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AXIOMATIZATIONS OF A CLASS OF EQUAL
SURPLUS SHARING SOLUTIONS FOR TU-GAMES

ABSTRACT. A situation, in which a finite set of players can obtain
certain payoffs by cooperation can be described by a cooperative game
with transferable utility, or simply a TU-game. A (point-valued) solution
for TU-games assigns a payoff distribution to every TU-game. In this
article we discuss a class of equal surplus sharing solutions consisting of
all convex combinations of the CIS-value, the ENSC-value and the equal
division solution. We provide several characterizations of this class of
solutions on variable and fixed player set. Specifications of several prop-
erties characterize specific solutions in this class.
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1. INTRODUCTION

A situation, in which a finite set of players can obtain cer-
tain payoffs by cooperation can be described by a cooperative
game with transferable utility, or simply a TU-game, being a
pair (N, v), where N ⊂ IN is a finite set of players with |N | ≥
2, and v : 2N → R is a characteristic function on N such that
v(∅) = 0. For any coalition S ⊆ N , v(S) is called the worth
of coalition S. This is what the members of coalition S can
obtain by agreeing to cooperate. We denote the class of all
TU-games by G.

A payoff vector of game (N, v) is an |N |-dimensional real
vector x ∈ IRn, n= |N |, which represents a distribution of the
payoffs that can be earned by cooperation over the individual
players. A (point-valued) solution for TU-games is a function
ψ , which assigns a payoff vector ψ(N,v) to every TU-game
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(N, v). If a solution assigns to every game a payoff vector that
exactly distributes the worth of the ‘grand coalition’ N , then
the solution is called efficient.1

In this article, we discuss a class of solutions for TU-games
that all have some egalitarian flavour in the sense that they
assign to every player some initial payoff and distribute the
remainder of the worth v(N) of the grand coalition N equally
among all players. Examples of such solutions are the Cen-
tre-of-gravity of the Imputation-Set value, shortly denoted by
CIS-value (see Driessen and Funaki, 1991), Egalitarian Non-
Separable Contribution value, shortly denoted by ENSC-value
and the equal division solution. The CIS-value assigns to every
player its individual worth, and distributes the remainder of
v(N) equally among all players. The ENSC-value assigns to
every game (N, v) the CIS-value of its dual game. The equal
division solution just distributes v(N) equally among all play-
ers. In this article, we consider the class of solutions that
consists of the above mentioned solutions and their convex
combinations. We begin by defining this class for two-player
games. For this class of games, our solutions are defined by
a generalized standardness for two-player games. The usual
standardness for two-player games states that in a two player
game every player earns its own worth plus half of what
remains of the worth of the two-player (‘grand’) coalition
(see, e.g. Hart and Mas-Colell, 1988, 1989). We discuss a
weaker standardness, stating that both players in a two-player
game get a (uniform) share of their individual worth, and the
remainder of the worth of the two-player coalition is shared
equally among the two players. Besides the usual standard-
ness, this also contains egalitarian standardness for two-player
games stating that in two player games both players earn the
same payoff. We also discuss properties that characterize this
standardness.

After defining the class of solutions for two-player games,
we extend the definition to n-player games by applying some
reduced game consistency. In the reduced game that is played
after one player has left the game, coalitions of remaining
players either have the participation of the leaving player or
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not. In the first case, the worth of the coalition in the reduced
game is what it earned in the original game with the coop-
eration of the leaving player, but has to subtract the payoff,
with which the leaving player leaves the game. When the leav-
ing player does not cooperate then the coalition of remain-
ing players just earns its worth in the original game. For
every coalition of players in the reduced game, we thus have
to specify whether the leaving player does cooperate or not.
Besides cooperation to the grand coalition, we require that in
the reduced game, the leaving player cooperates with all coali-
tions that consist of all, but one player, and does not cooper-
ate with all one-player coalitions. For intermediate coalitions,
both situations are possible. This reduced game is well defined
as long as the original game has at least four players. In case
of a three-player game, the above definition is inconsistent for
one-player coalitions. Therefore, we assume for those coali-
tions, a probability distribution with respect to the coopera-
tion of the leaving player.

We show that convex combinations of the equal division
solution, the CIS-value and the ENSC-value are characterized
by a particular standardness and reduced game consistency.
The weight put on the equal division solution is determined
by the share that the players get from their individual worths
in the standardness axiom. The distribution of weight between
the CIS- and ENSC-value is determined by the probability of
cooperation of the leaving player in reduced games.

We also provide an axiomatization of this class of solutions
on fixed player sets using the well-known axioms of efficiency,
linearity and local monotonicity, and adding two new axioms
with respect to dictator and veto players. The dictator prop-
erty states that (i) the difference between the payoffs of a dic-
tator and another (null) player in that dictator game cannot
be more than the worth of the ‘grand coalition’ (which by effi-
ciency equals the total worth to be distributed), and (ii) in any
other monotone game, the difference between the payoffs of
two players is never more than that described in (i). The veto
equal loss property states that making one of the players in
a zero-normalized game a veto player yields the same change
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in payoff for the other players. Adding a weak null player
out property stating that deleting a null player from a game
changes the payoffs of all other players by the same amount,
yields an axiomatization on the class of all TU-games (with
variable player set).

Finally, we show how strengthening some axioms yield
characterizations of some specific solutions in this class.

The article is organized as follows. Section 2 discusses some
preliminaries on TU-games and solutions. In Section 3, we
define our class of solutions and state some properties and
relations between solutions in this class. In Section 4, we char-
acterize these solutions for two-player games. In Section 5, we
extend this definition to n-player games using a reduced game
consistency. In Section 6, we give an axiomatic characteriza-
tion on fixed player sets and show how this characterization
holds on variable player set by adding a weak null player out
property. In Section 7, we give axiomatic characterizations of
some specific solutions in this class. Finally, Section 8, con-
tains some concluding remarks.

2. PRELIMINARIES

A (point-valued) solution ψ on G assigns a payoff vector
ψ(N,v)∈ R

n to every TU-game (N, v)∈G. Examples of solu-
tions are the CIS-value, the ENSC-value and the equal divi-
sion solution. The CIS-value (see Driessen and Funaki, 1991)
assigns to every player its individual worth, and distributes
the remainder of the worth of the grand coalition N equally
among all players, i.e.

CISi(N, v)=v({i})+ 1
|N |

⎛
⎝v(N)−

∑
j∈N

v({j})
⎞
⎠ for all i ∈N.

The dual game (N, v∗) of game (N, v) is the game that assigns
to each coalition S ⊆N the worth that is lost by the grand
coalition N if coalition S leaves N , i.e.

v∗(S)=v(N)−v(N \S) for all S⊆N.
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The ENSC-value assigns to every game (N, v) the CIS-value
of its dual game, i.e.

ENSCi(N, v)=CISi(N, v∗)=v∗({i})

+ 1
|N |

⎛
⎝v∗(N)−

∑
j∈N

v∗({j})
⎞
⎠

=v(N)−v(N \ {i})

+ 1
|N |

⎛
⎝v(N)−

∑
j∈N
(v(N)−v(N \ {j}))

⎞
⎠

=−v(N \ {i})+ 1
|N |

⎛
⎝v(N)+

∑
j∈N

v(N \ {j})
⎞
⎠

for all i ∈N.
Thus, the ENSC-value assigns to every player in a game its
marginal contribution to the ‘grand coalition’ and distributes
the (positive or negative) remainder equally among the play-
ers. Using these two solutions, we can define a class of solu-
tions, by taking any convex combination of the two, i.e. for
β ∈ [0,1] we define

ENCISβ(N, v)=βCIS(N, v)+ (1−β)ENSC(N,v). (1)

The solutions discussed above have some egalitarian flavour,
in the sense that they equally split a surplus that is left after
all players receive some individual payoff. Ignoring these indi-
vidual payoffs, we obtain the equal division solution given by

EDi(N, v)= 1
|N |v(N) for all i ∈N.

