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Abstract. We study a process calculus which combines both nondeter-
ministic and probabilistic behavior in the style of Segala and Lynch’s
probabilistic automata. We consider various strong and weak behavioral
equivalences, and we provide complete axiomatizations for finite-state
processes, restricted to guarded definitions in case of the weak equiva-
lences. We conjecture that in the general case of unguarded recursion the
“natural” weak equivalences are undecidable.

This is the first work, to our knowledge, that provides a complete
axiomatization for weak equivalences in the presence of recursion and
both nondeterministic and probabilistic choice.

1 Introduction

The last decade has witnessed increasing interest in the area of formal methods
for the specification and analysis of probabilistic systems [11, 3, 15, 6]. In [16]
van Glabbeek et al. classified probabilistic models into reactive, generative and
stratified. In reactive models, each labeled transition is associated with a prob-
ability, and for each state the sum of the probabilities with the same label is
1. Generative models differ from reactive ones in that for each state the sum of
the probabilities of all the outgoing transitions is 1. Stratified models have more
structure and for each state either there is exactly one outgoing labeled transition
or there are only unlabeled transitions and the sum of their probabilities is 1.

In [11] Segala pointed out that neither reactive nor generative nor stratified
models capture real nondeterminism, an essential notion for modeling scheduling
freedom, implementation freedom, the external environment and incomplete in-
formation. He then introduced a model, the probabilistic automata (PA), where
both probability and nondeterminism are taken into account. Probabilistic choice
is expressed by the notion of transition, which, in PA, leads to a probabilistic
distribution over pairs (action, state) and deadlock. Nondeterministic choice, on
the other hand, is expressed by the possibility of choosing different transitions.
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Segala proposed also a simplified version of PA called simple probabilistic au-
tomata (SPA), which are like ordinary automata except that a labeled transition
leads to a probabilistic distribution over a set of states instead of a single state.

Figure 1 exemplifies the probabilistic models discussed above. In models
where both probability and nondeterminism are present, like those of diagrams
(4) and (5), a transition is usually represented as a bundle of arrows linked by a
small arc. [13] provides a detailed comparison between the various models, and
argues that PA subsume all other models above except for the stratified ones.
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Fig. 1. Probabilistic models

In this paper we are interested in investigating axiom systems for a pro-
cess calculus based on PA, in the sense that the operational semantics of each
expression of the language is a probabilistic automaton1. Axiom systems are im-
portant both at the theoretical level, as they help gaining insight of the calculus
and establishing its foundations, and at the practical level, as tools for system
specification and verification. Our calculus is basically a probabilistic version of
the calculus used by Milner to express finite-state behaviors [8, 10].

We shall consider the two strong and the weak behavioral equivalences com-
mon in literature, plus one novel notion of weak equivalence having the advantage
of being sensitive to divergency. For recursion-free expressions we provide com-
plete axiomatizations of all the four equivalences. For the strong equivalences
we also give complete axiomatizations for all expressions, while for the weak
equivalences we achieve this result only for guarded expressions.

The reason why we are interested in studying a model which expresses both
nondeterministic and probabilistic behavior, and an equivalence sensitive to di-

1 Except for the case of deadlock, which is treated slightly differently: following the
tradition of process calculi, in our case deadlock is a state, while in PA it is one of
the possible components of a transition.
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vergency, is that one of the long-term goals of this line of research is to develop a
theory which will allow us to reason about probabilistic algorithms used in dis-
tributed computing. In that domain it is important to ensure that an algorithm
will work under any scheduler, and under other unknown or uncontrollable fac-
tors. The nondeterministic component of the calculus allows coping with these
conditions in a uniform and elegant way. Furthermore, in many distributed com-
puting applications it is important to ensure livelock-freedom (progress), and
therefore we will need a semantics which does not simply ignore divergencies.

We end this section with a discussion about some related work. In [8] and [10]
Milner gave complete axiomatizations for strong bisimulation and observational
equivalence, respectively, for a core CCS [9]. These two papers serve as our start-
ing point: in several completeness proofs that involve recursion we adopt Milner’s
equational characterization theorem and unique solution theorem. In Section 4
and Section 5.2 we extend [8] and [10] (for guarded expressions) respectively, to
the setting of probabilistic process algebra.

