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Abstract 

This paper is concerned with finding complete axiomatizations of probabilistic processes. 

We examine this problem within the context of the process algebra ACP and obtain as our 

end-result the axiom system prACPi, a probabilistic version of ACP which can be used to 

reason algebraically about the reliability and performance of concurrent systems. Our goal was 

to introduce probability into ACP in as simple a fashion as possible. Optimally, ACP should be 

the homomorphic image of the probabilistic version in which the probabilities are forgotten. 

We begin by weakening slightly ACP to obtain the axiom system ACPi. The main differ

ence between ACP and ACPi is that the axiom z + 6 = z, which does not yield a plausible 

interpretation in the generative model of probabilistic computation, is rejected in ACPi. We 

argue that this does not affect the usefulness of ACPi in practice, and show how ACP can be 

reconstructed from ACP; with a minimal amount of technical machinery. 

prACPi is obtained from ACPi through the introduction of probabilistic alternative and 

parallel composition operators, and a process graph model for prACPi based on probabilistic 

bisimulation is developed. We show that prACPi is a sound and complete axiomatization 

of probabilistic bisimulation for finite processes, and that prACPi can be homomorphically 

embedded in ACPi as desired. 

Our results for ACPi and prACPi are presented in a modular fashion by first considering 

several subsets of the signatures. We conclude with a discussion about the suitability of an 

internal probabilisti:: choice operaior in the context of p1'ACPr' 

• A preliminary version 0: t.b.is paper appeared in Proceetiing& o.z COSCCR '9! - Thire International Conference 

on Concurrency Theory, Yo1. 630 of the Springer .. Verlag series Lecture SotC$ in Computer Science, pp. 472-485, Aug. 

1992. The research ofthe first and second authors was supported by ESPRIT Basic Research Action 7166, CONCUR2. 

The second author was also supported by RACE project 1046, SPECS. This document does not necessarily reflect 

the views of the SPECS consortium. The research of the third author was supported by NSF grants CCR-8704309, 

CCR-9120995, and CCR-9208585. 

1 



1 Introduction 

It is intriguing to consider the notion of probability (or probabilistic behavior) within the context of 

process algebra: a formal system of algebraic, equational, and operational techniques for the speci

fication and verification of concurrent systems_ Through the introduction of probabilistic measures, 

one can begin to analyze - in an algebraic fashion - "quantitative" aspects of concurrency such 

as reliability, performance, and fault tolerance. 

In this paper, we address .this problem in terms of complete axiomatizations of probabilistic 

processes within the context of the axiom system ACP [BK84]. ACP models an asynchronous 

merge, with synchronous communication, by means of arbitrary interleaving. It uses an additional 

constant 0, which plays the role of NIL from CCS [Mil80] (CCS is a predecessor of ACP). The key 

axioms for 0 are: 

'" +0 = '" A6 

0·",=0 A7 

The process 0 represents an unfeasible option; i.e. a task that cannot be performed and there

fore will be postponed indefinitely. The interaction with merge (parallel composition) is as follows: 

'" 110 = ",·0 

(This is not provable from ACP but for each closed process expression p we find that ACP I- p II 
0= p·o.) Now 0 represents deadlock according to the explanation of [BK84]. 

Our goal is to introduce probability into ACP in as simple a fashion as possible. Optimally we 

would like ACP to be the homomorphic image of the probabilistic version in which the probabilities 

are forgotten. To this end, we first develop a weaker version of ACP called ACP1. This axiom 

system is just a minor alteration expressing almost the same process identities on finite processes. 

The virtues of this weaker axiom system are as follows: 

(i) ACP1 does not imply", + 0 = z. In fact, this axiom has often been criticized as being non

obvious for the interpretation o=deadlock=inaction. 

(ii) ACP1 + {z + 0 = z} implies the same identities on finite processes as ACP (but it is slightly 

weaker on identities between open processes). 

(iii) ACP1 has for all practical purposes the same expressiveness as ACP. I.e., if one can specify a 

protocol in ACP, this can be done jus: as well in ACP1. 

(iY) ACP1 allows a probabilistic inte:pretatio:::. of -i-, and for this reason we need it as a point of 

departure for the development of a probabilistic version of ACP. 

We introduce probability into ACP1 by replacing the operators for alternative and parallel 

composition with probabilistic counterparts to obtain the axiom system pr ACP1. Probabilistic 

choice in prACP1 is of the generative variety, as defined in [vGSST90], in that a single probability 

distribution is ascribed to all alternatives. Consequently, choices involving possibly different actions 

are resolved probabilistically. In contrast, in the reactive model of probabilistic computation [1S89, 

vGSST90], a separate distribution is associated with each action, and choices involving different 

actions are resolved nondeterministically. 

A property of the generative model of probabilistic computation is that, unlike the reactive 

model, the probabilities of alternatives are conditional with respect to the set of actions offered by 
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the envirorunent. A more detailed comparison of the reactive and generative models can be found 

in [vGSST90]. There the stratified model is also considered and it is shown that the generative 

model is an abstraction of the stratified model and the reactive model is an abstraction of the 

generative model. 

Previous work on probabilistic process algebra [LS89, GJS90, vGSST90, Chr90, BM89, JL91, 

CSZ92] has has been primarily of an operational/behavioral nature. Three exceptions, however, 

are [JS90, Tof90, LS92]. In [JS90], a complete axiomatization of generative probabilistic processes 

built from a limited set of operators (NIL, action prefix, probabilistic alternative composition, 

and tail recursion) are provided, while in [Tof90], axioms for synchronously composed "weighted 

processes" are given. A complete axiomatization of an SCCS-like calculus with reactive probabilities 

is presented in [LS92]. 

Summary of Technical Results 

We have obtained the following results toward our goal of finding complete axiomatizations of 

probabilistic processes. 

• We first present the axiom system ACPi, our point of departure from ACP. Its development 

is modular beginning with BPA (consisting of process constants, alternative composition, 

and sequential composition), to which we add a merge and left-merge operator to obtain PA. 

Finally, a communication merge operator, the constant 6, and an auxiliary initials operator 

I are added to PA to obtain ACPi. In each case, we present a process graph model based on 

bisimulation and prove that the system is a sound and complete axiomatization ofbisimulation 

for finite processes. 

• We show in a technical sense how ACP can be reconstructed from ACPi through the rein

troduction of the axiom A6. 

• The axiom systems prBPA, prPA, and prACPr for probabilistic processes are considered 

next. In each case, we present a process graph model based on probabilistic bisimulation, 

Larsen and Skou's [LS89] probabilistic extension of strong bisimulation, and prove that the 

system is a sound and complete axiomatization of probabilistic bisimulation for finite proba

bilistic processes. 

• Connections between ACPi and its probabilistic counterpart are then explored. We show 

that ACPi is the homomorphic image of pr ACPi in which the probabilities are forgotten. 

This result is obtained for both the graph model- the homomorphism preserves the structure 

of the bisimcla:io:::. CO:lgruence ciasses, and the proof theory - the homomorphic image of a 

yalid proof in 1"" ACPr is a ,-alid proof in ACPr. 
• We show that certain technical problems arise when a probabilistic internal choice operator 

is added to prACPi, and argue that a state operator should be introduced to remedy the 

situation. 

The structure of the rest of this paper is as follows. Section 2 presents the equational speci

fications BPA, PA, and ACPi, and their accompanying process graph models and completeness 

results. Section 3 treats the probabilistic versions of these axiom systems, namely, pr BPA, pr PA, 

and prACPi. The homomorphic derivability of ACPi from prACPi is the subject of Section 4. 

Section 5 discusses the suitability of an internal probabilistic choice operator in the context of 

prACPi, and, finally, Section 6 concludes. Note that we do not treat internal or T-moves in this 

paper, so we stay within the setting of concrete process algebra. 
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2 A Weaker Version of ACP 

In this section we present the equational theory ACPi, which, as described in Section 1, will be 

our point of departure for a probabilistic version of ACP. The main difference between ACP and 

ACPi is that the axiom z + 6 = z, which does not yield a plausible interpretation in the generative 

model of probabilistic computation, is rejected in ACPi. 

As is the practice in ACP, we begin with the theory BPA (Basic Process Algebra) which describes 

processes constructed from constants, plus, and sequential composition. We will then add to BPA 

a notion of parallel composition (merge and left·merge) to obtain PA (Process Algebra). Finally, 

the theory ACPi(A) is derived by extending BPA with the constant 6 (for deadlock), a combined 

notion of parallel composition and communication, and a restriction operator. 

2.1 BPA 

2.1.1 Equational Specification 

The signature :1::(BPA(A)) consists of one sort P (for processes) and three types of operators: con· 

stant processes a, for each atomic action a, the sequential composition (or sequencing) operator '.', 

and the alternative composition (or nondeterministic choice) operator '+'. The set of all constants 

is denoted by A, and is considered a parameter to the theory. 

:1::(BPA(A)) = {a: .... Pia E A} U {+: P X p .... P} U {-: P X P .... P} 

The axiom system BPA(A) is given by: 

z + y = y + z Al 

(z +y)+ z = z + (y+ z) A2 

z+z = z A3 

(z+y)·z=z.z+y.z A4 

(z .y). z = z.(y.z) A5 

1'0te the absence of the axiom z· (y + z) = z· y + z· z, which does not hold in our bisimulation 

model 

2.1.2 Graph Model 

We define a process graph model for BPA(A). The underlying notion of equivalence for process 

graphs is bisimulation, and we prove completeness of BPA( A) in this model. We will later extend 

our graph model to PA(A) and ACP1(A). As before, let A be the set of atomic actions. We 

consider process graphs with labels from A. 

Definition 2.1 A process graph 9 is a triple < V, r, --> > such that 

• V is the set of nodes (vertices) of 9 

• rEV is the root of 9 
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• ---> C V x A x V is the transition relation of 9 

The endpoints of 9 are those nodes devoid of outgoing transitions representing successful termi

nation. The major role played by endpoints is in the definition, given below, of the sequential com

position of two process graphs. We often write v ~ v'to denote the fact that (v, a, v') E --->. We 

denote by 9 the family of all process graphs. Bisimulation, due to Milner and Park [Mil80, Par8I], 

is the primary equivalence relation we consider on process graphs. 

Definition 2.2 Let gl =< VI,rl> --->1>, g2 =< V2,r2, --->2> be two process graphs. A bisimula

tion between gl and g2 is a relation 'R. s;: VI X V2 with the following properties: 

• 'R.(rl> r2) 

• 'Iv E VI, wE V2 with 'R.(v, w): 

Va E A and v' E VI, 

if v ~ I v' then 3w' E V2 with 'R.( v', w') and w ~ 2 w' 

• and vice versa with the roles of v and w reversed. 