Next, we state some well-known properties of solutions for
TU-games. Players i, j ∈ N are symmetric in game (N, v) if
v(S ∪ {i})= v(S ∪ {j}) for all S ⊆ N \ {i, j}. Player i ∈ N is a
null player in game (N, v) if v(S ∪ {i})= v(S) for all S ⊆N \
{i}. For game (N, v)∈G and permutation π : N→N , the per-
muted game (N,πv) is defined by πv(S)=v(∪i∈S{π(i)}) for all
S ⊆N . Finally, for (N, v), (N,w) ∈ G and a, b ∈ IR, the game
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(N, av+bw)∈G is defined by (av+bw)(S)=av(S)+bw(S) for
all S⊆N . Solution ψ

• is efficient if
∑

i∈N ψi(N, v)=v(N) for all (N, v)∈G;
• is symmetric if ψi(N, v) = ψj(N, v) whenever i and j are

symmetric players in (N, v)∈G;
• is anonymous if for every permutation π :N →N , it holds

that ψi(N, v)=ψπ(i)(N,πv) for every (N, v)∈G;
• is linear if ψ(N,av + bw) = aψ(N, v) + bψ(N,w) for all
(N, v), (N,w)∈G and a, b∈ IR;

• satisfies the null player property if ψi(N, v)=0 whenever i is
a null player in (N, v)∈G;

• satisfies local monotonicity if ψi(N, v) ≥ ψj(N, v) whenever
v(S∪{i})≥v(S∪{j}) for all S⊆N \ {i, j};

• is self-dual if ψ(N,v)=ψ(N,v∗) for all (N, v)∈G;
• is covariant if ψi(N,w) = kψi(N, v) + pi for every (N, v) ∈

G, k ∈ IR+ and p ∈ IRn, where w is given by w(S)= kv(S)+∑
j∈S pj for all S⊆N ;

• satisfies individual rationality if ψi(N, v)≥v({i}) for all i ∈N
and (N, v)∈G satisfying

∑
i∈N v({i})≤v(N);2

• satisfies dual individual rationality if ψi(N, v) ≥ v∗({i}) =
v(N) − v(N \ {i}) for all i ∈ N and (N, v) ∈ G satisfying∑

i∈N v
∗({i})≤v(N);

• is non-negative if ψi(N, v)≥0 for all i∈N and (N, v)∈G sat-
isfying v(S)≥0 for all S⊆N .

All solutions ENCISβ , as defined in (1), are covariant. The
only self-dual solution in this class is the ‘average’ of the CIS-
and ENSC-value obtained by taking β= 1

2 . The equal division
solution is self-dual but not covariant.

We conclude this section by mentioning two important
classes of games. Consider a player set N . The unanimity
game of coalition T ⊆ N, T �= ∅, is the game (N,uT ) given
by uT (S) = 1 if T ⊆ S, and uT (S) = 0 otherwise. The stan-
dard game of coalition T ⊆ N, T �= ∅, is the game (N, bT )

given by bT (S) = 1 if T = S, and bT (S) = 0 otherwise. It is
well known that every characteristic function v can be written
as v =∑

T⊆N
T �=∅

�v(T )uT with �v(T )=
∑

S⊆T (−1)|T |−|S|v(S) being
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the Harsanyi dividends (see Harsanyi, 1959), and also as
v=∑ T⊆N

T �=∅
v(T )bT .

3. A CLASS OF EQUAL SURPLUS SHARING SOLUTIONS

In this article, we discuss the class of solutions that consists
of all convex combinations of the equal division solution, the
CIS-value and the ENSC-value, i.e. for α,β ∈ [0,1], we con-
sider solutions ϕα,β given by

ϕα,β(N, v)=αENCISβ(N, v)+ (1−α)ED(N,v), (2)

where ENCISβ is given by (1). We denote the class of all
solutions that are obtained in this way by � := {ϕα,β | α,β ∈
[0,1]}. Clearly, the extreme solutions in this class are the CIS-
value, which is obtained by taking α= β = 1 (i.e. CIS(N, v)=
ϕ1,1(N, v)), the ENSC-value, which is obtained by taking
α=1, β = 0 (i.e. ENSC(N,v) = ϕ1,0(N, v)) and the equal
division solution, which is obtained by taking α = 0 (i.e.
ED(N,v)=ϕ0,β(N, v), β ∈ [0,1]). We thus can write ϕα,β as

ϕα,β(N, v)=αϕ1,β(N, v)+ (1−α)ϕ0,1(N, v)

=αβϕ1,1(N, v)+α(1−β)ϕ1,0(N, v)

+ (1−α)ϕ0,1(N, v)

for α,β ∈ [0,1]. Without proof we state two more relations.3

PROPOSITION 3.1. For every α,β ∈ [0,1] and (N, v) ∈ G, it
holds that

1. ϕα,β(N, v)+ϕα,1−β(N, v)=ϕα,1(N, v)+ϕα,0(N, v);
2. ϕα,β(N, v)+ ϕγ,β(N, v)= ϕα+γ,β(N, v)+ ϕ0,β(N, v) for all γ ∈

[0,1] such that α+γ ∈ [0,1].

Next we provide an expression of the solutions ϕα,β showing
that they have some egalitarian flavour in the sense that they
give each player i in a game (N, v) some value λα,βi (N, v), and
the remainder of v(N) is equally split among all players.
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PROPOSITION 3.2. For every (N, v) ∈ G and α,β ∈ [0,1] it
holds that

ϕ
α,β

i (N, v)=λα,βi (N, v)+ 1
|N |

⎛
⎝v(N)−

∑
j∈N

λ
α,β

j (N, v)

⎞
⎠ , (3)

where λα,βi (N, v)=α(βv({i})− (1−β)v(N \ {i})) for i ∈N .

Proof. For (N, v)∈G and α,β ∈ [0,1] we have,

ϕ
α,β

i (N, v)=αENCISβ(N, v)+ (1−α)ED(N,v)

=α(βv({i})− (1−β)v(N \ {i}))

+ α

|N |

⎛
⎝v(N)−

∑
j∈N
(βv({j})− (1−β)v(N \ {j})

⎞
⎠

+1−α
|N | v(N)

=α(βv({i})− (1−β)v(N \ {i}))

+ 1
|N |

⎛
⎝v(N)−

∑
j∈N

α(βv({j})−(1−β)v(N\{j}))
⎞
⎠

=λα,βi (N, v)+ 1
|N |

⎛
⎝v(N)−

∑
j∈N

λ
α,β

j (N, v)

⎞
⎠ .

Although not all solutions in � are self-dual, the class
� itself is closed under duality. More specific, we state the
following.

PROPOSITION 3.3. For every α,β ∈ [0,1] and (N, v) ∈ G it
holds that ϕα,β(N, v∗)=ϕα,1−β(N, v).
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Proof. Let α,β ∈ [0,1] and (N, v)∈G. Then

ϕα,β(N, v∗)=λα,βi (N, v∗)+ 1
|N |

⎛
⎝v(N)−

∑
j∈N

λ
α,β

j (N, v∗)

⎞
⎠

=α (βv∗({i})− (1−β)v∗(N \ {i}))

+ 1
|N |

⎛
⎝v(N)−α

∑
j∈N
(βv∗({j})

−(1−β)v∗(N \ {j}))
⎞
⎠

=α (βv(N)−βv(N \ {i})− (1−β)v(N)
+(1−β)v({i}))

+ 1
|N |

⎛
⎝v(N)−α

∑
j∈N
(βv(N)−βv(N \ {j})

−(1−β)v(N)+ (1−β)v({j}))
⎞
⎠

=v(N)
(
αβ−α(1−β)

+ 1
|N | − |N |αβ

|N | + |N |α(1−β)
|N |

)

+α
⎛
⎝(1−β)v({i})−βv(N \ {i})

+ 1
|N |

∑
j∈N

(βv(N \ {j})− (1−β)v({j}))
⎞
⎠

= 1
|N |v(N)+α((1−β)v({i})−βv(N \ {i}))
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− 1
|N |

⎛
⎝∑
j∈N

α((1−β)v({j})−βv(N \ {j}))
⎞
⎠

=ϕα,1−β(N, v). �

4. TWO-PLAYER GAMES

On the class of two-player games, the CIS- and ENSC-value
coincide. Thus, on this class we consider convex combina-
tions of the CIS-value and the equal division solution. It is
well known that on the class of two-player games, the CIS-
value satisfies standardness for two-player games as considered
in, e.g. Hart and Mas-Colell (1988, 1989): ψi(N, v)= 1

2v({i})−
1
2v({j}) + 1

2v(N) = v({i}) + 1
2(v(N) − v({i}) − v({j})) with N =

{i, j}. On the other hand, the equal division solution satisfies
egalitarian standardness for two-player games: ψi(N, v)= 1

2v(N)

for i ∈N . We denote the class of two-player games by G2 =
{(N, v)∈ G | |N | = 2}. On this class, � consists of all solutions
for two-player games that assign to both players the same
share (between zero and one) in their individual worth, and
distributes the remainder of the worth of the two-player coa-
lition equally among the two players.

DEFINITION 4.1. Let α ∈ [0,1]. A solution ψ satisfies
α-standardness for two-player games if for every (N, v)∈G with
N ={i, j}, i �= j , it holds that

ψi(N, v)=αv({i})+ 1
2
(v(N)−α(v({i})+v({j})))

for N ={i, j}.
A solution ψ satisfies weak standardness for two-player games
if there exists an α ∈ [0,1] such that ψ satisfies α-standardness
for two-player games.

Clearly, standardness for two-player games coincides with
α=1, and egalitarian standardness coincides with α=0. Weak
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standardness is equivalent to requiring efficiency, symmetry
and linearity on G2.

PROPOSITION 4.2. A solution ψ on G2 satisfies weak stand-
ardness for two-player games if and only if it is efficient, sym-
metric and linear.

