

Axiomatizing probabilistic processes : ACP with generative
probabilities
Citation for published version (APA):
Baeten, J. C. M., Bergstra, J. A., & Smolka, S. A. (1992). Axiomatizing probabilistic processes : ACP with
generative probabilities. (Computing science notes; Vol. 9219). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Aug. 2022

https://research.tue.nl/en/publications/ce2c5826-0d16-4874-aea1-e8c56bcfeb6f

Eindhoven University of Technology

Department of Mathematics and Computing Science

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities

by

J.C.M.Baeten J.A.Bergstra S.A.Smolka

Computing Science Note 92/19
Eindhoven, September 1992

92/19

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published el~ewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Axiomatizing Probabilistic Processes:

ACP with Generative Probabilities*

J.C.M. Baeten

Dept. of Math and Computing Science, Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

J .A. Bergstra

Programming Research Group, University of Amsterdam

P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

S.A. Smolka

Department of Computer Science, SUNY at Stony Brook

Stony Brook, NY 11794-4400, U.S.A.

Abstract

This paper is concerned with finding complete axiomatizations of probabilistic processes.

We examine this problem within the context of the process algebra ACP and obtain as our

end-result the axiom system prACPi, a probabilistic version of ACP which can be used to

reason algebraically about the reliability and performance of concurrent systems. Our goal was

to introduce probability into ACP in as simple a fashion as possible. Optimally, ACP should be

the homomorphic image of the probabilistic version in which the probabilities are forgotten.

We begin by weakening slightly ACP to obtain the axiom system ACPi. The main differ

ence between ACP and ACPi is that the axiom z + 6 = z, which does not yield a plausible

interpretation in the generative model of probabilistic computation, is rejected in ACPi. We

argue that this does not affect the usefulness of ACPi in practice, and show how ACP can be

reconstructed from ACP; with a minimal amount of technical machinery.

prACPi is obtained from ACPi through the introduction of probabilistic alternative and

parallel composition operators, and a process graph model for prACPi based on probabilistic

bisimulation is developed. We show that prACPi is a sound and complete axiomatization

of probabilistic bisimulation for finite processes, and that prACPi can be homomorphically

embedded in ACPi as desired.

Our results for ACPi and prACPi are presented in a modular fashion by first considering

several subsets of the signatures. We conclude with a discussion about the suitability of an

internal probabilisti:: choice operaior in the context of p1'ACPr'

• A preliminary version 0: t.b.is paper appeared in Proceetiing& o.z COSCCR '9! - Thire International Conference

on Concurrency Theory, Yo1. 630 of the Springer .. Verlag series Lecture SotC$ in Computer Science, pp. 472-485, Aug.

1992. The research ofthe first and second authors was supported by ESPRIT Basic Research Action 7166, CONCUR2.

The second author was also supported by RACE project 1046, SPECS. This document does not necessarily reflect

the views of the SPECS consortium. The research of the third author was supported by NSF grants CCR-8704309,

CCR-9120995, and CCR-9208585.

1

1 Introduction

It is intriguing to consider the notion of probability (or probabilistic behavior) within the context of

process algebra: a formal system of algebraic, equational, and operational techniques for the speci

fication and verification of concurrent systems_ Through the introduction of probabilistic measures,

one can begin to analyze - in an algebraic fashion - "quantitative" aspects of concurrency such

as reliability, performance, and fault tolerance.

In this paper, we address .this problem in terms of complete axiomatizations of probabilistic

processes within the context of the axiom system ACP [BK84]. ACP models an asynchronous

merge, with synchronous communication, by means of arbitrary interleaving. It uses an additional

constant 0, which plays the role of NIL from CCS [Mil80] (CCS is a predecessor of ACP). The key

axioms for 0 are:

'" +0 = '" A6

0·",=0 A7

The process 0 represents an unfeasible option; i.e. a task that cannot be performed and there

fore will be postponed indefinitely. The interaction with merge (parallel composition) is as follows:

'" 110 = ",·0

(This is not provable from ACP but for each closed process expression p we find that ACP I- p II
0= p·o.) Now 0 represents deadlock according to the explanation of [BK84].

Our goal is to introduce probability into ACP in as simple a fashion as possible. Optimally we

would like ACP to be the homomorphic image of the probabilistic version in which the probabilities

are forgotten. To this end, we first develop a weaker version of ACP called ACP1. This axiom

system is just a minor alteration expressing almost the same process identities on finite processes.

The virtues of this weaker axiom system are as follows:

(i) ACP1 does not imply", + 0 = z. In fact, this axiom has often been criticized as being non

obvious for the interpretation o=deadlock=inaction.

(ii) ACP1 + {z + 0 = z} implies the same identities on finite processes as ACP (but it is slightly

weaker on identities between open processes).

(iii) ACP1 has for all practical purposes the same expressiveness as ACP. I.e., if one can specify a

protocol in ACP, this can be done jus: as well in ACP1.

(iY) ACP1 allows a probabilistic inte:pretatio:::. of -i-, and for this reason we need it as a point of

departure for the development of a probabilistic version of ACP.

We introduce probability into ACP1 by replacing the operators for alternative and parallel

composition with probabilistic counterparts to obtain the axiom system pr ACP1. Probabilistic

choice in prACP1 is of the generative variety, as defined in [vGSST90], in that a single probability

distribution is ascribed to all alternatives. Consequently, choices involving possibly different actions

are resolved probabilistically. In contrast, in the reactive model of probabilistic computation [1S89,

vGSST90], a separate distribution is associated with each action, and choices involving different

actions are resolved nondeterministically.

A property of the generative model of probabilistic computation is that, unlike the reactive

model, the probabilities of alternatives are conditional with respect to the set of actions offered by

2

the envirorunent. A more detailed comparison of the reactive and generative models can be found

in [vGSST90]. There the stratified model is also considered and it is shown that the generative

model is an abstraction of the stratified model and the reactive model is an abstraction of the

generative model.

Previous work on probabilistic process algebra [LS89, GJS90, vGSST90, Chr90, BM89, JL91,

CSZ92] has has been primarily of an operational/behavioral nature. Three exceptions, however,

are [JS90, Tof90, LS92]. In [JS90], a complete axiomatization of generative probabilistic processes

built from a limited set of operators (NIL, action prefix, probabilistic alternative composition,

and tail recursion) are provided, while in [Tof90], axioms for synchronously composed "weighted

processes" are given. A complete axiomatization of an SCCS-like calculus with reactive probabilities

is presented in [LS92].

Summary of Technical Results

We have obtained the following results toward our goal of finding complete axiomatizations of

probabilistic processes.

• We first present the axiom system ACPi, our point of departure from ACP. Its development

is modular beginning with BPA (consisting of process constants, alternative composition,

and sequential composition), to which we add a merge and left-merge operator to obtain PA.

Finally, a communication merge operator, the constant 6, and an auxiliary initials operator

I are added to PA to obtain ACPi. In each case, we present a process graph model based on

bisimulation and prove that the system is a sound and complete axiomatization ofbisimulation

for finite processes.

• We show in a technical sense how ACP can be reconstructed from ACPi through the rein

troduction of the axiom A6.

• The axiom systems prBPA, prPA, and prACPr for probabilistic processes are considered

next. In each case, we present a process graph model based on probabilistic bisimulation,

Larsen and Skou's [LS89] probabilistic extension of strong bisimulation, and prove that the

system is a sound and complete axiomatization of probabilistic bisimulation for finite proba

bilistic processes.

• Connections between ACPi and its probabilistic counterpart are then explored. We show

that ACPi is the homomorphic image of pr ACPi in which the probabilities are forgotten.

This result is obtained for both the graph model- the homomorphism preserves the structure

of the bisimcla:io:::. CO:lgruence ciasses, and the proof theory - the homomorphic image of a

yalid proof in 1"" ACPr is a ,-alid proof in ACPr.
• We show that certain technical problems arise when a probabilistic internal choice operator

is added to prACPi, and argue that a state operator should be introduced to remedy the

situation.

The structure of the rest of this paper is as follows. Section 2 presents the equational speci

fications BPA, PA, and ACPi, and their accompanying process graph models and completeness

results. Section 3 treats the probabilistic versions of these axiom systems, namely, pr BPA, pr PA,

and prACPi. The homomorphic derivability of ACPi from prACPi is the subject of Section 4.

Section 5 discusses the suitability of an internal probabilistic choice operator in the context of

prACPi, and, finally, Section 6 concludes. Note that we do not treat internal or T-moves in this

paper, so we stay within the setting of concrete process algebra.

3

2 A Weaker Version of ACP

In this section we present the equational theory ACPi, which, as described in Section 1, will be

our point of departure for a probabilistic version of ACP. The main difference between ACP and

ACPi is that the axiom z + 6 = z, which does not yield a plausible interpretation in the generative

model of probabilistic computation, is rejected in ACPi.

As is the practice in ACP, we begin with the theory BPA (Basic Process Algebra) which describes

processes constructed from constants, plus, and sequential composition. We will then add to BPA

a notion of parallel composition (merge and left·merge) to obtain PA (Process Algebra). Finally,

the theory ACPi(A) is derived by extending BPA with the constant 6 (for deadlock), a combined

notion of parallel composition and communication, and a restriction operator.

2.1 BPA

2.1.1 Equational Specification

The signature :1::(BPA(A)) consists of one sort P (for processes) and three types of operators: con·

stant processes a, for each atomic action a, the sequential composition (or sequencing) operator '.',

and the alternative composition (or nondeterministic choice) operator '+'. The set of all constants

is denoted by A, and is considered a parameter to the theory.

:1::(BPA(A)) = {a: Pia E A} U {+: P X p P} U {-: P X P P}

The axiom system BPA(A) is given by:

z + y = y + z Al

(z +y)+ z = z + (y+ z) A2

z+z = z A3

(z+y)·z=z.z+y.z A4

(z .y). z = z.(y.z) A5

1'0te the absence of the axiom z· (y + z) = z· y + z· z, which does not hold in our bisimulation

model

2.1.2 Graph Model

We define a process graph model for BPA(A). The underlying notion of equivalence for process

graphs is bisimulation, and we prove completeness of BPA(A) in this model. We will later extend

our graph model to PA(A) and ACP1(A). As before, let A be the set of atomic actions. We

consider process graphs with labels from A.

Definition 2.1 A process graph 9 is a triple < V, r, --> > such that

• V is the set of nodes (vertices) of 9

• rEV is the root of 9

4

• ---> C V x A x V is the transition relation of 9

The endpoints of 9 are those nodes devoid of outgoing transitions representing successful termi

nation. The major role played by endpoints is in the definition, given below, of the sequential com

position of two process graphs. We often write v ~ v'to denote the fact that (v, a, v') E --->. We

denote by 9 the family of all process graphs. Bisimulation, due to Milner and Park [Mil80, Par8I],

is the primary equivalence relation we consider on process graphs.

