , rn) and p = (p1, . . . , pn) with nonnegative components
unless they are proportional in the sense that for some λ "= 0 we have p = λr . Since in our
case both r and p are probability distributions over 1, . . . , n this means that the inequality
holds for p "= r . Consequently, the expected spherical score loss L(p | r) at r is positive
for every p with p "= r . The spherical scoring rule is incentive compatible.

2.9. Summary of the results on specific scoring rules

It has been shown that the linear scoring rule is not incentive compatible. The quadratic
scoring rule, the logarithmic scoring rule, all α-power scoring rules with α > 1 and the
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spherical scoring rule are incentive compatible. The quadratic scoring rule is the α-power
rule with α = 2.
Every incentive compatible scoring rule with Si (p) = −∞, if pi = 0 holds for the i th

component of p, has the insensitivity property of Section 2.5 in particular the logarithmic
scoring rule has this property. Roughly speaking this property means that in some cases
the expected score loss does not adequately respond to how far the true distribution is from
the predicted one.
The logarithmic scoring rule also has the hypersensitivity property discussed in Sec-

tion 2.6. This property results in too much weight given to small differences between
small probabilities. The logarithmic scoring rule lacks sensitivity in some situations and is
hypersensitive in others. For this reason the author thinks that the logarithmic scoring rule
is not recommendable.
The power family shows that there are infinitelymany incentive compatible scoring rules.

3. The axioms

In the following we first introduce some convenient notation. The formal statement of the
four axioms follows. Finally, the intuitive justification of the axioms is discussed.

3.1. Notation

In the axioms S = S1, S2, . . . denotes an arbitrary scoring rule as defined in Section 2.1.
Consider a permutation π of the numbers 1, . . . , n or in other words a one-to-one function
of {1, . . . , n} onto itself, which maps i to π(i). For every permutation π of 1, . . . , n we
define a one-to-one mapping of !n onto itself, for which we also use the symbol π . For
every distribution p = (p1, . . . , pn) the π -image q = (q1, . . . , q2) is defined as follows:

qπ(i) = pi for i = 1, . . . , n.

The π -image of p is denoted by π(p). We now define an elongation function θ that maps
a distribution p = (p1, . . . , pn) ∈ !n to a distribution θ(p) ∈ !n+1 by adding zero as the
(n + 1)th component and changing nothing else:

θ(p) = (p1, . . . , pn, 0).

The symbols V (p | r) and L(p | r) will be used as before to denote expected score and
expected score loss, respectively, for the scoring rule under consideration.

3.2. Axioms

Axiom 1 (symmetry) For every n = 1, 2, . . . and every permutation π of the numbers
1, . . . , n and every p ∈ !n we have

Sπ(i)(π(p)) = Si (p) for i = 1, . . . , n.
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Axiom 2 (elongation invariance) For every n = 1, 2, . . . and every p ∈ !n we have

Si (θ(p)) = Si (p) for i = 1, . . . , n.

Axiom 3 (incentive compatibility) S is incentive compatible.

Axiom4 (neutrality) For every n = 1, 2, . . . and any two p ∈ !n and q ∈ !n the expected
score loss of p at q equals the expected score loss of q at p:

L(p | q) = L(q | p).

3.3. Discussion of the axioms

Scores should not depend on the numbering of the alternatives. Not more than this is
expressed by axiom 1. Score function symmetry in this sense seems to be an indispensable
requirement for a reasonable scoring rule.
Axiom 2 requires that scores for the alternatives 1, . . . , n should not be influenced by

a changed description of the same situation which differs from the original one only by
the inclusion of an impossible (n + 1)th alternative. Blowing up p by an (n + 1)th zero
component should not make any difference as far as the scores S1(p), . . . , Sn(p) are con-
cerned. This seems to be a reasonable requirement. Note that axiom 3 does not say anything
about Sn+1(θ(p)). If alternative n + 1 was actually observed, then the description of the
situation as involving only n alternatives were wrong and the elongation were not just an
irrelevant change of a correct description of the situation but a necessary correction of a
wrong one. Nevertheless the case of a spurious change of the description by the addition
of an impossible alternative should be treated correctly.
Incentive compatibility, required by axiom 3 already has been extensively discussed in