Proof. The ‘only if ’ part is straightforward. To prove the
‘if ’ part, suppose that ψ is efficient, symmetric and linear on
G2. We show that ψ must satisfy weak standardness in four
steps.

Step 1. Linearity of ψ implies that there exist αi, βi, γi, δi ∈ IR,
such that for every two-player game (N, v) ∈ G2 with
N ={i, j}, we have

ψi(N, v)=αiv({i})+βiv({j})+γiv(N)+ δi (4)

(see Weber, 1988, Theorem 1).
Step 2. Suppose that ψ is linear and symmetric, and let i, j ∈

N be symmetric players in (N, v). By symmetry of ψ ,
it then must hold that ψi(N, v)=ψj(N, v), which with
(4) is equivalent to αiv({i})+ βiv({j})+ γiv(N)+ δi =
αjv({j})+βjv({i})+γjv(N)+ δj . By symmetry of i, j ∈
N in game (N, v), we have v({i})= v({j}), and thus
(αi + βi)v({i})+ γiv(N)+ δi = (αj + βj)v({i})+ γjv(N)+
δj . Since this must hold for all (N, v)∈G2 with v({i})=
v({j}), the parameters in (4) must satisfy

αi +βi =αj +βj , γi =γj and δi = δj . (5)

Step 3. Suppose that ψ is linear and efficient. Efficiency of ψ
implies that ψi(N, v)+ψj(N, v)= αiv({i})+ βiv({j})+
γiv(N) + δi + αjv({j}) + βjv({i}) + γjv(N) + δj = (αi +
βj)v({i}) + (αj + βi)v({j}) + (γi + γj )v(N) + δi + δj =
v(N). Since this must hold for all (N, v) ∈ G2 the
parameters in (4) must satisfy

αi +βj =αj +βi =0, γi +γj =1 and δi + δj =0. (6)
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Step 4. Combining steps 1, 2 and 3, suppose that ψ is lin-
ear, symmetric and efficient. (5) and (6) imply that
αi − αj = βi − βj = αj − αi , which implies that αi = αj .
Then also βi = βj . With (6), it also follows that αi =
αj = −βi = −βj . Then it follows straightforward that
γi = γj = 1

2 and δi = δj = 0. However, this means that
ψ satisfies weak standardness. In particular, it satisfies
α-standardness with α

2 =αi =αj =−βi =−βj .

Note that equality of αi and αj is not implied by linearity and
symmetry, but with efficiency it is4. The same can be said for
βi =βj . In the next section, we extend the class of weak stan-
dard solutions on G2 to n-player games using a reduced game
consistency.

5. AN EXTENSION TO n-PLAYER GAMES USING A REDUCED
GAME CONSISTENCY

Take a game (N, v)∈ G, a payoff vector x ∈ IRn and a player
j ∈N . The player set of a reduced game is obtained by remov-
ing player j from the original player set N . The worths of
the coalitions in this reduced game reflect what these coali-
tions can earn if player j has left the game with its payoff
xj . The worth of the coalition N \ {j} (the ‘grand coalition’)
in the reduced game is equal to the worth of N minus the
payoff xj assigned to player j . Clearly, this is what is left to
be allocated to the players in N \ {j} after removing player j
from the game with payoff xj . For the other coalitions S ⊂
N \{j}, we assume that they have the participation of the leav-
ing player j (but must pay xj to j ) or not. In case j cooper-
ates with S⊂N \{j}, the worth of S in the reduced game thus
equals v(S ∪ {j})− xj , while in case j does not cooperate, it
equals v(S). Although we do not want to specify which coali-
tions have the participation of j , we require that besides the
‘grand coalition’ also its largest proper subcoalitions have the
participation of j , while the smallest coalitions, i.e. the single-
tons, do not have j ’s participation. These reduced games are
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well defined as long as |N | ≥ 4. In case |N | = 3, the reduced
games are two-player games, and thus the one-player coali-
tions are the smallest and largest proper subcoalitions of the
‘grand coalition’. Therefore, in these games, it is not clear
whether these coalitions have player j ’s participation or not,
and we assume that with probability β ∈ [0,1] player j does
not cooperate with the one-player coalitions, and with proba-
bility (1−β) does cooperate. This yields the following reduced
games.

DEFINITION 5.1. Given a game (N, v) ∈ G with |N | ≥ 4, a
player j ∈N , and a payoff vector x ∈ R

n, a reduced game with
respect to j and x is a game (N \ {j}, vx) that satisfies

vx(S)=

⎧⎪⎪⎨
⎪⎪⎩

v(N)−xj if S=N \ {j}
v(S∪{j})−xj if S⊂N \ {j} with |S|= |N |−2
v(S) if S⊂N \ {j} with |S|=1
0 if S=∅.

If |N | = 3, then for β ∈ [0,1], the β-reduced game with respect
to j ∈N and x ∈ R

n is uniquely determined as the game (N \
{j}, vx,β) given by

vx,β(S)=

⎧⎪⎪⎨
⎪⎪⎩

v(N)−xj if S=N \ {j}
βv(S)+ (1−β) if S⊂N \ {j} with |S|=1
(v(S∪{j})−xj )

0 if S=∅.
These reduced games are also considered in Funaki (1994)
and contain that of Funaki and Yamato (2001).5 With a slight
abuse of notation, we denote in the remainder of the article
the characteristic function vx,β just by vx , also when |N | = 3.
We are ready to give a definition of the consistency property
of a solution associated with a reduced game.

DEFINITION 5.2. Let ψ be a solution on G, and β ∈ [0,1].
Solution ψ satisfies β-consistency if and only if for every
(N, v) ∈ G with |N | ≥ 3, j ∈N , and x = ψ(N,v), it holds that
ψi(N \ {j}, vx)=ψi(N, v) for i ∈N \ {j}.
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Consistency implies that given a game (N, v), if x is a solu-
tion payoff vector for (N, v), then for every player j ∈N , the
payoff vector xN\{j} with payoffs for the players in N \ {j},
must be a solution payoff vector of the reduced game (N \
{j}, vx). It is a kind of internal consistency requirement to
guarantee that players respect the recommendations made by
the solution.

PROPOSITION 5.3. Take β ∈ [0,1]. For every α ∈ [0,1], the
solution ϕα,β satisfies β-consistency on the class of all games G.

Proof. Take any β ∈ [0,1] and fix α∈ [0,1]. Take any (N, v)∈
G. First, suppose that |N |≥4. For x=ϕα,β(N, v), we have

λ
α,β

i (N \ {j}, vx)=α(βvx({i})− (1−β)vx(N \ {i, j}))
=α(βv({i})− (1−β)(v(N \ {i})−xj ))
=λα,βi (N, v)+ (1−β)xj (7)

since in that case, |{i}|=1 and |N \{i, j}|=|N |−2. Denote λi=
λ
α,β

i (N, v) and λxi = λ
α,β

i (N \ {j}, vx) with x = ϕα,β(N, v), i ∈N .
Then with (7), it follows that

ϕ
α,β

i (N \ {j}, vx)=λxi + 1
|N |−1

⎛
⎝vx(N \ {j})−

∑
k∈N\{j}

λxk

⎞
⎠

=λi + (1−β)xj + 1
|N |−1

×
⎛
⎝v(N)−xj −

∑
k∈N\{j}

(
λk + (1−β)xj

)
⎞
⎠

=λi + (1−β)xj + 1
|N |−1

×
⎛
⎝v(N)−λj − 1

|N |

(
v(N)−

∑
k∈N

λk

)

−
∑

k∈N\{j}
λk

⎞
⎠− (1−β)xj
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=λi + 1
|N |−1

(
|N |−1

|N |

(
v(N)−

∑
k∈N

λk

))

=ϕα,βi (N, v).

Second, consider the case |N |=3. Let x=ϕα,β(N, v), β̄=1−β
and N ={i, j, k}. (Note that |N |=3 implies that i, j and k are
distinct players.) First, we remark that

ϕ
α,β

i (N, v)=α(βv({i})− β̄v(N \ {i}))

+ 1
3

(
v(N)−

∑
l∈N

α(βv({l})− β̄v(N \ {l}))
)

=α(βv({i})− β̄v({j, k}))
+ 1

3
(v(N)−αβv({i})−αβv({j})−αβv({k})

+αβ̄v({j, k})+αβ̄v({k, i})+αβ̄v({i, j})) .
From the definitions of the solution and the reduced game,
we have for x=ϕα,β(N, v) that

ϕ
α,β

i (N \ {k}, vx)=ϕα,βi ({i, j}, vx)= α

2
(vx({i})−vx({j}))

+ 1
2
vx({i, j})

= α

2

(
(βv({i})+ β̄v({i, k})− β̄xk)− (βv({j})

+ β̄v({j, k})− β̄xk)
)

+ 1
2

[
v(N)−α (βv({k})− β̄v({i, j}))

− 1
3
(v(N)−αβv({i})−αβv({j})−αβv({k})

+αβ̄v({j, k})+αβ̄v({k, i})+αβ̄v({i, j}))]

= (αβv({i})−αβ̄v({j, k}))+ 1
2
(−αβv({i})

+αβ̄v({i, k})−αβv({j})+αβ̄v({j, k}))

+ 1
3

(
v(N)−αβv({k})+αβ̄v({i, j})))
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− 1
6

(−αβv({i})−αβv({j})+αβ̄v({j, k})
+αβ̄v({k, i}))

=α(βv({i})− β̄v({j, k}))
+ 1

3

(
v(N)−αβv({k})+αβ̄v({i, j}))−αβv({i})

−αβv({j})+αβ̄v({j, k})+αβ̄v({k, i}))

=ϕα,βi (N, v).