Graphs gl and g2 are said to be bisimilar, written gl 1=i g2, if there e:lists a bisimulation between gl 

and g2' 

We now define the operators from l;(BPA(A)) on the domain :F of finite process graphs, Le., 

process graphs that are finitely branching and acyclic in their transition relations. Therefore,:F c g. 
For this puxpose, it is convenient to assume that a process graph root-node is not an endpoint. For 

the remainder of Section 2, unless otherwise stated, let gl = < VI> rJ, --->1 >, g2 = < V2, r2, --->2> 

be finite process graphs satisfying the non-endpoint root assumption such that VI n V2 = 0. 

Definition 2.3 The operators a E A, +, and· are defined on :F as follows: 

a E A: The process graph for each of these constants consists of a single transition and is given by 

<{r.,v},r.,{<r.,a,v >} >. 

gl-i- g2: is given by <VI U V2 U {r},r, -> such that r ~ VI U V2 and v 

following holds: 

• , d 
• rl - 1 t~ an t~ = r 

• r2 ....!... 2 v' and v = r 

• v --':..... 1 v' 

• V ~2VI 

• ---> v' if one or more of 

gl . g2: is obtained by appending a copy of g2 at each endpoint of gl' In detail, gl . g2 is given by 

<VI x V2,(rhr2),-> where (qhq2) ~ (q;,q;) if one or more of the following holds: 

• I d I 
• ql ---> I ql an q2 = q2 = r2 

• q2 ~ 2 q; and ql = q; is an endpoint 
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For t a closed BPA(A) term, we write graph(t) = < Vi, r" _,> to denote the process graph 

obtained inductively on t using Definition 2.3. We take the liberty to write expressions like p ±=t q, 

instead of the more precise graph(p)±=tgraph(q), when this is clear from the context. The definition 

of graph(t) and the just-mentioned notational liberty extend in the obvious way to the axiom 

systems PA(A) and ACPi(A), to be considered later in this section. 

In the setting of BPA, ±=t is a congruence (see, e.g., [BW90J). 

Proposition 2.1 If gl a g2, then 9 + gl a 9 + g2, g. gl ±=t g. g2, and gl .g a g2' g. 

We have that :F / ±=t, the graph model, is indeed a model of the axiom system BPA(A), and that 

BPA( A) constitutes a complete axiomatization of process equivalence in :F / ±=t. 

Theorem 2.1 ([BW90j) 

1. :F /a 1= BPA(A) 

2. For all closed ezpressions p,q over };(BPA(A)): 

:F/",,- 1= p = q =} BPA(A) I- p = q. 

2.2 PA 

2_2.1 Equational Specification 

The signature ~(PA(A)) is obtained from ~(BPA(A)) by adding an interleaving merge operator II 
and a left-merge operator L. 

};(PA(A)) = ~(BPA(A)) u {II: P X P -+ P} u {L: P X P -+ P} 

Intuitively, the process z II y is obtained by interleaving (shuffling) the atomic actions of z and 

y together. Left-merge is an auxiliary operator in that it permits II to be specified in finitely many 

equations. The process z l y has the same meaning as z II y, but with the restriction that the first 

step must come from z. 

The axiom system PA(A) is given by: 

BPA(A) + 

z II y = z L y + y L z Ml 

a Lz = a· z M2 

(a,z)h=a·(zlly) M3 

(z+yHz = z Lz+y Lz M4 
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2.2.2 Graph Model 

The two new operators of PA(A) are now defined on finite process graphs (as before, with non

endpoint roots). 

Definition 2.4 The operators II and ~ are defined on F as follows: 

9, II 92: is given by < V, X V2, (r" r2), --+ > where (v" V2) -c:... ( v;, v2) if either of the following 

holds: 

9, ~ 92: As 9, II 92 but without transitions of the form (r" r2) 

Again one may notice that ti is a congruence, F/ti 1= PA(A) and that PA(A) constitutes a 

complete axiomatization of process equivalence in F / ti [BW90j. 

2.3 ACP without A6 

2.3.1 Equational Specification 

The equational system ACP1(A) treats the operators of BPA(A) as well as the new constant C 

representing deadlock; a communication merge operator I describing the result of a communication 

between any two atomic actions; a merge operator II and left-merge operator ~ like those ofPA(A) 

but which additionally admit the possibility of communication; and a family of restriction operators 

8H , H ~ A. We will also need an auxiliary operator I that defines the initial actions that a process 

can perform. 

Letting A, = Au {c}, the signature of ACP1(A) extends that of PA(A) as follows: 

~(ACPI(A)) = ~(PA(A)) u {c:-> P} u {I: P X P -> P} U {8H: P -> P IH ~ A} u 

{f: P -> 2A ,} 

It is convenient to define communication merge as a binary commutative and associative function 

on atomic actions (Le., I : A, X A. -> A.) with C acting as a multiplicative zero. This is accomplished 

with axioms Cl-3 below. We further require I to be total and to captun t;us axiomatically we 

need a way to effectively enumerate all the constant processes. For this pcrpose, we define the 

characteristic predicate A, of A. in the usual way: 

A.(",) = V ('" = a) 
aEA, 

The totality of I is now given by the following axiom: axiom:' 

I Va, bE P A.(a) 1\ A,(b) = 3c E P A.(c) 1\ alb = c CO I 
1 Axiom CO is often replaced by choosing 8 total function i : AI X A, -I> AI and having all identities of the graph 

Ofi as axioms: alb = -y(a, b). In this way, i becomes another parameter to the theory (see, e.g., [BW90]). 
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The axioms of ACPi(A) are now given. In this system, a,b,c range overA6, H6 = H u {a}, and 

n,u are used on 2A
, without further specification. 

BPA(A) + 

co + 

+ 

alb = bla Cl 

(alb)lc = al(blc) C2 

ala = a C3 

+ 

"lIy="Ly+yL"+,,ly CMl 

a L" = a·" CM2 

(a.,,) h = a(zII y) CM3 

(" + y) L z = (" l z) + (y L z) CM4 

al(b.,,) = (alb)." CMS 

(a',,)lb= (alb)." CM6 

(a. ,,)I(b· y) = (alb). (" II y) CM7 

(" + y)lz = "Iz + Ylz CMS 

"I(y + z) = "Iy + "Iz CM9 

+ 

I(a) = {a} 11 

I(,,·y) = 1(,,) 12 

I(:::+y) = 1(:::) uI(y) 13 

a E H ==:- aH(a) = a 

art H ==:- aH(a) = a 

+ 

1(:::) ~ H6 ==:- aH(::: + y) = aH(Y) 

Dl 

D2 

D3.l 

1(::: + y) n H6 = 0 ==:- aH(::: + y) = aH(:::) + aH(Y) D3.2 

aH(:::' y) = aH(:::)· aH(Y) D4 
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Comments: ACP1 (A) differs from ACP by the absence of A6 and the presence of D3.1-2 instead of 

axiom D3: &H(Z + y) = &H(Z) + &H(Y)' The following examples illustrate the new axiom system. 

&{c} (a + (b + e)) = &{c}(e + (a + b)) 

= &{c}(a + b) 

= &{c}(a) + &{c}(b) 

a+b 

&{a}(a + 6) = &{a}(6 + a) 

= &{a}(a) 

6 

&{a} (a + 6) = &{a}(6) 

= 6 

2.:1.2 Graph Model 

(by AI) 

(by D3.1) 

(by DI) 

(by D3.1) 

(by D2) 

(by Al and A2) 

(by D3.1) 

(by D3.2) 

(by D2 twice) 

Let initials( v) ~ A. be the set of actions {a E A.I 3v' v ~ v'} for v a process graph node. The 

operators of ACPi(A), beyond those of BPA(A), are now defined on finite process graphs (with 

non-endpoint roots). 

Definition 2.5 The ACP1 (A) operators 6, II, L, I, &H (for H ~ A), and 1 are defined on :F as 

follows: ' 

6: is given by <{r.,v.},r.,{<r.,6,v. >} >. 

g, II g2: is given by < V, X V2, (r" r2), -» where (VI, V2) 

lowing holds: 

a 
-> ( v; , v~) if one or more of the fol-

a , d ' 
• VI --i> 1 VI an V2 = V2 

a , d ' 
• V2 ~ 2 V2 an VI = Vl 

• v, ~ 1 v;, v2 ~ 2 v~, and a = ble (for some b and c) 

g, ~g2: As g,ll g2 but without transitions of the form (rl/r2) ~ (rt,v). 

g,lg2: As g, II g2 but without transitions oj tM form (r" r,) ~ (r, r:) or (rOo r: : 

&H(g,): is given by <V"r" ---» where 

-> = {(v, a, v') E --->1 I a f/. H.} u 

{(v, 6, v') I (v,a,v') E--->1 andinitials(v) ~ H.} 

1(g,): gives the set of actions initials(r,). 

• 

Our algebra of process graphs is standard (see, e.g., [BW90j) with the exception of restriction. 

Thls operator removes all edges labeled with actions from the set of restricted actions H. It also 

removes 6-edges, whlch it must do to ensure the soundness ofD3.I. In case a node in 91 qualifies to 

have all its edges removed, then these edges are not removed but rather renamed into a-transitions. 
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The presence of .5-transitions, which intuitively represent the capability for a process to deadlock, 

requires a new definition of bisimulation in which a weaker condition is imposed on .5-transitions. 

Definition 2_6 Letg, =< VJ,r,,--->I>,g2 =< V2,r2,--->2> be two process graphs. A.5-bisimulation 

between g, and g2 is a relation 7? <;; V, X V2 with the following properties: 

• 7?(rJ, r2) 

• I/v E VI> wE V2 with 7?(v,w): 

1/ a E A and v' E V" 

if v ~'v' then 3w' E V2 with 7?( v', w') and w ~ 2 W' 

6 6 
if v ---t 1 v', for some v', then w ----+ 2 Wi, for some w' 

• and vice versa with the roles of v and w reversed. 

Graphs g, and g2 are .5-bisimilar, written g, <=to g2, if there e",ists a .5-bisimulation between g, and 

g2· 

This definition is the same as Definition 2.2 with the additional stipulation that for two nodes v, w 

related by a .5-bisimulation, v possesses a .5-edge iff w does. We once again have that '='-6 is a 

congruence. 