Definition 2.2 Let gl =< VI,rl> --->1>, g2 =< V2,r2, --->2> be two process graphs. A bisimula

tion between gl and g2 is a relation 'R. s;: VI X V2 with the following properties:

• 'R.(rl> r2)

• 'Iv E VI, wE V2 with 'R.(v, w):

Va E A and v' E VI,

if v ~ I v' then 3w' E V2 with 'R.(v', w') and w ~ 2 w'

• and vice versa with the roles of v and w reversed.

Graphs gl and g2 are said to be bisimilar, written gl 1=i g2, if there e:lists a bisimulation between gl

and g2'

We now define the operators from l;(BPA(A)) on the domain :F of finite process graphs, Le.,

process graphs that are finitely branching and acyclic in their transition relations. Therefore,:F c g.
For this puxpose, it is convenient to assume that a process graph root-node is not an endpoint. For

the remainder of Section 2, unless otherwise stated, let gl = < VI> rJ, --->1 >, g2 = < V2, r2, --->2>

be finite process graphs satisfying the non-endpoint root assumption such that VI n V2 = 0.

Definition 2.3 The operators a E A, +, and· are defined on :F as follows:

a E A: The process graph for each of these constants consists of a single transition and is given by

<{r.,v},r.,{<r.,a,v >} >.

gl-i- g2: is given by <VI U V2 U {r},r, -> such that r ~ VI U V2 and v

following holds:

• , d
• rl - 1 t~ an t~ = r

• r2!... 2 v' and v = r

• v --':..... 1 v'

• V ~2VI

• ---> v' if one or more of

gl . g2: is obtained by appending a copy of g2 at each endpoint of gl' In detail, gl . g2 is given by

<VI x V2,(rhr2),-> where (qhq2) ~ (q;,q;) if one or more of the following holds:

• I d I
• ql ---> I ql an q2 = q2 = r2

• q2 ~ 2 q; and ql = q; is an endpoint

5

For t a closed BPA(A) term, we write graph(t) = < Vi, r" _,> to denote the process graph

obtained inductively on t using Definition 2.3. We take the liberty to write expressions like p ±=t q,

instead of the more precise graph(p)±=tgraph(q), when this is clear from the context. The definition

of graph(t) and the just-mentioned notational liberty extend in the obvious way to the axiom

systems PA(A) and ACPi(A), to be considered later in this section.

In the setting of BPA, ±=t is a congruence (see, e.g., [BW90J).

Proposition 2.1 If gl a g2, then 9 + gl a 9 + g2, g. gl ±=t g. g2, and gl .g a g2' g.

We have that :F / ±=t, the graph model, is indeed a model of the axiom system BPA(A), and that

BPA(A) constitutes a complete axiomatization of process equivalence in :F / ±=t.

Theorem 2.1 ([BW90j)

1. :F /a 1= BPA(A)

2. For all closed ezpressions p,q over };(BPA(A)):

:F/",,- 1= p = q =} BPA(A) I- p = q.

2.2 PA

2_2.1 Equational Specification

The signature ~(PA(A)) is obtained from ~(BPA(A)) by adding an interleaving merge operator II
and a left-merge operator L.

};(PA(A)) = ~(BPA(A)) u {II: P X P -+ P} u {L: P X P -+ P}

Intuitively, the process z II y is obtained by interleaving (shuffling) the atomic actions of z and

y together. Left-merge is an auxiliary operator in that it permits II to be specified in finitely many

equations. The process z l y has the same meaning as z II y, but with the restriction that the first

step must come from z.

The axiom system PA(A) is given by:

BPA(A) +

z II y = z L y + y L z Ml

a Lz = a· z M2

(a,z)h=a·(zlly) M3

(z+yHz = z Lz+y Lz M4

6

2.2.2 Graph Model

The two new operators of PA(A) are now defined on finite process graphs (as before, with non

endpoint roots).

Definition 2.4 The operators II and ~ are defined on F as follows:

9, II 92: is given by < V, X V2, (r" r2), --+ > where (v" V2) -c:... (v;, v2) if either of the following

holds:

9, ~ 92: As 9, II 92 but without transitions of the form (r" r2)

Again one may notice that ti is a congruence, F/ti 1= PA(A) and that PA(A) constitutes a

complete axiomatization of process equivalence in F / ti [BW90j.

2.3 ACP without A6

2.3.1 Equational Specification

The equational system ACP1(A) treats the operators of BPA(A) as well as the new constant C

representing deadlock; a communication merge operator I describing the result of a communication

between any two atomic actions; a merge operator II and left-merge operator ~ like those ofPA(A)

but which additionally admit the possibility of communication; and a family of restriction operators

8H , H ~ A. We will also need an auxiliary operator I that defines the initial actions that a process

can perform.

Letting A, = Au {c}, the signature of ACP1(A) extends that of PA(A) as follows:

~(ACPI(A)) = ~(PA(A)) u {c:-> P} u {I: P X P -> P} U {8H: P -> P IH ~ A} u

{f: P -> 2A ,}

It is convenient to define communication merge as a binary commutative and associative function

on atomic actions (Le., I : A, X A. -> A.) with C acting as a multiplicative zero. This is accomplished

with axioms Cl-3 below. We further require I to be total and to captun t;us axiomatically we

need a way to effectively enumerate all the constant processes. For this pcrpose, we define the

characteristic predicate A, of A. in the usual way:

A.(",) = V ('" = a)
aEA,

The totality of I is now given by the following axiom: axiom:'

I Va, bE P A.(a) 1\ A,(b) = 3c E P A.(c) 1\ alb = c CO I
1 Axiom CO is often replaced by choosing 8 total function i : AI X A, -I> AI and having all identities of the graph

Ofi as axioms: alb = -y(a, b). In this way, i becomes another parameter to the theory (see, e.g., [BW90]).

7

The axioms of ACPi(A) are now given. In this system, a,b,c range overA6, H6 = H u {a}, and

n,u are used on 2A
, without further specification.

BPA(A) +

co +

+

alb = bla Cl

(alb)lc = al(blc) C2

ala = a C3

+

"lIy="Ly+yL"+,,ly CMl

a L" = a·" CM2

(a.,,) h = a(zII y) CM3

(" + y) L z = (" l z) + (y L z) CM4

al(b.,,) = (alb)." CMS

(a',,)lb= (alb)." CM6

(a. ,,)I(b· y) = (alb). (" II y) CM7

(" + y)lz = "Iz + Ylz CMS

"I(y + z) = "Iy + "Iz CM9

+

I(a) = {a} 11

I(,,·y) = 1(,,) 12

I(:::+y) = 1(:::) uI(y) 13

a E H ==:- aH(a) = a

art H ==:- aH(a) = a

+

1(:::) ~ H6 ==:- aH(::: + y) = aH(Y)

Dl

D2

D3.l

1(::: + y) n H6 = 0 ==:- aH(::: + y) = aH(:::) + aH(Y) D3.2

aH(:::' y) = aH(:::)· aH(Y) D4

S

Comments: ACP1 (A) differs from ACP by the absence of A6 and the presence of D3.1-2 instead of

axiom D3: &H(Z + y) = &H(Z) + &H(Y)' The following examples illustrate the new axiom system.

&{c} (a + (b + e)) = &{c}(e + (a + b))

= &{c}(a + b)

= &{c}(a) + &{c}(b)

a+b

&{a}(a + 6) = &{a}(6 + a)

= &{a}(a)

6

&{a} (a + 6) = &{a}(6)

= 6

2.:1.2 Graph Model

(by AI)

(by D3.1)

(by DI)

(by D3.1)

(by D2)

(by Al and A2)

(by D3.1)

(by D3.2)

(by D2 twice)

Let initials(v) ~ A. be the set of actions {a E A.I 3v' v ~ v'} for v a process graph node. The

operators of ACPi(A), beyond those of BPA(A), are now defined on finite process graphs (with

non-endpoint roots).

Definition 2.5 The ACP1 (A) operators 6, II, L, I, &H (for H ~ A), and 1 are defined on :F as

follows: '

6: is given by <{r.,v.},r.,{<r.,6,v. >} >.

g, II g2: is given by < V, X V2, (r" r2), -» where (VI, V2)

lowing holds:

a
-> (v; , v~) if one or more of the fol-

a , d '
• VI --i> 1 VI an V2 = V2

a , d '
• V2 ~ 2 V2 an VI = Vl

• v, ~ 1 v;, v2 ~ 2 v~, and a = ble (for some b and c)

g, ~g2: As g,ll g2 but without transitions of the form (rl/r2) ~ (rt,v).

g,lg2: As g, II g2 but without transitions oj tM form (r" r,) ~ (r, r:) or (rOo r: :

&H(g,): is given by <V"r" ---» where

-> = {(v, a, v') E --->1 I a f/. H.} u

{(v, 6, v') I (v,a,v') E--->1 andinitials(v) ~ H.}

1(g,): gives the set of actions initials(r,).

•

Our algebra of process graphs is standard (see, e.g., [BW90j) with the exception of restriction.

Thls operator removes all edges labeled with actions from the set of restricted actions H. It also

removes 6-edges, whlch it must do to ensure the soundness ofD3.I. In case a node in 91 qualifies to

have all its edges removed, then these edges are not removed but rather renamed into a-transitions.

9

The presence of .5-transitions, which intuitively represent the capability for a process to deadlock,

requires a new definition of bisimulation in which a weaker condition is imposed on .5-transitions.

Definition 2_6 Letg, =< VJ,r,,--->I>,g2 =< V2,r2,--->2> be two process graphs. A.5-bisimulation

between g, and g2 is a relation 7? <;; V, X V2 with the following properties:

• 7?(rJ, r2)

• I/v E VI> wE V2 with 7?(v,w):

1/ a E A and v' E V"

if v ~'v' then 3w' E V2 with 7?(v', w') and w ~ 2 W'

6 6
if v ---t 1 v', for some v', then w ----+ 2 Wi, for some w'

• and vice versa with the roles of v and w reversed.

Graphs g, and g2 are .5-bisimilar, written g, <=to g2, if there e",ists a .5-bisimulation between g, and

g2·

This definition is the same as Definition 2.2 with the additional stipulation that for two nodes v, w

related by a .5-bisimulation, v possesses a .5-edge iff w does. We once again have that '='-6 is a

congruence.

Proposition 2.2 If g, <=t6 g2, then 9 II g, <=t6 9 II g2, 9 ~ g, <=to 9 l g2, g, ~ 9 <=to g2 h, gig, <=t6 9 Ig2
and 8H(g,) <=t6 8H(g2), for all H <;; A.

Proof: The proof for all operators, except 8H, follows the standard arguments of ACP (see, e.g.,

[BW90]). For 8H, H <;; A, the proof proceeds as follows. Suppose g, '='-6 g2 and let 7? <;; V, X V2 be

a .5-bisimulation between g, and g2. We show that 7? is also a .5-bisimulation between 8H(g,) and

8H(g2), H <;; A.