This completes the proof.

In the previous section, we saw that ϕα,β satisfies α-stand-
ardness for two-player games. Next, we characterize those
solutions.

THEOREM 5.4. Take any α,β ∈ [0,1]. A solution ψ satisfies
efficiency, α-standardness for two-player games and β-consis-
tency on the class of all games G, if and only if ψ=ϕα,β .

Proof. ϕα,β satisfying efficiency and α-standardness for two-
player games is straightforward. ϕα,β satisfying β-consistency
follows from Proposition 5.3. Here we prove the ‘only if ’
part. Take α,β ∈ [0,1], and let ψ be a solution, which satisfies
efficiency, α-standardness for two-player games and β-con-
sistency. If |N | = 2, then ψ(N,v) = ϕα,β(N, v) follows from
α-standardness for two-player games.

In the following, we denote x=ψ(N,v) and y=ϕα,β(N, v).
If |N |=3, let N ={i, j, k}. By α-standardness, β-consistency

and the induction hypothesis, we have

xi −yi =ψi(N \ {j}, vx)−ϕα,βi (N \ {j}, vy)
=ϕα,βi (N \ {j}, vx)−ϕα,βi (N \ {j}, vy)
= α

2
(vx({i})−vx({k}))+ 1

2
vx({i, k})− α

2
(vy({i})

−vy({k}))− 1
2
vy({i, k})
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= α

2

[
βv({i})+ (1−β)(v({i, j})−xj )−βv({k})

−(1−β)(v({k, j})−xj )
−βv({i})− (1−β)(v({i, j})−yj )+βv({k})
+(1−β)(v({k, j})−yj )

]

+ 1
2
(v(N)−xj −v(N)+yj )

=−1
2
(xj −yj )

Similarly, we find that xj−yj=ϕα,βj (N\{i}, vx)−ϕα,βj (N\{i}, vy)=
− 1

2(xi − yi). So, xi − yi = 1
4(xi − yi), and thus xi − yi = 0. Sim-

ilarly, it follows that xj − yj = xk − yk = 0. This shows that
ψ(N,v)=ϕα,β(N, v).

Proceeding by induction, for |N |≥4, suppose that ψ(N ′, v′)=
ϕα,β(N ′, v′) whenever |N ′|=|N |−1. We will show that ψ(N,v)=
ϕα,β(N, v).

Take any i, j ∈ N such that i �= j . Again, let x = ψ(N,v)

and y=ϕα,β(N, v). For the two reduced games (N \{j}, vx) and
(N \ {j}, vy), by the induction hypothesis, we have

xi −yi =ψi(N \ {j}, vx)−ϕα,βi (N \ {j}, vy)
=ϕα,βi (N \ {j}, vx)−ϕα,βi (N \ {j}, vy) (8)

By (7) and the definitions of ϕα,β and the reduced game, we have

ϕ
α,β

i (N \ {j}, vx)−ϕα,βi (N \ {j}, vy)
=λα,βi (N \ {j}, vx)−λα,βi (N \ {j}, vy)

+ 1
|N |−1

[vx(N \ {j})−vy(N \ {j})

−
∑

k∈N\{j}
(λ
α,β

k (N \ {j}, vx)−λα,βk (N \ {j}, vy))]

= (1−β)(xj −yj )

+ 1
|N |−1

⎛
⎝−xj +yj −

∑
k∈N\{j}

(1−β)(xk −yk)
⎞
⎠
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= (1−β)(xj −yj )+ 1
|N |−1

(−(xj −yj )− (1−β)(v(N)
−xj −v(N)+yj )

)

= (1−β)(xj −yj )+ 1
|N |−1

(−(xj −yj )− (1−β)(−xj +yj )
)

=
(

1− |N |β
|N |−1

)
(xj −yj ).

With (8), this implies that xi − yi = (1 − |N |β
|N |−1)(xj − yj ) for all

i ∈N \ {j}. This implies that xi −yi =xl −yl for all i, l∈N \ {j}.
Take any k∈N \{i, j}. Since xj −yj = (1− |N |β

|N |−1)(xk−yk) for any
j ∈N \ {k}, it holds that xi −yi =xj −yj . This implies that xi −
yi =xj −yj =xl−yl for all l∈N \{i, j}. Then efficiency6 implies
that

∑
i∈N(xi −yi)=v(N)−v(N)=0, and thus xi −yi =0 for all

i ∈N . This shows that ψ(N,v)=ϕα,β(N, v).
This completes the proof.

Similar to the definition of weak standardness for two-
player games, we can say that a solution satisfies weak consis-
tency if and only if there exists a β ∈ [0,1] such that it satisfies
β-consistency.

From the previous section, we know that for two-player
games a solution satisfying weak standardness is equivalent to
the solution being efficient, symmetric and linear. From Theo-
rem 5.4, it follows that on the class of all TU-games, the class
of solutions � is characterized by efficiency, weak standard-
ness and weak consistency.

COROLLARY 5.5. A solution ψ satisfies efficiency, weak stand-
ardness for two-player games and weak consistency on the class
of all games G, if and only if ψ ∈�.

The α-standardness for two-player games and β-consistency
also make clear how the solutions ϕα,β depend on these two
parameters. Note that the parameter β does not appear in
the standardness property, while the parameter α does not
appear in the consistency property. The parameter α∈ [0,1] is
the share that the players get from their individual worths in
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the standardness axiom and determines the weight put on the
equal division solution. The parameter β ∈ [0,1] determines
the probability about cooperation of the leaving player j in
the coalitions in the reduced game, and determines the distri-
bution of weight between the CIS- and ENSC-values.

6. AXIOMATIZATIONS USING DICTATOR AND VETO PLAYER
PROPERTIES

In the previous section, we characterized the class of solu-
tions �, and every solution in this class, on a variable player
set. Next, we provide a characterization of the class � on
a fixed player set using the well-known axioms of efficiency,
linearity, local monotonicity and two new axioms that we
introduce below. Moreover, adding a weak null player out
property yields an axiomatization for variable player set. The
first of the two new axioms concerns a dictator property. We
say that player i ∈N is a dictator in a monotone game (N, v)
if all coalitions containing i earn the same worth c > 0, and
all other coalitions earn zero. We denote this dictator game by
dci , i.e. dci (S)=c if i∈S, and dci (S)=0 otherwise.7 Note that in
the dictator game dci , all players in N \{i} are null players. The
dictator property now states that (i) the difference between the
payoffs of a dictator and another (null) player in that dictator
game cannot be more than the worth of the ‘grand coalition’
(which by efficiency equals the total worth to be distributed),
and (ii) in any other monotone game, the difference between
the payoffs of two players is never more than that described
in (i). A TU-game (N, v) is monotone if v(S)≤v(T ) whenever
S⊆T ⊆N .

AXIOM 6.1. (Dictator property) A solution ψ satisfies the dic-
tator property if

(i) ψi(N, dci )−ψj(N, dci )≤ c for all j ∈N \ {i}, and
(ii) ψi(N, v)−ψj(N, v)≤ψi(N, dv(N)i )−ψj(N, dv(N)i ) for all i, j ∈

N , and monotone games (N, v).
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Note that this dictator property implies the following difference
property which states that the maximal difference between the
payoffs of two players in a monotone game cannot be more
than the worth of the ‘grand coalition’. (The straightforward
proof is omitted.)

PROPOSITION 6.2. If solution ψ satisfies the dictator prop-
erty then ψi(N, v)−ψj(N, v)≤v(N) for all i, j ∈N , and mono-
tone game (N, v).

To introduce the veto equal loss property, suppose that
player h∈N becomes a veto player in game (N, v), i.e. instead
of characteristic function v, we consider the characteristic
function vh given by

vh(S)=
{
v(S) if h∈S

0 otherwise.

Next, we require that this yields the same change in payoff for
the other players when v is zero-normalized, i.e. v({i})=0 for
all i ∈N .

AXIOM 6.3. (Veto equal loss property) A solution ψ satisfies
the veto equal loss property if ψi(N, v)−ψi(N, vh)=ψj(N, v)−
ψj(N, v

h) for every h ∈ N , i, j ∈ N \ {h} and zero-normalized
(N, v)∈G.