In [14] Stark and Smolka gave a probabilistic version of the results of [8].
So, our paper extends [14] in that we consider also nondeterminism. Note that
when nondeterministic choice is added, Stark and Smolka’s technique of proving
soundness of axioms is no longer usable. The same remark applies also to [1]
which follows the approach of [14] but uses some axioms from iteration alge-
bra to characterize recursion. In contrast, our probabilistic version of “bisim-
ulation up to” technique works well when combined with the usual transition
induction.

In [5] Bandini and Segala axiomatized both strong and weak behavioral equiv-
alences for process calculi corresponding to SPA and to an alternated-model
version of SPA. As their process calculus with non-alternating semantics corre-
sponds to SPA, our results in Section 6 can be regarded as an extension of that
work to PA.

For probabilistic process algebra of ACP-style, several complete axiom sys-
tems have appeared in the literature. However, in each of the systems either
weak bisimulation is not investigated [4, 2] or nondeterministic choice is prohib-
ited [4, 3].

2 Probabilistic Process Calculus

We begin with some preliminary notations. Let S be a set. A function η : S �→
[0, 1] is called a discrete probability distribution, or distribution for short, on
S if the support of η, defined as spt(η) = {x ∈ S | η(x) > 0}, is finite or
countably infinite and

∑
x∈S η(x) = 1. If η is a distribution with finite support

and V ⊆ spt(η) we use the set {(si : η(si))}si∈V to enumerate the probability
associated with each element of V . To manipulate the set we introduce the
operator � defined as follows.
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{(si : pi)}i∈I � {(s : p)} ={{(si : pi)}i∈I\j ∪ {sj : (pj + p)} if s = sj for some j ∈ I
{(si : pi)}i∈I ∪ {(s : p)} otherwise.

{(si : pi)}i∈I � {(tj : pj)}j∈1..n =
({(si : pi)}i∈I � {(t1 : p1)}) � {(tj : pj)}j∈2..n

Given some distributions η1, ..., ηn on S and some real numbers r1, ..., rn ∈ [0, 1]
with

∑
i∈1..n ri = 1, we define the convex combination r1η1+...+rnηn of η1, ..., ηn

to be the distribution η such that η(s) =
∑

i∈1..n riηi(s), for each s ∈ S.
We use a countable set of variables, Var = {X, Y, ...}, and a countable set of

atomic actions, Act = {a, b, ...}. Given a special action τ , we let u, v, ... range
over the set Actτ = Act ∪ {τ}, and let α, β, ... range over the set Var ∪ Actτ .
The class of expressions E is defined by the following syntax:

E, F ::=
⊕

i∈1..n

piui.Ei | ∑
i∈1..m

Ei | X | µXE

Here
⊕

i∈1..n piui.Ei stands for a probabilistic choice operator, where the pi’s
represent positive probabilities, i.e., they satisfy pi ∈ (0, 1] and

∑
i∈1..n pi = 1.

When n = 0 we abbreviate the probabilistic choice as 0; when n = 1 we abbre-
viate it as u1.E1. Sometimes we are interested in certain branches of the proba-
bilistic choice; in this case we write

⊕
i∈1..n piui.Ei as p1u1.E1 ⊕ · · · ⊕ pnun.En

or (
⊕

i∈1..(n−1) piui.Ei) ⊕ pnun.En where
⊕

i∈1..(n−1) piui.Ei abbreviates (with
a slight abuse of notation) p1u1.E1 ⊕ · · · ⊕ pn−1un−1.En−1. The construction∑

i∈1..m Ei stands for nondeterministic choice, and occasionally we may write
it as E1 + ... + Em. The notation µX stands for a recursion which binds the
variable X. We shall use fv(E) for the set of free variables (i.e., not bound by
any µX) in E. As usual we identify expressions which differ only by a change
of bound variables. We shall write E{F/X} for the result of substituting F for
each occurrence of X in E, renaming bound variables if necessary.