Let (vJ, V2) E 7?. There are three cases to consider:

initials(v,) ~ H6 : then in 8H(9,) the transitions of V, are of the form v,

Since g, '='-6 g2, in 8H(g2) there exists a v2 with 7?(vi, v2) and V2 ~

Vi with a g H6.

initial.(t':) of. 0 <;; H6: then in 8H(9:) all t..-a~sitions of v, are of the form v, ...!..., vi. Since g, ==, g2,

ll:. OE(9:) all transitions of t':: a..-e ueTise 0: the form t'::!

on {-transitions in a .5-bisimulation, this is enough.
"2' By the weaker condition

initials(v,) = 0: then initials(v,) = 0 in 8H(g,) and, since g, '='-. g2, initials(V2) = 0 in 8H(g2)'

By considering the same three cases with the roles of v, and V2 reversed, we are done. o

To prove the completeness of ACP['(A) for finite processes, we first introduce the notion of

a "basic term" for closed ACP['(A) terms. We will subsequently prove an "elimination theorem"

stating that any closed ACP['(A) term can be reduced to a basic term using the axioms of ACP[, (A).

Combined with the completeness of BPA(A), this will be enough to prove the completeness of

ACP['(A).

10

Definition 2.7 A basic term is defined inductively as follows:

• a E A, is a basic term .

• Let t" t2 be basic and a E A. Then t, + t2 and a· t, are basic.

Note that a basic term uses a restricted form of sequential composition known as action prefixing,

and that a basic term is a BPA(A,) term; Le., a BPA(A) term treating 0 as an additional atomic

action.

To prove the elimination theorem we introduce a term rewriting system based on ACPi(A) for

which we prove a strong normalization result. The rewrite system RACPi(A) consists of axioms

AI·5, A7, C3, CMI-9, 11-3, and DI-2, treated as rewrite rules with left-to-right orientation, plus

the rules

'" + (y + z) ---> ('" + y) + z

alb = c =- alb ---> c

alo ---> 0

A2'

CO'

C3'

c E H, =- 8H(c + "') ---> 8H("') D3.I'

c E H, =- 8H(C' '" + y) ---> 8H(y) D3.1"

1(", + y) n H, = 0 =- 8H('" + y) ---> 8H(",) + 8H(Y) D3.2'

8H(a'''') ---> 8H(a).8H("') D4'

Notice that all these rules follow easily from ACPi (A). The normal forms of the rewrite system

RACPi(A) are defined as follows.

Definition 2.8 A closed ACPi(A) term t is in normal form if for all RACPi(A) reduction paths

of the form

t = to ---> t, ---> t2 ---> •••

tH' follows from ti through the application of either rule AI, A2, or A2' (and no other), for all

i 2: O.

Proposition 2.3 A normal form is a basic term.

Proof: Let t be a nOr-'a' fo= and suppose t is not basic. Let t' be a minimal subterm of t that

is not basic. TneL. !' iIas one 0: tne following forms:

1. p II q

2. p ~ q

3. plq

4. 8H (p)

5. p. q (with p not an atom or p = 0)

and both p and q basic terms due to minimality. We show that in each case a rule ofRACPi(A)

{AI, A2, A2'} can still be applied, thereby proving the result by contradiction. Take, for example,

the second case. Since p is a basic term, there are three sub cases to consider:

11

(a) P is of the form PI + p,. Apply CM4.

(b) p is an atomic action a E A,. Apply CM2.

(c) P is of the form a· PI, a E A,. Apply CM3.

The other four cases are proved similarly. o

Note that the converse of this result does not hold, e.g., a + a is basic but not in normal from.

Lemma 2.1 The rewrite system RACPi(A) is strongly normalizing modulo AI, A2, A2', I.e.,

every infinite reduction path contains AI, A2, A2' steps only from some point onwards.

Proof: Let II = (I'o,to) ---> (I'j,ttl ---> (I'"t,) ---> ... be an infinite reduction path in

RACPi (A) where I'i is the (possibly empty) condition associated with rewriting ti into ti+I' We

omit from II any steps having to do with normalizing the expression I(:z: + y) in the condition to

D3.2'-steps. We prove that only finitely many of the steps in II can differ from AI, A2, A2'.

We transform the reduction sequence II into a reduction sequence II' of RACP(A) [BK84] as

follows:

• Expand each D3.1' step of the form hi, til ---> hi+l, ti+l) into a finite valid rewriting of

RACP(A) depending on the condition I'i as follows:

- c=o: OH(O+:Z:)~OH(:z:+o)~hi+l,OH(:Z:))
As D' AI)

- C E H: (C E H,OH(C + :z:)) - (C E H,OH(C) + OH(:Z:)) ---> 5 + OH(:Z:) ---> OH(:Z: +
A6

0_ (l'i+l,OH(:Z:))

• Expand each D3.I" step of the form (I'i, til - hi+l' ti+l) into a finite valid rewriting of

RACP(A) depending on the condition I'i as follows:
A7 Al A6

- C = 0: OH(O':Z: + y) - OH(O + y) - OH(Y + 0) - hi+l' OH(y))
DS D4 D,

C E H: (C E H,OH(C':Z:+Y))-OH(C':Z:)+OH(y)--->(C E H,OH(C)'OH(:Z:)+OH(Y))-O'
A7 AI), A6 () OH(:Z:) + 0H(Y) ---> 0 + o(y) - OH(Y -; 0 ---> l'i+l,OH(Y)

• Transform each D3_2' step of the form (I'i, t;) - (l'i+l, ti+l) into the conditionless step

ti - h.+l, t'+l), as D3.2' is valid in RACP(A) in all cases (i.e., restriction distributes over

plus).'

~o...- we obtain an infini:e red"c:i= pa:b. in RACP(_4) and from [BW90j it follows that this reduc

:i= path contains finitely =y n=-Al. A2. AZ' steps. But the same must hold for the original

reciuction sequence. 0

Note that in the transformation of a RACPi(A) reduction sequence to a RACP(A) reduction

sequence, each non-AI, A2, A2' step is replaced by at most six non-AI, A2, A2' steps.

We now present the "elimination theorem" for ACPi(A).

Lemma 2.2 Let p be a closed ACPi (A) term. Then using RACPi (A), p can be reduced in finitely

many steps to a basic term.

20ne could, of course, leave condition ii intact and still have a valid reduction step in RACP(A).

12

Proof: If p is a basic term we are done. Otherwise, by Proposition 2.3, p is not in normal form.

By Definition 2.8, there exists a reduction sequence

010 P = Po = to --+ tl --+ .. , --+ tn, = PI

such that t~o-I --+ t~o is not an AI, A2, A2' reduction. If PI is basic we are done. Otherwise there

exists another reduction sequence

such that t~'_1 ---; t~, is not an AI, A2, A2' reduction. This line of reasoning cannot proceed

indefinitely: due to strong normalization (Lemma 2.1) Pi, for some i 20, is a basic term. Otherwise,

an infinite reduction with infinitely many non-AI, A2, A2' steps would have been constructed which

is impossible. 0

Theorem 2.2

1. :F/tio f= ACPi(A)

2. For all closed ezpressions p,q over !:(ACPi(A)):

:F/ti,f=p=q =? ACPi(A)l-p=q.

Proof: For part 1, we consider axioms A7 and DI-D4. The fact that :F / '=', is a model of the rest

of the axioms of ACPi(A) follows standard arguments as presented, e.g., in [BW90]. For A7, both

5· z and 5 initially can perform but a single 5-transition. Since ti, matches one 5-transition with

any other 5-transition (i.e., without regard to the destination states), we are done. The soundness

of DI and D2 is trivial since in both cases the left- and right-hand side terms represent isomorphic

processes.

For D3.I, the initial transitions of z will be deleted from the root of z + y by the 8H operation,

thereby again resulting in isomorphic processes. D3.2 could fail only if z, y # 5 and either 8H(z) = 5

or 8H(Y) = 5. The condition to the axiom ensures against this. Note that D3.2 is still sound under

the weaker condition

I(z) - Ho # 0 and I(y) - H. # 0

but the natural probabilistic extension of the resulting axiom is not sound (see Section 3.4), and is

thus rejected. Finally. D4 also represents isomorphic processes.

For part 2, suppose p '=~ q. Reduce p, q to normal forms pi, q' using RACPi (A); by Lemma 2.2,

p', q' are basic :=. E; par. 1. pi tiE P =, g '=E g', and thus p' '=c q'. In reducing p, q to their

normal fo=, e ha~ Dee. re..-riting by Ai whenever possible. 'Ve may therefore conclude that

p' '= q' (treating [as jus: another atomic action), and by Theorem 2.1, BPA(Ac) I- pi = q'. Then

ACPi(A) I- P = pi = q' = q. 0

2.3.3 Connections Between ACP and ACPi

Let A be the usual bisimulation modelfor ACP(A), and let A - = :F / tiD be the bisimulation model

for ACPi(A). Then for p,q closed expressions over !:(ACP(A)) we have the following results, which

we state without proof.

1. Completeness of ACPi(A): A - f= p = q =? ACPi(A) I- p = q

(This is just part 2 of Theorem 2.2.)

13

2. Completeness of ACP (AJ [BW90]: A F= p = q =- ACP(A) I- p = q

3. A - F= p = q =- A F= p = q. This implies that A-can be homomorphically embedded in

A using the identity mapping. .

4. A F= p = q =- A - F= 80 (p) = 80 (q). This implies that A can be homomorphically

embedded in A - using the homomorphism 'P : A ----; A -, such that 'P(:Z:) = 80 (:z:).

5. ACP(A) I- 80(p) = P

6. ACP(A)I-p=q =- ACPi(A)+{:z:+.5=:z:}l-p=q

7. ACPi(A) I- 80(:Z: +.5) = 80(:z:)

3 A Probabilistic Version of ACP

Our discussion of probabilistic ACP will proceed in a manner similar to before. For each of the axiom

systems AX E {BPA(A),PA(A), ACP1 (AJ), a probabilistic version prAX will be introduced, along

with a probabilistic version of its process graph model. Completeness in these models will also be

demonstrated.

3.1 Probabilistic BPA

3.1.1 Equational Specification

Notation: As usual, (0,1) denotes the open interval of the real line {r E !R 1 ° < r < l}, and [0,1]

denotes the closed interval of the real line {r E !R 1 ° :::; r :::; I}. We let 11", p, 0", and (J, possibly

subscripted, range over these intervals.

The signature lJ(prBPA(A)) over the sort prP (for probabilistic processes) is given by:

lJ(prBPA(A)) = {a: --> prPla E A} U {+ ... : prP X prP --> prP 111" E (0, In u

{- : prP X prP --> prP}

The operator + has been replaced by the family of operators + ... , for each probability 11" in the

interval (0,1), and is now called probabilistic alternative composition. Intuitively, the expression

:r +" y behaves like :z: with probability 11" and like y with probability 1 - 11". Probabilistic alternative

cOIIl?osition is generative [vGSST90] in that a single distribution (viz. the discrete probability

D-::-:::J.,..iD:l {p, 1 - p}) is associated with the two alternatives :z: and y. As mentioned in Section l.

these probabilities are conditional with respect to the set of actions permitted by the enyi!o=em.

