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Axiomatic Foundations of the Kinematics Common

to Classical Physics and Special Relativity.
A. BRESSAN - A. MONTANARO (*)

SOMMARIO - Si costruisce una teoria comune alla cinematica classica e a quella
relativistica, usando quattro nozioni primitive, riducibili alla relazione
di precedenza  tra punti eventi, e quella 0 di essere un punto evento &#x26;
occupato da un punto materiale .M. Si definiscono fisicamente, mediante
condizioni di necessita e possibilità fisica, i riferimenti inerziali; e si carat-
terizzano le trasformazioni matematiche tra questi. Si definiscono gli
spazi inerziali, che poi risultano essere o03. Risulta pure che vale o il caso
classico o quello relativistico. Si caratterizzano questi casi in vari modi,
ciascuni dei quali puo essere usato come postulato addizionale per arri-
vare ad una teoria classica be o relativistica br.

Una differenza sussistente tra concetti fondamentali corrispondenti di
due teorie incompatibili b1 e b2’ usualmente trattati come primitivi,
viene ridotta, nel caso presente, a una differenza tra nozioni definite nelle
teorie be e l3r (sostituite a b1 e (2); e questa differenza 6 ora dovuta uni-
camente a differenze tra postulati, in quanto be e br hanno le stesse no-
zioni primitive. Tale riduzione ha interesse, per es., in quanto in certi
casi alcuni autori ritengono problematico un confronto tra b1 e b2.

1. Introduction ( * * ) .

We present a system of purely kinematic axioms complying with
both classical physics and special relativity; and we derive the main

(*) Indirizzo degli AA. : Istituto di Analisi e Meccanica - Università -
Via Belzoni 7 - 35100 Padova.

(**) The contribution of A. Bressan to the present work has been given
within the activity of the C.N.R. (Consiglio Nazionale delle Ricerche) in the
academic year 1981-82.
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consequences of it, in particular that either the classical case or the
relativistic one holds [Theor. 4.2].

The spatial metric or the space-time one is not assumed as a pri-
mitive notion. These metrics can be defined on the basis of some

properties for the motions possible for certain isolated particle systems.
Incidentally the present treatment is based on a modal logic-see
e.g. [1], [4], and [2] or [3].

More in detail, we use only four primitive notions: event point,
particle, the relation of being in the past ot ... , and the one of being
(an event point) occupied by (a particle). We define inertial (affine)
frames according to the criteria used, e.g., in [1] to define mass within
a theory of classical particle mechanics of the Mach-Painlev6 type;
more precisely this occurs in that this definition is based on a con-
dition of (causal) implication and one of (causal) possibility-see (a)
and (b) in Def. 2.3.

1 
On the basis of suitable postulates, Posts 2.1-5, we define inertial

spaces and inertial instants [N. 5]. Furthermore we characterize the
classical and relativistic cases in various ways [NN. 4, 6, 8]. Any
among these characterizations can be used as an additional axiom
to turn our theory into an exclusively classical one, be, or into an
exclusively relativistic theory, l3r .

In the relativistic case an (oriented) time metric and a spatial
metric can be determined on every inertial affine space, so that it

is turned into a Euclidean space (Galilean space), on the basis of our
purely kinematic postulates [N. 7]. The analogue for classical physics
cannot be done; one has to use, e.g., forces at a distance-as in [1] or
contact forces.

In both the classical case and the relativistic one the inertial

spaces can be proved to be o03, [Theor. 8.2], and the inertial (affine)
frames are proved to be those related to any of them by certain
transformations (generalized Galilei or Lorentz transformations)-see
Theor. 8.2.

***

It is often remarked that special relativity, SR, is based on ki-
nematic notions different from their correspondents in classical physics,
CP. In the present paper the same primitive notions are used for b,.
and and within our frame work the difference above concerns
some (corresponding) defined notions belonging to theories l3r and 
and it arises only because of the additional postulates, which may be
the following two for l3r and be respectively : the set of possible speeds
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for isolated particles, with respect to an inertial f rame (or space), is

bounded [unbounded].
Our reduction of the difference between corresponding basic primi-

tive notions of two previous theories ’G., (e.g. CP) and b2 (e.g. SR),
to a difference in defined notions due only to a difference between
the axioms of two new theories 13[ and 13§ having the same primitive
notions, y may be useful to compare l3i with ’G,. The interest of this
is supported by the fact that for some choices of i3i and 1)2 (in the
above situation), e.g., Feyerabend finds the comparison of and b2
difficult, or even impossible-cf. [5] (~).