Definition 1. The variable X is weakly guarded (resp. guarded) in E if every
free occurrence of X in E occurs within some subexpression u.F (resp. a.F ),
otherwise X is weakly unguarded (resp. unguarded) in E.

The operational semantics of an expression E is defined as a probabilistic
automaton whose states are the expressions reachable from E and the transition
relation is defined by the axioms and inference rules in Table 1, where E → η
describes a transition that leaves from E and leads to a distribution η over
(Var ∪ Actτ ) × E . We shall use ϑ(X) for the special distribution {(X,0 : 1)}. It
is evident that E → ϑ(X) iff X is weakly unguarded in E.

The behavior of each expression can be visualized by a transition graph. For
instance, the expression ( 1

2a ⊕ 1
2b) + ( 1

3a ⊕ 2
3c) + ( 1

2b ⊕ 1
2c) exhibits the behavior

drawn in diagram (5) of Figure 1.
As in [5], we define the notion of combined transition as follows: E →c η if

there exists a collection {ηi, ri}i∈1..n of distributions and probabilities such that∑
i∈1..n ri = 1, η = r1η1 + ... + rnηn and E → ηi, for each i ∈ 1..n.
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Table 1. Strong transitions

var X → ϑ(X) psum
⊕

i∈1..n piui.Ei → ⊎
i∈1..n{(ui, Ei : pi)}

rec
E{µXE/X} → η

µXE → η
nsum

Ej → η
∑

i∈1..m Ei → η
for some j ∈ 1..m

We now introduce the notion of weak transitions, which generalizes the notion
of finitary weak transitions in SPA [15] to the setting of PA. First we discuss
the intuition behind it. Given an expression E, if we unfold its transition graph,
we get a finitely branching tree. By cutting away all but one alternative in
case of several nondeterministic candidates, we are left with a subtree with only
probabilistic branches. A weak transition of E is a finite subtree of this kind,
called weak transition tree, such that in any path from the root to a leaf there is
at most one visible action. For example, let E be the expression µX( 1

2a⊕ 1
2τ.X).

It is represented by the transition graph displayed in Diagram (1) of Figure 2.
After one unfolding, we get Diagram (2) which represents the weak transition
E ⇒ η, where η = {(a,0 : 3

4 ), (τ, E : 1
4 )}.
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0
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0

Fig. 2. A weak transition

Formally, weak transitions are defined by the rules in Table 2. Rule wea1
says that a weak transition tree starts from a bundle of labelled arrows derived
from a strong transition. The meaning of Rule wea2 is as follows. Given two
expressions E, F and their weak transition trees tr(E), tr(F ), if F is a leaf of
tr(E) and there is no visible action in tr(F ), then we can extend tr(E) with
tr(F ) at node F . If Fj is a leaf of tr(F ) then the probability of reaching Fj

from E is pqj , where p and qj are the probabilities of reaching F from E, and
Fj from F , respectively. Rule wea3 is similar to Rule wea2, with the difference
that we can have visible actions in tr(F ), but not in the path from E to F . Rule
wea4 allows to construct weak transitions to unguarded variables. Note that if
E ⇒ ϑ(X) then X is unguarded in E.
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Table 2. Weak transitions

wea1
E → η

E ⇒ η

wea2
E ⇒ {(ui, Ei : pi)}i � {(u, F : p)} F ⇒ {(τ, Fj : qj)}j

E ⇒ {(ui, Ei : pi)}i � {(u, Fj : pqj)}j

wea3
E ⇒ {(ui, Ei : pi)}i � {(τ, F : p)} F ⇒ {(vj , Fj : qj)}j

E ⇒ {(ui, Ei : pi)}i � {(vj , Fj : pqj)}j

wea4
E ⇒ {(τ, Ei : pi)}i ∀i : Ei ⇒ ϑ(X)

E ⇒ ϑ(X)

For any expression E, we use δ(E) for the unique distribution {(τ, E : 1)},
called the virtual distribution of E. For any expression E, we introduce a special
weak transition, called virtual transition, denoted by E

ε⇒ δ(E). We also define
a weak combined transition: E

ε⇒c η if there exists a collection {ηi, ri}i∈1..n of
distributions and probabilities such that

∑
i∈1..n ri = 1, η = r1η1 + ...+rnηn and

for each i ∈ 1..n, either E ⇒ ηi or E
ε⇒ ηi. We write E ⇒c η if every component

is a “normal” (i.e., non-virtual) weak transition, namely, E ⇒ ηi for all i ≤ n.