Proposition 2.2 If g, <=t6 g2, then 9 II g, <=t6 9 II g2, 9 ~ g, <=to 9 l g2, g, ~ 9 <=to g2 h, gig, <=t6 9 Ig2 
and 8H(g,) <=t6 8H(g2), for all H <;; A. 

Proof: The proof for all operators, except 8H, follows the standard arguments of ACP (see, e.g., 

[BW90]). For 8H, H <;; A, the proof proceeds as follows. Suppose g, '='-6 g2 and let 7? <;; V, X V2 be 

a .5-bisimulation between g, and g2. We show that 7? is also a .5-bisimulation between 8H(g,) and 

8H(g2), H <;; A. 

Let (vJ, V2) E 7?. There are three cases to consider: 

initials( v,) ~ H6 : then in 8H(9,) the transitions of V, are of the form v, 

Since g, '='-6 g2, in 8H(g2) there exists a v2 with 7?( vi, v2) and V2 ~ 

Vi with a g H6. 

initial.( t':) of. 0 <;; H6: then in 8H(9:) all t..-a~sitions of v, are of the form v, ...!..., vi. Since g, ==, g2, 

ll:. OE(9:) all transitions of t':: a..-e ueTise 0: the form t'::! 

on {-transitions in a .5-bisimulation, this is enough. 
"2' By the weaker condition 

initials( v,) = 0: then initials( v,) = 0 in 8H(g,) and, since g, '='-. g2, initials( V2) = 0 in 8H(g2)' 

By considering the same three cases with the roles of v, and V2 reversed, we are done. o 

To prove the completeness of ACP['(A) for finite processes, we first introduce the notion of 

a "basic term" for closed ACP['(A) terms. We will subsequently prove an "elimination theorem" 

stating that any closed ACP['(A) term can be reduced to a basic term using the axioms of ACP[, (A). 

Combined with the completeness of BPA(A), this will be enough to prove the completeness of 

ACP['(A). 
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Definition 2.7 A basic term is defined inductively as follows: 

• a E A, is a basic term . 

• Let t" t2 be basic and a E A. Then t, + t2 and a· t, are basic. 

Note that a basic term uses a restricted form of sequential composition known as action prefixing, 

and that a basic term is a BPA(A,) term; Le., a BPA(A) term treating 0 as an additional atomic 

action. 

To prove the elimination theorem we introduce a term rewriting system based on ACPi(A) for 

which we prove a strong normalization result. The rewrite system RACPi(A) consists of axioms 

AI·5, A7, C3, CMI-9, 11-3, and DI-2, treated as rewrite rules with left-to-right orientation, plus 

the rules 

'" + (y + z) ---> ('" + y) + z 

alb = c =- alb ---> c 

alo ---> 0 

A2' 

CO' 

C3' 

c E H, =- 8H(c + "') ---> 8H("') D3.I' 

c E H, =- 8H(C' '" + y) ---> 8H(y) D3.1" 

1(", + y) n H, = 0 =- 8H('" + y) ---> 8H(",) + 8H(Y) D3.2' 

8H(a'''') ---> 8H(a).8H("') D4' 

Notice that all these rules follow easily from ACPi (A). The normal forms of the rewrite system 

RACPi(A) are defined as follows. 

Definition 2.8 A closed ACPi(A) term t is in normal form if for all RACPi(A) reduction paths 

of the form 

t = to ---> t, ---> t2 ---> ••• 

tH' follows from ti through the application of either rule AI, A2, or A2' (and no other), for all 

i 2: O. 

Proposition 2.3 A normal form is a basic term. 

Proof: Let t be a nOr-'a' fo= and suppose t is not basic. Let t' be a minimal subterm of t that 

is not basic. TneL. !' iIas one 0: tne following forms: 

1. p II q 

2. p ~ q 

3. plq 

4. 8H (p) 

5. p. q (with p not an atom or p = 0) 

and both p and q basic terms due to minimality. We show that in each case a rule ofRACPi(A)

{AI, A2, A2'} can still be applied, thereby proving the result by contradiction. Take, for example, 

the second case. Since p is a basic term, there are three sub cases to consider: 
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(a) P is of the form PI + p,. Apply CM4. 

(b) p is an atomic action a E A,. Apply CM2. 

(c) P is of the form a· PI, a E A,. Apply CM3. 

The other four cases are proved similarly. o 

Note that the converse of this result does not hold, e.g., a + a is basic but not in normal from. 

Lemma 2.1 The rewrite system RACPi(A) is strongly normalizing modulo AI, A2, A2', I.e., 

every infinite reduction path contains AI, A2, A2' steps only from some point onwards. 

Proof: Let II = (I'o,to) ---> (I'j,ttl ---> (I'"t,) ---> ... be an infinite reduction path in 

RACPi (A) where I'i is the (possibly empty) condition associated with rewriting ti into ti+I' We 

omit from II any steps having to do with normalizing the expression I(:z: + y) in the condition to 

D3.2'-steps. We prove that only finitely many of the steps in II can differ from AI, A2, A2'. 

We transform the reduction sequence II into a reduction sequence II' of RACP(A) [BK84] as 

follows: 

• Expand each D3.1' step of the form hi, til ---> hi+l, ti+l) into a finite valid rewriting of 

RACP(A) depending on the condition I'i as follows: 

- c=o: OH(O+:Z:)~OH(:z:+o)~hi+l,OH(:Z:)) 
As D' AI) 

- C E H: (C E H,OH(C + :z:)) - (C E H,OH(C) + OH(:Z:)) ---> 5 + OH(:Z:) ---> OH(:Z: + 
A6 

0_ (l'i+l,OH(:Z:)) 

• Expand each D3.I" step of the form (I'i, til - hi+l' ti+l) into a finite valid rewriting of 

RACP(A) depending on the condition I'i as follows: 
A7 Al A6 

- C = 0: OH(O':Z: + y) - OH(O + y) - OH(Y + 0) - hi+l' OH(y)) 
DS D4 D, 

C E H: (C E H,OH(C':Z:+Y))-OH(C':Z:)+OH(y)--->(C E H,OH(C)'OH(:Z:)+OH(Y))-O' 
A7 AI), A6 ( ) OH(:Z:) + 0H(Y) ---> 0 + o(y) - OH(Y -; 0 ---> l'i+l,OH(Y) 

• Transform each D3_2' step of the form (I'i, t;) - (l'i+l, ti+l) into the conditionless step 

ti - h.+l, t'+l), as D3.2' is valid in RACP(A) in all cases (i.e., restriction distributes over 

plus).' 

~o...- we obtain an infini:e red"c:i= pa:b. in RACP(_4) and from [BW90j it follows that this reduc

:i= path contains finitely =y n=-Al. A2. AZ' steps. But the same must hold for the original 

reciuction sequence. 0 

Note that in the transformation of a RACPi(A) reduction sequence to a RACP(A) reduction 

sequence, each non-AI, A2, A2' step is replaced by at most six non-AI, A2, A2' steps. 

We now present the "elimination theorem" for ACPi(A). 

Lemma 2.2 Let p be a closed ACPi (A) term. Then using RACPi (A), p can be reduced in finitely 

many steps to a basic term. 

20ne could, of course, leave condition ii intact and still have a valid reduction step in RACP(A). 
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Proof: If p is a basic term we are done. Otherwise, by Proposition 2.3, p is not in normal form. 

By Definition 2.8, there exists a reduction sequence 

010 P = Po = to --+ tl --+ .. , --+ tn, = PI 

such that t~o-I --+ t~o is not an AI, A2, A2' reduction. If PI is basic we are done. Otherwise there 

exists another reduction sequence 

such that t~'_1 ---; t~, is not an AI, A2, A2' reduction. This line of reasoning cannot proceed 

indefinitely: due to strong normalization (Lemma 2.1) Pi, for some i 20, is a basic term. Otherwise, 

an infinite reduction with infinitely many non-AI, A2, A2' steps would have been constructed which 

is impossible. 0 

Theorem 2.2 

1. :F/tio f= ACPi(A) 

2. For all closed ezpressions p,q over !:(ACPi(A)): 

:F/ti,f=p=q =? ACPi(A)l-p=q. 

Proof: For part 1, we consider axioms A7 and DI-D4. The fact that :F / '=', is a model of the rest 

of the axioms of ACPi(A) follows standard arguments as presented, e.g., in [BW90]. For A7, both 

5· z and 5 initially can perform but a single 5-transition. Since ti, matches one 5-transition with 

any other 5-transition (i.e., without regard to the destination states), we are done. The soundness 

of DI and D2 is trivial since in both cases the left- and right-hand side terms represent isomorphic 

processes. 

For D3.I, the initial transitions of z will be deleted from the root of z + y by the 8H operation, 

thereby again resulting in isomorphic processes. D3.2 could fail only if z, y # 5 and either 8H( z) = 5 

or 8H(Y) = 5. The condition to the axiom ensures against this. Note that D3.2 is still sound under 

the weaker condition 

I(z) - Ho # 0 and I(y) - H. # 0 

but the natural probabilistic extension of the resulting axiom is not sound (see Section 3.4), and is 

thus rejected. Finally. D4 also represents isomorphic processes. 

For part 2, suppose p '=~ q. Reduce p, q to normal forms pi, q' using RACPi (A); by Lemma 2.2, 

p', q' are basic :=. E; par. 1. pi tiE P =, g '=E g', and thus p' '=c q'. In reducing p, q to their 

normal fo=, .... e ha~ Dee. re..-riting by Ai whenever possible. 'Ve may therefore conclude that 

p' '= q' (treating [ as jus: another atomic action), and by Theorem 2.1, BPA(Ac) I- pi = q'. Then 

ACPi(A) I- P = pi = q' = q. 0 

2.3.3 Connections Between ACP and ACPi 

Let A be the usual bisimulation modelfor ACP(A), and let A - = :F / tiD be the bisimulation model 

for ACPi(A). Then for p,q closed expressions over !:(ACP(A)) we have the following results, which 

we state without proof. 

1. Completeness of ACPi(A): A - f= p = q =? ACPi(A) I- p = q 

(This is just part 2 of Theorem 2.2.) 
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2. Completeness of ACP (AJ [BW90]: A F= p = q =- ACP(A) I- p = q 

3. A - F= p = q =- A F= p = q. This implies that A-can be homomorphically embedded in 

A using the identity mapping. . 

4. A F= p = q =- A - F= 80 (p) = 80 (q). This implies that A can be homomorphically 

embedded in A - using the homomorphism 'P : A ----; A -, such that 'P(:Z:) = 80 (:z: ). 