Note that (N, v) being zero-normalized implies that (N, vh)
is zero-normalized. The above mentioned five axioms charac-
terize the class � on a fixed player set N . In proving this, we
use the following expressions for unanimity games. For T ⊆
N, |T |=1, it holds that

CISi(N,uT )=ENSCi(N,uT )=
{

1 if i ∈T
0 otherwise

and

EDi(N,uT )= 1
|N | for all i ∈N.
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For T ⊆N, |T |≥2, it holds that

CISi(N,uT )=EDi(N,uT )= 1
|N | for all i ∈N,

and

ENSCi(N,uT )=
{
(|N |−|T |+1)

|N | if i ∈T
(1−|T |)

|N | otherwise.

Note that for (N,uN), all payoffs are equal to 1
|N | in all three

solutions. As a consequence, we can express every solution in
� for unanimity games (N,uT ) with |T |=1 as

ϕ
α,β

i (N,uT )=
{
(1−α)
|N | +α if i ∈T
(1−α)
|N | otherwise

(9)

and for |T |≥2,

ϕ
α,β

i (N,uT )=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
|N |((1−α)+αβ

+α(1−β)(|N |− |T |+1)) if i ∈T
1

|N |((1−α)+αβ
+α(1−β)(1−|T |)) otherwise.

(10)

So, for i ∈T , j ∈N \T we have ϕα,βi (N,uT )=ϕα,βj (N,uT )+α if
|T | = 1, and ϕ

α,β

i (N,uT )= ϕα,βj (N,uT )+α(1 − β) if |T | ≥ 2. We
use these expressions in proving the following characterization
on a fixed player set. We denote by GN , the collection of all
TU-games on player set N ⊂ IN. A solution on GN is a func-
tion ψ , which assigns a payoff vector ψ(N,v) to every TU-
game (N, v)∈ GN .8 We denote by �N the set of all solutions
on GN obtained by (2) with α,β ∈ [0,1].

THEOREM 6.4. A solution ψ on GN belongs to �N if and
only if it satisfies efficiency, linearity, local monotonicity, the
dictator property and the veto equal loss property.

Proof. It is straightforward to verify that any ϕα,β, α, β ∈
[0,1], satisfies efficiency, linearity and local monotonicity on
GN .



324 RENÉ VAN DEN BRINK and YUKIHIKO FUNAKI

Next, we show the dictator property. (i) Considering the
dictator game (N, dci ), for j ∈N \ {i}, it follows with (9) that
ϕ
α,β

i (N, dci )− ϕα,βj (N, dci )= cα≤ c since α≤ 1. (ii) For unanim-
ity games (N,u{j}) (i.e. dictator games (N, d1

j )), it holds that
ϕ
α,β

i (N,u{j})− ϕα,βj (N,u{j})= −α <α= ϕα,βi (N, d1
i )− ϕα,βj (N, d1

i ).
Considering any unanimity game (N,uT ) with |T | ≥ 2, it fol-
lows with (10) for i, j ∈ T or i, j ∈ N \ T that ϕα,βi (N,uT )=
ϕ
α,β

j (N,uT ), and for i ∈ T and j ∈ N \ T that ϕα,βi (N,uT ) −
ϕ
α,β

j (N,uT )=α(1−β)≤α since β ∈ [0,1]. The dictator property
then follows with linearity and the fact that v=∑ T⊆N

T �=∅
�v(T )uT

for all (N, v)∈GN .
To show the veto equal loss property, consider the unanim-

ity game (N,uT ), |T |≥ 2, and player h∈N . (Note that we do
not have to consider cases with |T | = 1 since the veto equal
loss property only concerns zero-normalized games.) If h∈ T
then (uT )

h = uT , and thus payoffs are not changing when h

becomes a veto player. If h∈N \ T then (uT )
h = uT∪{h}. Obvi-

ously, ϕα,βi (N,uT )− ϕ
α,β

i (N, (uT )
h) is equal for all i ∈ T , and

ϕ
α,β

j (N,uT )− ϕ
α,β

j (N, (uT )
h) is equal for all j ∈ N \ (T ∪ {h}).

Take an i ∈ T and j ∈N \ (T ∪ {h}). Then it follows with (10)
that ϕα,βi (N,uT ) − ϕ

α,β

i (N, (uT )
h) = 1

|N |α(1 − β)(|N | − |T | + 1 −
|N |+ |T |)= 1

|N |α(1 −β)=ϕα,βj (N,uT )−ϕα,βj (N, (uT )
h). The veto

equal loss property then follows by linearity of ϕα,β and the
fact that vh=∑ T⊆N

|T |≥2
�v(T )(uT )

h when v is zero-normalized.

Now, suppose that solution ψ satisfies the five properties
on GN . Let (N, v)∈ GN . If |N | = 1, then ψ(N,v)∈�N by effi-
ciency. If |N | = 2, then ψ ∈�N follows from efficiency, local
monotonicity, linearity and Proposition 4.2. (Note that local
monotonicity implies symmetry.)

Next, suppose that |N |≥3. If (N, v) is a null game given by
v(S)= 0 for all S⊆N , then efficiency and local monotonicity
imply that ψi(N, v)=0 for all i ∈N .

Next, we consider unamimity games (N,uT ) ∈ GN, T ⊂
N, |T | = 1. Local monotonicity implies that there is a c∗ ∈
IR such that ψj(N,uT ) = c∗ for all j ∈ N \ T . For i ∈ T ,
local monotonicity implies that ψi(N,uT )≥ c∗. By efficiency,
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ψi(N,uT )= 1 − (|N |− 1)c∗, and thus 1 − (|N |− 1)c∗ ≥ c∗, which
is equivalent to c∗ ≤ 1

|N | . The dictator property implies that
ψi(N, v)− c∗ ≤ 1, which with efficiency yields c∗ ≥ 1 − (|N |− 1)
c∗ −1, which is equivalent to c∗ ≥0. Thus, there is an αT ∈ [0,1]
such that ψ(N,uT )=αTCIS(N,uT )+ (1 −αT )ED(N,uT ). (Note
that in this case CIS(N,uT )=ENSC(N,uT ).)

Next, we show that αT = αT ′ for all T ,T ′ ⊂ N with
|T | = |T ′| = 1. Take i, j ∈ N , i �= j , and h ∈ N \ {i, j}.
Since (u{i})j = u{i,j}, the veto equal loss property implies
that ψh(N,u{i,j}) − ψh(N,u{i}) = ψi(N,u{i,j}) − ψi(N,u{i}) and
ψh(N,u{i,j})− ψh(N,u{j})= ψj(N,u{i,j})− ψj(N,u{j}), and thus
ψi(N,u{i,j})−ψi(N,u{i})+ψh(N,u{i})=ψh(N,u{i,j})=ψj(N,u{i,j})
− ψj(N,u{j}) + ψh(N,u{j}). Local monotonicity implies that
ψi(N,u{i,j})=ψj(N,u{i,j}), and thus −ψi(N,u{i})+ψh(N,u{i})=
−ψj(N,u{j})+ψh(N,u{j}), meaning that

−α{i}CISi(N,u{i})− (1−α{i})EDi(N,u{i})+α{i}CISh(N,u{i})
+ (1−α{i})EDh(N,u{i})

=−α{j}CISj(N,u{j})− (1−α{j})EDj(N,u{j})
+α{j}CISh(N,u{j})+ (1−α{j})EDh(N,u{j})

which is equivalent to

α{i} +2
(1−α{i})

|N | =α{j} +2
(1−α{j})

|N | ,

which is equivalent to

(|N |−2)α{i} +2= (|N |−2)α{j} +2, which is equivalent to α{i} =α{j}.

So, there is an α ∈ [0,1] such that αT =α for all T ⊂N with
|T |=1.

Next, consider unamimity games (N,uT )∈GN, T ⊂N, 2 ≤
|T | ≤ |N | − 1. Local monotonicity again implies that there is
a c∗ ∈ IR such that ψj(N,uT ) = c∗ for all j ∈ N \ T . More-
over, local monotonicity implies that there is a c∗∗ ≥ c∗ such
that ψi(N,uT )= c∗∗ for all i ∈ T . Efficiency implies that c∗∗ =
1−(|N |−|T |)c∗

|T | . Thus c∗∗ ≥ c∗ if and only if 1−(|N |−|T |)c∗
|T | ≥ c∗ if and

only if c∗ ≤ 1
|N | . By Proposition 6.2, it follows that c∗ ≥ c∗∗−1,
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and thus c∗ ≥ 1−(|N |−|T |)c∗
|T | − 1, which is equivalent to c∗ ≥

1−|T |
|N | . From this, it follows that there is a δT ∈ [0,1] such that
ψ(N,uT )= δT CIS(N,uT )+ (1 − δT )ENSC(N,uT ). (Note that in
this case CIS(N,uT )=ED(N,uT ).)

Next, we show that there is a δ ∈ [0,1] such that δT = δ for
all T ⊂N with 2≤|T |≤ |N |−1. We distinguish the case |N |=3
from the case |N |≥4.