3 Behavioral Equivalences

In this section we define the behavioral equivalences that we mentioned in
the introduction, namely, strong bisimulation, strong probabilistic bisimulation,
divergency-sensitive equivalence and observational equivalence. We also intro-
duce a probabilistic version of “bisimulation up to” technique to show some
interesting properties of the behavioral equivalences.

3.1 Strong and Weak Equivalences

To define behavioral equivalences in probabilistic process algebra, it is customary
to consider equivalence of distributions with respect to equivalence relations on
processes. If η is a distribution on S × T , s ∈ S and V ⊆ T , we write η(s, V )
for

∑
t∈V η(s, t). We lift an equivalence relation on E to a relation between

distributions over (Var ∪ Actτ ) × E in the following way.

Definition 2. Given two distributions η1 and η2 over (Var ∪Actτ ) × E, we say
that they are equivalent w.r.t. an equivalence relation R on E, written η1 ≡R η2,
if

∀α ∈ Var ∪ Actτ ,∀V ∈ E/R : η1(α, V ) = η2(α, V ).

Strong bisimulation is defined by requiring equivalence of distributions at
every step. Because of the way equivalence of distributions is defined, we need
to restrict to bisimulations which are equivalence relations.
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Definition 3. An equivalence relation R ⊆ E × E is a strong bisimulation if
E R F implies:

– whenever E → η1, there exists η2 such that F → η2 and η1 ≡R η2.

We write E ∼ F if there exists a strong bisimulation R s.t. E R F .

If we allow a strong transition to be matched by a strong combined transition,
then we get a relation slightly weaker than strong bisimulation.

Definition 4. An equivalence relation R ⊆ E×E is a strong probabilistic bisim-
ulation if E R F implies:

– whenever E → η1, there exists η2 such that F →c η2 and η1 ≡R η2.

E ∼c F if there exists a strong probabilistic bisimulation R s.t. E R F .

We now consider the case of the weak bisimulation. The definition of weak
bisimulation for PA is not at all straightforward. In fact, the “natural” weak
version of Definition 3 would give rise to a relation which is not transitive.
Therefore we only define the weak variant of Definition 4.

Definition 5. An equivalence relation R ⊆ E ×E is a weak probabilistic bisim-
ulation if E R F implies:

– whenever E → η1, there exists η2 such that F
ε⇒c η2 and η1 ≡R η2.

E ≈ F if there exists a weak probabilistic bisimulation R s.t. E R F .

As usual, observational equivalence is defined in terms of weak probabilistic
bisimulation.

Definition 6. Two expressions E and F are observationally equivalent, written
E � F , if

1. whenever E → η1, there exists η2 such that F ⇒c η2 and η1 ≡≈ η2.
2. whenever F → η2, there exists η1 such that E ⇒c η1 and η1 ≡≈ η2.

Often observational equivalence is criticised for being insensitive to diver-
gency. So we introduce a variant which has not this shortcoming.

Definition 7. An equivalence relation R ⊆ E × E is divergency-sensitive if
E R F implies:

– whenever E → η1, there exists η2 such that F ⇒c η2 and η1 ≡R η2.

E � F if there exists a divergency-sensitive equivalence R s.t. E R F .

It is easy to see that � lies between ∼c and �. For example, we have that
µX(τ.X + a) and τ.a are related by � but not by � (this shows also that � is
sensitive to divergency), while τ.a and τ.a + a are related by � but not by ∼c.