5. ACP(A) I- 80(p) = P 

6. ACP(A)I-p=q =- ACPi(A)+{:z:+.5=:z:}l-p=q 

7. ACPi(A) I- 80(:Z: +.5) = 80(:z:) 

3 A Probabilistic Version of ACP 

Our discussion of probabilistic ACP will proceed in a manner similar to before. For each of the axiom 

systems AX E {BPA(A),PA(A), ACP1 (AJ), a probabilistic version prAX will be introduced, along 

with a probabilistic version of its process graph model. Completeness in these models will also be 

demonstrated. 

3.1 Probabilistic BPA 

3.1.1 Equational Specification 

Notation: As usual, (0,1) denotes the open interval of the real line {r E !R 1 ° < r < l}, and [0,1] 

denotes the closed interval of the real line {r E !R 1 ° :::; r :::; I}. We let 11", p, 0", and (J, possibly 

subscripted, range over these intervals. 

The signature lJ(prBPA(A)) over the sort prP (for probabilistic processes) is given by: 

lJ(prBPA(A)) = {a: --> prPla E A} U {+ ... : prP X prP --> prP 111" E (0, In u 

{- : prP X prP --> prP} 

The operator + has been replaced by the family of operators + ... , for each probability 11" in the 

interval (0,1), and is now called probabilistic alternative composition. Intuitively, the expression 

:r +" y behaves like :z: with probability 11" and like y with probability 1 - 11". Probabilistic alternative 

cOIIl?osition is generative [vGSST90] in that a single distribution (viz. the discrete probability 

D-::-:::J.,..iD:l {p, 1 - p}) is associated with the two alternatives :z: and y. As mentioned in Section l. 

these probabilities are conditional with respect to the set of actions permitted by the enyi!o=em. 

This will become clear in Section 3.4 with the introduction of the restriction operator 8H in the 

setting of probabilistic ACP. 

We have the following axioms for prBPA(A): 

:z: +" y = Y +1_ ... :z: prAl 

:z: + ... (y +p z) = (:z: +"/C ... +p-"p) Y) +,,+p_ ... p z prA2 

:z:+ ... :z:=:z: prA3 

(:z: +" y).z =:z:. z+ ... y·z prA4 

(:z:·y).z=:z:.(y.z) prA5 
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Axiom pr A2 has a left-to-right orientation in that the probability indices on the right-hand 

side are derived from probability indices 7r,p on the left-hand side. A right-to-left version of prA2, 

which will prove useful later , is given by: 

(x +~ y) +p z = X +TP (y +1'-'») z) 
1-1I'p 

3.2 Probabilistic Graph Model 

As in Section 2.1.2, we consider process graphs, with labels from A, as a model for prBPA(A). 

Additionally, a probability distribution will be ascribed to each node's outgoing transitions. 

Definition 3.1 A probabilistic process graph 9 is a triple < V, r, Jl. > such that V and r are as in 

Definition 2.1 and Jl. : (V X A X V) -; [O,IJ, the transition distribution function of g, is a total 

/unction satisfying the following stochasticity condition: 

Vv E V L Jl.(v, a, v') E {O, I} 
Q E AI 
Vi E V 

Intuitively, Jl.( v, a, v') = 7r means that, with probability 7r, node v can perform an a-transition 

to node v'. A node in a stochastic probabilistic process graph performs some transition with 

probability 1, unless it is an endpoint. Predicate endpoint( v) is true iff v is an endpoint. We 

denote by prQ the family of all probabilistic process graphs. 

The notion of strong bisimulation for nondeterministic processes has been extended by 1arsen 

and Skou [1S89J to reactive probabilistic processes in the form of probabilistic bisimulation. Here 

we define probabilistic bisimulation on generative probabilistic processes and to do so we first need 

to lift the definition of the transition distribution function as follows: 

Jl. : (V X A X 2V) --. [0, IJ such that Jl.( v, a,S) = L Jl.( v, a, v') 
vieS 

Intuitively, Jl.( v, a,S) = p means that node v, with total probability p, can perform an a

transition to some node in S. 

Definition 3.2 ([1S89]) Letg, = <V"rhJl., >, g, = <V"r"Jl., > be probabilistic process graphs. 

A probabilistic bisimulation between 91 and 9, is an equivalence relation 'R ;;; ("V,": 1",) >: no: _ 1"2) 

u:ith the follou,;n9 properties: 

• 'R( rl> r,) 

• Vv E V" w E V, such that 'R(v,w): 

Va E A, 5 E (V, u V,)/'R, Jl.I (v, a, 5 n Vd = Jl.,( w, a,S n V,) 

Graphs g, and 9, are probabilistically bisimilar, written 91 tiP' 9" if there ezists a probabilistic 

bisimulation between g, and g,. 

Intuitively, two nodes are probabilistically bisimilar if, for all actions in A, they transit to 

probabilistic bisimulation classes with equal probability. Note the somewhat subtle use of recursion 

in the definition. 
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We now define the operators of prBPA(A) on the domain prF of finite probabilistic process 

graphs, i.e., probabilistic process graphs that are finitely branching and acyclic in terms of their 

transitions of non· zero probability. Therefore, pr F C prQ. For this purpose, it is convenient to 

assume, as in the non·probabilistic case, that the root nodes of probabilistic process graphs are not 

endpoints. For the remainder of Section 3, unless otherwise stated, let 91 = < VI, rb 1'1 >, 92 = 
< V2, r2, 1'2 > be finite probabilistic process graphs satisfying the non·endpoint root assumption 

such that VI n V2 = 0. 

Definition 3.3 The operators a E A, +'" and· are defined on pr F as follows: 

a E A: The process graph for each of these constants is given by <{r., v}, r., 1'. >, where I'.(r., a, v) = 
1 is the only transition with non· zero probability. 

gl +" g2: is given by <VI U V2 U {r} - {rbr2},r,1' > where r 1: VI U V2 and 

1'( r, a, Vi) = 7r . 1'1 (rb a, Vi) if Vi E VI 

I'(r,a, Vi) = (1 - 7r) ·1'2(r2,a, Vi) if Vi E V2 

1'( v, a, Vi) = 1'1 (v, a, Vi) if v, Vi E VI 

1'( v, a, Vi) = 1'2 ( v, a, Vi) if v, Vi E V2 

1'( v, a, Vi) = 0 otherwise 

gl . g2: is obtained by appending a copy of 92 at each endpoint of gl, and is analogous to sequential 

composition in the non-probabilistic setting (Definition 2.3). In detail, gl . g2 is given by 

<VI uV2 - {r2},rbl' > where 

I'(v,a,v') = 

I'I(v,a,v' ) ifv,v' E VI 

1'2(r2,a,v' ) if v E VI, endpoint(v), Vi E V2 

1'2(v,a,v' ) ifv,v' E V2 

o otherwise 

So, in the definition of gl +" g2, the transitions from rbr2 are now assumed by the new root 

r, with their probability of occurrence weighted appropriately. Similarly, the transitions of r2 in 

gl . 92 are assumed by each endpoint of gb with their original probabilities intact. 

As in the non·probabilistic case, for t a closed pr BPA( A) term, we write graph( t) = < l~, r t , I't > 
to denote the probabilistic process graph obtained inductively on t using Definition 3.3. We also 

write p ""P'" q as shorthand for 9raph(p) =P'" graph(q). The definition of graph(/) =i :b.e just. 

mentioned notational shorthand extend in the obviocs .... ay to the axiom syst= p:-?.->...'_-t; =c 
prACPi(A) considered later in this section. 

We will subsequently prove that the axioms of pr BP A( A) are complete in this model. To admit 

sound equational reasoning, in particular, the substitution of equals for equals, we fixst show that 

tiP'" is a congruence in prBPA(A). Let V be an arbitrary set with v E V. For any equivalence 

relation 1? over V we use [vJ,. to denote the set {w E V I (v,w) E 1?}; i.e., [vJ,. is the equivalence 

class ofv induced by 1?. Also, Idv = {(v,v) I v E V} denotes the identity relation on V. 

Proposition 3.1 If gl tiP'" g2, then 9 +" gl tiP' 9 +" 92,9· gl tiP'" 9· g2, and 91·9 tiP'" g2 ·9. 

Proof: Let 9 = < V, r, I' > such that V n (VI U V2) = 0, assume gl tiP'" 92, and let 1? be a 

probabilistic bisimulation between 91 and 92. We now consider each of the operators in succession. 
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For +w, let rt be the root and I1t be the tdf of 9 +w gi, i = 1,2. We show that 

R' = {(Tt,TtJ,(Tt,rt)}URUldYu{r+ r+} 
> • , 

is a probabilistic bisimulation between 9 +w gl and 9 +w g2. First note that because R is an equiv

alence relation, so is R'. By the nature of R', we are left to show that the "carrier condition" (the 

second condition of Definition 3.3) holds for (rt, rt). For a E A, the only a-transitions of Tt of 

non-zero probability are of the form: 

1. I1t (rt, a, [v1'R') = l1(r, a, Vi) • 1r, where Vi E V; or 

2. JLt(ri, a, [v;J'R') = JLI (rl, a, [v;j'R) . (1 - 1r), where v; E VI' 

Well, we also have JLt(rt,a,[v1'R') = JL(T, a, Vi) '1r and, because gl tiP' g2, I1t(rt,a,[v;J'R') = 
JLI(rl>a, [v;J'R)' (1 -1r). This completes the case for +". 

For both Cases of sequential composition, a straightforward argument demonstrates that Rul dy 

is an appropriate probabilistic bisimulation. 0 

The graph model for prBPA(A) is now given by pr:F / tip'. To prove completeness of prBPA(A), 

we introduce the notation 
n 

l:[1riJ"i 
i:::::l 

with 2:= 1ri = 1 and 1ri > 0 for all i. So, in particular, when n = 1, 1r1 = 1. This notation abbreviates 

right-nested probabilistic alternative composition expressions as follows: 

I 

l:[1riJ"i = "I and 
i=l 

Note that in this notation 2:=:'=1 [1riJ is a derived n-ary operator with operands "i. To illustrate, the 

left-hand side of equation pr A2 may be written: 

where "I = ", "2 = (1 - 1r)p, "'3 = (1- 1r)(1- p), and "I = ", "2 = y, "3 = z. 

This summation form notation is useful as it directly reflects the transition structure of the 

probabilistic process graph underlying the nested probabilistic alternative composition. That is, 

consider the summation form ~[riJ£li'::i of action-prefixed processes. The ~a?~ 0: :;:;'5 ~·--"ation 

will have, for each i, a probabilir:--ri c..--transhio::. frOIL its root to the noee rep:-~~:'::g the root 

of graph("i). 

