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Abstract. The interval function and the induced path function are two well studied
class of set functions of a connected graph having interesting properties and applications
to convexity, metric graph theory. Both these functions can be framed as special
instances of a general set function termed as a transit function defined on the Cartesian
product of a non-empty set V to the power set of V satisfying the expansive, symmetric
and idempotent axioms. In this paper, we propose a set of independent first order
betweenness axioms on an arbitrary transit function and provide characterization of the
interval function of Ptolemaic graphs and the induced path function of chordal graphs
in terms of an arbitrary transit function. This in turn gives new characterizations of
the Ptolemaic and chordal graphs.
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1. INTRODUCTION

Transit functions were introduced by Mulder [15] to generalize the three classical
notions in mathematics, namely, convexity, interval and betweenness in an axiomatic
approach.

Given a non-empty set V , a transit function is defined as a function
R : V × V −→ 2V satisfying the following three axioms:

(t1) u ∈ R(u, v) for all u, v ∈ V ,
(t2) R(u, v) = R(v, u) for all u, v ∈ V ,
(t3) R(u, u) = {u} for all u ∈ V .

We refer to R as a transit function on V . If V is the vertex set of a graph G, then
we say that R is a transit function on G. Throughout this paper, we consider only
finite, simple and connected graphs. Given a transit function R on V , one can define
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the underlying graph GR of a transit function R on V as the graph with vertex set V ,
where two distinct vertices u and v are joined by an edge if and only if R(u, v) = {u, v}.

A u, v-shortest path in a connected graph G = (V, E) is a u, v-path in G containing
the minimum number of edges. The length d(u, v) of the shortest u, v-path P (that is,
the number of edges in P ) is the standard distance in G. The interval function IG of
a connected graph G is the function IG : V × V −→ 2V defined with respect to the
standard distance d in G as

IG(u, v) = {w ∈ V : d(u, w) + d(w, v) = d(u, v)}
= {w ∈ V : w lies on some shortest u, v-path in G}.

The interval function IG is a classical example of a transit function on a graph (we
sometimes denote IG by I). It is easy to see that the underlying graph GIG

of IG is
isomorphic to G. The interval function of a connected graph is extensively used in
metric graph theory. Mulder in [14] has systematically studied IG by an axiomatic
approach.

A u, v-induced path P in a connected graph G = (V, E) is a u, v-path in G containing
no shortcuts in the sense that it contains no chords (a chord in a path P is an edge
between two non-consecutive vertices in P ). It follows that the shortest path is always
an induced path. This observation defines another interesting transit function on
a connected graph G = (V, E) as a natural generalization of the interval function,
named as the induced path function, also known as monophonic function or minimal
path function which is the function JG : V × V −→ 2V :

JG(u, v) = {w ∈ V : w lies on some induced u, v-path in G}.
Nebeský addressed an interesting problem on the interval function I of a connected
graph G = (V, E) during the 1990s as follows: Is it possible to give a characterization
of the interval function IG of a connected graph G by a set of simple axioms (first-order
axioms) defined on an arbitrary transit function R on V ? Nebeský [17, 18] proved
that there exists such a characterization for the interval function I(u, v) in terms
of a set of first-order axioms on a transit function R. More such characterizations
are described in [16, 19–22]. The axiomatic characterization of IG is extended to
disconnected graphs in [3]. Nebeský also proved an interesting result on the induced
path function JG of G, that a first order axiomatic characterization similar to the
interval function IG is not possible for JG in [23]. The following three axioms denoted
as (b2), (b3), and (b4) together with the defining transit axioms (t1), (t2) are essential
in all the characterizations of the function I.
(b2) If x ∈ R(u, v), then R(u, x) ⊆ R(u, v), for all u, v, x ∈ V ,
(b3) If x ∈ R(u, v) and y ∈ R(u, x), then x ∈ R(y, v), for all u, v, x, y ∈ V ,
(b4) If x ∈ R(u, v), then R(u, x) ∩ R(x, v) = {x}, for all u, v, x ∈ V .

We have a weaker axiom than (b3), named as (b1), and is defined as:
(b1) If x ∈ R(u, v) and x ̸= v, then v ̸∈ R(u, x), for all u, v, x ∈ V .

The following implications can be easily verified for a function R : V × V −→ 2V

among axioms (t1), (t2), (t3), (b1), (b3) and (b4).
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(i) Axioms (t1) and (b4) implies axiom (t3).
(ii) Axioms (t1), (t2), (t3) and (b3) implies axiom (b4) which implies axiom (b1) (that

is, for a transit function R, (b3) implies (b4) implies (b1)).

The converse of the above implications does not hold in general. A transit function R
satisfying axioms (b2) and (b3) is known as a geometric transit function.