Let us add that, if i3i and b2 have the same extralogical primitive
terms, but are logically incompatible, then according to extensional
logic the notions designated by (all) primitive or defined terms cannot
coincide. However, if ‘~1 and b2 are physical theories, their interpreta-
tions (given intuitively) are modal. Thus 1)1 and b2 can express the
same conceivable phenomena. Their postulates tell us which of them
can really take place. Hence the extensions of a term t of l3i (and
‘~2), admitted in depends on postulates; and consequently
so does t’s intension tbi in bi (i = 1, 2). Let us remark that both lbl
and lb, are subintensions induced by a wider intension 1 conceivable
on the basis of the intuitive characterizations of the primitive no-
tions of ’G,, (and ‘~2). In this sense do the terms of i3i and b2 have
the same meanings.

The afore-mentioned situation occurs in common practice, e.g.
when i3i and b2 are (incompatible) theories concerning the constitutive
equations of a given real body (on which experiments can be made).

The theories be and i3r , used to characterize the difference between

(1) As it appears from G. Giorello’s prefazione in [5] (b), p. 2, according
to a thesis of Feyerabend (in its most radical version) the meanings of the
extralogical terms of a theory change with the whole context of the theory ; and
Feyerabend believes that by this change, the presupposition that two theories
l3i and b2 (on the same field) have any expression in common, can be denied,
so that b1 and b2 cannot be compared (on the basis of their empirical content
in Paper’s sense).

Let us add that, if the primitive notions of a physical theory lack a satis-
factory intuitive characterization, then a good help can be afforded by its
applications to real cases, made by the author. Furthermore Feyerabend’s
thesis above practically implies that we don’t know (precisely) the notions
used in any physical theory (in that we usually never are at the end of the
context of any theory).
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CP and SR, are substantially in the situation of 131 and ~2 in example
above. In particular they have the same notions in the afore-men-
tioned sense; 7 and thus they are comparable.

2. Primitive notions and postulates for a theory 13 belonging to both
classical physics and special relativity.

As primitive notions of our theory 13 on space time, made from
the points of view of both classical physics and special relativity, y
we assume: event point, EP (identified with the class EP of event
points), y mass point, MP (or particle), y the relation  of being an
event point (strictly) in the past of another one, and the relation 0
between 8 and an EP occupied by the mass point M ( 2) . The
set W~ of these event points is called the world line of M.

POST. 2.1. M E MP implies W MC EP.

POST. 2.2. The relation « is an unbounded partial order in EP (3).

The predicates (or classes) MP and EP, and the relation « are
usually regarded as independent of phenomena. This independence
has some logical consequences-see Post. 2.3 (a) below-that, usually,
are not stated explicitly. The same can be said of the fact that the
relation 0 and the class W~ are usually used extensionally, i.e. as

coinciding with their extensionalizations ()):

(2) Among our primitive notions, EP and MP could be defined in terms
of the other two:

(a) by EP we call the field of the binary reflation -, i.e. the set {x: for
some y either x -~ y or y ~ x};

(fl) by MP we call the set of the possible first members o f binary rela-
tion 0-i.e. x E MP iff for some y, t~ can hold for x and y.

(3) That  is an unbounded (strict) partial order in EP means:

(i) 8 - 8’ I and 8’- 8" imply 8, 8’ -f- 8 and 6 8"; and

(ii) ~1, 830 EP ~ (3 &#x26;, 8’e EP)(8« 8’ for r = 1, 2).
(4) By definition the extensionalization P(-) of a property P holds for x

in P holds for some y which happens to equal x. We identify (also non-ex-
tensional) properties with classes. As an example, let x E P hold by defini-
tion (of P) iff x necessarily equals 1; then y E iff y equals 1 (i.e. happens
to equal 1 without excluding the possibility of y ~ 1).
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or [3], ftn. 15, p. 302 .

For the sake of completeness we state the facts above explicitly
by means of Post. 2.3 below, even if we think that our presentation
would meet the usual standard of rigour (in its field) also without

Post. 2.3.