the introduction. It is clear that incentive compatibility is an indispensable property of a
scoring rule.
The interpretation of axiom 4 becomes clear if one looks at the hypothetical case that one

and only one of two theories p and q is right, but it is not known which one. The expected
score loss of the wrong theory is a measure of how far it is from the truth. It is only fair to
require that this measure is “neutral” in the sense that it treats both theories equally. If p
is wrong and q is right, then p should be considered to be as far from the truth as q in the
opposite case that q is wrong and p is right.
A scoring rule should not be prejudiced in favor of one of both theories in the contest be-

tween p and q . The severity of the deviation between them should not be judged differently
depending on which of them is true or false.
A scoring rule which is not neutral is discriminating on the basis of the location of the

theories in the space of all probability distributions over the alternatives. Theories in some
parts of this space are treated more favorably than those in some other parts without any
justification. Therefore, the neutrality axiom 4 is a natural requirement to be imposed on a
reasonable scoring rule.
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4. Characterization of the quadratic scoring rule

We first show that the quadratic scoring rule satisfies axioms 1 to 4. Then we state our main
result in Section 4.2. However, the proof of this theorem will be given only at the end of
Section 4. Before this can be done it is necessary to derive some intermediate results.

4.1. The axioms are satisfied

We prove the following result.

Lemma 1. The quadratic scoring rule satisfies axioms 1 to 4.

Proof: It is clear by the definition of the quadratic scoring rule in Section 2.3 that axioms 1
and 2 are satisfied. There we also have seen that the quadratic scoring rule is incentive
compatible. Axiom 3 is satisfied. As we have seen in Section 2.3 the expected score loss
L(p | r)with respect to the quadratic scoring rule is the squared Euclidean distance between
p and r . Therefore axiom 4 is satisfied. !

4.2. Statement of the main result

Let S = S1, S2, . . . and R = R1, R2, . . . be two scoring rules. We say that R is a positive
linear transformation of S if a positive number α and a real number β exists such that

Ri (p) = αSi (p) + β

holds for i = 1, 2, . . . and for every p ∈ $i . Instead of Si (p) with p = (p1, . . . , pn) and
p ∈ $i . we also write Si (p1, . . . , pn).
It is clear that R is a positive linear transformation of S if and only if S is a positive

linear transformation of R. A normed scoring rule S = S1, S2, . . . is a scoring rule with the
following properties:

S1(0, 1) = −1
S1(1, 0) = +1.

We now state our main result.

Theorem. There is one and only one normed scoring rule which satisfies axioms 1 to 4.
This is the quadratic scoring rule. A scoring rule satisfies axioms 1 to 4 if and only if it is
a positive linear transformation of the quadratic scoring rule.

Proof: The proof will be given in Section 4.5, after the derivation of some intermediate
results. !
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4.3. Reduction to the case of a normed scoring rule

In the following it will be our aim to show that a scoring rule satisfies axioms 1 to 4 if and
only if it is a positive linear transformation of a normed scoring rule satisfying axioms 1
to 4. In this way the task of proving the theorem is reduced to the task of showing that there
is one and only one normed scoring rule satisfying axioms 1 to 4, namely the quadratic
scoring rule.

Lemma 2. Let R be a scoring rule and let S be a positive linear transformation of R. Then
S satisfies axioms 1 to 4 if and only if R satisfies axioms 1 to 4.

Proof: It has been pointed out above that a scoring rule S is a positive linear transformation
of a scoring rule R if and only if R is a positive linear transformation of S. It can be seen
without difficulty for each of the axioms 1 to 4 that it is invariant with respect to positive
linear transformations, in the sense that any positive linear transformation of a scoring rule
satisfying it, also satisfies it. Therefore, the assertion holds. !