The following two'lemmas for manipulating summation forms, the proofs of which appear in 

Appendix A, will prove useful in the completeness prooffor prBPA(A). The first allows summands 

to be reordered arbitrarily, retaining their original probabilities, while the second allows two syn

tactically identical summands to be merged into one summand, summing the probabilities in the 

process. 

Lemma 3.1 FaT any permutation (of{I, .. ·,n}, n 2: 2, 

n n 

prBPA(A) f- L[1r;j"i = L[1r((i)J"W) 
i=l i=l 
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Lemma 3.2 In the summation form 2:i;l[1ri]"i, let"l and"2 be syntactically identical. Then 

n+l n 

prBPA(A) f- L[1r;J"i = L[Pi]Yi 
i=l i=l 

where PI = 11"1 + 1r21 Yl = ~b and Pi = 1r'i+b Yi = Zi+l1 2 ::; i :5" n. 

We now use summation-form notation to define a kind of normal form for closed pr BPA( A) 

terms. 

Definition 3.4 A probabilistic basic term is a summation form 2:~I[1riJti where ti is either some 

a E A or of the form b· ti, where b E A and ti is a probabilistic basic term. A probabilistic normal 

form is a probabilistic basic term 2:i=I[1ri]ti such that ti ';dpr tj, 1 :::: i # j :::: n. 

Note that a probabilistic basic term, like a basic ACPi(A) term of Section 2.3, uses action 

prefixing, while a probabilistic normal form bears the additional constraint that its summands are 

pairwise inequivalent. 

The depth of a probabilistic basic term t, denoted d(t), is essentially the maximum number of 

nested prefixes in t. The inductive definition of d is as follows: 

• d(a) = 1 

• d(a.t)= l+d(t) 

• d(2:i[1r;Jt;) = ma"i(d(ti)) 

Lemma 3.3 For every closed prBPA(A) term t, there is a probabilistic normal form s such that 

prBPA(A) f- t=s. 

Proof: The proof has two parts. In the first part, we prove that a closed term t can be proven 

equal to a probabilistic basic term. The second part handies the constraint that the summands 

are pairwise inequivalent. The first part is simpler and follows the line of reasoning in [BW90]. 

That is, we use a term rewriting system to convert t into a term whose only instances of sequential 

composition are of the form a· t', i.e_, action prefixing_ The rewrite system is based on prBPA(A) 

axioms prA4 and prA5 and is given by: 

, . 
\: -T Y)· = - :. = -r Y': 

(z.y)·;-z.(y.=) 

It is not hard to see that this term rewrite system is confluent and strongly normalizing, and 

that a normal form of a closed term uses only action prefixing. Therefore, given a closed prBPA(A) 

term t, we can convert it into a probabilistic basic term by: 

1. Reduce t until a normal form is reached. 

2. Use prA3, with right· to-left orientation, to rewrite all instances of left-nested summations 

into right. nested suminations. The resulting term can then be expressed as a summation 

form. 

18 



By the first part of the proof, assume t is a probabilistic basic term of the form Ei:l [lri]li and 

consider the partition {B 1 , ••• , B k } of {1, ... , n} such that (i, i') E Bj if ti tiP'" ti" We prove by 

induction on the depth of t that: 

m 

p1'BPA(A) f- t = L[pj]tj 

j=1 

where Pj = E{lri liE Bj}, tj = ti for an arbitrarily chosen i E B j , and m ::; n. Note that the term 

on the right-hand-side of thls equation is indeed a probabilistic normal form. If the depth of t is 1 

then each ti is a constant and the indices in a block B j correspond to (all of the) multiple occurrences 

of a constant a. If IBjl = 1 then we are done. Otherwise, apply the following procedure IBjl - 1 

times: move two instances of a to the two left-most positions withln the summation form using 

Lenuna 3.1. Merge the two instances into one, occupying the left-most position in the resulting 

summation form, using Lenuna 3.2. The associated probability of thls single instance of a will be 

the sum of the probabilities of the original two instances, as desired. 

Next, assume the result for probabilistic basic terms of depth k and let d(t) = k + 1. There are 

two cases. 

1. The indices in a block B j correspond to the multiple occurrences of a constant a. The base 

case reasoning suffices here. 

2. The indices in a block Bj correspond to equivalent terms of the form a· t', b· t", where t', t" 

are basic. If IBjl = 1 then we are done. Otherwise, apply the following procedure IB;I - 1 

times. Choose two instances a· t', b· t" of equivalent terms from B j. Since a· t' tiP'" b· t", then 

a = band t' tiP'" t", and, by the induction hypothesis, p1'BPA(A) f- t' = t". By substitution 

of equals for equals, we have p1'BPA(A) f- a· t' = b· t", and, as in the first case, we can use 

Lemmas 3.1 and 3.2 to merge these two summands into a single sUIIlIIland, either a . t' or 

b· t", the choice being arbitrary. The associated probability of the merged term will be the 

sum of the associated probabilities of a· t' and b· t", as desired. 

o 

The relationshlp observed above between a probabilistic summation form and its underlying 

probabilistic process graph can be strengthened in the case of probabilistic normal forms. 

Proposition 3.2 For t a probabilistic normal form, t has a summand a E A, with associated 

probability lr, iff I",(r,. a, [til"" .. ) = .,.. u .. here t' is an endpoint. Also, t has a summand a . t', with 

associ=tee. probability.,.., iff 1"0:' ",. c;, -~~.- _r) = -:; where r;, ;: l~ is the node in graph(t) representing 

the root of graph(t'). 

We now prove that our algebraprF I tiP'" is a model of p1'BPA(A) and that prBPA(A) constitutes 

a complete axiomatization of process equivalence in p1'F I"". 

Theorem 3.1 

1. p1'FI""P'" Fe prBPA(A) 

2. For all closed e"'pressions s,t over ~(p1'BPA(A)) .. 

p1'F laP'" Fe s = t ==> p1'BPA(A) f- s = t. 
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Proof: For part 1, consider first prAI and prA2. In both cases the left- and right-hand side 

terms represent isomorphic probabilistic process graphs, with the transitions from the root of x 

weighted by 11' and the transitions from the root of y weighted by 1 - 11', in the case of pr AI; and 

the root transitions of x weighted by ", the root transitions of y rooted by (1 - 11' )p, and the root 

transitions of z weighted by (1 - 11' )(1 - p), in the case of pr A2. 

Graph isomorphism arguments also suffice for prA4 and prA5, while the soundness of prA3 is : 

established by the probabilistic bisimulation {( rzhz, r z ), (rz , rzhz)} U I dv•u{,.+ •• }. 

For part 2, assume s tiP" t and also (relying on Lemma 3.3) that s and t are probabilistic normal 

forms, s = Ei[1I'i]Si and t = Ej[pj]tj. We prove the result by induction on the maximum depth of 

sand t. If the maximum depth is 1 then each summand of s is a constant from A. Let Si = a. 

Since s ,=,P" t and t is a probabilistic normal form, by Proposition 3.2, t also has a summand tj = a 

with Pj = 11',. A symmetric argument matches each constant summand of t with a summand of s. 

Thus, prBPA(A) I- s = t by using Lemma 3.1 to reorder summands as necessary. 

Next, assume the result for maximum depth k and let the maximum depth of s,t be k + 1. 

There are two cases. 

1. The term s has a constant summand. Here the base case reasoning suffices. 

2. The term s has a surrunand Si of the form a·s' and, by Proposition 3.2, Jl.(r., a, [r:,]±:;±,,1') = 7rj. 

Since StiP't, J1.t(rt, a, [r;,]ci") = 11',. But t is a probabilistic normal form so, byProposition 3.2 

again, t has a summand tj = a· t' such that t' tiP" s' and Pj = 11',. By induction, pr BPA( A) l

s' = t' and therefore (using substitution of equals for equals), prBPA(A) I- s, = tj. A 

symmetric argument matches each action-prefixed summand of t with a summand of s. 

From the two cases, it follows that every summand of s can be proved equal to a summand of t 

and vice versa. Thus, prBPA(A) I- s = t, by using Lemma 3.1 to reorder summands as necessary. 

o 

We also prove the following proposition: 

Proposition 3.3 The various forms of + .. distribute over one another: 

Proof: 

:: -, =i -T (y +p =) =:r: -':-PT (= +"-'i' (y +p I)) 
1-". 

= :r +PT (z +(l-,). (z +'-p y)) 
I-p'" 

= X + ... ((z +,.. z) +..!..::£. y) 
I-p1f 

= X + ... (z +..!..::£. y) 
I-pfr 

=x+ ... (y+~z) 
I-pfr 

=(x+ .. Y)+pZ 

(prA2) 

(prAI) 

(prA2) 

(prA3) 

(prAI) 

(prA2) 

Note that the last step makes direct use of the right-to-left oriented version of prA2. 

20 

o 



3.3 Probabilistic PA 

3.3.1 Equational Specification 

The signature ~(prPA(A)) extends that of prBPA(A). 

~(prPA(A)) ~(prBPA(A)) u {llu: prP x prP --.. prP I" E (0, In u 

au: prP X prP --.. prP I" E (0, In 

Intuitively, lIu is a probabilistic merge operator, with the left operand receiving relative probability 

"and the right operand relative probability 1 - <1. As in PA(A), ~u is a restricted version of Ilu in 

which the first step must come from the left operand. 

The axiom system prPA(A) is obtained by adding to prBPA(A) the following axioms for prob

abilistic merge and left-merge: 

z Ilu V = z ~u V +u V ~(l-U) Z 

a~uv=a·v 

(a· z) Lu V = a· (z Ilu V) 

(z +.- V) Lu z = (z ~u z) +". (V Lu z) 

3.3.2 Graph Model 

prM1 

prM2 

prM3 

prM4 

As for prBPA(A), we provide a bisimulation model for prPA(A), and prove the completeness of 

the axioms on finite probabilistic processes. 

Definition 3.5 The operators lIu and Lu are defined on prF as follows: 

g, ~ ug" is given by < F, X F" (r" r,), p > where for all a E A., V" v;, E F
" 

V" v;. E >', 

• p((r"T,),a, (v;, T,)) = Pl(Tl,a,v;) 

• if Vl ¥- rl or Vz # r2 

p((v"v,),a,(v;,v,)) = { 

p((v"v,),a,(v"v~)) = { 
otherwise 

Note the careful treatment of endpoints in the above definition: in a merge, if one process 

terminates, the other continues with its original, unweighted probability. Also, in a left-merge, 
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special attention is paid to transitions from the root (r" r2) of 9, ~u 92: the first and third clauses 

collectively define the transition distribution function p. on all transitions from (r" r2), with the 

third clause giving probability 0 to transitions starting with 92' 

We have that probabilistic bisimulation is a congruence in prPA(A). 