For |N | = 3, we only have to show that δT = δT ′ for
T ,T ′ ⊂ N with |T | = |T ′| = 2. Suppose that N = {i, j, h}
and consider the game v = u{i,j} + u{i,h}. By linearity, we
have that ψj(N, v)=ψj(N,u{i,j})+ψj(N,u{i,h}) and ψh(N, v)=
ψh(N,u{i,j})+ψh(N,u{i,h}). So

ψj(N,u{i,j})+ψj(N,u{i,h})=ψj(N, v)
=ψh(N, v)=ψh(N,u{i,j})+ψh(N,u{i,h}), (11)

where the second equality follows from local monotonicity.
Since ψ(N,uT )=δT CIS(N,uT )+ (1−δT )ENSC(N,uT ) as shown
above, (11) yields that

(
δ{i,j}

3
+ 2(1− δ{i,j})

3

)
+
(
δ{i,h}

3
− 1− δ{i,h}

3

)

=
(
δ{i,j}

3
− 1− δ{i,j}

3

)
+
(
δ{i,h}

3
+ 2(1− δ{i,h})

3

)
,

showing that δ{i,j} = δ{i,h}. Similarly, it can be shown for all
T ,T ′ ⊂N with |T |= |T ′|=2 that δT = δT ′ for |N |=3.

For |N |≥4, consider a T ⊂N with |T |∈{2, . . . , |N |−2}, and
take some h∈N \ T . Since (uT )h = uT∪{h}, the veto equal loss
property implies for i ∈T , j ∈N \ (T ∪{h}) that

ψi(N,uT )−ψi(N,uT∪{h})=ψj(N,uT )−ψj(N,uT∪{h})

which, as shown above, is equivalent to

δT CISi(N,uT )+ (1− δT )ENSCi(N,uT )− δT∪{h}CISi(N,uT∪{h})
−(1− δT∪{h})ENSCi(N,uT∪{h})

= δT CISj (N,uT )+ (1− δT )ENSCj(N,uT )
−δT∪{h}CISj(N,uT∪{h})− (1− δT∪{h})ENSCj(N,uT∪{h}),
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which, by definition of the CIS-value, is equivalent to

(1− δT )(ENSCi(N,uT )−ENSCj(N,uT ))
= (1− δT∪{h})(ENSCi(N,uT∪{h})−ENSCj(N,uT∪{h})),

which, by definition of the ENSC-value, is equivalent to

(1− δT )
( |N |− |T |+1

|N | − 1−|T |
|N |

)

= (1− δT∪{h})
( |N |− |T |−1+1

|N | − 1−|T |−1
|N |

)
,

which is equivalent to

δT = δT∪{h}.

But then there is a δ∈ [0,1] such that δT =δ for all T ⊂N with
|T | ∈ {2, . . . , |N |−1}.

For the unamimity game (N,uN)∈GN , efficiency and local
monotonicity imply that ψi(N,uN)=ED(N,uN)=CIS(N,uN)=
ENSC(N,uN)= 1

|N | for all i ∈N .
If α > 0, then defining β = δ−(1−α)

α
, we obtain from above

that ψ(N,uT ) = ϕα,β(N,uT ) for all T ⊆ N, T �= ∅. We are
left to show that β ∈ [0,1]. Obviously, δ − (1 − α) ≤ α since
δ ∈ [0,1], and thus β ≤ 1. Considering (N,uT ) with |T | = 2,
take i ∈ T and j ∈ N \ T . The dictator property then yields
that ψi(N,uT )−ψj(N,uT )=ϕα,βi (N,uT )−ϕα,βj (N,uT )=α(1−β)
≤ ψi(N,u{i})− ψj(N,u{i})= ϕ

α,β

i (N,u{i})− ϕ
α,β

j (N,u{i})= α. So,
1 − β ≤ 1, and thus β ≥ 0. So, for α > 0, we have shown that
β ∈ [0,1]. For α=0, we can just take β= δ∈ [0,1]. So, we have
determined that ψ(N,uT )=ϕα,β(N,uT ) for α,β ∈ [0,1] and all
T ⊆N .

Finally, linearity and the fact that v=∑ T⊆N
T �=∅

�v(T )uT implies

that ψ(N,v)=ϕα,β(N, v) for all (N, v)∈GN .

Next, we provide an axiomatization on the class of all TU-
games G. In order to do that, we introduce the following
axiom that relates payoffs in games with different sets of play-
ers and can be seen as a weak consistency axiom. It states
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that deleting a null player from a game changes the payoffs
of all other players by the same amount. For (N, v)∈ G and
T ⊂N , the restricted game (T , vT ) is given by vT (S)=v(S) for
all S⊆T .

AXIOM 6.5. (Weak null player out property) A solution ψ sat-
isfies the weak null player out property if ψi(N \ {h}, vN\{h})−
ψi(N, v)=ψj(N \{h}, vN\{h})−ψj(N, v) for every i, j ∈N and h∈
N \ {i, j} being a null player in (N, v).

This is a weaker version of the null player out property as
considered in Derks and Haller (1999), which states that delet-
ing a null player does not change the payoffs of the other
players.

THEOREM 6.6. A solution ψ on G belongs to � if and only
if it satisfies efficiency, linearity, local monotonicity, the dictator
property, the veto equal loss property and the weak null player
out property.

Proof. Similar to the proof of Theorem 6.4 it follows that
any ϕα,β, α, β ∈ [0,1], satisfies efficiency, linearity, local mono-
tonicity, the dictator property and the veto equal loss prop-
erty on G. To show the weak null player out property, con-
sider unanimity games (N,uT ), h, j ∈N \T , h �= j , and i ∈T . If
|T | = 1 then ϕ

α,β

i (N \ {h}, uT )− ϕα,βi (N,uT )= ϕα,βj (N \ {h}, uT )+
α − ϕ

α,β

j (N,uT )− α = ϕ
α,β

j (N \ {h}, uT )− ϕ
α,β

j (N,uT ). If |T | ≥ 2
then ϕα,βi (N \ {h}, uT )−ϕα,βi (N,uT )=ϕα,βj (N \ {h}, uT )+α(1 −β)
− ϕ

α,β

j (N,uT )− α(1 − β)= ϕ
α,β

j (N \ {h}, uT )− ϕ
α,β

j (N,uT ). The
weak null player out property then follows by linearity of ϕα,β .

To show uniqueness, suppose that solution ψ satisfies the
six properties on G. From Theorem 6.4, it follows that for
every N ⊂ IN, there exist numbers α|N |, β |N | ∈ [0,1] such
that ψ(N,v)=ϕα|N |,β |N |

(N, v) for all (N, v)∈G. Since efficiency
determines the solution for one-player games, we are left to
show that there exist α,β ∈ [0,1] such that αn =α and βn =β
for all n∈ {2, . . . }. First consider games (N,uT ), (N ∪ {h}, uT )
for h∈ IN \N and |T | = 1. For i ∈ T , j ∈N \ T , the weak null
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player out property implies that ψj(N,uT )−ψj(N ∪ {h}, uT )=
ψi(N,uT )−ψi(N ∪ {h}, uT ), so 1−α|N |

|N | − 1−α|N |+1

|N | = 1−α|N |
|N | + α|N | −

1−α|N |+1

|N | − α|N |+1, yielding α|N | = α|N |+1. So, we conclude that
there exists an α∈ [0,1] such that αn=α for all n∈{2, . . . }.

Next, consider games (N,uT ), (N ∪ {h}, uT ) for h ∈ IN \N
and 2 ≤ |T | ≤ |N | − 2. For i ∈ T , j ∈ N \ T , the weak null
player out property again implies that ψj(N,uT ) − ψj(N ∪
{h}, uT )=ψi(N,uT )−ψi(N ∪ {h}, uT ). Using αn = α for all n∈
IN, we then find that 1

|N |
(
(1−α)+αβ |N | +α(1−β |N |)(1−|T |))−

1
|N |+1

(
(1−α)+αβ |N |+1 +α(1−β |N |+1)(1−|T |)) = 1

|N |((1 − α) +
αβ |N | + α(1 − β |N |)(|N | − |T | + 1)) − 1

|N |+1((1 − α) +
αβ |N |+1 +α(1−β |N |+1)(|N |− |T |+1)), and thus β |N | =β |N |+1. So,
we conclude that there exists a β ∈ [0,1] such that βn=β for all
n∈{2, . . . }.

Note that, similar to Corollary 5.5, we characterized the
class of solutions � using axioms that do not depend on the
parameters α and β. We conclude this section by showing log-
ical independence of the six axioms of Theorem 6.6.

(1) Solution ψ given by ψi(N, v)=0 for all i∈N and (N, v)∈G
satisfies the axioms of Theorem 6.6 except efficiency.

(2) Solution ψ given by ψ(N,v)=CIS(N, v) if v(N)≤ 10, and
ψ(N,v)=ENSC(N,v) if v(N) > 10 satisfies the axioms of
Theorem 6.6 except linearity.