The problem of characterizing the interval function of an arbitrary connected
graph can be adopted for different graph classes; viz., characterizing the interval
function of special graph classes using a set of first-order axioms on an arbitrary
transit function. Such a problem was first attempted by Sholander in [24] with
a partial proof for characterizing the interval function of trees under the name tree
betweenness. Chvátal et al. [10] obtained the completion of this proof. Further new
characterizations of the interval function of trees and block graphs are discussed in [1].
Axiomatic characterization of the interval function of median graphs, modular graphs,
geodetic graphs, (claw, paw)-free graphs and bipartite graphs are respectively described
in [4,5,14,16,19]. In [24], Sholander termed the interval function of a graph as segment
function and considered ternary relation B on the vertex set V of the graph G to
study tree betweenness. We can easily translate such a ternary relation into a function
R : V × V −→ 2V by defining R(u, v) to be the set of all x for which (u, x, v) is in B.
Sholander introduced two more betweenness axioms, which can be translated into our
terminologies as a function R satisfying axiom (t3) and the following additional axiom.

(C) x ∈ R(u, v) and y ∈ R(x, z), then x ∈ R(v, y) or x ∈ R(z, u) for all
u, v, x, y, z ∈ V .

It turns out that this axiom is quite strong: Sholander proved that axioms (t3)
and (C) imply axioms (t1), (t2), (b1), (b2) and the following axiom.

(J0) If x ∈ R(u, y) and y ∈ R(x, v), then x ∈ R(u, v), for distinct u, v, x, y ∈ V .

One can show that both IG and JG of a connected graph G does not satisfy (J0)
in general. For example, consider the 3-fan and the induced cycle of length at least
four Cn, n ≥ 4 in Figure 1. For the 3-fan, x ∈ I(u, y), y ∈ I(x, v), but x /∈ I(u, v).
For the induced cycle, Cn, n ≥ 4, x ∈ J(u, y), y ∈ J(x, v), but x /∈ J(u, v). In [6],
it is proved that IG or JG of a connected graph G satisfies (J0) if and only if G is
Ptolemaic graph or a chordal graph, respectively.

Fig. 1. 3-fan, Cn+4
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The standard shortest path distance (d) of a graph G is an α0-metric if for any edge
vw of G and any two vertices u, x such that v ∈ I(u, w) and w ∈ I(v, x), the equality
d(u, x) = d(u, v) + d(v, w) + d(w, x) holds. In [9], Chepoi proved that a connected
graph G is Ptolemaic if and only if the graph metric in G is α0-metric. We can easily
see that the graph metric in G is an α0-metric if its interval function IG satisfies
axiom (J0).

In the rest of this section, we fix some of the graph theoretical notations and
terminology used in this paper. Let G be a graph and H a subgraph of G. H is called
an isometric subgraph of G if the distance dH(u, v) between any pair of vertices, u, v
in H coincides with that of the distance dG(u, v). H is called an induced subgraph
if u, v are vertices in H such that uv is an edge in G, then uv must be an edge in H
also. A path in G which is induced as a subgraph is an induced path. A graph G is
said to be H-free, if G has no induced subgraph isomorphic to H. Let G1, G2, . . . , Gk

be graphs. For a graph G, we say that G is G1, G2, . . . , Gk-free if G has no induced
subgraph isomorphic to Gi, i ∈ {1, . . . , k}.

Chordal graph is an example of a graph G which is defined by an infinite number
of forbidden induced subgraphs (G is chordal if G have no induced cycles Cn for
n ≥ 4). There are several graphs that can be defined or characterized by a list of
forbidden induced subgraphs or isometric subgraphs. See the survey by Brandstädt
et al. [2] and the information system [11], for such graph families. Ptolemaic graphs
were introduced by Kay and Chartrand in [13] as graphs in which the distances obey
the Ptolemy inequality. That is, for every four vertices u, v, w and x the inequality
d(u, v)d(w, x) + d(u, x)d(v, w) ≥ d(u, w)d(v, x) holds. Howorka in [12] proved that
a graph is Ptolemaic if and only if it is both chordal and distance-hereditary (a graph
G is distance hereditary, if every induced path in G is isometric) so that it is a chordal
graph which is 3-fan-free.

Thus, we observe that Ptolemaic graphs possess a characterization in terms of
a list of forbidden induced subgraphs.

In this paper, we prove that an arbitrary transit function R satisfying axiom
(J0), forbids induced Cn, n ≥ 4 in the underlying graph GR. We further explore the
property of axiom (J0) on an arbitrary transit function R. That is, our approach is
more general in the sense that we consider an arbitrary transit function R defined
on a non-empty set V . We pose a set of betweenness axioms on R including axiom
(J0) so that R will be the interval function or the induced path transit function of its
underlying graph GR. We prove that in the case of R being an interval function of GR,
if R satisfies axiom (J0), then GR is a Ptolemaic graph. Similarly, we prove that when
R become the induced path transit function of GR and if R satisfies axiom (J0), then
GR is a chordal graph.

We organize the results of the paper as follows. In Section 2, the relation between
the axioms that we consider in this paper, namely the geometric axioms (b2), (b3), (J0)
and (J2) will be discussed. In Section 3, we provide a characterization of the interval
function of a Ptolemaic graph using the axioms (J0), (b3), (J2) on an arbitrary transit
function. In Section 4, we prove that the induced path transit function of a chordal
graph is possible using first order axioms.
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2. RELATIONS BETWEEN THE BETWEENNESS AXIOMS

In this section, we discuss the relationship between the betweenness axioms that we
consider in this paper. In addition to the geometric axioms (b2) and (b3), and the
axiom (J0), we consider the following betweenness axioms (J2) for a transit function
R on V for proving the mentioned characterizations. Let V be a nonempty set and R
be a transit function on V ,

(J2) If R(u, x) = {u, x}, R(x, v) = {x, v} and R(u, v) ̸= {u, v}, then x ∈ R(u, v), for
distinct u, x, v ∈ V .