One can check that all the relations defined above are indeed equivalence
relations and we have the inclusion ordering: ∼ � ∼c � � � � � ≈.
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3.2 Probabilistic “Bisimulation up to” Technique

In the classical process algebra, the conventional approach to show E ∼ F , for
some expressions E, F , is to construct a binary relation R which includes the
pair (E, F ), and then to check that R is a bisimulation. This approach can
still be used in probabilistic process algebra, but things are more complicated
because of the extra requirement that R must be an equivalence relation. For
example we cannot use some standard set-theoretic operators to construct R,
because, even if R1 and R2 are equivalences, R1R2 and R1 ∪ R2 may not be
equivalences.

To avoid the restrictive condition and at the same time to reduce the size
of the relation R, we introduce the probabilistic version of “bisimulation up to”
technique.

Definition 8. A binary relation R is a strong bisimulation up to ∼ if E R F
implies:

1. whenever E → η1, there exists η2 such that F → η2 and η1 ≡R∼ η2.
2. whenever F → η2, there exists η1 such that E → η1 and η1 ≡R∼ η2.

where R∼ stands for the relation (R ∪ ∼)∗.

A strong bisimulation up to ∼ is not necessarily an equivalence relation. It
is just an ordinary binary relation included in ∼.

Proposition 1. If R is a strong bisimulation up to ∼, then R ⊆∼.

Similarly we can define strong probabilistic bisimulation up to ∼c, weak prob-
abilistic bisimulation up to ≈, etc. (some care is needed when dealing with weak
equivalences). The “bisimulation up to” technique works well with Milner’s tran-
sition induction technique [9], and by combining them we obtain the following
results.

Proposition 2 (Properties of ∼ and ∼c).

1. ∼ is a congruence relation.
2. µXE ∼ E{µXE/X}.
3. µX(E + X) ∼ µXE.
4. If E ∼ F{E/X} and X weakly guarded in F , then E ∼ µXF .

Properties 1-4 are also valid for ∼c.

Proposition 3 (Properties of � and �).

1. � is a congruence relation.
2. If τ.E � τ.E + F and τ.F � τ.F + E then τ.E � τ.F .
3. If E � F{E/X} and X is guarded in F then E � µXF .

Properties 1-3 hold for � as well.
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4 Axiomatizations for ll Expressions

In this section we provide sound and complete axiomatizations for two strong
behavioral equivalences: ∼ and ∼c. The class of expressions to be considered is E .

First we present the axiom system Ar, which includes all axioms and rules
displayed in Table 3. We assume the usual rules for equality (reflexivity, symme-
try, transitivity and substitutivity), and the alpha-conversion of bound variables.

Table 3. The axiom system Ar

S1 E + 0 = E
S2 E + E = E
S3

∑
i∈I Ei =

∑
i∈I Eρ(i) ρ is any permutation on I

S4
⊕

i∈I piui.Ei =
⊕

i∈I pρ(i)uρ(i).Eρ(i) ρ is any permutation on I
S5 (

⊕
i piui.Ei) ⊕ pu.E ⊕ qu.E = (

⊕
i piui.Ei) ⊕ (p + q)u.E

R1 µXE = E{µXE/X}
R2 If E = F{E/X}, X weakly guarded in F, then E = µXF
R3 µX(E + X) = µXE

The notation Ar � E = F means that the equation E = F is derivable by
applying the axioms and rules from Ar. The interest of Ar is that it characterizes
exactly strong bisimulation, as shown by the following theorem.

Theorem 1 (Soundness and completeness of Ar). E ∼ E′ iff Ar � E =
E′.

The soundness of Ar is easy to prove: R1-3 correspond to clauses 2-4 of Propo-
sition 2; S1-4 are obvious, and S5 is a consequence of Definition 2. For the com-
pleteness proof, the basic points are: (1) if two expressions are bisimilar then we
can construct an equation set in a certain format (standard format) that they
both satisfy; (2) if two expressions satisfy the same standard equation set, then
they can be proved equal by Ar. This schema is inspired by [8, 14], but in our
case the definition of standard format and the proof itself are more complicated
due to the presence of both probabilistic and nondeterministic dimensions.