This will become clear in Section 3.4 with the introduction of the restriction operator 8H in the

setting of probabilistic ACP.

We have the following axioms for prBPA(A):

:z: +" y = Y +1_ ... :z: prAl

:z: + ... (y +p z) = (:z: +"/C ... +p-"p) Y) +,,+p_ ... p z prA2

:z:+ ... :z:=:z: prA3

(:z: +" y).z =:z:. z+ ... y·z prA4

(:z:·y).z=:z:.(y.z) prA5

14

Axiom pr A2 has a left-to-right orientation in that the probability indices on the right-hand

side are derived from probability indices 7r,p on the left-hand side. A right-to-left version of prA2,

which will prove useful later , is given by:

(x +~ y) +p z = X +TP (y +1'-'») z)
1-1I'p

3.2 Probabilistic Graph Model

As in Section 2.1.2, we consider process graphs, with labels from A, as a model for prBPA(A).

Additionally, a probability distribution will be ascribed to each node's outgoing transitions.

Definition 3.1 A probabilistic process graph 9 is a triple < V, r, Jl. > such that V and r are as in

Definition 2.1 and Jl. : (V X A X V) -; [O,IJ, the transition distribution function of g, is a total

/unction satisfying the following stochasticity condition:

Vv E V L Jl.(v, a, v') E {O, I}
Q E AI
Vi E V

Intuitively, Jl.(v, a, v') = 7r means that, with probability 7r, node v can perform an a-transition

to node v'. A node in a stochastic probabilistic process graph performs some transition with

probability 1, unless it is an endpoint. Predicate endpoint(v) is true iff v is an endpoint. We

denote by prQ the family of all probabilistic process graphs.

The notion of strong bisimulation for nondeterministic processes has been extended by 1arsen

and Skou [1S89J to reactive probabilistic processes in the form of probabilistic bisimulation. Here

we define probabilistic bisimulation on generative probabilistic processes and to do so we first need

to lift the definition of the transition distribution function as follows:

Jl. : (V X A X 2V) --. [0, IJ such that Jl.(v, a,S) = L Jl.(v, a, v')
vieS

Intuitively, Jl.(v, a,S) = p means that node v, with total probability p, can perform an a

transition to some node in S.

Definition 3.2 ([1S89]) Letg, = <V"rhJl., >, g, = <V"r"Jl., > be probabilistic process graphs.

A probabilistic bisimulation between 91 and 9, is an equivalence relation 'R ;;; ("V,": 1",) >: no: _ 1"2)

u:ith the follou,;n9 properties:

• 'R(rl> r,)

• Vv E V" w E V, such that 'R(v,w):

Va E A, 5 E (V, u V,)/'R, Jl.I (v, a, 5 n Vd = Jl.,(w, a,S n V,)

Graphs g, and 9, are probabilistically bisimilar, written 91 tiP' 9" if there ezists a probabilistic

bisimulation between g, and g,.

Intuitively, two nodes are probabilistically bisimilar if, for all actions in A, they transit to

probabilistic bisimulation classes with equal probability. Note the somewhat subtle use of recursion

in the definition.

15

We now define the operators of prBPA(A) on the domain prF of finite probabilistic process

graphs, i.e., probabilistic process graphs that are finitely branching and acyclic in terms of their

transitions of non· zero probability. Therefore, pr F C prQ. For this purpose, it is convenient to

assume, as in the non·probabilistic case, that the root nodes of probabilistic process graphs are not

endpoints. For the remainder of Section 3, unless otherwise stated, let 91 = < VI, rb 1'1 >, 92 =
< V2, r2, 1'2 > be finite probabilistic process graphs satisfying the non·endpoint root assumption

such that VI n V2 = 0.

Definition 3.3 The operators a E A, +'" and· are defined on pr F as follows:

a E A: The process graph for each of these constants is given by <{r., v}, r., 1'. >, where I'.(r., a, v) =
1 is the only transition with non· zero probability.

gl +" g2: is given by <VI U V2 U {r} - {rbr2},r,1' > where r 1: VI U V2 and

1'(r, a, Vi) = 7r . 1'1 (rb a, Vi) if Vi E VI

I'(r,a, Vi) = (1 - 7r) ·1'2(r2,a, Vi) if Vi E V2

1'(v, a, Vi) = 1'1 (v, a, Vi) if v, Vi E VI

1'(v, a, Vi) = 1'2 (v, a, Vi) if v, Vi E V2

1'(v, a, Vi) = 0 otherwise

gl . g2: is obtained by appending a copy of 92 at each endpoint of gl, and is analogous to sequential

composition in the non-probabilistic setting (Definition 2.3). In detail, gl . g2 is given by

<VI uV2 - {r2},rbl' > where

I'(v,a,v') =

I'I(v,a,v') ifv,v' E VI

1'2(r2,a,v') if v E VI, endpoint(v), Vi E V2

1'2(v,a,v') ifv,v' E V2

o otherwise

So, in the definition of gl +" g2, the transitions from rbr2 are now assumed by the new root

r, with their probability of occurrence weighted appropriately. Similarly, the transitions of r2 in

gl . 92 are assumed by each endpoint of gb with their original probabilities intact.

As in the non·probabilistic case, for t a closed pr BPA(A) term, we write graph(t) = < l~, r t , I't >
to denote the probabilistic process graph obtained inductively on t using Definition 3.3. We also

write p ""P'" q as shorthand for 9raph(p) =P'" graph(q). The definition of graph(/) =i :b.e just.

mentioned notational shorthand extend in the obviocs ay to the axiom syst= p:-?.->...'_-t; =c
prACPi(A) considered later in this section.

We will subsequently prove that the axioms of pr BP A(A) are complete in this model. To admit

sound equational reasoning, in particular, the substitution of equals for equals, we fixst show that

tiP'" is a congruence in prBPA(A). Let V be an arbitrary set with v E V. For any equivalence

relation 1? over V we use [vJ,. to denote the set {w E V I (v,w) E 1?}; i.e., [vJ,. is the equivalence

class ofv induced by 1?. Also, Idv = {(v,v) I v E V} denotes the identity relation on V.

Proposition 3.1 If gl tiP'" g2, then 9 +" gl tiP' 9 +" 92,9· gl tiP'" 9· g2, and 91·9 tiP'" g2 ·9.

Proof: Let 9 = < V, r, I' > such that V n (VI U V2) = 0, assume gl tiP'" 92, and let 1? be a

probabilistic bisimulation between 91 and 92. We now consider each of the operators in succession.

16

For +w, let rt be the root and I1t be the tdf of 9 +w gi, i = 1,2. We show that

R' = {(Tt,TtJ,(Tt,rt)}URUldYu{r+ r+}
> • ,

is a probabilistic bisimulation between 9 +w gl and 9 +w g2. First note that because R is an equiv

alence relation, so is R'. By the nature of R', we are left to show that the "carrier condition" (the

second condition of Definition 3.3) holds for (rt, rt). For a E A, the only a-transitions of Tt of

non-zero probability are of the form:

1. I1t (rt, a, [v1'R') = l1(r, a, Vi) • 1r, where Vi E V; or

2. JLt(ri, a, [v;J'R') = JLI (rl, a, [v;j'R) . (1 - 1r), where v; E VI'

Well, we also have JLt(rt,a,[v1'R') = JL(T, a, Vi) '1r and, because gl tiP' g2, I1t(rt,a,[v;J'R') =
JLI(rl>a, [v;J'R)' (1 -1r). This completes the case for +".

For both Cases of sequential composition, a straightforward argument demonstrates that Rul dy

is an appropriate probabilistic bisimulation. 0

The graph model for prBPA(A) is now given by pr:F / tip'. To prove completeness of prBPA(A),

we introduce the notation
n

l:[1riJ"i
i:::::l

with 2:= 1ri = 1 and 1ri > 0 for all i. So, in particular, when n = 1, 1r1 = 1. This notation abbreviates

right-nested probabilistic alternative composition expressions as follows:

I

l:[1riJ"i = "I and
i=l

Note that in this notation 2:=:'=1 [1riJ is a derived n-ary operator with operands "i. To illustrate, the

left-hand side of equation pr A2 may be written:

where "I = ", "2 = (1 - 1r)p, "'3 = (1- 1r)(1- p), and "I = ", "2 = y, "3 = z.

This summation form notation is useful as it directly reflects the transition structure of the

probabilistic process graph underlying the nested probabilistic alternative composition. That is,

consider the summation form ~[riJ£li'::i of action-prefixed processes. The ~a?~ 0: :;:;'5 ~·--"ation

will have, for each i, a probabilir:--ri c..--transhio::. frOIL its root to the noee rep:-~~:'::g the root

of graph("i).

The following two'lemmas for manipulating summation forms, the proofs of which appear in

Appendix A, will prove useful in the completeness prooffor prBPA(A). The first allows summands

to be reordered arbitrarily, retaining their original probabilities, while the second allows two syn

tactically identical summands to be merged into one summand, summing the probabilities in the

process.

Lemma 3.1 FaT any permutation (of{I, .. ·,n}, n 2: 2,

n n

prBPA(A) f- L[1r;j"i = L[1r((i)J"W)
i=l i=l

17

Lemma 3.2 In the summation form 2:i;l[1ri]"i, let"l and"2 be syntactically identical. Then

n+l n

prBPA(A) f- L[1r;J"i = L[Pi]Yi
i=l i=l

where PI = 11"1 + 1r21 Yl = ~b and Pi = 1r'i+b Yi = Zi+l1 2 ::; i :5" n.

We now use summation-form notation to define a kind of normal form for closed pr BPA(A)

terms.

Definition 3.4 A probabilistic basic term is a summation form 2:~I[1riJti where ti is either some

a E A or of the form b· ti, where b E A and ti is a probabilistic basic term. A probabilistic normal

form is a probabilistic basic term 2:i=I[1ri]ti such that ti ';dpr tj, 1 :::: i # j :::: n.

Note that a probabilistic basic term, like a basic ACPi(A) term of Section 2.3, uses action

prefixing, while a probabilistic normal form bears the additional constraint that its summands are

pairwise inequivalent.

The depth of a probabilistic basic term t, denoted d(t), is essentially the maximum number of

nested prefixes in t. The inductive definition of d is as follows:

• d(a) = 1

• d(a.t)= l+d(t)

• d(2:i[1r;Jt;) = ma"i(d(ti))

Lemma 3.3 For every closed prBPA(A) term t, there is a probabilistic normal form s such that

prBPA(A) f- t=s.

Proof: The proof has two parts. In the first part, we prove that a closed term t can be proven

equal to a probabilistic basic term. The second part handies the constraint that the summands

are pairwise inequivalent. The first part is simpler and follows the line of reasoning in [BW90].