From the definition of the axiom, we observe the following. Axiom (J2) is a simple
betweenness axiom which is always satisfied by the interval function I and the induced
path transit function J of a graph G.

Theorem 2.1. Let R be any transit function defined on a non-empty set V . If R
satisfies (J0) and (J2), then the underlying graph GR of R is a chordal graph.

Proof. Let R be a transit function satisfying (J0) and (J2). Let GR contains an
induced cycle, say Cn = u1u2 . . . unu1 for n ≥ 4. Without loss of generality assume
Cn is a minimum such cycle (in the sense that the length of an induced cycle is as
small as possible).

Since R(u1, u2) = {u1, u2} and R(u2, u3) = {u2, u3}, then by (J2) we have
u2 ∈ R(u1, u3). By a similar argument, we can prove that u3 ∈ R(u2, u4). By (J0)
axiom we have u2 ∈ R(u1, u4) and by (t2) we have u3 ∈ R(u1, u4). By continuing
these steps we get u2, . . . , un−2 ∈ R(u1, un−1) and u3, . . . , un−1 ∈ R(u2, un). Since
u2 ∈ R(u1, un−1) and un−1 ∈ R(u2, un), by (J0), we have u2 ∈ R(u1, un), which is
a contradiction to the fact that R(u1, un) = {u1, un}.

Hence, GR does not contain Cn where n ≥ 4 as an induced subgraph. This
completes the proof.

The following straightforward Lemma for the connectedness of the underlying
graph GR of a transit function R is proved in [7].

Lemma 2.2 ([7]). If the transit function R on a non-empty set V satisfies axioms
(b1) and (b2), then the underlying graph GR of R is connected.

We have the following proposition.

Proposition 2.3. If R is a transit function on V satisfying the axioms (J0) and (b3),
then R satisfies axiom (b2) and GR is connected.

Proof. Let R satisfies axioms (J0) and (b3). To prove that R satisfies (b2) let
x ∈ R(u, v), and y ∈ R(u, x) for any u, v, x, y ∈ V . Since R satisfies (b3), we have
x ∈ R(y, v). Now y ∈ R(u, x), x ∈ R(y, v) and so by axiom (J0), we have y ∈ R(u, v),
which implies that R satisfies (b2). Connectedness of GR follows from Lemma 2.2,
since R satisfies axioms (b1) and (b2) as axiom (b3) implies axiom (b1).
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Example 2.4 (There exists a transit function R that satisfies (J0), (J2) and (b2) but
not (b3)). Let V = {u, v, w, x, y}. Let R : V × V → 2V be defined by R(u, v) = V ,
R(u, x) = {u, y, w, x}, R(w, v) = {x, w, y, v} and in all other cases R(a, b) = {a, b}.
Then R satisfies (J0) and (J2). Next we show that R satisfies (b2). Since R(u, v) = V ,
we can see that R(u, a) ⊆ R(u, v) for all a ∈ R(u, v) so that for this pair R satisfies (b2).
For R(u, x), we can see that a ∈ R(u, x) \ {u, x}, we have R(u, a) = {u, a} and
R(x, a) = {x, a} which implies that R satisfies (b2) for this pair too. The case is
similar for R(w, v). All other pairs correspond to edges. Hence, we can see that R
satisfies (b2) axiom. Now x ∈ R(u, v), y ∈ R(u, x) but x /∈ R(y, v) = {y, v}, and
R violates (b3) axiom.

3. AXIOMATIC CHARACTERIZATION OF
THE INTERVAL FUNCTION OF PTOLEMAIC GRAPHS

For the axiomatic characterization of IG of a Ptolemaic graph G, the essential axiom
is (J0). The two forbidden induced subgraphs (3-fan and Cn+4, n ≥ 0) of a Ptolemaic
graph is depicted in Figure 1. In [6], Changat et al. characterized the graphs for which
the interval function satisfies (J0) as follows.

Theorem 3.1 ([6]). Let G be a graph. The interval function IG satisfies the axiom
(J0) if and only if G is a Ptolemaic graph.

Now, we have the following Theorem on an arbitrary transit function R stating
the necessary conditions to have its underlying graph GR a Ptolemaic graph and R as
the interval function of GR.

Theorem 3.2. If R is a transit function satisfying (b3), (J0) and (J2), then GR is
Ptolemaic and R(u, v) = I(u, v).

