
Axioms for Probability and
Belief-Function Propagation

Prakash P. Shenoy and Glenn Shafer

School of Business, Summerfield Hall, University of Kansas
Lawrence, Kansas, 66045-2003, USA

In this paper, we describe an abstract framework and axioms un-
der which exact local computation of marginals is possible. The
primitive objects of the framework are variables and valuations. The
primitive operators of the framework are combination and
marginalization. These operate on valuations. We state three axioms
for these operators and we derive the possibility of local computation
from the axioms. Next, we describe a propagation scheme for
computing marginals of a valuation when we have a factorization of
the valuation on a hypertree. Finally we show how the problem of
computing marginals of joint probability distributions and joint belief
functions fits the general framework.

1. INTRODUCTION
In this paper, we describe an abstract framework and present axioms for

local computation of marginals in hypertrees. These axioms justify the use of
local computation to find marginals for a probability distribution or belief
function when the probability distribution or belief function is factored on a
hypertree. The axioms are abstracted from the belief-function work of the
authors (e.g., Shenoy and Shafer [1986], Shenoy et al [1988], Shafer et al
[1987]), but they apply to probabilities as well as to belief functions.

In the probability case, the factorization is usually a factorization of a joint
probability distribution, perhaps into marginals and conditionals. Probability
factorizations sometimes arise from causal models, which relate each variable
to a relatively small number of immediate causes; see e.g., Pearl [1986].
Probability factorizations can also arise from statistical models; see e.g.,
Darroch et al [1980]. Belief-function factorizations generally arise from the
decomposition of evidence into independent items, each involving only a few

2

variables. We represent each item of evidence by a belief function and com-
bine these belief functions by Dempster's rule [Shafer 1976].

It is shown in Shenoy [1989b] that Spohn's [1988, 1990] theory of epistemic
beliefs also fits in the abstract framework described here. This framework is
extended in Shenoy and Shafer [1988a,b] to include constraint propagation and
optimization using local computation.

We first present our general axiomatic framework and then explain how it
applies to probabilities and belief functions. Before we can present the ax-
iomatic framework, we need to review some graph-theoretic concepts. We do
this in section 2. We present the framework in section 3. We apply it to
probabilities in section 4 and to belief functions in section 5.

2. SOME CONCEPTS FROM GRAPH THEORY
Most of the concepts reviewed here have been studied extensively in the

graph theory literature (see Berge [1973], Golumbic [1980], and Maier [1983]).
A number of terms we use are new, however - among them, hypertree,
construction sequence, branch, twig, bud, and Markov tree. A hypertree is
what other authors have called an acyclic (Maier [1983]) or decomposable
hypergraph (Lauritzen et al [1984]). A construction sequence is what other
authors have called a sequence with the running intersection property
(Lauritzen and Spiegelhalter [1988]). A Markov tree is what authors in
database theory have called a join tree (see Maier [1983]). We have borrowed
the term Markov tree from probability theory, where it means a tree of
variables in which separation implies probabilistic conditional independence
given the separating variables. For a fuller explanation of the concepts
reviewed here, see Shafer and Shenoy [1988].

As we shall see, hypertrees are closely related to Markov trees. The ver-
tices of a Markov tree are always hyperedges of a hypertree, and the hyper-
edges of a hypertree can always be arranged in a Markov tree.

Hypergraphs and Hypertrees. We call a nonempty set H of nonempty
subsets of a finite set X a hypergraph on X. We call the elements of H hy-
peredges. We call the elements of X vertices.

Suppose t and b are distinct hyperedges in a hypergraph H, t∩b≠∅, and b
contains every vertex of t that is contained in a hyperedge of H other than t; if
X∈t and X∈h, where h∈H and h≠t, then X∈b. Then we call t a twig of H, and
we call b a branch for t. A twig may have more than one branch.

We call a hypergraph a hypertree if there is an ordering of its hyperedges,
say h1h2...hn, such that hk is a twig in the hypergraph {h1,h2,...,hk} whenever
2≤k≤n. We call any such ordering of the hyperedges a hypertree construction

3

sequence for the hypertree. We call the first hyperedge in a hypertree construc-
tion sequence the root of the hypertree construction sequence.

Figure 2.1 illustrates hypergraphs, hypertrees, twigs and construction se-
quences.