Lemma 3. A scoring rule R is a positive linear transformation of a normed scoring rule
if and only if the following condition is satisfied:

R1(1, 0) > R1(0, 1) > −∞.

Proof: Suppose that the condition is satisfied. It can be seen immediately that in this case
a R is a positive linear transformation of a normed scoring rule S. Now suppose that we
have:

R1(1, 0) ≤ R1(0, 1).

Obviously in this case it is not possible to find a normed scoring rule S, such that R is a
positive linear transformation of S. The same is true for R1(0, 1) = −∞, since under a
positive linear transformation the image of a real score is real. It follows that the assertion
holds. !

Lemma 4. Let R be a scoring rule satisfying axioms 1, 3 and 4. Then the condition

R1(1, 0) > R1(0, 1) > −∞

is satisfied.

Proof: Since R is incentive compatible by axiom 3 the expected score with respect to R
has the property

V (r | r) > V (p | r) for p "= r.
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Therefore, we have

V (r | r) > −∞ for every r.

Incentive compatibility together with the definition of the expected score also permits the
conclusion:

R1(1, 0) = V ((1, 0) | (1, 0)) > V ((0, 1) | (1, 0)) = R1(0, 1).

In order to prove the lemma it remains to show

R1(0, 1) > −∞.

We now indirectly prove that this inequality holds. Assume R1(0, 1) = −∞ and let w be
the distribution.

w = (.5, .5).

We have

L((0, 1) | w) = V (w | w) − V ((0, 1) | w)

and

V ((0, 1) | w) = .5R1(0, 1) + .5R2(0, 1) = −∞.

In view of the second inequality of this proof, this yields

L((0, 1) | w) = +∞.

The neutrality axiom 4 yields

L(w | (0, 1)) = L((0, 1) | w) = +∞.

We have

L(w | (0, 1)) = V ((0, 1) | (0, 1)) − V (w | (0, 1))

or equivalently

L(w | (0, 1)) = V ((0, 1) | (0, 1)) − .5R2(0, 1).

The symmetry axiom 1 yields

R2(0, 1) = R1(1, 0).

We already know that R1(1, 0) is greater than Ri (0, 1) and therefore greater than−∞. This
together with the second inequality of this proof yields the conclusion that the right hand
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side of the last inequality for L(w | (0, 1)) is a real number and therefore smaller than+∞,
contrary to what has been shown with the help of axiom 4. !

Lemma 5. Let R be a scoring rule satisfying axioms 1 to 4. Then R is a positive linear
transformation of a normed scoring rule S satisfying axioms 1 to 4.

Proof: Lemma 4 shows that the condition required by Lemma 3 for R is satisfied. There-
fore R is a positive linear transformation of a normed scoring rule S. In view of Lemma 2
this scoring rule S satisfies axioms 1 to 4. !

Remark. Lemma 5 has an important consequence. If there is one and only one normed-
scoring rule S which satisfies axioms 1 to 4 then every scoring rule R satisfying axioms 1 to
4 is a positive linear transformation of this normed scoring rule S; and in view of Lemma 2
every positive linear transformation of S satisfies axioms 1 to 4. Therefore, in order to
prove the theorem, it is sufficient to show that the quadratic scoring rule is the only one
satisfying axioms 1 to 4. We know already by Lemma 1 that it satisfies these axioms.

4.4. No other normed scoring rule satisfies the axioms

We first derive a result on the unit vector δ(1, n) = (1, 0, . . . , 0)

Lemma 6. Let S = S1, S2, . . . be a normed scoring rule satisfying axiom 2. Then the
following equations hold:

S1(δ(1, n)) = 1 for n = 1, 2, . . .
S2(δ(1, n)) = −1 for n = 2, 3, . . . .

Proof: Since S is normed, it follows by the elongation invariance axiom 2 that we have

S1(1) = S1(1, 0) = 1.

Therefore, the first equation of the lemma holds for n = 1. Since S is normed both
equations hold for n = 2. Suppose that both equations are valid for some n. It is an
immediate consequence of axiom 2 that the equations also hold for n+ 1 instead of n. The
assertion of the lemma follows by induction. !