POST. 2.3. (a) The notions MP, EP, and - are (modally) absolute-
see [2], pag. 67, or [3], pag. 292 (s).

(b) T he notion 0 is extensional (hence so is 

Obviously, if ’ill c PE (and i0 is a mathematical subset of EP,
i.e. also i0 E Abs holds) and for some if E MP it is physically possibile
briefly phys. poss., see [4]-that i0 = then we say that i0 is a

phys. poss. world line of some mass point, or briefly ’ill is a PW; thus
the mathematical set of these lines in PE will be denoted by PW.

POST. 2.4. ~ ~ 8’ or 8’~ B, 8’ and Band 8’ belong to the
same PW, i.e. 6, i0.

By Post. 2.4 we have the following

THEOR. 2.1. I f UcPW7 the restriction (~ r1 IW2) of the relations
to ‘1.U is a total (or simple) order (6).

We regard the condition W~ _ 07 the empty set, as schematizing
the case where if(eMP) is very far from the observer, i.e. if is at
infinity. We say that if exists (or is in EP) in case 0. Hence
it is reasonable to consider the cases when in EP there is one MP,
no MPs, or some but not all MPs.

DEF. 2.1. (a) We say that (1Vl’1, ..., ~Im) is an isolated particle
system-or that 1VI1 is an isolated particle in case m = 1-, i f TV,, =A 0
only for if = MP) (i = 1, ... , m) (and if the electromagnetic field
vanishes, in case an extension of ~ is referred to, that includes this field).

(5) The property (or class) P is (modalty) absolute, briefly P E Abs, if (i) it
is modally constants i.e. x E P must hold as soon as it can hold, and (ii) P is
modally separated, i.e. the possibily of x, y E P and x = y implies that x must
equal y. The definition of absolute relations is quite similar.

(6) For any set .A, we can write A’ = A, ~.~ x A where « X » is the

cartesian product.



168

(b) We denote by PWI the class of the phys. poss. world lines of
isolated particles.

DEF. 2.2. (a) We say that ~p is an admissible f rame (for the space
time EP) i f g~ is a bijection of EP onto R4 for which, by x" = 

when (x°, ..., x3) = g~(~), we have (7)

(i) cpO(8) ~ g~°(~’) 8’ and

(ii) every ‘LU E PWI has a representation of the f orm (8)

E ‘LU iff (2.1)3 implies (2.1)1.

(b) I f in addition ’ill E PW, in some neighborhood of ’ill) ’W
has a representation of the f orm (2.1), and

then v = (vl, V2, v3) will be called the (p-velocity of ‘LU at ~; and its mo-
dulus w ~ I is defined by

DEF. 2.3. We say that the admissible f rame 99 for EP is (a f f ine)
inertiat in case, for some ~&#x3E;0y

(7) Here (and in the sequel) R and e.g. R4 are used in an absolute way,
as well as all mathematical notions in purely mathematic contexts. However
in the assertion «the 99-velocity of the particle lVl, at the instant t, is an

(element of) R3 », R3 is used in an extensional way. Strictly speaking we
ought to use (R3)(e) But as is explained in, e.g., [2], pp. 86-94, or [3], p. 293,
more at length, this is an instance of a widespread double use of names. In
textbooks of logic other similar multiple uses are often mentioned in connec-
tion with, e.g., « for » or c if ..., then ... ».

(8) Greek [Latin] indeces are meant to run from 0 [1] to 3. Furthermore

Einstein’s convention is used (
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(a) if M is (any) isolated particle, then (i) (necessarily) its 99-ve-
locity is constant-i.e. the 99-velocities of W M and 8’ coincide
whenever 8, 8’ E W M-and (ii) Iv C f urthermore

(b) if x E R4, v E ll~3, and Iv  then for some particle M it
is phys. poss. to = y1 ( x) and to have v as p-vetocity-see f tn. 7.

The namber B that fulfils (a) and (b) is unique. We shall denote
it by 

POST. 2.5. There exists an (af f ine) inertial f rame.

Then, by Def. 2.3, infinitely many inertial frames exist. More

detailed results on this subject are afforded by Theor. 8.2.