(3) Define ENCIS
β
(N, v) =∑

T⊆N �v(T )ENCIS
β
(N,uT ), where

ENCIS
β
(N,uT ) = ENCISβ(N,uT ) if |T | = 1, and ENCIS

β

(N,uT ) = ENCISβ(N,uN\T ) if |T | ≥ 2. Then the solution
ϕα,β given by ϕα,β(N, v)=αENCISβ(N, v)+ (1−α)ED(N,v)
for all (N, v) ∈ G, satisfies the axioms of Theorem 6.6,
except local monotonicity.

(4) Solution ψ = ϕα,β with α > 1 satisfies the axioms of
Theorem 6.6 except the dictator property.

(5) The Shapley value (Shapley, 1953) satisfies the axioms of
Theorem 6.6 except the veto equal loss property.

(6) Consider numbers αn ∈ [0,1], n∈ IN such that there exists
n∈IN with αn �=αn+1. Then solution ψ(N,v)=ϕα|N |,β |N |

(N, v)
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for all (N, v)∈G satisfies the axioms of Theorem 6.6 except
the weak null player out property.

7. SPECIFIC SOLUTIONS IN �

Taking specific values for α, respectively, β in the standard-
ness, respectively, reduced game consistency, yields character-
izations of specific solutions in �. The CIS- and ENSC-value
and all their convex combinations are obtained with α = 1,
and thus satisfy standardness for two-player games. The corre-
sponding characterizations follow directly from Theorem 5.4,
and therefore, are stated without further proof.

COROLLARY 7.1. A solution ψ satisfies

1. efficiency, standardness for two-player games and β-consis-
tency, β ∈ [0,1], on G if and only if ψ=ENCISβ =ϕ1,β .

2. efficiency, standardness for two-player games and 1-consis-
tency on G if and only if ψ=CIS=ϕ1,1.

3. efficiency, standardness for two-player games and 0-consis-
tency on G if and only if ψ=ENSC=ϕ1,0.

4. efficiency, egalitarian standardness for two-player games and
β-consistency, β ∈ [0,1], on G if and only if ψ=ED.

Note that the last statement in this corollary implies that
the equal division solution is axiomatized by egalitarian stand-
ardness for two-player games and any consistency, as dis-
cussed in the previous section.

In the previous section, we characterized the class of solu-
tions �. Adding additional properties yields characterizations
of specific solutions in � (where some of the other properties
might be deleted). The subclass of self-dual solutions in � is
characterized as follows.

PROPOSITION 7.2. Consider solution ϕα,β ∈�. Then ϕα,β is
self-dual if and only if α=0 or β= 1

2 .

Proof. From Proposition 3.3, it is straightforward to show
that these solutions are self-dual. To show that these are the
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only self-dual solutions in the class �, suppose that ϕα,β(N, v)=
ϕα,β(N, v∗) for all (N, v)∈G. Then with Proposition 3.3, we have

ϕα,β(N, v)=ϕα,β(N, v∗)

⇔
ϕα,β(N, v)=ϕα,1−β(N, v)

⇔

λ
α,β

i (N, v)+ 1
|N |

⎛
⎝v(N)−

∑
j∈N

λ
α,β

j (N, v)

⎞
⎠

=λα,1−β
i (N, v)+ 1

|N |

⎛
⎝v(N)−

∑
j∈N

λ
α,1−β
j (N, v)

⎞
⎠

⇔
α(βv({i})− (1−β)v(N \ {i}))

+ 1
|N |

⎛
⎝v(N)−

∑
j∈N

α(βv({j})− (1−β)v(N \ {j}))
⎞
⎠

=α((1−β)v({i})−βv(N \ {i}))

+ 1
|N |

⎛
⎝v(N)−

∑
j∈N

α((1−β)v({j})−βv(N \ {j}))
⎞
⎠

Since this must hold for all (N, v)∈G, we have αβ=α(1 −β),
which is equivalent to α(2β−1)=0. So, α=0 or β= 1

2 .

So, the self-dual solutions in � are the equal division solu-
tion, the average of the CIS- and ENSC-value, and all convex
combinations of these two solutions. The only covariant solu-
tions in � are the ones with α= 1. These are the CIS-value,
the ENSC-value and their convex combinations. In the follow-
ing, we use the expression

ϕ
α,β

i (N, v) = αβv({i})−α(1−β)v(N \ {i})+ 1
|N |v(N)

− 1
|N |αβ

∑
j∈N v({j})+ 1

|N |α(1−β)
×∑j∈N v(N \ {j})

(12)
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PROPOSITION 7.3. Consider solution ϕα,β ∈�. Then ϕα,β is
covariant if and only if α=1.

Proof. Let (N, v), (N,w)∈G be such that there exist k∈ IR+
and p∈ IRn with w(S)= kv(S)+∑j∈S pj for all S⊆N . Denot-
ing pS =∑j∈S pj for all S⊆N , with (12) it then follows that

ϕ
α,β

i (N,w)=αβw({i})−α(1−β)w(N \ {i})+ 1
|N |w(N)

− 1
|N |αβ

∑
j∈N

w({j})+ 1
|N |α(1−β)

∑
j∈N

w(N\{j})

=αβ(kv({i})+pi)−α(1−β)(kv(N \ {i})+pN\{i})

+ 1
|N |(kv(N)+pN)−

1
|N |αβ

∑
j∈N
(kv({j})+pj)

+ 1
|N |α(1−β)

∑
j∈N
(kv(N \ {j})+pN\{j})

=αβkv({i})−α(1−β)kv(N \ {i})+ 1
|N |kv(N)

− 1
|N |αβ

∑
j∈N

kv({j})+ 1
|N |α(1−β)

∑
j∈N

kv(N\{j})

+αβpi −α(1−β)pN\{i} + 1
|N |pN − 1

|N |αβpN

+ 1
|N |α(1−β)(|N |−1)pN

=kϕα,βi (N, v)+
(

1+ (|N |−1)α
|N |

)
pi + 1−α

|N | pN\{i}.

But then, ϕα,βi (N,w)=kϕα,βi (N, v)+pi for all k∈ IR+, p∈ IRN if
and only if α=1.

As a corollary from Propositions 7.2 and 7.3, we imme-
diately get a characterization of the average of the CIS and
ENSC-value.



A CLASS OF SOLUTIONS FOR TU-GAMES 333

COROLLARY 7.4. Consider solution ϕα,β ∈ �. Then ϕα,β is
self-dual and covariant if and only if it is the average of the
CIS- and ENSC-value ϕ1, 1

2 .

Recall from the previous section that ψ ∈� is equivalent
to saying that ψ satisfies efficiency, linearity, local monotonic-
ity, the dictator property, the veto equal loss property and the
weak null player out property.

The equal division solution satisfies self-duality, but is not
covariant. Instead, it is characterized as the unique solution
in � that is non-negative.9 We even can weaken the condi-
tions, under which the solution belongs to � (as given in
Theorem 6.4) by requiring it to be efficient, symmetric and
linear.

PROPOSITION 7.5. Solution ψ satisfies efficiency, symmetry,
linearity and non-negativity if and only if it is the equal division
solution.

Proof. Obviously, the equal division solution satisfies effi-
ciency, symmetry, linearity and non-negativity. Next, sup-
pose that solution ψ satisfies these four properties. Consider
the standard game (N, bT ) for T ⊂ N , T �= N . Efficiency
of ψ implies that

∑
i∈N ψi(N, bT ) = 0. Non-negativity of ψ

implies that ψi(N, bT )≥ 0 for all i ∈N . Thus, ψi(N, bT )= 0 =
EDi(N, bT ) for all i ∈N .

For the standard game (N, bN), symmetry implies that all
ψi(N, bN), i ∈ N , are equal. With efficiency, it then follows
that ψi(N, bN)= 1

|N | =EDi(N, bN) for all i ∈N .
So, ψ is equal to the equal division solution on the class

of standard games. Since every characteristic function v can
be written as a linear combination of standard games by v=∑

T⊆N
T �=∅

v(T )bT , linearity then implies that ψ is equal to the

equal division solution on the class of all games.

Note that from Propositions 7.2 and 7.5, we also derive
that the CIS- and ENSC-values are not self-dual (in
fact, they are each others dual), nor non-negative. They are
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characterized by individual rationality properties. The CIS-
value is the unique solution in � that satisfies individual ratio-
nality. Again, the conditions, under which a solution belongs
to � can be weakened.

PROPOSITION 7.6. Solution ψ satisfies efficiency, symmetry,
linearity and individual rationality if and only if it is the CIS-
value ϕ1,1.