Lemma 7. Let S = S1, S2, . . . be a normed scoring rule satisfying axioms 1 and 2. Then
we have

Si (δ( j, n)) =
{
1 for i = j
−1 for i "= j

for i, j = 1, . . . , n and n = 1, 2, . . . .
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Proof: We first prove the assertion for the special case j = 1. Lemma 6 shows that in
this case the assertion holds for i = 1 and i = 2. We have to show that it also holds for
i = 3, . . . , n. Let i be one of these numbers and consider the permutation π2i of 1, . . . , n
which exchanges 2 and i and leaves everything else unchanged. π2i maps δ(1, n) to itself.
Therefore, it follows by the symmetry axiom 1 that we have:

Si (δ(1, n)) =
{
1 for i = j
−1 for i "= j

for i = 1, . . . , n. Now consider the permutation π1 j of 1, . . . , n which exchanges 1 and j
and leaves everything else unchanged. π1 j maps δ(1, n) to δ( j, n). In view of the symmetry
axiom 1, this together with the equation for Si (δ(1, n)) yields the assertion of the lemma.

!

Lemma 8. The quadratic scoring rule is the only normed scoring rule satisfying ax-
ioms 1, 2 and 4.

Proof: For every p ∈ !n the neutrality axiom yields

L(δ(i, n) | p) = L(p | δ(i, n))

for i = 1, . . . , n and n = 1, 2, . . .. This is equivalent to

V (p | p) − V (δ(i, n) | p) = V (δ(i, n) | δ(i, n)) − V (p | δ(i, n)).

With the help of Lemma 7 we obtain:

V (p | p) − pi (+1) − (1− pi )(−1) = 1− Si (p)
V (p | p) − 2pi + 1 = 1− Si (p)

This yields the following preliminary formula for Si (p):

Si (p) = 2pi − V (p, p).

If the right-hand side is inserted for Si (p) in the definition of V (p, p) we obtain:

V (p | p) =
n∑

i=1
pi Si (p) =

n∑

j=1
p j (2p j − V (p | p))

V (p | p) = −V (p | p) + 2
n∑

i=1
p2j

Therefore, we have:

V (p | p) =
n∑

j=1
p2j
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The right-hand side can be inserted for V (p | p) in the preliminary formula for Si (p). This
yields:

Si (p) = 2pi −
n∑

j=1
p2j

for i = 1, . . . , n and n = 1, 2, . . . The formula is nothing else than the quadratic scoring
rule. !

4.5. Proof of the theorem

The theorem stated in Section 4.2 is proved in the following. As has been pointed out in
the remark at the end of 4.3 the intermediate results obtained earlier have shown that it is
sufficient for the proof of the theorem to show that the quadratic scoring rule is the only
normed scoring rule satisfying axioms 1 to 4. Lemma 8 permits this conclusion. Therefore,
the theorem holds.

4.6. Remark on the role of the axioms in the proof

In the following we shall look at the results which had to be proved in order to show that
the quadratic scoring rule is the only one satisfying axioms 1 to 4. Not every scoring rule
is a positive linear transformation of a normed ˛scoring rule. For example, the logarithmic
scoring rule cannot be obtained in this way, since it has the property S1(0, 1) = −∞.
The condition of Lemma 3 is necessary and sufficient for the property of a scoring rule
to be obtainable as a positive linear transformation of a normed one. Lemma 4 shows
that axioms 1, 3, and 4 imply this conditions. Axiom 2 does not enter the picture, since
the condition concerns only the first scoring function applied to distributions over two
alternatives. Axiom 4 is of crucial importance here, as the example of the logarithmic
scoring rule shows. The logarithmic scoring rule satisfies axioms 1 and 3 but not 4.
After the reduction to the case of a normed scoring rule it had to be shown that the quadratic

