Bulletin of the Section of Logic
Volume 12/2 (1983), pp. 99-102
reedition 2008 [original edition, pp. 99-104]

Milan Božič
Kosta Došen

AXIOMATIZATIONS OF INTUITIONISTIC DOUBLE NEGATION

We investigate intuitionistic propositional modal logics in which a modal operator \square is equivalent to intuitionistic double negation. Whereas $\neg \neg$ is divisible into two negations, \square is a single indivisible operator. We shall first consider an axiomatization of the Heyting propositional calculus H, with the connectives $\rightarrow, \wedge, \vee$ and \neg, extended with \square. This system will be called $H d n$ ("dn" stands for "double negation"). Next, we shall consider an axiomatization of the fragment of H without \neg extended with \square. This system will be called $H d n^{+}$. We shall show that these systems are sound and complete with respect to specific classes of Kripke-style models with two accessibility relations, one intuitionistic and the other modal. This type of models is investigated in [2] and [3], and here we try to apply the techniques of these papers to an intuitionistic modal operator with a natural interpretation. The full results of our investigation will be published in [4] and [1].

The system $H d n$. The language L is the language of propositional modal logic with the propositional variables p, q, \ldots and the connectives $\rightarrow, \wedge, \vee, \neg$ and $\square(\leftrightarrow$ is defined as usual is usual in terms of \rightarrow and \wedge, and in formulae bind more strongly than \rightarrow). As schemata for formulae we use A, B, C, \ldots The system $H d n$ is axiomatized with modus ponens and the following axiom-schemata:

$$
\begin{array}{ll}
\text { H1. } & A \rightarrow(B \rightarrow A) ; \\
\text { H2. } & (A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C)) ; \\
\text { H3. } & (C \rightarrow A) \rightarrow((C \rightarrow B) \rightarrow(C \rightarrow A \wedge B)) ; \\
\text { H4. } & A \wedge B \rightarrow A ;
\end{array}
$$

```
H5. \(\quad A \wedge B \rightarrow B\);
H6. \(\quad A \rightarrow A \vee B\);
H7. \(\quad B \rightarrow A \vee B\);
H8. \(\quad(A \rightarrow C) \rightarrow((B \rightarrow C) \rightarrow(A \vee B \rightarrow C))\);
H9. \(\quad(A \rightarrow \neg B) \rightarrow(B \rightarrow \neg A)\);
H10. \(\neg A \rightarrow(A \rightarrow B)\);
\(d n 1\). \(\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)\);
dn2. \(\quad A \rightarrow \square A\);
\(d n 3\). \(\square(((A \rightarrow B) \rightarrow A) \rightarrow A)\);
\(d n 4\). \(\quad \neg \square \neg(A \rightarrow A)\).
```

It is easy to show that the system obtained by replacing $d n 1-d n 4$ by
$d n 0 . \quad A \leftrightarrow \neg \neg A$
has the same theorems as $H d n$. Using $d n 1-d n 4$ is, however, more suitable when one wants to connect $H d n$ with the models given below and to compare $H d n$ with $H d n^{+}$. Since $H d n$ is closed under replacement of equivalent formulae, $d n 0$ guarantees that \square in $H d n$ stands for intuitionistic double negation.

An $H d n$ frame is $\left\langle X, R_{I}, R_{M}\right\rangle$ where $X \neq \emptyset, R_{I} \subseteq X^{2}$ is reflexive and transitive, $R_{M} \subseteq X^{2}$ and
(1) $R_{I} \circ R_{M} \subseteq R_{M} \circ R_{I}$,
(2) $R_{M} \subseteq R_{I}$,
(3) $\forall x, y\left(x R_{M} y \Rightarrow \forall z\left(y R_{I} z \Rightarrow z R_{I} y\right)\right)$,
(4) $\forall x \exists y x R_{M} y$; the variables x, y, z, \ldots range over X.

An $H d n$ model is $\left\langle X, R_{I}, R_{M}, V\right\rangle$ where $\left\langle X, R_{I}, R_{M}\right\rangle$ is an $H d n$ frame and the valuation V is a mapping from the set of propositional variables of L to the power set of X such that for every $p, \forall x, y\left(x R_{I} y \Rightarrow(x \in V(p) \Rightarrow y \in\right.$ $V(p)))$. The relation \models in $x \vDash A$ is defined as usual for $\rightarrow, \wedge, \vee$ and \neg, using R_{I} for \rightarrow and \neg, whereas $x \models \square A \Leftrightarrow_{d f} \forall y\left(x R_{M} y \Rightarrow y \models A\right)$. A formula A holds in a frame $F r$ iff A holds in every model with the frame $F r$; and A is valid iff A holds in every frame. An $H d n$ frame (model) is condensed iff $R_{I} \circ R_{M}=R_{M}$, and it is strictly condensed iff $R_{I} \circ R_{M}=R_{M} \circ R_{I}=R_{M}$. Strictly condensed $H d n$ frames from a proper subclass of condensed $H d n$ frames, with form a proper subclass of the class of all $H d n$ frames.