That is, we use a term rewriting system to convert t into a term whose only instances of sequential

composition are of the form a· t', i.e_, action prefixing_ The rewrite system is based on prBPA(A)

axioms prA4 and prA5 and is given by:

, .
\: -T Y)· = - :. = -r Y':

(z.y)·;-z.(y.=)

It is not hard to see that this term rewrite system is confluent and strongly normalizing, and

that a normal form of a closed term uses only action prefixing. Therefore, given a closed prBPA(A)

term t, we can convert it into a probabilistic basic term by:

1. Reduce t until a normal form is reached.

2. Use prA3, with right· to-left orientation, to rewrite all instances of left-nested summations

into right. nested suminations. The resulting term can then be expressed as a summation

form.

18

By the first part of the proof, assume t is a probabilistic basic term of the form Ei:l [lri]li and

consider the partition {B 1 , ••• , B k } of {1, ... , n} such that (i, i') E Bj if ti tiP'" ti" We prove by

induction on the depth of t that:

m

p1'BPA(A) f- t = L[pj]tj

j=1

where Pj = E{lri liE Bj}, tj = ti for an arbitrarily chosen i E B j , and m ::; n. Note that the term

on the right-hand-side of thls equation is indeed a probabilistic normal form. If the depth of t is 1

then each ti is a constant and the indices in a block B j correspond to (all of the) multiple occurrences

of a constant a. If IBjl = 1 then we are done. Otherwise, apply the following procedure IBjl - 1

times: move two instances of a to the two left-most positions withln the summation form using

Lenuna 3.1. Merge the two instances into one, occupying the left-most position in the resulting

summation form, using Lenuna 3.2. The associated probability of thls single instance of a will be

the sum of the probabilities of the original two instances, as desired.

Next, assume the result for probabilistic basic terms of depth k and let d(t) = k + 1. There are

two cases.

1. The indices in a block B j correspond to the multiple occurrences of a constant a. The base

case reasoning suffices here.

2. The indices in a block Bj correspond to equivalent terms of the form a· t', b· t", where t', t"

are basic. If IBjl = 1 then we are done. Otherwise, apply the following procedure IB;I - 1

times. Choose two instances a· t', b· t" of equivalent terms from B j. Since a· t' tiP'" b· t", then

a = band t' tiP'" t", and, by the induction hypothesis, p1'BPA(A) f- t' = t". By substitution

of equals for equals, we have p1'BPA(A) f- a· t' = b· t", and, as in the first case, we can use

Lemmas 3.1 and 3.2 to merge these two summands into a single sUIIlIIland, either a . t' or

b· t", the choice being arbitrary. The associated probability of the merged term will be the

sum of the associated probabilities of a· t' and b· t", as desired.

o

The relationshlp observed above between a probabilistic summation form and its underlying

probabilistic process graph can be strengthened in the case of probabilistic normal forms.

Proposition 3.2 For t a probabilistic normal form, t has a summand a E A, with associated

probability lr, iff I",(r,. a, [til"" ..) = .,.. u .. here t' is an endpoint. Also, t has a summand a . t', with

associ=tee. probability.,.., iff 1"0:' ",. c;, -~~.- _r) = -:; where r;, ;: l~ is the node in graph(t) representing

the root of graph(t').

We now prove that our algebraprF I tiP'" is a model of p1'BPA(A) and that prBPA(A) constitutes

a complete axiomatization of process equivalence in p1'F I"".

Theorem 3.1

1. p1'FI""P'" Fe prBPA(A)

2. For all closed e"'pressions s,t over ~(p1'BPA(A)) ..

p1'F laP'" Fe s = t ==> p1'BPA(A) f- s = t.

19

Proof: For part 1, consider first prAI and prA2. In both cases the left- and right-hand side

terms represent isomorphic probabilistic process graphs, with the transitions from the root of x

weighted by 11' and the transitions from the root of y weighted by 1 - 11', in the case of pr AI; and

the root transitions of x weighted by ", the root transitions of y rooted by (1 - 11')p, and the root

transitions of z weighted by (1 - 11')(1 - p), in the case of pr A2.

Graph isomorphism arguments also suffice for prA4 and prA5, while the soundness of prA3 is :

established by the probabilistic bisimulation {(rzhz, r z), (rz , rzhz)} U I dv•u{,.+ •• }.

For part 2, assume s tiP" t and also (relying on Lemma 3.3) that s and t are probabilistic normal

forms, s = Ei[1I'i]Si and t = Ej[pj]tj. We prove the result by induction on the maximum depth of

sand t. If the maximum depth is 1 then each summand of s is a constant from A. Let Si = a.

Since s ,=,P" t and t is a probabilistic normal form, by Proposition 3.2, t also has a summand tj = a

with Pj = 11',. A symmetric argument matches each constant summand of t with a summand of s.

Thus, prBPA(A) I- s = t by using Lemma 3.1 to reorder summands as necessary.

Next, assume the result for maximum depth k and let the maximum depth of s,t be k + 1.

There are two cases.

1. The term s has a constant summand. Here the base case reasoning suffices.

2. The term s has a surrunand Si of the form a·s' and, by Proposition 3.2, Jl.(r., a, [r:,]±:;±,,1') = 7rj.

Since StiP't, J1.t(rt, a, [r;,]ci") = 11',. But t is a probabilistic normal form so, byProposition 3.2

again, t has a summand tj = a· t' such that t' tiP" s' and Pj = 11',. By induction, pr BPA(A) l

s' = t' and therefore (using substitution of equals for equals), prBPA(A) I- s, = tj. A

symmetric argument matches each action-prefixed summand of t with a summand of s.

From the two cases, it follows that every summand of s can be proved equal to a summand of t

and vice versa. Thus, prBPA(A) I- s = t, by using Lemma 3.1 to reorder summands as necessary.

o

We also prove the following proposition:

Proposition 3.3 The various forms of + .. distribute over one another:

Proof:

:: -, =i -T (y +p =) =:r: -':-PT (= +"-'i' (y +p I))
1-".

= :r +PT (z +(l-,). (z +'-p y))
I-p'"

= X + ... ((z +,.. z) +..!..::£. y)
I-p1f

= X + ... (z +..!..::£. y)
I-pfr

=x+ ... (y+~z)
I-pfr

=(x+ .. Y)+pZ

(prA2)

(prAI)

(prA2)

(prA3)

(prAI)

(prA2)

Note that the last step makes direct use of the right-to-left oriented version of prA2.

20

o

3.3 Probabilistic PA

3.3.1 Equational Specification

The signature ~(prPA(A)) extends that of prBPA(A).

~(prPA(A)) ~(prBPA(A)) u {llu: prP x prP --.. prP I" E (0, In u

au: prP X prP --.. prP I" E (0, In

Intuitively, lIu is a probabilistic merge operator, with the left operand receiving relative probability

"and the right operand relative probability 1 - <1. As in PA(A), ~u is a restricted version of Ilu in

which the first step must come from the left operand.

The axiom system prPA(A) is obtained by adding to prBPA(A) the following axioms for prob

abilistic merge and left-merge:

z Ilu V = z ~u V +u V ~(l-U) Z

a~uv=a·v

(a· z) Lu V = a· (z Ilu V)

(z +.- V) Lu z = (z ~u z) +". (V Lu z)

3.3.2 Graph Model

prM1

prM2

prM3

prM4

As for prBPA(A), we provide a bisimulation model for prPA(A), and prove the completeness of

the axioms on finite probabilistic processes.

Definition 3.5 The operators lIu and Lu are defined on prF as follows:

g, ~ ug" is given by < F, X F" (r" r,), p > where for all a E A., V" v;, E F
"

V" v;. E >',

• p((r"T,),a, (v;, T,)) = Pl(Tl,a,v;)

• if Vl ¥- rl or Vz # r2

p((v"v,),a,(v;,v,)) = {

p((v"v,),a,(v"v~)) = {
otherwise

Note the careful treatment of endpoints in the above definition: in a merge, if one process

terminates, the other continues with its original, unweighted probability. Also, in a left-merge,

21

special attention is paid to transitions from the root (r" r2) of 9, ~u 92: the first and third clauses

collectively define the transition distribution function p. on all transitions from (r" r2), with the

third clause giving probability 0 to transitions starting with 92'

We have that probabilistic bisimulation is a congruence in prPA(A).

Proof: Let 9 = < V, r, p. > such that V n (V, u V2) = 0, assume 9, "",,,," 92, and let R be a

probabilistic bisimulation between 9, and 92' We first show that

is a probabilistic bisimulation between 9 Ilu 9, and 9 Ilu g2' First note that because R is an

equivalence relation, so is R'. Also, for v E V, W E (V, u V2), [(v,w)h~' = {v} x [w}~. Now

consider the pair ((v, v,), (v, V2)) E R' and let p.~1 be the tdf of 9 Ilu 9i, i = 1,2. For a E A, the ouly

a-transitions of (v, v,) of non-zero probability are of the form:

1. p.~((v,v,),a,[(v',v,)}~,) = 17·p.(v,a,v')

2. p.~((v,vtl,a,[(v,vD}~') = (1-17)' p.,(v"a,[vD~)

Well, we also have that p.~((v, V2), a, [(v', V2)}~') = 17'p.(v, a, v') and, because 9, "",1"" g2, p.~((v, V2),

a, [(v, vD}~') = (1 - (7) • p., (v" a, [vD~). The argument is similar in case (1) if v, is an endpoint

(the value of p.~ would not be weighted by (7), and in case (2) if v is an endpoint (the value of p.~
would not be weighted by 1 - (7).

An argument similar to the above can be used to show that R' is also a probabilistic bisimulation

between 9 ~u g, and 9 ~u g2. In particular, there are fewer transitions of non-zero probability from

(r, r,) and (r, r2) since such transitions can come from 9 only. Like in the endpoint cases considered

just above, the probabilities of these transitions are not weighted by 17.

A nearly sy=etric argument establishes that

is a probabilistic bisimulation between 91 lu 9 and g2 Lu g. o

Theorem 3.2

1. pr:F/c.P'" pprPA(A)

2. For all closed expressions s,t over b(prPA(A)):

pr:F/ti"'" p s = t => prPA(A) f- s = t.

Proof: For part 1, the soundness of axioms prMl - prM4 is i=ediate by probabilistic process

graph isomorphism arguments. The following co=ents, however, are in order. Axiom prMl is

a kind of expansion law for probabilistic merge. In pr M2, a ~u Y behaves like y after performing

a as it will have reached a state where y is in a probabilistic merge with an endpoint. In pr M3,

(a. x) ~u Y behaves like x Ilu y after performing a since left-merge behaves like merge after its root

22

transitions. The left-hand and right-hand side processes of prM4 both represent a probabilistic

merge with z, the first step of which must come from x (with probability 71") or y (with probability

1 - 71").