3. The natural affine structure of space time. Linearity of the trans-
formations between affine inertial frames.

We consider two inertial frames q and 1jJ:

A line r in EP represented in q by equations in the parameter A,
of the form

will be called a (space-time) 99-straight line. Among these are the
PWIS. Equations (3.2) represent a PWI in 99 iff

where [0, n/2] is the angle between the line r and the 99-axis
x° = var. , or time 99-axis.

THEOR. 3.1. and V are (affine) inertial f rames, the 99-straight
lines are the y-straight lines.

Indeed let us consider an inertial frame 99, a 99-straight line s out-
side PWI, hence with (0, = nl2 if (ltp= 0 ), and three points
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Ai to A on s, their indices being increasing towards right-see fig. 1.
We can choose the points P and Q with

and so far from A2 and one another, that

(i) (3.3)2 holds when r coincides with any among the q-straight
lines A, P and AhQ (h = 1, 2, 3), and

(ii) for some (small) s &#x3E; 0, (3.3)2 holds for any q-straight line r
in the plane (s, P) (= (s, Q)), whose (cartesian) (p-distance from P
and Q is  e-where the 99-distance is the one that has a cartesian
expression in 99-coordinates.

We can now consider a 99-straight line Ph (= Ph+3) [qh (= q~+3)]
through Ah , I near ( h = 1, 2, 3) in such a way that

(iii) the intersection points

fail to be on a same straight line, and

(iv) their p-distances from P[Q] are less than 8 (9).

The triangles PIP2Ps and are homological with respect to
i.e. in the affine space (based on the set) EP for wich 99 is an
isomorphism with R4-. . Hence the p-straight lines PQ, (h = 1, 2, 3)
pass through a same point 0. Furthermore, by (ii) and (iv), (3.3)2
holds if r is any of them. Hence the 99-straight line PhQh is in PWI
as well as the p-straight lines and Qh+IQn,+2 (h = 1, 2, 3).
Furthermore the frame y is assumed to be inertial. Then by Def. 2.3
the above p-straight lines are also 1p-straight lines. Thus the above

(9) We set pi = A1 P and hence P2 = P by (3.4). Then we
choose P3 on PI with &#x3E; qo(P)-hence P3 is above P. In addition we
assume that A2p I Al A2 and A. is at the right of Then P3 is at the

right of P. Setting P2 = A2p3, P2 is at the right of P and intersects P3 in a
point P, ( ~ P2) which tends to P when Hence we can choose P3
with |P3P|  6 and  s.

Let us construct the triangle QIQ2Q3 in the analogous way, but inter-

changing the roles of A1 and A3, so that q2 passes at the left of Q (and P) ;
hence it is not parallel with p2 . Obviously pi intersects qi (i = 1, 2, 3).



172

triangle are homological also with respect to y. Hence the intersec-
tions .Ah = (ph, qh) (h = 1, 2, 3) of their homologous sides belong to a
same y-straight line s,~(= A1A2).

By keeping A1 and ~.2 fixed and having ~3 describe s - A2},
one sees that s C sIp. By interchanging the roles of q and y, one shows
that so that the arbitrary q-straight line s outside PWI is a
y-straight line.

In addition the PWIs are both ~- and y-straight lines by Def. 2.3.
Hence the thesis holds. q.e.d.

By Theor 3.1, any 99-straight line, were 99 is an inertial frame
in EP, can be said to be a straight line o f EP. Thus EP can be regarded
as a 4-dimensional affine space, in which inertial frames are special
affine frames in EP (in that their time coordinates increase towards
future). Therefore we have the following

THEOR. 3.2. The transformations and 1jJoq;-1 between any two
inertial frames (p and ip are linear :

where xz, and ~°‘ are real constants, and

4. Proof of the disjunction : classical case or relativistic case. Velocity
transformations.

We shall say that an r-subspace of EP (i.e. an r-dimensional one)
is space-like if no PWI belongs to it.

For any inertial frame 92, every subspace of EP is filled with

92-straight lines, so that it can be regarded as a 99-subspace. By the
assertion including (3.3)2’ we obviously have the following

TREOR. 4.1. I f 99 is an inertial (a f f ine) f rame o f EP, then (a) to (d)
below hold.