Proof: Let 9 = < V, r, p. > such that V n (V, u V2 ) = 0, assume 9, "",,,," 92, and let R be a 

probabilistic bisimulation between 9, and 92' We first show that 

is a probabilistic bisimulation between 9 Ilu 9, and 9 Ilu g2' First note that because R is an 

equivalence relation, so is R'. Also, for v E V, W E (V, u V2), [(v,w)h~' = {v} x [w}~. Now 

consider the pair (( v, v,), (v, V2)) E R' and let p.~1 be the tdf of 9 Ilu 9i, i = 1,2. For a E A, the ouly 

a-transitions of (v, v,) of non-zero probability are of the form: 

1. p.~((v,v,),a,[(v',v,)}~,) = 17·p.(v,a,v') 

2. p.~((v,vtl,a,[(v,vD}~') = (1-17)' p.,(v"a,[vD~) 

Well, we also have that p.~( (v, V2), a, [( v', V2)}~') = 17'p.( v, a, v') and, because 9, "",1"" g2, p.~( (v, V2), 

a, [( v, vD}~') = (1 - (7) • p., (v" a, [vD~). The argument is similar in case (1) if v, is an endpoint 

(the value of p.~ would not be weighted by (7), and in case (2) if v is an endpoint (the value of p.~ 
would not be weighted by 1 - (7). 

An argument similar to the above can be used to show that R' is also a probabilistic bisimulation 

between 9 ~u g, and 9 ~u g2. In particular, there are fewer transitions of non-zero probability from 

(r, r,) and (r, r2) since such transitions can come from 9 only. Like in the endpoint cases considered 

just above, the probabilities of these transitions are not weighted by 17. 

A nearly sy=etric argument establishes that 

is a probabilistic bisimulation between 91 lu 9 and g2 Lu g. o 

Theorem 3.2 

1. pr:F/c.P'" pprPA(A) 

2. For all closed expressions s,t over b(prPA(A)): 

pr:F/ti"'" p s = t => prPA(A) f- s = t. 

Proof: For part 1, the soundness of axioms prMl - prM4 is i=ediate by probabilistic process 

graph isomorphism arguments. The following co=ents, however, are in order. Axiom prMl is 

a kind of expansion law for probabilistic merge. In pr M2, a ~u Y behaves like y after performing 

a as it will have reached a state where y is in a probabilistic merge with an endpoint. In pr M3, 

(a. x) ~u Y behaves like x Ilu y after performing a since left-merge behaves like merge after its root 
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transitions. The left-hand and right-hand side processes of prM4 both represent a probabilistic 

merge with z, the first step of which must come from x (with probability 71") or y (with probability 

1 - 71"). 

For part 2, the proof is similar to the one given in [BW90J for the completeness of PA(A). We 

use the following term rewrite system, with rules corresponding to prBPA(A) axioms prA3·5 and 

prPA(A) axioms prM1- prM4, to eliminate all occurrences of II~ and ~~ in a closed prPA(A) term: 

(x +" y) . z --> x . z +" y . z 

(x . y) . z --> x . (y . z) 

x II~ y --> x L~ y +~ y L(1-u) x 

a ~u Y --> a· y 

a· x ~u Y -- a· (x Ilu y) 

(x +" y) L~ z -- (x Lu z) +" (y ~u z) 

It can be proved that this term rewriting system is strongly normalizing and that a normal form 

of a closed term must be a probabilistic basic term. By part 1 of the theorem (the soundness of 

prPA(A)) and Theorem 3.1 (the soundness and completeness of prBPA(A)), the result is proven. 

o 

3.4 Probabilistic ACP 

3.4.1 Equational Specification 

The signature of prACPi(A) also extends that of prBPA(A). Recalling that A. = AU 6, we have: 

~(prACPi(A)) = ~(prBPA(A)) U {6:-+ prP} U {I: prP -+ 2A6} U 

{I~,e : prP X prP -+ prP I a, BE (0, In U {lIu,e: prP X prP -+ prP I a, BE (0, In U 

{Lu,e: prP X prP -+ prP I a,B E (0, In U {8n : prP -+ prP I H ~ A} 

Thus, for each of the operators I, II, and L we have a family of operators, each indexed by two 

probabilities from the interval (0,1). These operators work intultively as follows. Consider first 

the merge operator. In the expression ., I:~,e y, a co=unication between., and y occurs with 

probability 1 - B, and an autonomous move by eith"" Z OT Y occurs with probability B. Given that 

an autonomous t:l£) • .o: occurs, it comes fran::: 1ri:n ~ili:: c and from y with probability 1 - u. 

Tile situation is s'm"ar for., lu.e y except the f..-st Step must (with probability 1) come from .,. 

Likewise, the first step of., lu,e y must result from a co=unication between., and y. 

The treatment of the co=unication merge is exactly analogous to the situation in the non

probabilistic case (Section 2.3). The "totality" axiom CO now becomes: 

I 'r/a,bEprP A.(a)AA.(b) ==;. 3CEprP 'r/a,BE (0,1) A.(c)Aalu.eb=c prCO I 

The axioms of prACPi(A) are as follows. In this system, a,b,c range over A., H. = H U {6}, 

and I.has functionality I : pr P -+ 2A 6. Also, n,u are used on 2A
6 without further specification. 

prBPA(A) -r-
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prCO + 

prA7 1 

+ 

a lu.8 b = b 1(1-u).8 a prCl 

(a lu.8 b) lu'.8' c = a lu.8 (b lu'.8' c) prC2 

6 lu.8 a = 6 prC3 

+ 

'" Ilu.8 Y = (('" Lu.8 y) +u (y L(1-u).8 "')) +8 ('" lu.8 y) prCMl 

a Lu.8 y = a· y 

(a. "') Lu.8 y = a· ('" Ilu.8 y) 

('" +~ y) Lu.8 z = ('" Lu.8 z) h (y Lu.8 z) 

a lu.8 (b.",) = (alu.8b)·", 

(a. "') lu.8 b = (a lu.8 b) . '" 

(a. "') lu.8 (b. y) = (alu.8b). ('" Ilu.8 y) 

('" +. y) lu.8 z = '" lu.8 z +" y lu.8 z 

'" lu.8 (y +. z) = '" lu.8 Y +. '" lu.8 z 

+ 

I(a) = {a} prIl 

I(",·y) =1(",) prI2 

1('" +. y) = 1(",) u I(y) prI3 

+ 

prCM2 

prCM3 

prCM4 

prCM5 

prCM6 

prCM7 

prCM8 

prCM9 

c~H = oH(a)={ prDl 

c';: H = OHta) = a prD2 

: 1(",) !; H. ==} OH('" +" y) = OH(y) prD3.1 

1(", +. y) n H. = 0 ==} OH('" +" y) = OH("') +. OH(Y) prD3.2 

OH("" y) = OH("')' OH(Y) prD4 

3.4.2 Graph Model 

As for prBPA(A) and prPA(A), we provide a bisimulation model for prACPi(A) and prove com

pleteness for finite processes. We begin with the definition of the prACPi(A) operators on prob

abilistic process graphs, and for this purpose we need to introduce a "normalization factor" to be 

used in computing conditional probabilities in a restricted process. 
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Definition 3.6 Let 9 = < V, r, 11 > be a probabilistic process graph. Then, for v E V, the normal

ization factor of v with respect to the set of actions H ~ A is given by 

Intuitively, lIH( v) is the sum of the probabilities of those transitions from v that remain after 

restricting by the set of actions H. In the following, let initials( v) = {a E A, I 3v' 11( v, a, v') > O} 

for v a probabilistic process graph node, and let the empty summation of probabilities be O. 

Definition 3.7 The operators 6, lIu,e, ~u,e, lu,e, 8H , H ~ A, and I are defined on pr:F as follows: 

6: is given by <{r" vo}, r" 11, > where 110 (r., 6, v.) = 1 is the only transition with non-zero proba

bility. 

gl Ilu,e g2: is given by <VI X V2,(rl>r2),JL > wherefor alIa E A" VI> v; E VI, v2,vi E V2 

{ 

(7. 0 . III (VI, a, v;) if -,endpoint( V2) 
11((VI>V2),a,(v;,v2)) = 

111 (VI> a, v;) otherwise 

{ 

(1-(7)·0·112(v2,a,vi) if-,endpoint(vI) 
11(( v" V2), a, (VI> v2)) = 

112 ( v2, a, vi) otherwise 

11((vl>v2),a,(vi,vi)) = (1-0). L 11,(v"b,v;) '112(V2,C,V;) 

b,c: b 117,9 c=a 

g, ~u.eg2: is given by <V, X V2,(r"r2),11 > wherefor alIa EA., vI,v;,E VII v2,vi,E V2 

• 11((rl>r2),a, (v;,r2)) = I1I(rl>a,v;) 

• if v, ,p r, or V2 ,p r2 

{ 

(7. 0 . III ( VI> a, vD if -,endpoint( V2) 
1-'((v"v2),a,(vi,v2)) = 

11, ( VI> a, v;) otherwise 

{

(I - (7).0 '112(v2,a, vi) if -,endpoint(vIl 
11(( VI> V2), a, (VI> vi)) = 

J.l2(V2, a, v2) otherwise 

11((V" v2),a, (v;, vm = (1 - 0)· L I-',(v" b, vD· 1-'2(V2, c, v;) 
b,c: b la,B c=a 

g,,~.eg,: is given by <1-, X 1"2, (r"r2),1-' > wherefor all a E A" v"vi E V,. "2."; E l"2 

• 11(( r" r2), a, (vi, "i)) = L •. d ;." c=a 11, (r" b, vi) . 1-'2 ( r2, c, "i) 

• if,!), 1'= r, or t', 1'= r, 

{ 

(7·0·1-', (VI> a, v;) if -,endpoint( v,) 
11((VI> v,), a, (vi, v,)) = 

11, (V" a, vi) otherwise 

{ 

(1-(7)·0·1-'2(v2,a,vi) if-,endpoint(v,) 
I-'((Vl> V2), a, (VI> vi)) = 

1-',( V2, a, vi) otherwise 

I-'((Vl> V2), a, (vi, vi)) = (1 - 0) . L 11,( v" b, v;) . 112( V2, c, vi) 
b,c: b 1.,.,8 c=a 

• if (vi 1'= r, and vi = r2) or (v; = r, and vi ,p r2) 11((rl> r2), a, (vi, vi)) = 0 
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• if initials( v) C;; H. 