The difference between ∼ and ∼c is characterized by the following axiom:

C
∑

i∈1..n

⊕
j

pijuij .Eij =
∑

i∈1..n

⊕
j

pijuij .Eij +
⊕

i∈1..n

⊕
j

ripijuij .Eij

where
∑

i∈1..n ri = 1. We denote Ar ∪ {C} by Arc .

Theorem 2 (Soundness and completeness of Arc). E ∼c E′ iff Arc � E =
E′.

A
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5 Axiomatizations for Guarded Expressions

Now we proceed with the axiomatizations of the two weak behavioral equiva-
lences: � and �. We are not able to give a complete axiomatization for the whole
set of expressions (and we conjecture that it is not possible), so we restrict to
the subset of E consisting of guarded expressions only. An expression is guarded
if for each of its subexpression of the form µXF , the variable X is guarded in F
(cf: Definition 1).

5.1 Axiomatizing Divergency-Sensitive Equivalence

We first study the axiom system for �. As a starting point, let us consider the
system Arc . Clearly, S1-5 are still valid for �, as well as R1. R3 turns out
to be not needed in the restricted language we are considering. As for R2, we
replace it with its (strongly) guarded version, which we shall denote as R2′ (see
Table 4). As in the standard process algebra, we need some τ -laws to abstract
from invisible steps. For � we use the probabilistic τ -laws T1-3 shown in Table 4.
Note that T3 is the probabilistic extension of Milner’s third τ -law ([10] page 231),
and T1 and T2 together are equivalent, in the nonprobabilistic case, to Milner’s
second τ -law. However, Milner’s first τ -law cannot be derived from T1-3, and
it is actually unsound for �. Below we let Agd ={R2′, T1-3} ∪Arc\{R2-3}.

Table 4. Some laws for the axiom system Agd

R2′ If E = F{E/X}, X guarded in F, then E = µXF
T1

⊕
i piτ.(Ei + X) = X +

⊕
i piτ.(Ei + X)

T2 (
⊕

i piui.Ei) ⊕ pτ.(F +
⊕

j qjβj .Fj) + (
⊕

i piui.Ei) ⊕ (
⊕

j pqjβj .Fj)
= (

⊕
i piui.Ei) ⊕ pτ.(F +

⊕
j qjβj .Fj)

T3 (
⊕

i piui.Ei) ⊕ pu.(F +
⊕

j qjτ.Fj) + (
⊕

i piui.Ei) ⊕ (
⊕

j pqju.Fj)
= (

⊕
i piui.Ei) ⊕ pu.(F +

⊕
j qjτ.Fj)

The rule R2′ is shown to be sound in Proposition 3. The soundness of T1-3,
and therefore of Agd , is evident. For the completeness proof, it is convenient
to use the following saturation property, which relates operational semantics to
term transformation.

Lemma 1. 1. If E ⇒c η with η = {(ui, Ei : pi)}i, then Agd � E = E +⊕
i piui.Ei.

2. If E ⇒ ϑ(X) then Agd � E = E + X.

The completeness result can be proved in a similar way as Theorem 1. The
main difference is that here the key role is played by equation sets which are not
only in standard format, but also saturated. The transformation of a standard
equation set into a saturated one is obtained by using Lemma 1.
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Theorem 3 (Soundness and completeness of Agd). Let E and E′ be two
guarded expressions. Then E � E′ iff Agd � E = E′.

5.2 Axiomatizing Observational Equivalence

In this section we focus on the axiomatization of �. In order to obtain com-
pleteness, we can follow the same schema as for Theorem 1, with the additional
machinery required for dealing with observational equivalence, like in [10]. The
crucial point of the proof is to show that, if E � F , then we can construct an
equation set in standard format which is satisfied by E and F . The construc-
tion of the equation is more complicated than in [10] because of the subtlety
introduced by the probabilistic dimension. Indeed, it turns out that the sim-
ple probabilistic extension of Milner’s three τ -laws would not be sufficient, and
we need an additional rule for the completeness proof to go through. We shall
further comment on this rule at the end of Section 6.

Table 5. Two τ -laws for the axiom system Ago

T4 u.τ.E = u.E
T5 If τ.E = τ.E + F and τ.F = τ.F + E then τ.E = τ.F .