(a) A 3-subspace of EP is space-like i f f its normal forms with
the time 99-axis an angle y, for which tg 

(b) ~~ = 0 i f f the space-like 3-subspaces of EP are orthogonal to

the time 99-axis;
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(c) pg, = 0 iff the above subspaces are parallel with one another;

(d) = 0 iff exactly one space-like 3-subspace of EP
passes through ~.

By thesis (e) and (d) of Theor 4.1 we have the theorem below,
which substantially says that space-time is in harmony with either
classical physics or special relativity.

THEOR. 4.2. W e have Pq;= 0 either for every inertial frame 99 or for none.

The disjuncts above will be called just the classical and relativistic
cases.

Note that by Post. 2.5 the alternatives asserted by Theor 4.2 can
be meant in an exclusive way; and that Post. 2.5 is essential to reach
this goal.

Now let us consider the velocities vr = dxr jdxO and wr = of

any mass (or moving) point with respect to the inertial frames 99 and 1p,
mutually related by (3.5). Then

By the linearity of the transformations (3.5), the 4-dimensional
vector space EP’= {8’2013 8: 8, (over the real field) naturally
associated with EP, in connection with the inertial frame q, is inde-
pendent of g~. Hence a unique topology on EP’ is compatible with
the continuity of the vector operations. This naturally induces a
unique topology on EP. Incidentally this is the q-transform
of the natural topology on R4 for some inertial frame ~9; and it is

independent of q in harmony with the continuity of the transforma-
tions (3.5).

5. Inertial affine spaces and inertial instants.

It is not unusual to regard the PWIs as inertial (geometrical) points.
Let Z, be the set formed by those PWIs that have zero q-velocity-see
(2.2). Hence every point has a unique representation in q,
of the kind (3.2 ), with ar = 0 = b° and a° = 1. Hence we can re-

gard bl to b3 as the affine co-ordinates of ’ill induced by p. Thus Ep
receives the structure of an affine space and can be called an inertial

affine space.
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By (3.5) the q-velocity of the point P~,(~r) of with co-ordinates

$r in 1jJ, is

thus it is a constant, independent of ~r and any time co-ordinate.
Hence the motion of 2~ with respect to cp is a uniform rectilinear

translation; therefore {rry,y} (E R3) will be called the translation q-
velocity of 1fJ.

We now assume 1§~,, = 0, so that 0=~=~; hence by (3.5-6),
(4.1) becomes

Then in the classical case (fJtp = 0) the relations (3. ~ ) between T
and y hold with

Indeed, if for some 0 holded, then (4.1)1 would imply
]v[ ==cx3 for ws = - 6-x’lx’ (because (5.2), yields 0 for some r).
This completes the proof of (5.3),.,. By interchanging the roles of p
and V we obtain (~.3)3_4 . Since ~~ = (3.~ ) by (~.3)1_4
we obtain (5.3),-,.

Now we consider the relativistic case 0 for every inertial

frame cp [Theor 4.2]). Then the analytic transformation (5.2), of z,vs

into vr is a diffeomorphism (bicontinuous bijection) of the open sphere
Iwl  onto~ the open sphere lvl  Thus it is bounded, and
hence it can be extended to a diffeomorphism between the closures
of these spheres. Hence Iwl = iff lvl = In addition we set

~,vs = ~ ~a/~,~ (~,~ ~ 0 ) . Then (since xo ~ 0 ) (5.2) yields ( 1~)

(10) Indeed (5.2) for with By =1= 0 implies

Since Hence (a)2 yields (5.4)1.
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Hence ( 5. 2 ) 1, is a nonsingular homographic transformation, so that
where the matrix is orthogonal, =1, the

matrix (ds) is symmetric, and it has positive proper values. Further-

more, in our case = which easily implies 
Then

Let us now note that conditions (5.3) hold also in the relativistic
case, because so does (5.4)2. Then, by (5.2), for 0 we have

v = 0, 7 iff z.v = 0. Hence, f or z~,~ = 0 the inertial spaces E,, and ~~
coincide as sets. T hey also coincide as affine spaces because by (5.3)11.2
the transformation (3.5)1 becomes

where and .7vl are constants and 0 ~ II x:ll.
If g is an inertial frame and we shall say that

is a p-instant of absciss xO. Obviously 99-instants constitute a parti-
tion of EP. Let Inst, be their class. Then we have Inst, = Inst?p
(besides ~~ _ in case z~,,~ = 0. Hence 99-instants can be called

instants relative to the inertial space E = or 

fi. Characterizations of the classical and relativistic cases.