For part 2, the proof is similar to the one given in [BW90J for the completeness of PA(A). We

use the following term rewrite system, with rules corresponding to prBPA(A) axioms prA3·5 and

prPA(A) axioms prM1- prM4, to eliminate all occurrences of II~ and ~~ in a closed prPA(A) term:

(x +" y) . z --> x . z +" y . z

(x . y) . z --> x . (y . z)

x II~ y --> x L~ y +~ y L(1-u) x

a ~u Y --> a· y

a· x ~u Y -- a· (x Ilu y)

(x +" y) L~ z -- (x Lu z) +" (y ~u z)

It can be proved that this term rewriting system is strongly normalizing and that a normal form

of a closed term must be a probabilistic basic term. By part 1 of the theorem (the soundness of

prPA(A)) and Theorem 3.1 (the soundness and completeness of prBPA(A)), the result is proven.

o

3.4 Probabilistic ACP

3.4.1 Equational Specification

The signature of prACPi(A) also extends that of prBPA(A). Recalling that A. = AU 6, we have:

~(prACPi(A)) = ~(prBPA(A)) U {6:-+ prP} U {I: prP -+ 2A6} U

{I~,e : prP X prP -+ prP I a, BE (0, In U {lIu,e: prP X prP -+ prP I a, BE (0, In U

{Lu,e: prP X prP -+ prP I a,B E (0, In U {8n : prP -+ prP I H ~ A}

Thus, for each of the operators I, II, and L we have a family of operators, each indexed by two

probabilities from the interval (0,1). These operators work intultively as follows. Consider first

the merge operator. In the expression ., I:~,e y, a co=unication between., and y occurs with

probability 1 - B, and an autonomous move by eith"" Z OT Y occurs with probability B. Given that

an autonomous t:l£) • .o: occurs, it comes fran::: 1ri:n ~ili:: c and from y with probability 1 - u.

Tile situation is s'm"ar for., lu.e y except the f..-st Step must (with probability 1) come from .,.

Likewise, the first step of., lu,e y must result from a co=unication between., and y.

The treatment of the co=unication merge is exactly analogous to the situation in the non

probabilistic case (Section 2.3). The "totality" axiom CO now becomes:

I 'r/a,bEprP A.(a)AA.(b) ==;. 3CEprP 'r/a,BE (0,1) A.(c)Aalu.eb=c prCO I

The axioms of prACPi(A) are as follows. In this system, a,b,c range over A., H. = H U {6},

and I.has functionality I : pr P -+ 2A 6. Also, n,u are used on 2A
6 without further specification.

prBPA(A) -r-

23

prCO +

prA7 1

+

a lu.8 b = b 1(1-u).8 a prCl

(a lu.8 b) lu'.8' c = a lu.8 (b lu'.8' c) prC2

6 lu.8 a = 6 prC3

+

'" Ilu.8 Y = (('" Lu.8 y) +u (y L(1-u).8 "')) +8 ('" lu.8 y) prCMl

a Lu.8 y = a· y

(a. "') Lu.8 y = a· ('" Ilu.8 y)

('" +~ y) Lu.8 z = ('" Lu.8 z) h (y Lu.8 z)

a lu.8 (b.",) = (alu.8b)·",

(a. "') lu.8 b = (a lu.8 b) . '"

(a. "') lu.8 (b. y) = (alu.8b). ('" Ilu.8 y)

('" +. y) lu.8 z = '" lu.8 z +" y lu.8 z

'" lu.8 (y +. z) = '" lu.8 Y +. '" lu.8 z

+

I(a) = {a} prIl

I(",·y) =1(",) prI2

1('" +. y) = 1(",) u I(y) prI3

+

prCM2

prCM3

prCM4

prCM5

prCM6

prCM7

prCM8

prCM9

c~H = oH(a)={ prDl

c';: H = OHta) = a prD2

: 1(",) !; H. ==} OH('" +" y) = OH(y) prD3.1

1(", +. y) n H. = 0 ==} OH('" +" y) = OH("') +. OH(Y) prD3.2

OH("" y) = OH("')' OH(Y) prD4

3.4.2 Graph Model

As for prBPA(A) and prPA(A), we provide a bisimulation model for prACPi(A) and prove com

pleteness for finite processes. We begin with the definition of the prACPi(A) operators on prob

abilistic process graphs, and for this purpose we need to introduce a "normalization factor" to be

used in computing conditional probabilities in a restricted process.

24

Definition 3.6 Let 9 = < V, r, 11 > be a probabilistic process graph. Then, for v E V, the normal

ization factor of v with respect to the set of actions H ~ A is given by

Intuitively, lIH(v) is the sum of the probabilities of those transitions from v that remain after

restricting by the set of actions H. In the following, let initials(v) = {a E A, I 3v' 11(v, a, v') > O}

for v a probabilistic process graph node, and let the empty summation of probabilities be O.

Definition 3.7 The operators 6, lIu,e, ~u,e, lu,e, 8H , H ~ A, and I are defined on pr:F as follows:

6: is given by <{r" vo}, r" 11, > where 110 (r., 6, v.) = 1 is the only transition with non-zero proba

bility.

gl Ilu,e g2: is given by <VI X V2,(rl>r2),JL > wherefor alIa E A" VI> v; E VI, v2,vi E V2

{

(7. 0 . III (VI, a, v;) if -,endpoint(V2)
11((VI>V2),a,(v;,v2)) =

111 (VI> a, v;) otherwise

{

(1-(7)·0·112(v2,a,vi) if-,endpoint(vI)
11((v" V2), a, (VI> v2)) =

112 (v2, a, vi) otherwise

11((vl>v2),a,(vi,vi)) = (1-0). L 11,(v"b,v;) '112(V2,C,V;)

b,c: b 117,9 c=a

g, ~u.eg2: is given by <V, X V2,(r"r2),11 > wherefor alIa EA., vI,v;,E VII v2,vi,E V2

• 11((rl>r2),a, (v;,r2)) = I1I(rl>a,v;)

• if v, ,p r, or V2 ,p r2

{

(7. 0 . III (VI> a, vD if -,endpoint(V2)
1-'((v"v2),a,(vi,v2)) =

11, (VI> a, v;) otherwise

{

(I - (7).0 '112(v2,a, vi) if -,endpoint(vIl
11((VI> V2), a, (VI> vi)) =

J.l2(V2, a, v2) otherwise

11((V" v2),a, (v;, vm = (1 - 0)· L I-',(v" b, vD· 1-'2(V2, c, v;)
b,c: b la,B c=a

g,,~.eg,: is given by <1-, X 1"2, (r"r2),1-' > wherefor all a E A" v"vi E V,. "2."; E l"2

• 11((r" r2), a, (vi, "i)) = L •. d ;." c=a 11, (r" b, vi) . 1-'2 (r2, c, "i)

• if,!), 1'= r, or t', 1'= r,

{

(7·0·1-', (VI> a, v;) if -,endpoint(v,)
11((VI> v,), a, (vi, v,)) =

11, (V" a, vi) otherwise

{

(1-(7)·0·1-'2(v2,a,vi) if-,endpoint(v,)
I-'((Vl> V2), a, (VI> vi)) =

1-',(V2, a, vi) otherwise

I-'((Vl> V2), a, (vi, vi)) = (1 - 0) . L 11,(v" b, v;) . 112(V2, c, vi)
b,c: b 1.,.,8 c=a

• if (vi 1'= r, and vi = r2) or (v; = r, and vi ,p r2) 11((rl> r2), a, (vi, vi)) = 0

25

• if initials(v) C;; H.

Ii(v, a, v') = 0

Ii(v, 6, v') = L iiI (v, a, v')

aE A6

• if initials(v))1: H.

') {o Ii(v,a,v =
iiI (v, a, V')/IIH(v)

I(gtJ: gives the set of actions initials(rl)'

if a E H.

otherwise

Similar to the case of prPA(A), the first and third clauses of the definitions of gl L~,8 g2 and

gl 1~,8 g2 collectively define the transition distribution function Ii on all transitions from the root

(rb r2). Also note that in the definition of 8H(gl), division by the normalization factor IIH(v) occurs

only when initials(v))1: H., which ensures that IIH(v) > o.

Processes are still stomastic in the graph model of pr ACPj (A) if the probability of 6-transitions

is taken into account. On the other hand, one may prefer the "substomastic" interpretation that a

process like a + t 6 performs an a-transition (after whim it successfully terminates) with probability ,
~, but may also do nothing (deadlock) with probability ~. However, the process 80(a +t 6) never ,
deadlocks and is equivalent to a.

The presence of 6-edges requires a new definition of probabilistic bisimulation.

Definition 3_8 Let g, = < V" r" iiI >, g2 = < V2, r2, li2 > be probabilistic process graphs. A prob

abilistic 6-bisimulation between gl and g2 is an equivalence relation 'R. C;; (V, U V2) X (V, U V2) with

the following properties: .

• 'R.(rb r 2)

• 'Iv E V" wE V2 such that 'R.(v,w):

- 'iaEA, SE(V1 UV2)/'R., IiI(v,a,snV,) = li2(w,a,SnV2)

- lil(V,6, V,) = li2(W,E, V2)

Graphs g, and 92 are probabilistically 6-bisimilar, written 9; =f 92. if ther< ezists c robabili-stic

E-bi-simulation between 9; and 92·

The definition is the same as the earlier definition of probabilistic bisimulation except that prob

abilistically o-bisimilar nodes must perform the action 0 with the same total probability, without

regard to where the o-transitions lead.

In order to prove that ""f is a congruence in prACPi(A), we need the following proposition

to facilitate our reasoning that ""f' respects restriction.

Proposition 3.5 Let 91 '='-f g2 and let 'R. be a probabilistic 6-bisimulation between 91 and 92 with

(VbV2) E 'R.. Then:

26

2. initials(v,) = initials(v,)

Proof: For a = 0, result (1) is immediate from Definition 3.8. For a of 0, (1) is easily deduced

from Definition 3.8 as 1', (v" a, SnV,) = 1',(v" a, Sn V,) for all equivalence classes S of the partition

of V, u V, induced by n. Results (2) and (3) are simple consequences of (1). 0

Proposition 3.6 If g, ",r g" then 9 Ila.B g, ",r 9 Ila.B g" 9 ~a.B g, ",r 9 ~a.B g" g, ~a.B g",r g, ~a.B g,

9 la.Bg, or 9 la.Bg" &H(9,) ",r &H(9,), for all H ~ A, and I(g,) = I(g,).

Proof: The proof for lIa.B is similar to the proof for Iia in Proposition 3.4. Let a of o. The

a-transitions of non-zero probability stemming from (v, v,) are now of the form:

1. 1'~((v,v,),a,[(v',v,)Jnl) = 0" II· I'(v,a,v')

2. I'~((v, v,), a, [(v, v;JJn') = (1 - 0') ·11· 1',(v" a, [v;Jn)

3. I'~((v, v,), a, [(v', vDJn') = (1 - II) . 2:b.c, b I •.• c=.I'(v, b, v') . 1',(v" c, [v;Jn)

4. I'~((v,v,),o, V X V,) = O'.II.I'(v,o, V) + (1-11). 2:b.dl •.• c=51'(v,b, V) 'I',(v"c, V,) + (1-

0') .1I·I',(v" 0, V,)

The argument for the first two types of transitions is virtually identical to the argument set forth in

Proposition 3.4. For the third type, since g, or g" I'~((v, v,), a, [(v', vDln') = I'~((v, v,), a, [(v', vDJn').
The arguments for the first three cases collectively are sufficient for the fourth case and we are done.