The probabilistic extension of Milner’s τ -laws are axioms T1-4, where T1-3
are those introduced in previous section, and T4, defined in Table 5, takes the
same form as Milner’s first τ -law [10]. In the same table T5 is the additional
rule mentioned above. We let Ago = Agd∪{T4-5}.

Theorem 4 (Soundness and completeness of Ago). If E and F are guarded
expressions then E � F iff Ago � E = F .

6 Axiomatizations for Finite Expressions

In this section we consider the recursion-free fragment of E , that is the class Ef

of all expressions which do not contain constructs of the form µXF . In other
words all expressions in Ef have the form:

∑
i

⊕
j pijuij .Eij +

∑
k Xk.

We define four axiom systems for the four behavioral equivalences studied
in this paper. Basically As,Asc ,Afd ,Afo are obtained from Ar, Arc , Agd , Ago
respectively, by cutting away all those axioms and rules that involve recursions.

As
def= {S1-5} Asc

def= As∪{C}
Afd

def= Asc∪{T1-3} Afo
def= Afd∪{T4-5}
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Theorem 5 (Soundness and completeness). For any E, F ∈ Ef ,

1. E ∼ F iff As � E = F ;
2. E ∼c F iff Asc � E = F ;
3. E � F iff Afd � E = F ;
4. E � F iff Afo � E = F .

Roughly speaking, all the clauses are proved by induction on the depth of
the expressions. The completeness proof of Afo is a bit tricky. In the classical
process algebra the proof can be carried out directly by using Hennessy Lemma
[9], which says that if E ≈ F then either τ.E � F or E � F or E � τ.F . In the
probabilistic case, however, Hennessy’s Lemma does not hold. For example, let

E
def= a and F

def= a + (
1
2
τ.a ⊕ 1

2
a).

We can check that: (1) τ.E �� F , (2) E �� F , (3) E �� τ.F . In (1) the distri-
bution {(τ, E : 1)} cannot be simulated by any distribution from F . In (2) the
distribution {(τ, a : 1

2 ), (a,0 : 1
2 )} cannot be simulated by any distribution from

E. In (3) the distribution {(τ, F : 1)} cannot be simulated by any distribution
from E.

Fortunately, to prove the completeness of Afo , it is sufficient to use the fol-
lowing weaker property.

Lemma 2. For any E, F ∈ Ef , if E ≈ F then Afo � τ.E = τ.F .

It is worth noticing that rule T5 is necessary to prove Lemma 2. Consider
the following two expressions: τ.a and τ.(a + ( 1

2τ.a ⊕ 1
2a)). It is easy to see that

they are observational equivalent. However, we cannot prove their equality if
rule T5 is excluded from the system Afo . In fact, by using only the other rules
and axioms it is impossible to transform τ.(a + ( 1

2τ.a ⊕ 1
2a)) into an expression

without a probabilistic branch pτ.a occurring in any subexpression, for some p
with 0 < p < 1. So it is not provably equal to τ.a, which has no probabilistic
choice.

7 Concluding Remarks

In this paper we have proposed a probabilistic process calculus which corre-
sponds to Segala and Lynch’s probabilistic automata. We have presented strong
bisimulation, strong probabilistic bisimulation, divergency-sensitive equivalence
and observational equivalence. Sound and complete inference systems for the
four behavioral equivalences are summarized in Table 7.

Note that we have axiomatized divergency-sensitive equivalence and obser-
vational equivalence only for guarded expressions. For unguarded expressions
whose transition graphs include τ -loops, we conjecture that the two behavioral
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Table 6. All the axioms and rules

S1 E + 0 = E
S2 E + E = E
S3

∑
i∈I Ei =

∑
i∈I Eρ(i) ρ is any permutation on I

S4
⊕

i∈I piui.Ei =
⊕

i∈I pρ(i)uρ(i).Eρ(i) ρ is any permutation on I
S5 (

⊕
i piui.Ei) ⊕ pu.E ⊕ qu.E = (

⊕
i piui.Ei) ⊕ (p + q)u.E

C
∑

i∈1..n ⊕jpijuij .Eij =
∑

i∈1..n ⊕jpijuij .Eij + ⊕i∈1..n ⊕j ripijuij .Eij

T1
⊕

i piτ.(Ei + X) = X +
⊕

i piτ.(Ei + X)
T2 (

⊕
i piui.Ei) ⊕ pτ.(F +

⊕
j qjβj .Fj) + (

⊕
i piui.Ei) ⊕ (

⊕
j pqjβj .Fj)