Proof. Since R satisfies (b3), (J0) and (J2), we have that GR is a chordal graph by The-
orem 2.1. To prove that GR is Ptolemaic, we have to show that GR is 3-fan-free. Suppose
that GR contains an induced 3-fan with vertices u, x, y, v, z as shown on Figure 1. Since
ux and xy are edges and uy is not an edge, by (J2), x ∈ R(u, y). Similarly, y ∈ R(x, v).
Since R is a transit function, by (t2), y ∈ R(v, x) and x ∈ R(y, u) and hence by (J0),
y ∈ R(u, v). Again, since uz and zy are edges and uy is not an edge, z ∈ R(u, y).
That is, y ∈ R(u, v) and z ∈ R(u, y), by (b3), we have y ∈ R(z, v), which is not true as
zv is an edge. That is, we have proved that GR is a chordal graph which is 3-fan-free
and hence GR is a Ptolemaic graph. By Lemma 2.3, R satisfies axiom (b2) and GR is
connected, moreover (b3) implies (b1).

Now we prove that R(u, v) = I(u, v) for all u, v ∈ V . We prove by induction on
the distance between u and v. Clearly R(u, v) = {u, v} = I(u, v) when uv ∈ E(GR).

Let next d(u, v) = 2. Let x ∈ I(u, v). Hence, we can see that ux, xv ∈ E(GR).
That is, R(u, x) = {u, x}, R(x, v) = {x, v} and R(u, v) ̸= {u, v}, since R satisfies (J2),
x ∈ R(u, v). Therefore, I(u, v) ⊆ R(u, v). Conversely, suppose x ∈ R(u, v). Suppose
x /∈ I(u, v). Since d(u, v) = 2 there exists at least one element y ∈ I(u, v) such that
uy, yv are edges in GR. By assumption, x is not adjacent to both u and v. Assume
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that xu is not an edge. Since x ∈ R(u, v) and R satisfies (b2) and (b1), R(u, x) ⊂ R(u, v)
with |R(u, x)| < |R(u, v)|. By applying axioms (b2) and (b1) continuously on R(u, x),
we get vertices xi, xi+1, . . . , xk, xk+1 = x ∈ R(u, x) such that R(xi, u) ⊂ R(xi+1, u) ⊂
R(u, x) ⊂ R(u, v) and |R(xi, u)| < |R(xi+1, u)|, for i ∈ {1, . . . , k} and since V is finite,
R(u, xi) = {u, xi}, for some i, say i = 1. That is, we have vertices x1, x2, . . . , xk, xk+1 =
x ∈ R(u, x) with R(x1, u) = {x1, u}. If y ∈ R(u, x) and since x ∈ R(u, v) then
x ∈ R(y, v) by (b3), a contradiction to R(y, v) = {y, v}. Therefore, xi ̸= y for all
i ∈ {1, . . . , k}. Next, we have to prove that R(x1, y) = {x1, y}. If not let us assume that
R(x1, y) ̸= {x1, y}. That is x1y /∈ E(GR). Consider the vertices x1, u, y, v. By (J2),
u ∈ R(x1, y) and since y ∈ R(u, v), by (J0), u ∈ R(x1, v). Therefore, x1 ∈ R(v, u),
u ∈ R(v, x1) and hence by (b3), x1 ∈ R(u, u), a contradiction. Therefore, R(x1, y) =
{x1, y}. This implies that y ∈ R(x1, v) by axiom (J2), provided R(x1, v) ̸= {x1, v}.
That is x1 ∈ R(u, v) and y ∈ R(x1, v) implies that x1 ∈ R(u, y) by (b3), a contradiction
since R(u, y) = {u, y}. Therefore, R(x1, v) = {x1, v}. That is, we have x ∈ R(u, v),
x1 ∈ R(u, x) and hence by (b3), x ∈ R(x1, v), a final contradiction. Therefore, R(u, x) =
{u, x}. Similarly, we can prove that R(v, x) = {v, x}. So x ∈ I(u, v) and hence
R(u, v) ⊆ I(u, v), which completes the proof when d(u, v) = 2.

Let us assume that the result holds for all distances less than k > 2 and let
u,v be two vertices such that d(u, v) = k > 2. We first prove I(u, v) ⊆ R(u, v). Let
x ∈ I(u, v). Since d(u, v) > 2, we can find another vertex y in the shortest u, v-path
containing x. Now since I satisfies (b1) and (b2), I(u, x) ⊂ I(u, v), I(x, v) ⊂ I(u, v).
We may assume that x ∈ I(u, y). So by induction we have I(u, x) = R(u, x) and
I(x, v) = R(x, v). Also, by (b3) axiom x ∈ I(u, y) = R(u, y), y ∈ I(x, v) = R(x, v).
Then by (J0) axiom x ∈ R(u, v). Hence, I(u, v) ⊆ R(u, v). Let x ∈ R(u, v). If possible,
let x /∈ I(u, v). Since x ∈ R(u, v), by applying axioms (b1) and (b2) similarly as
in the case of d(u, v) = 2, we get vertices x1, x2, . . . , xk, xk+1 = x ∈ R(u, x) with
R(x1, u) = {x1, u} such that R(xi, u) ⊂ R(xi+1, u) and |R(xi, u)| < |R(xi+1, u)|, for
i ∈ {1, . . . , k} and R(x1, u) = {x1, u}. Let y be a vertex such that R(u, y) = {u, y} and
y ∈ IGR