Figure 2.1. Some hypergraphs on {W,X,Y,Z}. The hypergraph H1

is a hypertree, all of its hyperedges are twigs, and all six orderings of its
hyperedges are hypertree construction sequences. The hypergraph H2 is
a hypertree, hyperedges {W,X} and {Y,Z} are twigs, and there are only
four hypertree construction sequences: {W,X}{X,Y} {Y,Z},
{X,Y}{W,X}{Y,Z}, {X,Y}{Y,Z}{W,X}, and {Y,Z}{X,Y} {W,X}.
The hypergraph H3 is not a hypertree and it has no twigs.

H1: W X Y

Z

H2: W X ZY

H3: W X

Z
Y

If we construct a hypertree by adding hyperedges following a hypertree
construction sequence, then each hyperedge we add is a twig when it is added,
and it has at least one branch in the hypertree at that point. Suppose we choose
such a branch, say β(h), for each hyperedge h we add. By doing so, we define
a mapping β from H-{h1} to H, where h1 is the root of the hypertree
construction sequence. We will call this function a branching for the hypertree
construction sequence.

Since a twig may have more than one branch, a hypertree construction se-
quence may have more than one branching. In general, a hypertree will have
many construction sequences. In fact, for each hyperedge of a hypertree, there
is at least one construction sequence beginning with that hyperedge.

Hypertree Covers of Hypergraphs. We will justify local computation under
two assumptions. The joint probability distribution function or the joint belief

4

function with which we are working must factor into functions, each involving
a small set of variables. And these sets of variables must form a hypertree.

If the sets of variables form, instead, a hypergraph that is not a hypertree,
then we must enlarge it until it is a hypertree. We can talk about this en-
largement in two different ways. We can say we are adding larger hyperedges,
keeping the hyperedges already there. Or, alternatively, we can say we are
replacing the hyperedges already there with larger hyperedges. The choice be-
tween these two ways of talking matters little, because the presence of
superfluous twigs (hyperedges contained in other hyperedges) does not affect
whether a hypergraph is a hypertree, and because the computational cost of the
procedures we will be describing depends primarily on the size of the largest
hyperedges, not on the number of the smaller hyperedges (Kong [1986],
Mellouli [1987]).

Formally, we will say that a hypergraph H* covers a hypergraph H if for
every h in H there is an element h* of H* such that h*⊇h. We will say that
H* is a hypertree cover for H if H* is a hypertree and it covers H. Figure 2.2
shows a hypergraph that is not a hypertree and a hypertree cover for it.

Finding a hypertree cover is never difficult. The hypertree {X}, which
consists of the single hyperedge X, is a hypertree cover for any hypergraph on
X. Finding a hypertree cover without large hyperedges, or finding a hypertree
cover whose largest hyperedge is as small as possible, may be very difficult.
How to do this best is the subject of a growing literature; see e.g., Rose [1970],
Bertele and Brioschi [1972], Tarjan and Yannakakis [1984], Kong [1986],
Arnborg et al [1987], Mellouli [1987], and Zhang [1988].

Trees. A graph is a pair (V,E), where V is a nonempty set and E is a set of
two-element subsets of V. We call the elements of V vertices, and we call the
elements of E edges.

5

Figure 2.2. Left: A hypergraph that is not a hypertree. Right: A
hypertree cover for it obtained by adding hyperedges {S,L,B} and
{L,E,B} and removing hyperedges {S,L} and {S,B}.

A

T

S

L
B

E

X
D

A

T

S
L

B

E

X
D

Suppose (V,E) is a graph. If {v,v'} is an element of E, then we say that v
and v' are neighbors. We call a vertex of a graph a leaf if it is contained in
only one edge, and we call the other vertex in that edge the bud for the leaf. If
v1v2...vn is a sequence of distinct vertices, where n>1, and {vk,vk+1}∈E for
k=1,2,...,n-1, then we call v1v2...vn a path from v1 to vn.

We call a graph a tree if there is an ordering of its vertices, say v1v2...vn

such that vk is a leaf in the graph ({v1,v2,...,vk}, Ek) whenever 2≤k≤n, where Ek

is the subset of E consisting of those edges that contain only vertices in
{v1,v2,...,vk}. We call any such ordering of the vertices a tree construction se-
quence for the tree. We call the first vertex in a tree construction sequence the
root of the tree construction sequence. Note that in a tree, for any two distinct
vertices vi and vj, there is a unique path from vi to vj.