Proof. It is known that the CIS-value satisfies efficiency,
symmetry, linearity and individual rationality. Next, suppose
that solution ψ satisfies these four properties. Consider the
unanimity game (N,uT ) for T ⊂ N , with |T | = 1. Individ-
ual rationality of ψ implies that ψi(N,uT )≥ 0 for all i ∈N \
T , and ψi(N,uT )≥ 1 for i ∈ T . Efficiency of ψ implies that∑

i∈N ψi(N,uT )= 1, and thus the above given inequalities are
equalities, i.e. ψi(N,uT )= 0 =CISi(N,uT ) for all i ∈N \T , and
ψi(N,uT )=1=CISi(N,uT ) for i ∈T .

Next, consider the standard game (N, bT ) with 2 ≤ |T | ≤
|N | − 1. Then individual rationality of ψ implies that
ψi(N, bT )≥ 0 for all i ∈N . Since efficiency of ψ implies that∑

i∈N ψi(N, bT )= 0, it follows that ψi(N, bT )= 0 =CISi(N, bT )

for all i ∈N .
Finally, consider the standard game (N, bN). Then symmetry

and efficiency imply thatψi(N, bn)= 1
|N | =CISi(N, bN) for all i∈N .

Since every characteristic function v can be written as a
linear combination of standard- and one-player unanimity
games by v=∑i∈N v({i})u{i} +

∑
T⊆N

|T |≥2
(v(T )−∑i∈T v({i}))bT , lin-

earity implies that ψ is equal to the CIS-value on the class of
all games.

The ENSC-value is the unique solution in � satisfying dual
individual rationality. (The proof goes along similar lines as
the proof of Proposition 7.6, and is, therefore, omitted.)

PROPOSITION 7.7. Solution ψ satisfies efficiency, symmetry,
linearity and dual individual rationality if and only if it is the
ENSC-value ϕ1,0.
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8. CONCLUDING REMARKS

In this article, we characterized the class of solutions that are
obtained as convex combinations of the equal division solu-
tion, the CIS-value and the ENSC-value using a general α-
standardness for two-player games and a β-consistency, α,β ∈
[0,1]. We restricted both parameters α and β to be between
zero and one. This is obvious for β, which is interpreted as a
probability of cooperation of the leaving player in the reduced
games. However, we might consider α to be any real number.
Repeating the analysis done in this article, we would obtain
similar results for the class of all affine combinations of the
equal division solution and any convex combination of the
CIS-value and the ENSC-value.

An n-player TU-game is described by the 2n− 1 worths of
non-empty coalitions. However, the solutions studied in this
article only depend on the worths of the singletons, coali-
tions of size n− 1 and the ‘grand coalition’. This is a conse-
quence of the egalitarian approach. In the literature, various
classes of games that are fully determined by the worths of
these special coalitions can be found. For example, in auction
games (see Graham et al., 1990) and bankruptcy games (see
O’Neill, 1982; Aumann and Maschler, 1985), the game is fully
described by the worth of the ‘grand coalition’ N and the
worths of all coalitions of size n− 1, while an airport game
(see Littlechild and Owen, 1973) is fully described by the n

worths of the singletons. Although the solutions studied in
this article are especially useful for these classes of games, we
support these solutions also in other applications of games,
even if the game depends on the worths of more coalitions.
Consider, for example, a firm which organization is managed
by a group of managers. In wage negotiations between a man-
ager and the firm, usually the wage of the manager is deter-
mined by the managers reservation wage (i.e. its singleton
worth), the contribution of the manager to the firm (deter-
mined by its singleton worth in the dual game) and the worth
of the fully employed firm.
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The solutions ϕα,β ∈� also can be characterized as com-
promise values. The literature on compromise values starts
with the introduction of the τ -value in Tijs (1981). This is
an efficient solution for a special class of TU-games, which
assigns to every so-called quasi-balanced TU-game the unique
efficient payoff vector on the line segment between some
lower- and upper bound. This set of quasi-balanced games
are exactly those, for which the upper bound is above the
lower bound and an efficient payoff vector on the line seg-
ment between these bounds exists. Taking as lower bound for
player i ∈N in game (N, v) the value mα,βi (N, v)= λ

α,β

i (N, v),
and as upper bound M

α,β

i (N, v)= v(N)−∑j∈N\{i}m
α,β

j (N, v)=
v(N) −∑

j∈N\{i} λ
α,β

j (N, v), we can adapt the class of quasi-
balanced games accordingly. On this class, the solution ϕα,β

is the solution that assigns to every game the unique effi-
cient payoff vector between the lower and upper bounds. The
characterization of the τ -value by efficiency, the minimal right
property and the restricted proportionality property, as given
in Tijs (1987), can be reformulated by adapting the lower
and upper bounds to give characterizations of ϕα,β on the
adapted class of games.10 Although the τ -value is not a solu-
tion in �, for convex games,11 it always yields a convex com-
bination of the CIS- and ENSC-value. However, for differ-
ent games, the weight assigned to these two solutions is dif-
ferent. In the future, we will study equal surplus sharing
solutions, which allow the parameter β(v) to depend on the
game.

We once more remark that besides β, also the parame-
ter α in the solutions ϕα,β is fixed and the same for every
game. We obtain a larger class of solutions if we also allow
this parameter to depend on the game. Allowing the value
of α to depend on the game we could take α(v)= v(N)

v({i})+v({j})
whenever v({i}) + v({j}) �= 0. This yields proportional stand-
ardness for two-player games as satisfied by, e.g. the Proper
Shapley value as introduced in Vorob’ev and Liapunov (1998):
for N = {i, j}, i �= j , we have ψi(N, v) = v(N)

2(v({i})+v({j})) (v({i} −
v({j}))+ 1

2v(N)= v({i})−v({j})+v({i})+v({j})
2(v({i}+v({j}) v(N)= v({i})

v({i})+v({j})v(N). In



A CLASS OF SOLUTIONS FOR TU-GAMES 337

the future, we study the generalized class of solutions with
parameters α and β depending on the game, and in that way
obtain new characterizations of (solutions related to) the τ -
value and the Proper Shapley value.

Given our class of solutions �, we can also define a new
set-valued solution for TU-games by assigning to every game
the union of all payoff vectors assigned by any solution in
� to that game, i.e. we can consider the set-valued solution
 given by (N,v)={ϕα,β(N, v) |α,β ∈ [0,1]}. Finding axiom-
atic characterizations for this set-valued solution is a plan for
future research.

Further, the solutions considered in Joosten (1996), van
den Brink et al. (2007) and Ju et al., (2007) who, respectively,
consider all convex combinations of the equal division solu-
tion and the Shapley value, and all convex combinations of
the CIS-value and the Shapley value, can be generalized by
considering all convex combinations of any solution ϕα,β ∈�
and the Shapley value. Then also other properties that the
solutions in � have in common with the Shapley value, such
as Chun (1989)’s fair ranking and van den Brink (2001)’s fair-
ness, will be useful. Finally, we mention future research on
implementation of the solutions in �.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any non-
commercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

NOTES

1. Efficient solutions are often called values.
2. TU-games satisfying this property are called weakly essential.
3. The straightforward proof can be obtained from the authors on

request.
4. The stronger anonymity property does imply equality of αi and αj

with linearity. In fact, it can be shown that a solution ψ satisfies (4)
and is anonymous if and only if αi =αj , βi =βj , γi =γj and δi =δj .
The ‘if ’ part is straightforward. To show the ‘only if ’ part, consider
the permutation π :N →N given by π(i)= j and π(j)= i. Then
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πv({i})= v({j}), πv({j})= v({i}) and πv(N)= v(N). By anonymity
of ψ it then must hold that ψi(N, v) = ψπ(i)(N,πv) = ψj (N,πv),
which is equivalent to αiv({i})+βiv({j})+ γiv(N)+ δi =αjπv({j})+
βjπv({i})+γjπv(N)+δj =αjv({i})+βjv({j})+γjv(N)+δj .The state-
ment then follows since this must hold for all (N, v)∈G2.

5. Here we only consider the class G of all TU-games. If one consid-
ers subclasses C ⊂G, then in the definition of consistency one should
additionally require that the reduced game (N \ {j}, vx) in this defi-
nition also belongs to C.

6. In case β ∈ (0,1] we can even do without efficiency since xi − yi = 0
for all i ∈N follows from xi − yi = (1 − |N |β

|N |−1 )(xj − yj ) for all i, j ∈
N, i �= j .

7. Note that dci equals the scaled unanimity game cu{i}.
8. Note that we can easily adapt the axioms by requiring them on GN

instead of G.
9. Alternative characterizations of the equal division solution and CIS-

value are given in van den Brink (2007).
10. In the proof given in Tijs (1987), use of the specific formula’s of the

lower- and upper-bounds is made only twice. This is to show that
for every v ∈ G, the rescaled game, in which we subtract the mini-
mal rights from the worths of coalitions is the nullvector (which is
satisfied for all bounds satisfying covariance), and to show that the
upper bound satisfies covariance, see also van den Brink (1994).

11. A TU-game (N, v) is convex if v(S ∪T )+ v(S ∩T )≥ v(S)+ v(T ) for
all S,T ⊆N .
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