THEOR. 6.1. (a) we have the classical case as soon as (5.6)2 holds
for a particular choice of the inertial f rames qJ and 1jJ with -rr , =1= 0.

(b) We have the classical case if and only if (5.6)2 holds for ar-
bitrary inertial affine f rames g~ and 1jJ, so that for these frames we have

(c) We have the classical case, iff the set of -y-instants is indepen-
dent of the inertial space E.
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Indeed assume that (5.6)2 and Ptp&#x3E; 0 hold for the inertial frames
and 1p, with T~y~=0. This inequality implies vr# 0 for In

addition the comparison of (5.6)2 with ( 3. 5 ) 1 yields x $ = 0, so that
(4.1)i becomes (6.1)3. Then we must have xa0 # 0 for some a e (1, 2, 3},
so that, when the vector w8 describes (in R3) the open sphere of radius

and center at the origin 0, vr describes an ellipsoid which cannot
coincide with the sphere of center 0 and radius But just this
must happen for inertial frame cp, by Def. 2.3. Hence the assumption

0 is incompatible with (6.6)2. Thus part (a) holds.
Now let us note that there exist two inertial g~ with

T~ =7~0. Indeed one of them, say cp, exists by Post. 2.5; and for

Bp = 0 [Bp&#x3E; 0] the product 1p = of p with any Galilei [Lorentz]
transformation T is another inertial frame by Def. 2.3.

The italicized assertion above and thesis (a) imply the part « only
if » of thesis ( b ) . In order to prove the remaining part («if ») of (b) we
assume hence every W E R3 is the 1p-velocity of some
inertial point. If ~5~0 holded for some then the de-

nominator of the fraction in (4.1) would vanish when 
and ws = 0 for s # a. But Iv  00; hence the numerator of the same

fraction ought to vanish, which implies (r = 1, 2, 3).
Thus the 1st and (a + l)-th colomns of the matrix (xp) should be
proportional in contrast to (3.6)1. Then (5.3)1-2 must hold also for

i~,~ ~ 0 . Then the transformation ( 3. 5 ) 1 reduces to ( 6.1 ) 1.2 and ( 4.1 )
simplifies into (6.1)3. Thus thesis (b) is completely proved.

Obviously (6.1)1-2 hold for all inertial frames p and 1p, iff the
2;-instants are independent of the inertial space 2;. Hence thesis (b)
implies thesis (c). q.e.d.

THEOR. 6.2. (a) [(b)] The relativistic case holds if f, for some 
choice o f the inertial g~ with z~,W ~ 0, in the corresponding
trans f ormation formula (3. ~ ) 1 we have x$ ~ 0 ( f or some s) .

(c) [(d)] The relativistic case holds iff, f or some couple
(~, ~’) o f distinct inertial spaces, either some differs f rom
every 2;’-instant or

(A) every differs from every I’ -instant.

PROOF. Up to the disjunct (A), parts (a) and (c) follow from

parts (b) and (c) of Theor 6.1; furthermore by part (a) of Theor 6.1
one easily checks parts (b) and (d) of Theor 6.2.

That we can also insert (A) is well known on the basis of special
Lorentz transformations. q.e.d.
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7. On the relativistic case.

We assume

Furthermore, besides (3.5), we consider a (mathematical) Lorentz
transformation ~1: z = z(x), that is the product Eooe) of the

following two:

where the (properly) orthogonal matrix is such that in the frame

aoq;), or (y), the vector rl has the components (T, 0, 0). Accord-

ing to Def. 2.3 aq is obviously inertial, and so is also the frame
or (z).