(u, v). Similar to the case of d(u, v) = 2, we can prove that R(x1, y) = {x1, y}.
That is u, x1, y form a C3 in GR. Here there are two possibilities for d(x1, v).
Case (i): d(x1, v) = k. In this case, since d(u, v) = k and y is on the shortest u, v-path
in GR with d(y, v) = k − 1, we have that y is on the shortest x1, v-path in GR, that is,
y ∈ IGR

(x1, v) ⊆ R(x1, v). Therefore, we have x1 ∈ R(u, v), y ∈ R(x1, v) and hence
by (b3), x1 ∈ R(y, u), a contradiction as R(y, u) = {y, u}.
Case (ii): d(x1, v) = k − 1. In this case, x1 ∈ IGR

(u, v). Since x ∈ R(u, v) and
so by (b2) axiom, R(x, v) ⊆ R(u, v). We have also x ∈ R(u, v), x1 ∈ R(u, x) and hence
by axiom (b3), we have x ∈ R(x1, v) = IGR

(x1, v), by induction hypothesis. That
is x ∈ IGR

(x1, v) ⊆ IGR
(u, v), since x1 ∈ R(u, v), which is a contradiction to our

assumption.
Therefore, in all cases, we get contradictions to the assumption and hence our assump-
tion is wrong, that is x ∈ R(u, v) ⊆ IGR

(u, v) and hence the theorem.

From Theorem 3.2 and Theorem 3.1, we have the following theorem characterizing
the interval function of Ptolemaic graphs.
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Theorem 3.3. Let R be a transit function on a non-empty set V . Then R satisfies
the axioms (b3), (J0) and (J2) if and only if GR is a Ptolemaic graph and R coincides
the interval function IGR

.

We now give examples of transit functions R to show that the transit axioms (t1),
(t2), (t3) and the axioms (J0), (J2) and (b3) are independent.

Example 3.4 ((t2), (t3), (J0), (J2), (b3) but not (t1)). Let V = {a, b, c, d} and define
a transit function R on V as R(a, b) = R(b, a) = {a}, R(a, c) = {a, c}, R(a, d) =
{a, c, d}, R(b, c) = {b, c}, R(b, d) = {b, c, d}, R(c, d) = {c, d}, R(x, x) = {x} and
R(x, y) = R(y, x) for all x, y ∈ V . We can see that R satisfies (t2), (t3), (J0), (J2)
and (b3). But R does not satisfy axiom (t1).

Example 3.5 ((t1), (t3), (J0), (J2), (b3) but not (t2)). Let V = {a, b, c, d} and define
a transit function R on V as follows: R(a, b) = {a, b} = R(b, a), R(a, c) = {a, b, c},
R(c, a) = {a, c} R(a, d) = {a, b, c, d} = R(d, a), R(b, c) = {b, c} = R(c, b), R(b, d) =
{b, c, d} R(d, b) = {d, b}, R(c, d) = {c, d} = R(d, c), R(x, x) = {x}. We can see that R
satisfies (t1), (t3), (J0), (J2) and (b3). But R(a, b) ̸= R(b, a). Therefore, R does not
satisfy the (t2) axiom.

Example 3.6 ((t1), (t2), (J0), (J2), (b3) but not (t3)). Let V = {a, b, c, d} and define
a transit function R on V as follows: R(a, a) = {a, b}, R(a, b) = {a, b}, R(a, c) =
{a, b, c}, R(a, d) = {a, b, c, d}, R(b, c) = {b, c}, R(b, d) = {b, c, d}, R(c, d) = {c, d},
R(x, x) = {x} and R(x, y) = R(y, x) for all x, y ∈ V . We can see that R satisfies
(t1), (t2), (J0), (J2), and (b3). But b ∈ R(a, a). Therefore, R does not satisfy the (t3)
axiom.

Example 3.7 ((t1), (t2), (t3), (J0), (J2) but not (b3)). Let V = {a, b, c, d, e} and define
a transit function R on V as follows: R(a, b) = {a, b}, R(a, c) = {a, c}, R(a, d) =
{a, b, c, d}, R(a, e) = V , R(b, c) = {b, c}, R(b, d) = {b, d}, R(b, e) = {b, e}, R(c, d) =
{c, d}, R(c, e) = {b, c, d, e}, R(d, e) = {d, e}, R(x, x) = {x} and R(x, y) = R(y, x) for
all x, y ∈ V . We can see that R satisfies (t1), (t2), (t3), (J0) and (J2). But d ∈ R(a, e),
b ∈ R(a, d), and d /∈ R(b, e). Therefore, R does not satisfy the (b3) axiom.

Example 3.8 ((t1), (t2), (t3), (J2), (b3) but not (J0)). Let V = {a, b, c, d, e} and define
a transit function R on V as follows: R(a, b) = {a, b}, R(a, c) = {a, c}, R(a, d) =
{a, b, c, d}, R(a, e) = {a, b, e}, R(b, c) = {b, c}, R(b, d) = {b, d}, R(b, e) = {b, e},
R(c, d) = {c, d}, R(c, e) = {b, c, d, e}, R(d, e) = {d, e}, R(x, x) = {x} and R(x, y) =
R(y, x) for all x, y ∈ V . Here R satisfies (t1), (t2), (t3), (J2) and (b3). We can see that
c ∈ R(a, d), d ∈ R(c, e) but c /∈ R(a, e). So R does not satisfy (J0).