As in Proposition 3.4, the argument is similar if v, or v is an endpoint.

Again, as in Proposition 3.4, the proofs for ~a.B and la.B follow reasoning similar to, if not simpler

than, the proof of lIa.B. In particular, there are fewer transitions of non-zero probability from (r, r,)
and (r, r,) since such transitions can come from 9 only, in the case of probabilistic left-merge, and

from communications between g,g, or g,g, only, in the case of probabilistic communication merge.

For the case of restriction, assume g, ""r g, and let n be a probabilistic o-bisimulation between

g, and g,. We show that n is also a probabilistic o-bisimulation between OH(9,) and OH(g:),

H ~ A. Let (v" v,) E n and let I'f be the tdf of &H(9;), i = 1,2. If initials(v,) ~ H5 then,

by Proposition 3.5, initials(v:) ~ He and therefore I-'f(v,.l,l,:). I-'g(t':.[, l': = 1. Otherwise_

I-'f(t'" c, i',), ~(t'" a. 1'2) = 0, if a E H5; and for all S E (1-: :.:1',) "R., 1-':((r" c,.5 - r:), 4(":, c, S-

1',) = I',(v" a, Snl-,)jIlH(V,), ifa ~ H5. This last step is a consequence ofthefac: that (v"v:) E'R.

and Proposition 3.5, part (3).

That or respects operator I follows directly from part (3) of Proposition 3.5. o

Theorem 3.3

1. prFj'='-r FPrACPi(A)

2. For all closed e"pressions p,q over E(prACPi(A)):

prF jor F p = q = prACPi(A) I-- p = q.

27

Proof: For part l, the proof of soundness of axiom pr A 7 is a simple extension of the soundness

argument for A7 (Theorem 2.2). Axioms prCl-3 are merely postulated about the communica

tion merge lu,6. The soundness of the rest of the axioms of prACP1(A) rests on probabilistic

process graph isomorphism arguments (the remarks given in the soundness part of the proofs of

Theorems 2.2 and 3.3 are relevant with the obvious extensions).

Note that the condition to prD3.l implies that vH(rz) = 0 and the condition to prD3.2 implies

that vH(r z +.y) = land vH(rz),vH(ry) = 1. The soundness of these axioms now easily follows. As

alluded to in Section 2.3, unlike D3.2, prD3.2 is not sound under the weaker condition

I(z)-H,-I0 andI(y)-H,-I0

(for example, consider z = a +1 b, y = c, H = {a}, and 1r = ~). This situation is closely re-,
lated to the fact that the equivalence induced on the stratified model of probabilistic processes via

abstraction to the generative model is not a congruence; in particular, it fails to respect restric

tion [vGSST90J.

For part 2, the proof is analogous to the completeness proof of ACP1(A).

• The definition of a probabilistic basic term uses + .. instead of +.

• The term rewriting system prRACP1(A) uses the probabilistic counterparts of the rules in

RACPi(A) and the normal form is defined analogously as well. For example, prRACP1(A)

contains the rule prCO'

a I",e b = c ~ a 1",6 b --> c

• The proof that a probabilistic normal form is also a probabilistic basic term proceeds as before

- no rule in prRACPi(A) is conditional with respect to any probability.

• prRACP1(A) is strongly normalizing modulo prAl, prA2, prA2': take a prRACP1(A) re

duction and erase all probability subscripts. One obtains a valid RACP1(A) reduction.

• The "elimination theorem" for prACP1(A) is also similar. Let p be a closed prACPr(A)

term and let p be the closed ACPr(A) term obtained by erasing all probability subscripts.

Now let

be a normalizing reduction of p. This reduction can be decorated appropriately with proba

bilities to obtain a prP~-\CPI(A) normaJization of p.

4 ACPi as an Abstraction of pr ACPi

In this section we demonstrate that ACP1(A) can be considered an abstraction of prACP1(A) at

both the level of the graph model and at the level of the equational theory. For the former, we

exhibit a homomorphism <It from probabilistic process graphs to non-probabilistic process graphs

that preserves the structure of the bisimulation congruence classes. For the latter, we exhibit

a homomorphlsm q; from prACP1(A) terms to ACP1(A) terms that preserves the validity of

equational reasoning.

28

4.1 Graph Model Homomorphism

The homomorphism <I> : prO ---; 0, from probabilistic process graphs to non· probabilistic process

graphs, simply "forgets" probabilities.

Definition 4.1 Letg = <V,r,J' > be a probabilistic process graph. Then <I>(g) = <V,r,--» has

the same states and start state as g and ---; is such that

Proposition 4.1 Let gl, g2 be probabilistic process graphs.

<1>(a) = a, a E As

<1>(91' 92) = <1>(91)' <1>(92)

<1>(91 +" 92) = <I>(9J) + <1>(92)

<1>(91 I~,B 92) = <1>(91) I <1>(92)

<1>(91 II.,.,B 92) = <I>(9d II <1>(92)

<1>(91 l~,B 92) = <1>(91) L <1>(92)

<I>(8H(9J)) = 8H(<I>(91))

Proposition 4.2 The homomorphism <I> preserves the structure of the bisimulation congruence

classes. That is,

Proof: Let 91 = <VI' rio ill >, 92 = <V2,r2,J'2 > be probabilistic process graphs, and let

<1>(91) = < Vb rl, ---;1> and <1>(92) = < V2, r2, -->2> be their homomorphic images under <1>. Fur

ther, let n ~ VI X V2 be a ,5-probabilistic bisimulation containing (rio r2)' That is, 91 ""r 92' Now

let (v, w) be an arbitrary pair in n and assume for some v' E VI, a E A that ill (v, a, v') > O. By Def

inition 4.1, v ~ 1 v'. Then J'I (v, a, [v1) > 0 where [v'] = {u E VI U V2 I (tL, v') E n} E (VI U V2)/n.
Since (v, w) E n, then there exists a w' E [v'] with M(r2, a, w') > 0; i.e., n(v', w') and, by Defini

tion 4.1 again, r2 ~ 2 w'. By a symmetric argument and by considering the case a = <5 (which is

simpler), we have as desired that 91 =r 92 ==> 0(91):t., <1>(92)' 0

The converse of this result is clearly not true. e.g., a + b ti, b + a but a + 1 b ~r b + 1 a. Thus, , ,
the graph moci.el :;:! =. of ACP1 (.4 .. ' ;,; 0.=1=-..'.:: =e aDstract thaI'. the probabilistic graph model

pr:;:/ =r 0: rACPr(A.).

4.2 Equational Theory Homomorphism

Let C(E) be the language of all terms, open and closed, generated by the signature of the equational

specification E. The homomorphism ~ : C(prACP1(A)) --> C(ACP1(A)) fromprACP1(A) terms

to ACP1(A) terms, is defined as follows:

29

4(a) = a,a E A,

4(:)=:

4(:· y) = 4(:). 4(y)

4(" +". y) = 4(,,) + 4(y)

4(" lu,8Y) = 4(,,) I q;(y)

q;(" Ilu,8 y) = q;(,,) II q;(y)

q;(" Lu,8Y) = q;(,,) L 4(y)

q;(8H(X)) = 8H(q;(x))

The following proposition states that any valid proof of prACPi(A) can be mapped into a valid

proof of A CP i (A) using the homomorphism q;.

Proposition 4.3 Let t" t2 be terms o!prACPi(A), i.e., t"t2 E £(prACPi(A)).

prACPi(A) f- t, = t2

ACPi(A) f- q;(t,) = q;(t2)

Proof: The proof is by induction on the length of the prACPi(A) proof, using the observation

that, for every prACPi(A) axiom of the form c =} t, = t2, its homomorphic image q;(c) =}

q;(t,) = q;(t2) is an ACPi(A) axiom. Here c is a possibly empty condition on the validity of the

prACP1(A) axiom, and the fact that q;(c) is equal to the condition of the corresponding ACPi(A)

axiom means that no axiom of prACPi(A) is conditional on a probability appearing within an

prACPi(A) term. 0

Note that the converse of the result does not hold, e.g., a + b = b + a but a +! b 'I b +! a. Thus,
2 3

ACP1(A) is a strictly more abstract theory than prACPi(A).

5 Comments on an Internal Probabilistic Choice Operator

In this section we consider the question whether it is possible to add a probabilistic internal choice

operator to prACP1(A). Such an operator V" : prP X prP --+ prP should have the following

properties (similar to r; of CSP fHaaS5]):

1. "V"y denotes a p:-ocess t~ es:a:'" ith probability 7:' and equals y with probability 1- To.

xo(y V". z) = (xOy) V" (xOz)

(" v" y)Oz = (xOz) V". (yOz)

Each of these properties is very plausible. Nevertheless, we observe a difficulty that suggests that

the setup with V". must be flawed. It follows that if an internal probabilistic choice is to be added,

at least one of properties (1) - (3) must be removed. But, as stated before, these requirements are

needed to simplify any setting simultaneously involving +". and V".

The difficulty with V" comes about as follows.

30

Proposition 5.1 prACPr(A) + (1)-(3)1- aVLb=aVdbVda+Lb))
2 .. 3 2

Proof:

=
= aVL(bVL(ah b))

• 3 ,

Next we introduce a probability measure on traces.

Probabilities of Traces

We define Pr: prP X A' --> (0,1] as follows:

Prix --> 0) = 1

Pr(a --> b) = {
1 ifa=b

° ifa;ib

Pr(a-->b*c*a)=O

Pr(a. x --> b * a) = Pr(a --> b). Prix --> a)

Prix +" y --> a) = ". Pr(:z: --> a) + (1 - ,,). Pr(y --> a)

Prix V" y --> a) = ". Prix --> a) + (1 - ,,). Pr(y --> a).

Given this meaning, it seems clear that one must require:

prACPr(A) + (1) - (3) I- p = q :=} for all a E A' Pr(p --> a) = Pr(q --> a)

Now consider the following example:

A = {a, b, guess(a), guess(b), success(a), success(b), fail}

aiu"guess(a) = success(a), Va,8 E (0,1)

b,u"guess(b) = success(b), Va,8 E (0,1)

a:~.Igue .. s(b) = biu"guess(a) = fail, Va, (J E (0,1)

o

A1: o'::'~ cmnmrrnications are t. Let H = {a,b,guess(a),guess(b)}, and let us write II for I'l l.
" ,

1'0.,.., using Proposition 5.1, we find

prACPr(A) + (1) - (3) I- &H(guess(a) II (a VL b)) = &H(guess(a) II a Vl (b Vl (a+d))
2 .. 3 2

But

Pr(&H(guess(a) II a Vl b) --> success(a)) ,
= Pr(&H(guess(a) II a) Vl &H(guess(a) II b) --> success(a)) ,
= Pr(success(a) VL fail--> success(a)) ,

1
= -

2

31

and

Pr(8H(guess(a) II a V1 (bV1 (a+1 b))) -> success(a))
, J ,

= Pr(8H(guess(a) II a) V1 (8H(guess(a) II b) Vl 8H(guess(a) II (a +1 b))) -> success(a))
, J ,

= Pr(success(a) V1 (failv1 success(a)) -> success(a))
, J

1 3 2 3

= 4+4'3=4

This calculation indicates a definite problem for combining a probabilistic alternative composition

+" with probabilistic internal choice v".