By (7.2-3) ";;,9’ = ";;,9" where X = C1q; is the frame (z), so that the
geometrical points of jLy and Ex coincide. Hence in the transforma-
tion i.e.

between to $3 are functions of zi to z3 and conversely;
hence 0, 1 i.e. 0. Let zrB and Y’ i be the respective analogues
for the mutually joined frames X and V, of the quantities x’ and d,
which occur in (5.5) and refer to the frames and assumed there
to be mutually joined. Then the analogues of (5.5-6) hold for the
transformation i.e. (7.4). Hence
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where the (added) equality (7.5)3 holds because f3q; is left unaltered by
both transformations (7.2-3). By (7.5-6)

where y is a (proper) spatial rotation, is the (possibly improper)
spatial homothety of parameter is the space-time homo-
thety 0 p and T is the space time translation of vector - ~. Hence,
in particular,

Furthermore we know that (7.2-3); hence

because by (7.7) and

Since T’ is a space time transformation (as well as T ), we have
proved the following

THEOR. 7.1. In the relativistic case the transformation 1jJq;-1 between
any two (affine) inertial frames 99 and 1jJ is the product of a general
Lorentz transformation L (relating frames connected with the same units
for length and time), a spatial homothety Q (which is improper i f f the

frames q; and 1p have opposite orientations), a space time homothety (Z~)-l,
and a space time translation T’.

Furthermore Q is the identity [the spatial inversion with respect to

the origin] iff flg, and q; and 1jJ have coinciding [opposite] orien-
tations.

Hence in the relativistic case the transformations considered
above form a subgroup of the group of affine transformations, which
is proper (in harmony with the role of Pcp in Def. 2.3, and with the
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requirement that the time coordinate must increase towards future).
A proper subgroup of it is afforded by the transformations (7.9) with
Q = ::1:1 [Q = I] and hence with fJ’P; and in this case p and y
can be said to belong to the same Römer class [oriented Römer class].
If 1, then those among the preceding transf ormations, for which

1~ also form a group.

DEF. 7.1. (a) Let g~ be inertial f rames ; and for all {}, {}’, ~1,
and B2 with

assume that the (Euclidian) 99-distance, ~~(~1, ~2) assigned to 81 and 82
is A times ~W(~1, 82). Then we say that Å is the ratio of the space units
of 1jJ and q :

( b ) I f in addition the ratio a = of the limit speeds in 99 and 1jJ
equals 2/T, we say that 7: is the ratio of the time units of 1jJ and 99.

(c) I f 2 = 7: = 1, we say that the units o f 99 and 1jJ coincide.

By means of Theor 7.1 and the theory of (special) Lorentz trans-
formations developed by ordinary textbooks on relativity, it is easy
to prove the f ollowing

THEOR. 7.2. and 1jJ are inertial f rames, then in the relativistic
case the ratios 2 and 7: above-c.f. Def. 7.1 (a), (b)-exist. Furthermore
if ET = so that (5.5-6) hold, then we have

so that an oriented time metric and a spatial metric are determined on
E,g, up to constant factors.

8. Comparison of the classical and relativistic cases. Additional char-

acterization of them.

In the classical and relativistic cases the inertial (affine) frames
determine, y up to a constant factor, y the (oriented) space time metric
on every inertial space 27y but only in the latter case is the spatial
metric on E determined up to such a factor.
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In the classical case, for every ellipsoid 8 c R3, centered at the
origin, two mutually joined inertial frames 99 and y can be choosen
for which is a sphere in R3, centered at the origin and with
radius 1. In the same case (and only in it), in order to characterize
the physically isotropic inertial frames (among the inertial affine

frames), i.e. the Galilean frames, it is necessary to use something
outside kinematics, such as dynamic interactions.

Among the interactions above forces at a distance between mass
points can be choosen, as is done in [1]. However one of the aims
of the present work is an axiomatic treatment of the part of kine-
matics, wich is common to classical physics and special relativity.
Therefore it is preferable to extend it by characterizing Galilean frames
in classical physics by means of internal forces. Incidentally it is

also natural to consider rigid bodies; but in special relativity they
raise difficulties concerning kinematics.

In special relativity Lorentz transformations are often arrived at
by postulating the invariance of the speed c of light in vacuum under
transformations between Galilean frames relative to the same units.

Now we characterize the relativistic case, within our preceding
purely kinematic theory, as the one in which every inertial frame 4p
can be associated with a scalar speed c 91 in such a way that, if 99 and 1p
are such frames, every vector velocity v in q, with |v| = cp, is trans-
formed by (4.1 )2 into a y-velocity w, with = Cy (where Cy is in-
dependent of v’s direction).