If we construct a tree following a tree construction sequence starting with
the root and adding vertices, then each vertex we add is a leaf when it is added,
and it has a bud in the tree at that point. Given a tree construction sequence
and a vertex v that is not the root, let β(v) denote the bud for v as it is added.
This defines a mapping β from V-{v1} to V, where v1 is the root. We will call
this mapping the budding for the tree construction sequence.

The budding for a tree construction sequence is analogous to the branching
for a hypertree construction sequence, but there are significant differences.
Whereas there may be many branchings for a given hypertree construction
sequence, there is only one budding for a given tree construction sequence. In
fact, there is only one budding with a given root.

6

Markov Trees. We have just defined a tree as a pair (V,E), where V is the
set of vertices, and E is the set of edges. In the case of a Markov tree, the
vertices are themselves nonempty sets. In other words, the set V is a hyper-
graph. In fact, it turns out to be a hypertree.

Here is our full definition. We call a tree (H,E) a Markov tree if the
following conditions are satisfied:

(i) H is a hypergraph.

(ii) If {h,h'}∈E, then h∩h'≠∅.

(iii) If h and h' are distinct vertices, and X is in both h and h', then X is
in every vertex on the path from h to h'.

This definition does not state that H is a hypertree, but it implies that it is:

Proposition 1. (i) If (H,E) is a Markov tree, then H is a hypertree.
Any leaf in (H,E) is a twig in H . If h1h2...hn is a tree construction
sequence for (H,E), with β as its budding, then h1h2...hn is also a
hypertree construction sequence for H, with β as a branching. (ii) If H
is a hypertree, h1h2...hn is a hypertree construction sequence for H, and β
is a branching for h1h2...hn, then (H,E) is a Markov tree, where E =
{(h2,β(h2)),… , (hn,β(hn))}; h1h2...hn is a tree construction sequence for
(H,E), and β is its budding.

See Shafer and Shenoy [1988] for a proof of Proposition 1. The key point
here is the fact that a leaf in the Markov tree is a twig in the hypertree. This
means that as we delete leaves from a Markov tree (a visually transparent op-
eration), we are deleting twigs from the hypertree.

If (H,E) is a Markov tree, then we call (H,E) a Markov tree representative
for the hypertree H. As per Proposition 1, every hypertree has a Markov tree
representative. Most hypertrees have more than one. Figure 2.3 shows three
Markov tree representations for the hypertree in Figure 2.2.

3. AXIOMS FOR LOCAL COMPUTATION
In this section, we describe a set of axioms under which exact local compu-

tation of marginals is possible.
In section 3.1, we describe the framework for the axioms. The primitive

objects of the framework are variables and valuations. The framework has two
primitive operators, combination and marginalization. These operate on
valuations. We state three axioms for these operators.

7

Figure 2.3. If we choose {L,E,B} as the root for the hypertree in
Figure 2.2, then {L,E,B} must serve as the branch for {T,L,E}, {E,B,D},
and {S,L,B}, and {T,L,E} must serve as the branch for {A,T}. This
leaves only {E,X}, which can use {L,E,B}, {T,L,E}, or {E,B,D} as its
branch. It follows that the hypertree has exactly three Markov tree
representations, which differ only in where the leaf {E,X} is attached.

{A, T}

{T, L, E}

{E, X}

{S, L, B}

{L, E, B}

{E, B, D}

{A, T}

{T, L, E}

{E, X}

{S, L, B}

{L, E, B}

{E, B, D}

{A, T}

{T, L, E}

{E, X}

{S, L, B}

{L, E, B}

{E, B, D}

In section 3.2, we show how local computation can be used to marginalize a
factorization (of a valuation) on a hypergraph to the smaller hypergraph re-
sulting from the deletion of a twig. Once we know how to delete a twig, we
can reduce a hypertree to a single hyperedge by successively deleting twigs.
When we have reduced a factorization on a hypertree to a factorization on a
single hyperedge, it is no longer a factorization; it is simply the marginal for
the hyperedge.

In section 3.3, we shift our attention from a hypertree to the Markov tree
determined by a branching for the hypertree. Using this Markov tree, we de-
scribe more graphically the process of marginalizing to a single hyperedge.
Our description is based on the idea that each vertex in the tree is a processor,
which can operate on valuations for the variables it represents and then send
the result to a neighboring processor. In section 3.4, we generalize this idea to

8

a scheme of simultaneous computation and message passing that produces
marginals for all the vertices in the Markov tree.

3.1. The Axiomatic Framework
The primitive objects of the framework are a finite set of variables and a set

of valuations. The framework has two primitive operators: combination and
marginalization. These operate on valuations.