Ii( v, a, v') = 0 

Ii( v, 6, v') = L iiI (v, a, v') 

aE A6 

• if initials( v) )1: H. 

') {o Ii(v,a,v = 
iiI ( v, a, V')/IIH( v) 

I(gtJ: gives the set of actions initials( rl)' 

if a E H. 

otherwise 

Similar to the case of prPA(A), the first and third clauses of the definitions of gl L~,8 g2 and 

gl 1~,8 g2 collectively define the transition distribution function Ii on all transitions from the root 

(rb r2). Also note that in the definition of 8H(gl), division by the normalization factor IIH( v) occurs 

only when initials( v) )1: H., which ensures that IIH( v) > o. 

Processes are still stomastic in the graph model of pr ACPj (A) if the probability of 6-transitions 

is taken into account. On the other hand, one may prefer the "substomastic" interpretation that a 

process like a + t 6 performs an a-transition (after whim it successfully terminates) with probability , 
~, but may also do nothing (deadlock) with probability ~. However, the process 80(a +t 6) never , 
deadlocks and is equivalent to a. 

The presence of 6-edges requires a new definition of probabilistic bisimulation. 

Definition 3_8 Let g, = < V" r" iiI >, g2 = < V2, r2, li2 > be probabilistic process graphs. A prob

abilistic 6-bisimulation between gl and g2 is an equivalence relation 'R. C;; (V, U V2) X (V, U V2) with 

the following properties: . 

• 'R.(rb r 2) 

• 'Iv E V" wE V2 such that 'R.(v,w): 

- 'iaEA, SE(V1 UV2)/'R., IiI(v,a,snV, ) = li2(w,a,SnV2) 

- lil(V,6, V,) = li2(W,E, V2) 

Graphs g, and 92 are probabilistically 6-bisimilar, written 9; =f 92. if ther< ezists c robabili-stic 

E-bi-simulation between 9; and 92· 

The definition is the same as the earlier definition of probabilistic bisimulation except that prob

abilistically o-bisimilar nodes must perform the action 0 with the same total probability, without 

regard to where the o-transitions lead. 

In order to prove that ""f is a congruence in prACPi(A), we need the following proposition 

to facilitate our reasoning that ""f' respects restriction. 

Proposition 3.5 Let 91 '='-f g2 and let 'R. be a probabilistic 6-bisimulation between 91 and 92 with 

(VbV2) E 'R.. Then: 
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2. initials( v,) = initials( v,) 

Proof: For a = 0, result (1) is immediate from Definition 3.8. For a of 0, (1) is easily deduced 

from Definition 3.8 as 1', (v" a, SnV,) = 1',( v" a, Sn V,) for all equivalence classes S of the partition 

of V, u V, induced by n. Results (2) and (3) are simple consequences of (1). 0 

Proposition 3.6 If g, ",r g" then 9 Ila.B g, ",r 9 Ila.B g" 9 ~a.B g, ",r 9 ~a.B g" g, ~a.B g",r g, ~a.B g, 

9 la.Bg, or 9 la.Bg" &H(9,) ",r &H(9,), for all H ~ A, and I(g,) = I(g,). 

Proof: The proof for lIa.B is similar to the proof for Iia in Proposition 3.4. Let a of o. The 

a-transitions of non-zero probability stemming from (v, v,) are now of the form: 

1. 1'~((v,v,),a,[(v',v,)Jnl) = 0" II· I'(v,a,v' ) 

2. I'~(( v, v,), a, [( v, v;JJn') = (1 - 0') ·11· 1',( v" a, [v;Jn) 

3. I'~(( v, v,), a, [( v', vDJn') = (1 - II) . 2:b.c, b I •.• c=.I'( v, b, v') . 1',( v" c, [v;Jn) 

4. I'~((v,v,),o, V X V,) = O'.II.I'(v,o, V) + (1-11). 2:b.dl •.• c=51'(v,b, V) 'I',(v"c, V,) + (1-

0') .1I·I',(v" 0, V,) 

The argument for the first two types of transitions is virtually identical to the argument set forth in 

Proposition 3.4. For the third type, since g, or g" I'~( (v, v,), a, [( v', vDln') = I'~( (v, v,), a, [( v', vDJn'). 
The arguments for the first three cases collectively are sufficient for the fourth case and we are done. 

As in Proposition 3.4, the argument is similar if v, or v is an endpoint. 

Again, as in Proposition 3.4, the proofs for ~a.B and la.B follow reasoning similar to, if not simpler 

than, the proof of lIa.B. In particular, there are fewer transitions of non-zero probability from (r, r,) 
and (r, r,) since such transitions can come from 9 only, in the case of probabilistic left-merge, and 

from communications between g,g, or g,g, only, in the case of probabilistic communication merge. 

For the case of restriction, assume g, ""r g, and let n be a probabilistic o-bisimulation between 

g, and g,. We show that n is also a probabilistic o-bisimulation between OH(9,) and OH(g:), 

H ~ A. Let (v" v,) E n and let I'f be the tdf of &H(9;), i = 1,2. If initials(v,) ~ H5 then, 

by Proposition 3.5, initials(v:) ~ He and therefore I-'f(v,.l,l,:). I-'g(t':.[, l': = 1. Otherwise_ 

I-'f( t'" c, i',), ~(t'" a. 1'2) = 0, if a E H5; and for all S E (1-: :.:1',) "R., 1-':(( r" c,.5 - r:), 4( ":, c, S-

1',) = I',(v" a, Snl-,)jIlH(V,), ifa ~ H5. This last step is a consequence ofthefac: that (v"v:) E'R. 

and Proposition 3.5, part (3). 

That or respects operator I follows directly from part (3) of Proposition 3.5. o 

Theorem 3.3 

1. prFj'='-r FPrACPi(A) 

2. For all closed e"pressions p,q over E(prACPi(A)): 

prF jor F p = q = prACPi(A) I-- p = q. 
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Proof: For part l, the proof of soundness of axiom pr A 7 is a simple extension of the soundness 

argument for A7 (Theorem 2.2). Axioms prCl-3 are merely postulated about the communica

tion merge lu,6. The soundness of the rest of the axioms of prACP1(A) rests on probabilistic 

process graph isomorphism arguments (the remarks given in the soundness part of the proofs of 

Theorems 2.2 and 3.3 are relevant with the obvious extensions). 

Note that the condition to prD3.l implies that vH(rz) = 0 and the condition to prD3.2 implies 

that vH(r z +.y) = land vH(rz),vH(ry) = 1. The soundness of these axioms now easily follows. As 

alluded to in Section 2.3, unlike D3.2, prD3.2 is not sound under the weaker condition 

I(z)-H,-I0 andI(y)-H,-I0 

(for example, consider z = a +1 b, y = c, H = {a}, and 1r = ~). This situation is closely re-, 
lated to the fact that the equivalence induced on the stratified model of probabilistic processes via 

abstraction to the generative model is not a congruence; in particular, it fails to respect restric

tion [vGSST90J. 

For part 2, the proof is analogous to the completeness proof of ACP1(A). 

• The definition of a probabilistic basic term uses + .. instead of +. 

• The term rewriting system prRACP1(A) uses the probabilistic counterparts of the rules in 

RACPi(A) and the normal form is defined analogously as well. For example, prRACP1(A) 

contains the rule prCO' 

a I",e b = c ~ a 1",6 b --> c 

• The proof that a probabilistic normal form is also a probabilistic basic term proceeds as before 

- no rule in prRACPi(A) is conditional with respect to any probability. 

• prRACP1(A) is strongly normalizing modulo prAl, prA2, prA2': take a prRACP1(A) re

duction and erase all probability subscripts. One obtains a valid RACP1(A) reduction. 

• The "elimination theorem" for prACP1(A) is also similar. Let p be a closed prACPr(A) 

term and let p be the closed ACPr(A) term obtained by erasing all probability subscripts. 

Now let 

be a normalizing reduction of p. This reduction can be decorated appropriately with proba

bilities to obtain a prP~-\CPI(A) normaJization of p. 

4 ACPi as an Abstraction of pr ACPi 

In this section we demonstrate that ACP1(A) can be considered an abstraction of prACP1(A) at 

both the level of the graph model and at the level of the equational theory. For the former, we 

exhibit a homomorphism <It from probabilistic process graphs to non-probabilistic process graphs 

that preserves the structure of the bisimulation congruence classes. For the latter, we exhibit 

a homomorphlsm q; from prACP1(A) terms to ACP1(A) terms that preserves the validity of 

equational reasoning. 
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4.1 Graph Model Homomorphism 

The homomorphism <I> : prO ---; 0, from probabilistic process graphs to non· probabilistic process 

graphs, simply "forgets" probabilities. 

Definition 4.1 Letg = <V,r,J' > be a probabilistic process graph. Then <I>(g) = <V,r,--» has 

the same states and start state as g and ---; is such that 

Proposition 4.1 Let gl, g2 be probabilistic process graphs. 

<1>( a) = a, a E As 

<1>(91' 92) = <1>(91)' <1>(92) 

<1>(91 +" 92) = <I>(9J) + <1>(92) 

<1>(91 I~,B 92) = <1>(91) I <1>(92) 

<1>(91 II.,.,B 92) = <I>(9d II <1>(92) 

<1>(91 l~,B 92) = <1>(91) L <1>(92) 

<I>(8H(9J)) = 8H(<I>(91)) 

Proposition 4.2 The homomorphism <I> preserves the structure of the bisimulation congruence 

classes. That is, 

Proof: Let 91 = <VI' rio ill >, 92 = <V2,r2,J'2 > be probabilistic process graphs, and let 

<1>(91) = < Vb rl, ---;1> and <1>(92) = < V2, r2, -->2> be their homomorphic images under <1>. Fur

ther, let n ~ VI X V2 be a ,5-probabilistic bisimulation containing (rio r2)' That is, 91 ""r 92' Now 

let (v, w) be an arbitrary pair in n and assume for some v' E VI, a E A that ill (v, a, v') > O. By Def

inition 4.1, v ~ 1 v'. Then J'I (v, a, [v1) > 0 where [v'] = {u E VI U V2 I (tL, v') E n} E (VI U V2)/n. 
Since (v, w) E n, then there exists a w' E [v'] with M( r2, a, w') > 0; i.e., n( v', w') and, by Defini

tion 4.1 again, r2 ~ 2 w'. By a symmetric argument and by considering the case a = <5 (which is 

simpler), we have as desired that 91 =r 92 ==> 0(91):t., <1>(92)' 0 

The converse of this result is clearly not true. e.g., a + b ti, b + a but a + 1 b ~r b + 1 a. Thus, , , 
the graph moci.el :;:! =. of ACP1 (.4 .. ' ;,; 0.=1=-..'.:: =e aDstract thaI'. the probabilistic graph model 

pr:;:/ =r 0: rACPr(A.). 