= (
⊕

i piui.Ei) ⊕ pτ.(F +
⊕

j qjβj .Fj)
T3 (

⊕
i piui.Ei) ⊕ pu.(F +

⊕
j qjτ.Fj) + (

⊕
i piui.Ei) ⊕ (

⊕
j pqju.Fj)

= (
⊕

i piui.Ei) ⊕ pu.(F +
⊕

j qjτ.Fj)
T4 u.τ.E = u.E
T5 If τ.E = τ.E + F and τ.F = τ.F + E then τ.E = τ.F .

R1 µXE = E{µXE/X}
R2 If E = F{E/X}, X weakly guarded in F, then E = µXF
R2′ If E = F{E/X}, X guarded in F, then E = µXF
R3 µX(E + X) = µXE

In C, there is a side condition
∑

i∈1..n ri = 1.

Table 7. All the inference systems

strong equivalences finite expressions all expressions
∼ As: S1-5 Ar: S1-5,R1-3
∼c Asc: S1-5,C Arc: S1-5,R1-3,C

weak equivalences finite expressions guarded expressions
� Afd: S1-5,C,T1-3 Agd: S1-5,C,T1-3,R1,R2′

� Afo: S1-5,C,T1-5 Ago: S1-5,C,T1-5,R1,R2′

equivalences are undecidable and therefore not finitely axiomatizable. The rea-
son is the following: in order to decide whether two expressions E and F are
observational equivalent, one can compute the two sets

SE = {η | E ⇒ η} and SF = {η | F ⇒ η}

and then compare them to see whether each element of SE is related to some
element of SF and vice versa. For guarded expressions E and F , the sets SE

and SF are always finite and thus they can be compared in finite time. For
unguarded expressions, these sets may be infinite, and so the above method
does not apply. Furthermore, these sets can be infinite even when we factorize
them with respect to an equivalence relation as required in the definition of
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probabilistic bisimulation. For example, consider the expression E = µX( 1
2a ⊕

1
2τ.X). It can be proved that SE is an infinite set {ηi | i ≥ 1}, where

ηi = {(a,0 : (1 − 1
2i

)), (τ, E :
1
2i

)}.

Furthermore, for each i, j ≥ 1 with i �= j we have ηi �≡R ηj for any equivalence
relation R which distinguishes E from 0. Hence the set SE modulo R is infinite.

It should be remarked that the presence of τ -loops in itself does not nec-
essarily cause non-decidability. For instance, the notion of weak probabilistic
bisimulation defined in [11, 6] is decidable for finite-state PA. The reason is that
in those works weak transitions are defined in terms of schedulers, and one may
get some weak transitions that are not derivable by the (finitary) inference rules
used in this paper. For instance, consider the transition graph of the above exam-
ple. The definition of [11, 6] allows the underlying probabilistic execution to be
infinite as long as that case occurs with probability 0. Hence with that definition
one has a weak transition that leads to the distribution θ = {(a,0 : 1)}. Thus
each ηi becomes a convex combination of θ and δ(E), i.e. these two distribu-
tions are enough to characterize all possible weak transitions. By exploiting this
property, Cattani and Segala gave a decision algorithm for weak probabilistic
bisimulation in [6].

In this paper we have chosen, instead, to generate weak transitions via (fini-
tary) inference rules, which means that only finite executions can be derived.
This approach, which is also known in literature ([12]), has the advantage of
being more formal, and in the case of guarded recursion it is equivalent to the
one of [11, 6]. In the case of unguarded recursion, however, we feel that it would
be more natural to consider also the “limit” weak transitions of [11, 6]. The ax-
iomatization of the corresponding notion of observational equivalence is an open
problem.
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