scoring rule is the only normed scoring rule satisfying axioms 1 to 4. The elongation axiom2
comes into play with Lemma 6. It is used to determine the scores assigned by the first two
scoring functions to unit vectors (1, . . . , 0) with 1 in the first component. Later axiom 2
is not anymore directly applied. Only symmetry considerations based on axiom 1 are used
in the proof of Lemma 7 in order to determine all scores assigned by scoring functions to
arbitrary unit vectors. It is remarkable that these scores are fully determined by axioms 1
and 2 together with the property of being normed.
After the scores for the unit vectors have been obtained, the neutrality axiom 4 is the

only one directly applied. It is used only at the beginning of the proof of Lemma 8 in order
to establish the equality of the expected score losses of δ(i, n) at p and of p at δ(i, n) for
arbitrary p ∈ !n . The remainder of the proof is entirely based on elementary algebraic
manipulations.
Interestingly the incentive compatibility axiom3 is not anymoreneeded after the reduction

to the case of a normed scoring rule. However, in order to achieve this reduction it is of
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crucial importance for deriving the conclusion of Lemma 4 that R1(1, 0) is greater than
R1(0, 1). An axiom asserting this relationship could replace incentive compatibility in our
characterization of the quadratic scoring rule.

4.7. Remark on the other scoring rules described in Section 2

It can be seen easily that all scoring rules described in Section 2 satisfy the symmetry
axiom 1 and the elongation axiom 2. As has been shown in Section 2 the linear scoring rule
is not incentive compatible, but all other scoring rules described there satisfy axiom 3.
Our characterization of the quadratic scoring rule permits the conclusion that other scoring

rules satisfying axioms 1, 2 and 3 do not satisfy axiom 4. The linear scoring rule does not
satisfy axiom 4, since for this rule we have

L(p | q) =
n∑

i=1
q2i − qi pi

and

L(p | q) =
n∑

i=1
p2i − piqi

for p, q ∈ !n . Obviously both expressions are in general not equal to each other. Among all
the scoring rules described in Section 2, the quadratic scoring rule is the only one satisfying
axiom 4.

5. Concluding remarks

As has been shown, four plausible axioms characterize the quadratic scoring rule up to
positive linear transformations. This lends support to the idea that the quadratic scoring
rule should be used for the comparison of competing probabilistic theories wherever this is
possible.
Of course, it is a methodological decision to use the quadratic scoring rule as the criterion

of predictive success. However, such decisions should not be looked on as arbitrary. It is
possible to put them on an axiomatic basis. If this is done, the discussion of the merits of
specific methods becomes more transparent.
The quadratic scoring rule can be applied to fully specified probabilistic theories that

predict probability distributions over available alternatives. Sometimes such theories may
contain some unknown parameters. The quadratic scoring rule cannot be applied in such
cases unless the parameters are specified. One can estimate them in a way that maximizes
the quadratic score sum. It seems to be appropriate to compare two theories with unknown
parameters in this way, provided the number of parameters to be estimated from the data is
the same in both cases.
Different measures of predictive success must be used for different types of theories.

Elsewhere the author has axiomatized a measure of predictive success for area theories
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(Selten, 1991). Area theories do not predict probability distributions but areas in which
outcomes should tend to lie. Here the difficulty arises that one cannot just count hits. The
size of the area must be taken into account. The smaller the area the better is the prediction.
A balance between precision (smallness of the area) and accuracy (relative number of hits)
must be struck.
In the experimental literature sometimes theories are considered that predict neither out-

come areas nor probability distributions over outcomes but rather areas of probability distri-
butions over outcomes. ThusHey andOrme (1994) look at the explanation of lottery choices
by theories involving utility maximization subject to errors. In such cases, a subset of a
space of probability distributions is predicted but only realizations are observed. If the prob-
ability distributions are known up to a few undetermined parameters, one can estimate them
from the data in a way that maximizes quadratic score sums. If, however, the subspace of
predicted probability distributions is not a parametric family but is delineated by qualitative
properties like unimodality and so on, a different approachmust be taken. It is an interesting
open problem to find a reasonable measure of predictive success for such situations.
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