Example 3.9 ((t1), (t2), (t3), (J0), (b3) but not (J2)). Let V = {a, b, c, d, e} and
define a transit function R on V as follows: R(a, e) = {a, e}, R(b, e) = {b, e}, R(a, b) =
{a, b, c} and for all other pair R(x, y) = {x, y}, R(x, x) = {x} and R(x, y) = R(y, x)
for all x, y ∈ V . We can see that R satisfies (t1), (t2), (t3), (J0), (b3). But since
e /∈ R(a, b) we can see that R fails to satisfy (J2).
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4. INDUCED PATH FUNCTION OF CHORDAL GRAPHS

In this section we characterize the induced path function of chordal graphs. We prove
that even though the induced path transit function of an arbitrary connected graph is
not first order definable as shown by Nebeský in [23], the family of chordal graphs
possess a characterization in terms of a set of first order axioms. It is proved that for the
class of HHD-free graphs [7], HHP -free graphs [6], and distance hereditary graphs [8],
the induced path transit function possess a first order axiomatic characterization.
We need the following axiom and the theorem from [6] for the characterization of the
induced path transit function of a chordal graph.

(J1) If w ∈ R(u, v) and w ̸= u, v, then there exist u1 ∈ R(u, w) \ R(v, w),
v1 ∈ R(v, w) \ R(u, w), such that R(u1, w) = {u1, w}, R(v1, w) = {v1, w} and
w ∈ R(u1, v1) for all u, v, w ∈ V .

Theorem 4.1 ([6]). Let G be a graph. The induced path transit function J of G
satisfies the axiom (J0) if and only if G is a chordal graph.

Now we have the following theorem.

Theorem 4.2. Let R : V × V → 2V be a function on a non-empty set V . Then R
satisfies the axioms (t1), (t2), (b2), (J0), (J1) and (J2) if and only if GR is a chordal
graph and R coincides the induced path function JGR

.

Proof. First we prove that when R is a function satisfying axioms (t1), (t2), (b2)
and (J1), then R satisfies (b1). If possible, assume that R doesn’t satisfy (b1). There-
fore, there exists u, v, w with v ̸= w, w ∈ R(u, v) and v ∈ R(u, w). Since R satisfies
(b2), and v ∈ R(u, w) we have R(u, v) ⊆ R(u, w). Again since, w ∈ R(u, v), we
have R(u, w) ⊆ R(u, v) which implies that R(u, w) = R(u, v). Now since R sat-
isfies (J1), there exist an element y ∈ R(v, w) \ R(u, w). Since, R(v, w) ⊆ R(u, v),
R(v, w) \ R(u, w) = R(v, w) \ R(u, v) = ∅, a contradiction to R satisfying axiom (J1)
and so R satisfies (b1).

If R is a function satisfy axioms (t1), (t2), (b1) and (b2), then R satisfy axiom (t3).
For if not, let R(u, u) ̸= {u}, for some u ∈ V . Let x( ̸= u) ∈ R(u, u). Then by axiom
(b2), we have R(u, x) ⊆ R(u, u). By (t1), u ∈ R(u, x) and by (b1) and (t2), x /∈ R(u, u),
a contradiction. That is, the function R that satisfy axioms (t1), (t2), (b1) and (b2),
is a transit function. Since R satisfy axiom (J0) and (J2), by Theorem 2.1, GR is
a chordal graph.

Now we prove that R(u, v) = J(u, v) for all u, v ∈ V . Let u, v and x be distinct
elements in V . Suppose x ∈ R(u, v). Then by (J1), there exists u1 ∈ R(u, x) \
R(v, x), v1 ∈ R(v, x) \ R(u, x), such that R(u1, x) = {u1, x}, R(v1, x) = {v1, x} and
x ∈ R(u1, v1). Since u1 ∈ R(u, x) by (J1), there exists u2 ∈ R(u, u1) \ R(u1, x) such
that u1 ∈ R(u2, x). Now applying (J1) successively to R(u, u2) and so on, we get
a sequence of vertices x = u0, u1, u2, u3, . . . , uk, uk+1 = u such that:

(i) R(ui, ui+1) = {ui, ui+1}, i ∈ {1, 2, . . . , k},
(ii) ui ∈ R(ui−1, ui+1), i ∈ {1, 2, . . . , k},
(iii) R(ui+1, u) ⊂ R(ui, u), i ∈ {1, 2, . . . , k}.
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Also, we have x = v0, v1, v2, v3, . . . , vm, vm+1 = v satisfying conditions similar to (i),
(ii) and (iii) such that x ∈ R(u1, v1)

We claim that P : uuk . . . u1xv1 . . . vmv is an induced path. We need to prove that
uiui+ℓ /∈ EGR

, for i ∈ {0, 1, 2, . . . , k − ℓ} with ℓ ≥ 2. When ℓ = 2, the result follows by
(ii). In the case ℓ > 3, assume the contrary that uiui+ℓ ∈ EGR

. Then it contradicts the
fact that GR is chordal. Similarly, vivi+ℓ /∈ EGR

for ℓ ≥ 2. Now we need to prove that
no vertex ui, with i ∈ {1, 2, 3, . . . , k}, is adjacent to a vertex vi, with i ∈ {1, 2, 3, . . . , m}.
Now x ∈ R(u1, v1). Therefore, u1v1 /∈ EGR

. Let vr be the first vertex in vj ’s adjacent
to us. Then usvrvr−1 . . . xu1u2 . . . us−1us is an induced cycle of length greater than
four, which is a contradiction to GR is chordal. Hence, P : uuk . . . u1xv1 . . . vmv is an
induced u, v-path and x lies on it.