It follows that a generalization to a probabilistic setting of CSP that features both composition

mechanisms (0 and n) cannot be done along the same lines.

If an internal choice must be added, the authors feel that the mentioned difficulty is best reme

died by:

1. adding a sort of state distribution S D and an embedding i : pr P -> S D turning a process

into a state distribution.

2. Then, v" can have functionality SD X SD -> SD.

6 Conclusions

In this paper, we have presented complete axiomatizations of probabilistic processes within the

context of the process algebra ACP. Given that axiom A6 of ACP ('" + 6 = "') does not have a
plausible interpretation in the generative model of probabilistic computation, we introduced the

somewhat weaker theory ACPr, in which A6 is rejected. ACPr is, in essence, a minor alteration

of ACP expressing almost the same process identities on finite processes.

Our end-result is the axiom system pr ACPr, which can be seen as a probabilistic extension

of ACPr for generative probabilistic processes. In particular, ACPr is homomorphically derivable

from pr ACPr. As desired, we showed that pr ACPr constitutes a complete axiomatization of

Larsen and Skou's probabilistic bisimulation for finite processes.

Several directions for future work can be identified. First, we are interested in adding cer

tain important features to the model, such as recursion and unobservable 7' actions. Secondly,

... e desire also to completely axiomatize the reactive and stratified models of probabilistic pro

ces~ : vGSST90:. In the stratified model, which is well-suited for reasoning about pronaoilistic

-:a;,.~ scheduiing, distinctions are made between processes based on the branching structure of

their purely probabilistic choices. We conjecture that by eliminating axiom pr A2 (probabilistic

alternative composition is not associative in the stratified mode!!) and weakening the condition to

pr D3.2 as discussed in the soundness part of the proof of Theorem 3.3, the desired axiomatization

can be obtained.

Acknowledgements

The authors gratefully acknowledge Rob van Glabbeek, Chi-Chang Jou, and Bernhard Steffen for

valuable discussions.

32

References

[BK84]

[BM89]

[BW90]

[Chr90]

[CSZ92]

[GJS90]

[Hoa85]

[JL91]

[JS90]

[LS89]

[LS92]

[MiI80]

'ParsI" - .

[Tof90]

J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication. In

formation and Computation, 60:109-137, 1984.

B. Bloom and A. R. Meyer. A remark on bisimulation between probabilistic processes.

In Meyer and Tsailin, editors, Logik at Botik, Springer-Verlag, 1989.

J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge Tracts in Computer

Science 18, Cambridge University Press, 1990.

1. Christoff. Testing Equivalences for Probabilistic Processes. Technical Report DoCS

90/22, Ph.D. Thesis, Department of Computer Science, Uppsala University, Uppsala,

Sweden, 1990;

R. Cleaveland, S. A. Smolka, and A. E. Zwarico. Testing preorders for probabilistic

processes. In Proceedings of the 19th ICALP, July 1992.

A. Giacalone, C.-C. Jou, and S. A. Smolka. Algebraic reasoning for probabilistic con

current systems. In Proceedings of Working Conference on Programming Concepts and

Methods, IFIP TC 2, Sea of Gallilee, Israel, April 1990.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985.

B. Jonsson and K. G. Larsen. Specification and refinement of probabilistic processes.

In Proceedings of the 6th IEEE Symposium on Logic in Computer Science, Amsterdam,

July 1991.

C.-C. Jou and S. A. Smolka. Equivalences, congruences, and complete axiomatizations

for probabilistic processes. In J. C. M. Baeten and J. W. Klop, editors, Proceedings of

CONCUR '90, pages 367-383, Springer-Verlag, Berlin, 1990.

K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. In Proceedings

of 16th Annual ACM Symposium on Principles of Programming Languages, 1989.

K. G. Larsen and A. Skou. Compositional verification of probabilistic processes. In

Proceedings of CONCUR '92, Springer-Verlag Lecture Notes in Computer Science, 1992.

R. Milner. A Calculus of Communicating Systems. Volume 92 of Lecture Jlotes ir:

Computer Science, Springer-Verlag, Berlin, 1980.

D. 1-1. R. Park. Concurrency and automa.~a 0:::' inf.nite s~~ces. In ProcE~:n9~ c.:

5th G.I. Conference on Theoretical Compute1" ScienCE, pag'" 167-183, Springer-Ye:iag.

1981.

C. M. N. Tofts. A synchronous calculus of relative frequency. In J. C. M. Baeten

and J. W. Klop, editors, Proceedings of CONCUR '90, pages 467-480, Springer-Verlag,

Berlin, 1990.

[vGSST90] R. J. van Glabbeek, S. A. Smolka, B. Steffen, and C. M. N. Tofts. Reactive, genera

tive, and stratified models of probabilistic processes. In Proceedings of the 5th IEEE

Symposium on Logic in Computer Science, pages 130-141, PhHadelphia, PA, 1990.

33

A Proofs of Lemmas 3.1 and 3.2

Lemma 3.1 For any permutation ~ of {I", .,n}, n ~ 2,

n n

prBPA(A) f- L[1ri]:Z:i = L[1r{(i)]:Z:{(i)
;:;:.1 i=1

Proof: The proof is by induction on n. All non·annotated steps are assumed to follow directly

from the definition of summation form notation.

• Basis: n = 2

We prove the non· trivial case where ~(1) = 2, ~(2) = 1.

2

L [1ri]:Z:i = :Z:1 +'" t [l1r~+l] :Z:i+1
i;;;;1 11"1

= Xl +11"1 2:2

= 2:2 +11'2 Xl (prA1)

:Z:2 +'" t [1 :i1r] :Z:i
~=l 2

=
2

= L[1r~(i)]:Z:W)
1=1

• Hypothesis: supoose the lemma holds for n :::; k.

• Induction: n = k + 1

If ~(1) = 1, then we have

k+l

L [1ri]:Z:i =
;=1

= (induction)

_+1

= L["W)j:Z:~(i)
i=l

If ((1) = j "" 1, then

k+l

L [1r;j:Z:i =
i:;;:1

=

where f is any permutation from 2 to n + 1

with f(2) = j

34

(induction)

=

=

=

=

=

=

"C(i+2)

(
.-1 [])

Xj + l~il (; 1 _ 11"1 _ 7rj ze'(i+2)

where Yl = Xl, PI = ~1" ., -",
r I < . < k I "I'CH')
lor _ z _ - ,Yi+l = Ze'(i+2), Pi+l = l-1rj

•
"'i +"j L [P;J Yi

;=1

•
= "'i +"j L [pe"(i)] Ve"(i)

;=1

where e' is the permutation of 1 to k with
~

Ye"(i) = "'e(i+1) and Pe"(i) = l-'''j

· [] "e(i+1)
"'i +"j L 1 _ ". "'e(i+1)

,=1 3

0+1

L["e(i)J"'e(i)
i=1

35

(prAI)

(prA2)

(prAI)

(induction)

c

Lemma 8.2 In the summation form Z?;} [1I",J"'" let "'1 and "'2 be syntactically identical. Then

n+1 n

prBPA(A) f- 2:)1I",J"', = 2)p,Jy,
i=l i=1

where PI = 71"1 + 11"2, Yl = z}, and Pi = 1r'i+h Yi = zi+l, 2 :::; i :s: n.

Proof: There are two cases; all non-annotated steps are assumed to follow directly from the

definition of summation form notation. If n = 1, then we have:

2

2)1I",J"" = 1 [11"'+1 1
Zl +11'1 L -1 ~ Zi+l

i=l 1rl i==1

~[1-1I"ll
Zl +"1 L.J -1 _ "'1

i=1 1['1

= Z1 +""'1 %1

= Zl

1

I: [p,J y,
i=1

If n 2: 2, then we have:

(prA3)

= "'1 +Wl ("'2 + 2L 'I: [1 11",+2 1 "''+2)
l-1I't i=1 - 1rl - 11"2

71.-: p

'" 0.,-: = 11: -", ~ -_-- Yi-:
i=: ~--~.

n

= I: [p,J y,
i=1

36

(prA2)

(prA3)

(Given condition)

o

In this series appeared:

90/1 W.P.de Roever-
H.Barringer-
C.Courcoubetis-D.Gabbay
R.Gerth-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wo1per

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 J .A. Brzozowski
J.C. Ebergen

90/6 A.J.J.M. Marcelis

90n A.J.J.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aens
P.M.E. De Bra
K.M. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Fonnal methods and tools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems: a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. 15.

A formal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving tennination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p.23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 J.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90120 M.Rem

90/21 K.M. van Hee
P.A. C. Verkoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
PJ. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls, p. 15.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification framework, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.l.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.Y. Schuwer

91/21 1. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Y oorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
GJ. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 I.C.M. Baeten
F.W. Yaandrager

91/31 H. ten Eikelder

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.

26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 1. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H.W. v .d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 R.P. Nederpelt

92/08 R.P. Nederpelt
F. Kamareddine

92/09 R.C. Backhouse

92/10 P.M.P. Rambags

92/11 R.C. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/l3 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92/17 W.M.P. van der Aalst

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15. .

Asynchronous communication in process algebra, p. 20.

A note on compositional refmement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, pA5.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity cheCking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

t.;c

92/18 R.Nederpclt
F. Kamareddine

92/19 J.C.M.Bactcn
J .A.Bcrgslra
S.A.Smolka

92/20 F.Kamareddine

92/21 F.Kamarcddine

92/22 R. NcderpcIt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes·.
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify tile

interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

,
Nominalization, Predication and Type Containment, p. 40.

BOllum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for FOl, p. 15.

i J.

	Abstract
	1. Introduction
	2. A Weaker Version of ACP
	2.1 BPA
	2.1.1 Equational Specification
	2.1.2 Grapgh Model
	2.2 PA
	2.2.1 Equational Specification
	2.2.2 Graph Model
	2.3 ACP without A6
	2.3.1 Equational Specification
	2.3.2 Graph Model
	2.3.3 Connections Between ACP and ACP-I
	3. A Probabilistic Version of ACP
	3.1 Probabilistic BPA
	3.1.1 Equational Specification
	3.2 Probabilistic Grapgh Model
	3.3 Probabilistic PA
	3.3.1 Equational Specification
	3.3.2 Grapgh Model
	3.4 Probabilistic ACP
	3.4.1 Equational Specification
	3.4.2 Grapgh Model
	4. ACP-I as an Abstraction pf prACP-I
	4.1 Graph Model Homomorphism
	4.2 Equational Theory Homomorphism
	5. Comments on an Internal Probabilistic Choice Operator
	6. Conclusions
	Acknowledgements
	References