THEOR. 8.1 (a) We have the relativistic case i f f for every inertial
exists, such that, if 99 and V are such f rames, any

moving point (possibly non-material such as a photon) has the scalar
velocity c~ with respect to 99 whenever ctp is its scalar velocity with respect
to 1f’ .

(b) In the relativistic case c~ = for every inertial f rame cp.

Indeed let the relativistic case hold. Then from ordinary text-
books we know that the condition in 99 and y considered in (a), holds
for p and any frame y’ joined to y and related with 99 by means of a
Lorentz transformation. By Theor 7.2 the ratio of the velocity units
in 99 and 1p’ is crp/c,,= = Hence a p-velocity v with Ivl =
- becomes a y-velocity w with Iwl = i.e. (b) holds, as well
as the « only if » part of (a).

Now let the condition on 99 and y considered in (a) hold for all
inertial frames; and as an hypothesis for reduction ad absurdum as-
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sume = 0. We can chose 9? and y~ related by (6.1 ) with
x$ = as, xo = 1, and where T &#x3E; 0. Then (6.1)3 implies vr =
= for w"= +ebs 1 in contrast to the afore-mentioned condition
on lp and "p. Hence the relativistic case holds by Theor 4.2. q.e.d.

THEOR. 8.2. (a) [(b)] .Assume that the classical [relativistic] case

holds, and that g7 is an inertial (affine) frame. Then

(i) 1Jl is another such f rame i f , and only i f , it is related to rp by
any among the C&#x3E;017 [cxJ15] transformations of the form (6.1)1., 
where L = yw (7.9)2-is a general Lorentz transformation relative
to the units of T, Q is a spatial homothety, z’ 0 is a space-time homothety,
and T’ is a space time translation] ( 11 ) Furthermore

(ii) 1jJ is joined to i f f y~ is related to rp by any of the 0014 [0012]
trans f ormations of the form ( 5 . 6 ) [ ( ~ .6 ) with xe = where (as ) is

orthogonal]. Thus

(iii) the inertial spaces ̂ are 003: f or every T E R3 with IT C 
there is one inertial space E ( _ ~~), whose 99-translation velocity is "t’

( -rr = z~,~) ; and, conversely, every inertial space has a 9? -translation
velocity T, with C 

Indeed, the « only if part of thesis (i) in part (a) [(b)] is included
in Theor 6.1 (a) [Theor 7.1].

In order to deduce the « if )) part of (i), we assume that 1jJ is re-
lated to q by any of the transformations considered in thesis (i) of
part (a) [(b)]; and we set = 0 = 0-see the decom-

position (7.9) and (7.8),.r-]. Then, for every conceivable world line iD
in EP,

(a) ’ill has a constant 1jJ-velooity w with  llflv iff

(fl) ‘LU has a constant 99-velocity v with Iv C 

(11) The general Lorentz transformation L = which relates q; with,
say, 1p’ = Lop, can be determined by giving, first, the g?-translation velocity r
of ~~.. If ’r =1= 0, r determines the rotation « around the origine 0 of 1p, that
leaves the plane (0, cl, T) fixed, where c, is the unit vector of the q-axis
xr = var, and turns cl, into vers r. For r = 0 set « = I. The same rota-
tion turns c, into c; (r = 1, 2, 3). The special Lorentz transformation £ is
determined by q, ex, and r. Since 4p is given, r suffices. Since the spatial rota-
tion y is characterized by 6 scalars, L depends on 9 real parameters; other 6
such parameters are needed to determine S2, zo, and T’. Thus the transforma-
tions of the form are 
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Furthermore, since the fame 99 is inertial, by Def. 2.3, holds

iff ‘LU E PWI-see Def. 2.1 (b). Then ’ill E PWI iff (a) holds, so that,
by Def. 2.3, y~ is an inertial frame. This completes the deduction of
thesis (i).

Thesis (ii) is checked by inspection of (5.6). Then the first part
of thesis (iii) follows easily, in order to prove the « converse » part
of (iii) let E be an inertial space, so that, by definition, E = Zy for
some inertial frame 1p. Then its translation 99-velocity r exists-see
below is the q-velocity of some i0 e 27~,. Hence ‘1,U E PWI,
so that by Def. 2.3 (a), lrl  q.e.d.
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