Suppose x belongs to some u, v-induced path say P . We prove that x ∈ R(u, v) by
induction on the length l(P ) of P . When l(P ) = 2, the result follows by (J2). Assume
that the result is true for l(P ) < m. Suppose now that l(P ) = m with m > 2. Then,
either u or v has a neighbor on P different from x. Let u′ be the neighbor of u on P .
So u′u lies on the induced x, u-subpath of P and x lies on the induced v, u′-subpath
of P . By the induction hypothesis we have x ∈ R(v, u′) and u′ ∈ R(x, u), hence by
(J0) we have x ∈ R(v, u). Since R is a transit function it follows that x ∈ R(u, v).
Hence, R = JGR

.
The induced path function satisfy transit axioms (t1), (t2) and the axiom (J2) for

any graph. Conversely, assume that, the underlying graph GR of a transit function
R is a chordal graph and R is the induced path function J of GR. By Theorem 4.1,
it is clear that the induced path function satisfies axiom (J0) on a chordal graph.
Now assume that J does not satisfy axiom (J1). Take the induced u, v-path, say P ,
in GR containing w with u1 and v1 are neighbors of w in the path P . Since (J1) is
not satisfied, we have u1 ∈ J(v, w) or v1 ∈ J(u, w). We may assume that u1 ∈ J(v, w).
Then there exists an induced w, v-path Q containing u1. Evidently Q starts with
the edge wu1. Let vr be the first vertex on Q which is also a vertex on the path P .
Then vr ̸= v1 otherwise wv1 will act as a chord of Q. Since P is an induced path,
u1v1 /∈ E(GR). Consider the w, vr-subpath say Q′ of Q and the w, vr-subpath say P ′

of P . Q′ has length at least three and P ′ has length at least two. Together they form
a cycle of length at least five. To avoid the long cycle, there must exist chord between
an internal vertex of P ′ and Q′. But no vertex of Q′ except u1 is not adjacent with w.
Let u2 be the vertex on Q′ adjacent to u1. Then the vertices v1, w, u1, u2 and some of
the vertices in path P ′ induces a cycle of length at least four, a contradiction to the
assumption that GR is chordal.

Now, we have to prove that J satisfy axiom (b2) in GR. We will prove that J
satisfy a stronger axiom than (b2), namely the monotone axiom (m), which states
that for all x, y ∈ J(u, v), J(x, y) ⊆ J(u, v), for every u, v ∈ V (GR). It follows that
axiom (b2) is a special case of (m). Assume that J does not satisfy axiom (m) in GR.
That is, x, y ∈ J(u, v), z ∈ J(x, y) but z /∈ J(u, v).
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Case 1. x and y are in the same induced path.
Let P be an induced u, v-path containing x and y and Q be an induced x, y- path

containing z. Since z /∈ J(u, v), Q is not a subpath of P . Let a be the vertex closest to
x and common to both P and Q. Let a′ be vertex closest to y and common to both
P and Q. Let P : u = u0u1 . . . ur = xur+1 . . . us = y . . . ut = v. Let the a, a′-induced
subpath of Q containing z be Q′ : av1 . . . vm = zvm+1 . . . vn = a′. Since z /∈ J(u, v),
there exist chords from the u, a-subpath, say P ′ of P to the a′, z-subpath, say Q′ of Q
or there exists chords from the v, a′-subpath of P to the a, z-subpath of Q. Without
loss of generality we may assume that there exists chords from the vertices from P ′ to
the vertices in Q′. Clearly the chords start from a vertex before the vertex a as we
traverse along P ′ and must end before the vertex z as we traverse along Q′. Let bb′ be
the chord, where b is a vertex in P ′ closest to a and b′ is a vertex in Q′ closest to z.
The cycle C formed by the union of the chord bb′, the b′, a subpath of Q containing z
and the a, b-subpath of P will be an induced cycle of length at least four (the worst
case we can allow is that b is adjacent to a and b′ is adjacent to z and the b′, a subpath
of Q is of length exactly two, so that the cycle C is a four cycle), a contradiction to
GR being a chordal graph.