Let $F r$ be a frame which satisfies only (1), and not necessarily also (2)-(4). Then it is possible to show that: $d n 2$ holds in $F r$ iff (2) holds for
$F r ; d n 3$ holds in $F r$ iff (3) holds for $F r$; and $d n 4$ holds in $F r$ iff (4) holds for Fr .

By a fairly standard proof with a canonical model it is possible to show that $H d n$ is sound and complete with respect to the class of all (all condensed, all strictly condensed) $H d n$ frames.

In the definition of strictly condensed $H d n$ frames (1)-(3) and the condition $R_{I} \circ R_{M}=R_{M} \circ R_{I}=R_{M}$ can all be replaced by the condition

$$
\forall x, y\left(x R_{M} y \Leftrightarrow\left(x R_{I} y \text { and } \forall z\left(y R_{I} z \Rightarrow z R_{I} y\right)\right)\right)
$$

yielding the same class of frames. So in these frames R_{M} is definable in terms of R_{I}. Now, if in the definition of $H d n$ frames we require that R_{I} is not only reflexive and transitive, but a partial ordering, our soundness and completeness results still hold. However, in that case all $H d n$ frames are strictly condensed (just show $R_{M} \circ R_{I} \subseteq R_{M}$). Hence, we have shown $H d n$ sound and complete with respect to partially ordered frames where for any x there is a maximal element y above $x, x R_{M} y$ means that y is one of these maximal elements, and $x \models \square A$ means that A holds in all these maximal elements.

The system $H d n^{+}$. The system $H d n^{+}$will be formulated in the language L^{+}which is L without \neg, and in addition to modus ponens and the axiom-schemata $H 1-H 8, d n 1-d n 3$ it will have the axiom-schema

$$
d n 5 . \square(\square A \rightarrow A) .
$$

This system axiomatizes Heyting's positive propositional logic extended with intuitionistic double negation, but not with negation. To show that we proceed as follows.

An $H d n^{+}$frame differs from an $H d n$ frame in having
(5) $\forall x, y\left(x R_{M} \circ R_{I} y \Rightarrow y R_{M} \circ R_{I} y\right)$
instead of (4). It is easy to show that $H d n$ frames form a proper subclass of $H d n^{+}$frames. It is also possible to show that for any frame Fr which satisfies only (1), $d n 5$ holds in $F r$ iff (5) holds for $F r$.

Again by a standard proof with a canonical model shows that $H d n^{+}$ is sound and complete with respect to the class of all $H d n^{+}$frames.

In order to prove that $H d n^{+}$captures all the theorems of $H d n$ without \neg we proceed as follows. Suppose a formula A from L^{+}is not a theorem of $H d n^{+}$; hence, it is falsified in an $H d n^{+}$model $\left\langle X, R_{I}, R_{M}, V\right\rangle$. The closure
of this model will be $\left\langle\bar{X}, \bar{R}_{I}, \bar{R}_{M}, \bar{V}\right\rangle$ where $\bar{X}=X \cup\{1\}, x \bar{R}_{I} y \Leftrightarrow\left(x R_{I} y\right.$ or $\left(y=1\right.$ and $\exists z\left(x R_{I} z\right.$ and not $\left.\left.\exists t z R_{M} t\right)\right)$ or $\left.x=y=1\right), x \bar{R}_{M} y \Leftrightarrow\left(x R_{M} y\right.$ or $\left(x \bar{R}_{I} y\right.$ and $\left.\left.y=1\right)\right)$, and $\bar{V}(p)=V(p) \cup\{1\}$. Since it is possible to show that the closure of an $H d n^{+}$model is an $H d n$ model, and that in these two models the same formulae for L^{+}holds in the members of X, it follows that A is falsified in $H d n$ model, and hence A is not a theorem of $H d n$.

The system $H d n^{+}$extended with $H 9$ and $H 10$ is weaker than $H d n$, since $d n 4$ and $\square A \rightarrow \neg \neg A$ are not provable in it. Alternatively, it is also possible to axiomatize $H d n^{+}$using $\square \square A \rightarrow \square A$ instead of $d n 5$.

References

[1] M. Božič, Positive logic with double negation, Publ. Inst. Math. (Beograd) (to appear).
[2] M. Božič and K. Došen, Models for normal intuitionistic modal logics, Studia Logica (to appear).
[3] K. Došen, Models for stronger normal intuitionistic modal logics, Studia Logica (to appear).
[4] K .Došen, Intuitionistic double negation as a necessity operator, Publ. Inst. Math. (Beograd) (to appear).

Institute of Mathematics
Beograd, Yugoslavia