4.2 Equational Theory Homomorphism 

Let C(E) be the language of all terms, open and closed, generated by the signature of the equational 

specification E. The homomorphism ~ : C(prACP1(A)) --> C(ACP1(A)) fromprACP1(A) terms 

to ACP1(A) terms, is defined as follows: 
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4(a) = a,a E A, 

4(:)=: 

4(:· y) = 4(:). 4(y) 

4(" +". y) = 4(,,) + 4(y) 

4(" lu,8Y) = 4(,,) I q;(y) 

q;(" Ilu,8 y) = q;(,,) II q;(y) 

q;(" Lu,8Y) = q;(,,) L 4(y) 

q;(8H(X)) = 8H(q;(x)) 

The following proposition states that any valid proof of prACPi(A) can be mapped into a valid 

proof of A CP i (A) using the homomorphism q;. 

Proposition 4.3 Let t" t2 be terms o!prACPi(A), i.e., t"t2 E £(prACPi(A)). 

prACPi(A) f- t, = t2 

ACPi(A) f- q;(t,) = q;(t2) 

Proof: The proof is by induction on the length of the prACPi(A) proof, using the observation 

that, for every prACPi(A) axiom of the form c =} t, = t2, its homomorphic image q;(c) =} 

q;(t,) = q;(t2) is an ACPi(A) axiom. Here c is a possibly empty condition on the validity of the 

prACP1(A) axiom, and the fact that q;(c) is equal to the condition of the corresponding ACPi(A) 

axiom means that no axiom of prACPi(A) is conditional on a probability appearing within an 

prACPi(A) term. 0 

Note that the converse of the result does not hold, e.g., a + b = b + a but a +! b 'I b +! a. Thus, 
2 3 

ACP1(A) is a strictly more abstract theory than prACPi(A). 

5 Comments on an Internal Probabilistic Choice Operator 

In this section we consider the question whether it is possible to add a probabilistic internal choice 

operator to prACP1(A). Such an operator V" : prP X prP --+ prP should have the following 

properties (similar to r; of CSP fHaaS5]): 

1. "V"y denotes a p:-ocess t~ es:a:'" .... ith probability 7:' and equals y with probability 1- To. 

xo(y V". z) = (xOy) V" (xOz) 

(" v" y)Oz = (xOz) V". (yOz) 

Each of these properties is very plausible. Nevertheless, we observe a difficulty that suggests that 

the setup with V". must be flawed. It follows that if an internal probabilistic choice is to be added, 

at least one of properties (1) - (3) must be removed. But, as stated before, these requirements are 

needed to simplify any setting simultaneously involving +". and V". 

The difficulty with V" comes about as follows. 
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Proposition 5.1 prACPr(A) + (1)-(3)1- aVLb=aVdbVda+Lb)) 
2 .. 3 2 

Proof: 

= 
= aVL(bVL(ah b)) 

• 3 , 

Next we introduce a probability measure on traces. 

Probabilities of Traces 

We define Pr: prP X A' --> (0,1] as follows: 

Prix --> 0) = 1 

Pr(a --> b) = { 
1 ifa=b 

° ifa;ib 

Pr(a-->b*c*a)=O 

Pr(a. x --> b * a) = Pr(a --> b). Prix --> a) 

Prix +" y --> a) = ". Pr(:z: --> a) + (1 - ,,). Pr(y --> a) 

Prix V" y --> a) = ". Prix --> a) + (1 - ,,). Pr(y --> a). 

Given this meaning, it seems clear that one must require: 

prACPr(A) + (1) - (3) I- p = q :=} for all a E A' Pr(p --> a) = Pr(q --> a) 

Now consider the following example: 

A = {a, b, guess( a), guess(b), success( a), success( b), fail} 

aiu"guess(a) = success(a), Va,8 E (0,1) 

b,u"guess(b) = success(b), Va,8 E (0,1) 

a:~.Igue .. s(b) = biu"guess(a) = fail, Va, (J E (0,1) 

o 

A1: o'::'~ cmnmrrnications are t. Let H = {a,b,guess(a),guess(b)}, and let us write II for I'l l. 
" , 

1'0.,.., using Proposition 5.1, we find 

prACPr(A) + (1) - (3) I- &H(guess(a) II (a VL b)) = &H(guess(a) II a Vl (b Vl (a+d)) 
2 .. 3 2 

But 

Pr(&H(guess(a) II a Vl b) --> success(a)) , 
= Pr(&H(guess(a) II a) Vl &H(guess(a) II b) --> success(a)) , 
= Pr(success(a) VL fail--> success(a)) , 

1 
= -

2 
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and 

Pr(8H(guess(a) II a V1 (bV1 (a+1 b))) -> success(a)) 
, J , 

= Pr(8H(guess(a) II a) V1 (8H(guess(a) II b) Vl 8H(guess(a) II (a +1 b))) -> success(a)) 
, J , 

= Pr(success(a) V1 (failv1 success(a)) -> success(a)) 
, J 

1 3 2 3 

= 4+4'3=4 

This calculation indicates a definite problem for combining a probabilistic alternative composition 

+" with probabilistic internal choice v". 

It follows that a generalization to a probabilistic setting of CSP that features both composition 

mechanisms (0 and n) cannot be done along the same lines. 

If an internal choice must be added, the authors feel that the mentioned difficulty is best reme

died by: 

1. adding a sort of state distribution S D and an embedding i : pr P -> S D turning a process 

into a state distribution. 

2. Then, v" can have functionality SD X SD -> SD. 

6 Conclusions 

In this paper, we have presented complete axiomatizations of probabilistic processes within the 

context of the process algebra ACP. Given that axiom A6 of ACP ('" + 6 = "') does not have a 
plausible interpretation in the generative model of probabilistic computation, we introduced the 

somewhat weaker theory ACPr, in which A6 is rejected. ACPr is, in essence, a minor alteration 

of ACP expressing almost the same process identities on finite processes. 

Our end-result is the axiom system pr ACPr, which can be seen as a probabilistic extension 

of ACPr for generative probabilistic processes. In particular, ACPr is homomorphically derivable 

from pr ACPr. As desired, we showed that pr ACPr constitutes a complete axiomatization of 

Larsen and Skou's probabilistic bisimulation for finite processes. 

Several directions for future work can be identified. First, we are interested in adding cer

tain important features to the model, such as recursion and unobservable 7' actions. Secondly, 

... e desire also to completely axiomatize the reactive and stratified models of probabilistic pro

ces~ : vGSST90:. In the stratified model, which is well-suited for reasoning about pronaoilistic 

-:a;,.~ scheduiing, distinctions are made between processes based on the branching structure of 

their purely probabilistic choices. We conjecture that by eliminating axiom pr A2 (probabilistic 

alternative composition is not associative in the stratified mode!!) and weakening the condition to 

pr D3.2 as discussed in the soundness part of the proof of Theorem 3.3, the desired axiomatization 

can be obtained. 
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A Proofs of Lemmas 3.1 and 3.2 

Lemma 3.1 For any permutation ~ of {I", .,n}, n ~ 2, 

n n 

prBPA(A) f- L[1ri]:Z:i = L[1r{(i)]:Z:{(i) 
;:;:.1 i=1 

Proof: The proof is by induction on n. All non·annotated steps are assumed to follow directly 

from the definition of summation form notation. 

• Basis: n = 2 

We prove the non· trivial case where ~(1) = 2, ~(2) = 1. 

2 

L [1ri]:Z:i = :Z:1 +'" t [l1r~+l ] :Z:i+1 
i;;;;1 11"1 

= Xl +11"1 2:2 

= 2:2 +11'2 Xl (prA1) 

:Z:2 +'" t [1 :i1r ] :Z:i 
~=l 2 

= 
2 

= L[1r~(i)]:Z:W) 
1=1 

• Hypothesis: supoose the lemma holds for n :::; k. 

• Induction: n = k + 1 

If ~(1) = 1, then we have 

k+l 

L [1ri]:Z:i = 
;=1 

= (induction) 

_+1 

= L["W)j:Z:~(i) 
i=l 

If ((1) = j "" 1, then 

k+l 

L [1r;j:Z:i = 
i:;;:1 

= 

where f is any permutation from 2 to n + 1 

with f(2) = j 
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= 

= 

= 

= 

= 

= 

"C(i+2) 

( 
.-1 [ ] ) 

Xj + l~il (; 1 _ 11"1 _ 7rj ze'(i+2) 

where Yl = Xl, PI = ~1" ., -", 
r I < . < k I "I'CH') 
lor _ z _ - ,Yi+l = Ze'(i+2), Pi+l = l-1rj 

• 
"'i +"j L [P;J Yi 

;=1 

• 
= "'i +"j L [pe"(i)] Ve"(i) 

;=1 

where e' is the permutation of 1 to k with 
~ 

Ye"(i) = "'e(i+1) and Pe"(i) = l-'''j 

· [ ] "e(i+1) 
"'i +"j L 1 _ ". "'e(i+1) 

,=1 3 

0+1 

L["e(i)J"'e(i) 
i=1 
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Lemma 8.2 In the summation form Z?;} [1I",J"'" let "'1 and "'2 be syntactically identical. Then 

n+1 n 

prBPA(A) f- 2:)1I",J"', = 2)p,Jy, 
i=l i=1 

where PI = 71"1 + 11"2, Yl = z}, and Pi = 1r'i+h Yi = zi+l, 2 :::; i :s: n. 

Proof: There are two cases; all non-annotated steps are assumed to follow directly from the 

definition of summation form notation. If n = 1, then we have: 

2 

2)1I",J"" = 1 [11"'+1 1 
Zl +11'1 L -1 ~ Zi+l 

i=l 1rl i==1 

~[1-1I"ll 
Zl +"1 L.J -1 _ "'1 

i=1 1['1 

= Z1 +""'1 %1 

= Zl 

1 

I: [p,J y, 
i=1 

If n 2: 2, then we have: 

(prA3) 

= "'1 +Wl ("'2 + 2L 'I: [1 11",+2 1 "''+2) 
l-1I't i=1 - 1rl - 11"2 

71.-: p 

'" 0.,-: = 11: -", ~ -_-- Yi-: 
i=: ~--~. 

n 

= I: [p,J y, 
i=1 
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