Case 2. x and y belong to different induced paths.
Let P be an induced u, v-path containing x and Q be an induced u, v-path con-

taining y and R be an induced x, y- path containing z. Let a be the last vertex before
x and common to both P and Q and let a′ be the first vertex after y and common to
both P and Q as we traverse along P from u. Clearly x is in the a, a′-induced subpath
of P and y is in the a, a′-induced subpath of Q. So we may replace a by u and a′

by v so that u and v are the only common vertex of the paths P and Q. Now let b
be the first vertex before z and common to both P and R and b′ be the first vertex
after z and common to both Q and R as we traverse along R from x. Replace b by
x and b′ by y so that, we can assume that x is the only vertex common between P
and R. Similarly, y is the only vertex common between Q and R. Let C1 be the cycle
formed by u

P−→ x
R−→ y

Q−→ u and C2 be the cycle formed by v
P−→ x

R−→ y
Q−→ v. If the

path x
P−→ u

Q−→ y is not induced path, then consider the chord u′y′ from the path
u

P−→ x to the path u
Q−→ y, where u′ is closest to x and y′ is closest to y. Here also we

can replace u′ by u and again we see that the cycle C1 is an induced cycle of length
at least five. To avoid induced long cycles, there should be chords from u

P−→ x to
y

R−→ x. Consider the chord u1z1, where u1 closest to u on u
P−→ x and z1 closest to y

on y
R−→ x, then the cycle formed by the union of the edge uy′ and the paths y′ Q−→ y,

y
R−→ z1, the edge z1u1 and the path u1

P−→ u is an induced cycle of length at least
five. So the only way to avoid the length of the induced cycle thus formed being of
length less than four is that the vertex u and u1 should be adjacent to y. Now replace
u1 by u. Now the cycle formed by u1

P−→ x
R−→ z1u1 is a cycle of length at least four. If

ux ∈ E(GR), then clearly the cycle has length exactly four. Then u has a chord with
all the vertices in the path x

R−→ y, in particular uz should also form an edge, since GR

is chordal. If ux is not an edge then the cycle formed by u
P−→ x

R−→ z1u is of at least
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length five. Since GR is chordal there exists a chord from vertices in u, x-subpath of P
to x, y-subpath of R. Then there exists a vertex say u2 closest to x in the u, x-subpath
of P which is adjacent to both z and z1 (neighbor z in z, y-subpath of R). Otherwise,
suppose u2 is adjacent only to z. Let z1 is adjacent to a vertex say u′′ closest to u2 in
the u, u2-subpath of P . Then u′′ P−→ u2zz1u′′ forms an induced cycle of length at least
four. That is, either u2 or u′′ is adjacent to both z and z1 and let it be u2.

Case 2.1. If u2 is adjacent to z2, the neighbor of z in the z, x-subpath of R. Replace
u2 by u, z2 by x and z1 by y, we get an induced K4 \ {e}.

Case 2.2. If u2 is not adjacent to z2, the neighbor of z in the z, x-subpath of R. Then
the neighbor of u2 say u3 is adjacent to z2. If u3 is not adjacent to z, then zu2u3z2z is
a cycle of length four. Since u2 is not adjacent to z2, u3 is adjacent to z. If we replace
u2 by u, z2 by x and z1 by y, we get an induced 3-fan as xu3uy forms the path and z
is the common vertex.

Using a similar argument, we can prove that in the cycle C2, either the vertices
x, v, y and z induce K4 \ {e} or the vertices x, v, y, v3 and z induces a 3-fan. Then,
we have that the path formed by the union of the edges uz and zv is an induced
path containing z, a contradiction to our assumption that z /∈ J(u, v) and completes
the proof.

The following examples show that the axioms (t1), (t2), (b2), (J0), (J1) and (J2)
are independent.

Example 3.4 forms an example for (t2), (J0), (J1), (J2), (b2) but not (t1) and
Example 3.5 form an example for (t1), (J0), (J1), (J2), (b2) but not (t2). If we define
R as in Example 3.8, then R satisfy (t1), (t2), (J1), (J2), (b2) but not (J0) and if we
define R as in Example 3.9, then R satisfy (t1), (t2), (J0), (J1), (b2) but not (J2). The
examples below establish the independence of the remaining sets of axioms.

Example 4.3 (There exists a transit function that satisfies (t1), (t2), (J0), (J1), (J2)
but not (b2)). Let V = {a, b, c, d} and define a transit function R on V as follows:
R(a, b) = {a, b}, R(a, c) = {a, b, c}, R(a, d) = {a, c, d}, R(b, c) = {b, c}, R(b, d) =
{b, d}, R(c, d) = {c, d}, R(x, x) = {x} and R(x, y) = R(y, x) for all x, y ∈ V . We can
see that R satisfies (t1), (t2), (J0), (J1) and (J2). But c ∈ R(a, d), b ∈ R(a, c), and
b /∈ R(a, d). Therefore, R does not satisfy the (b2) axiom.

Example 4.4 (There exists a transit function that satisfies (t1), (t2), (J0), (J2), (b2)
but not (J1)). Let V = {a, b, c, d} and define a transit function R on V as follows:
R(a, d) = V , R(b, d) = {b, d}, R(a, c) = {a, b, c} and for all other pair R(x, y) = {x, y},
R(x, x) = {x} and R(x, y) = R(y, x) for all x, y ∈ V . We can see that R satisfies (t1),
(t2), (J0), (J2), (b2). But we can see that R fails to satisfy (J1). For c ∈ R(a, d) there
does not exist a u1 and v1 such that u1 ∈ R(a, c) \ R(c, d), v1 ∈ R(c, d) \ R(a, c), such
that R(u1, c) = {u1, c}, R(v1, c) = {v1, c} and c ∈ R(u1, v1).
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