Variables and Valuations. Let X be a finite set. The elements of X are
called variables. For each h⊆X, there is a set Vh. The elements of Vh are
called valuations on h. Let V denote ∪{Vh|h⊆X}, the set of all valuations.

In the case of probabilities, a valuation on h will be a non-negative, real-
valued function on the set of all configurations of h (a configuration of h is a
vector of possible values of variables in h). In the belief-function case, a val-
uation is a non-negative, real-valued function on the set of all subsets of con-
figurations of h.

Proper Valuations. For each h⊆X, there is a subset Ph of Vh whose ele-
ments will be called proper valuations on h. Let P denote ∪{Ph|h⊆X}, the set
of all proper valuations. The notion of proper valuations is important as it will
enable us to define combinability of valuations.

In the probability case, a valuation H on h is said to be proper if the values
of the function H are not zero for all configurations of h. In the belief function
case, a valuation H on h is said to be proper if the values of the function H are
not zero for all nonempty subsets of configurations of h.

Combination. We assume there is a mapping ⊗:V×V → V, called
combination, such that

(i) If G and H are valuations on g and h respectively, then G⊗H is a
valuation on g∪h; and

(ii) If either G or H is not a proper valuation, then G⊗H is not a proper
valuation;

(iii) If G and H are both proper valuations, then G⊗H may or may not
be a proper valuation.

If G⊗H is not a proper valuation, then we shall say that G and H are not
combinable. If G⊗H is a proper valuation, then we shall say that G and H are
combinable and that G⊗H is the combination of G and H.

Intuitively, combination corresponds to aggregation. If G and H represent
information about variables in g and h, respectively, then G⊗H represents the

9

aggregated information for variables in g∪h. In the probability case, combi-
nation corresponds to pointwise multiplication. In the belief function case,
combination corresponds to Dempster's rule.

Marginalization. We assume that for each h⊆X, there is a mapping
↓h:∪{Vg|g⊇h} → Vh, called marginalization to h, such that

(i) If G is a valuation on g and h⊆g, then G↓h is a valuation on h;

(ii) If G is a proper valuation, then G↓h is a proper valuation; and

(iii) If G is not a proper valuation, then G↓h is not a proper valuation.

We call G↓h marginal of G for h.
Intuitively, marginalization corresponds to narrowing the focus of a val-

uation. If G is a valuation on g representing some information about variables
in g, and h⊆g, then G↓h represents the information for variables in h implied by
G if we disregard variables in g-h. In both the probability and belief-function
cases, marginalization corresponds to summation.

The Problem. We are now in a position to describe the problem. Suppose
H is a hypergraph on X. For each h∈H, we have a proper valuation Ah on h.
First, we need to determine if the proper valuations in the set {Ah|h∈H} are
combinable. If the answer is in the affirmative, then let A denote the proper
valuation ⊗{Ah|h∈H}. Second, we need to find the marginal of A for each
X∈X.

If X is a large set of variables, then computation of A↓{X} by first computing
the joint valuation A on X and then marginalizing A to {X} will not be
possible. For example, if we have 50 variables and each variable has 2 pos-
sible values, then we will have 250 possible configurations of X. Thus in the
probability case, computing A will involve finding 250 values. And in the be-
lief function case, computing A will involve finding 2(250) values. In either
case, the task is infeasible. We will state axioms for combination and
marginalization that make it possible to use local computation to determine if
the given proper valuations are combinable and to compute A↓{X} for each
X∈X if they are.

We will assume that these two mappings satisfy three axioms.

Axiom A1 (Commutativity and associativity of combination):
Suppose G, H, K are valuations on g, h, and k respectively. Then G⊗H
= H⊗G, and G⊗(H⊗K) = (G⊗H)⊗K.

10

Axiom A2 (Consonance of marginalization): Suppose G is a val-
uation on g, and suppose k⊆h⊆g. Then (G↓h)↓k = G↓k.

Axiom A3 (Distributivity of marginalization over combination):
Suppose G and H are valuations on g and h, respectively. Then (G⊗H)↓g

= G⊗(H↓g∩h)

One implication of Axiom A1 is that when we have multiple combinations
of valuations, we can write it without using parenthesis. For example,
(...((Ah1⊗Ah2)⊗Ah3)⊗...⊗Ahn) can be written simply as ⊗{Ahi|i=1,...,n} without
indicating the order in which the combinations are carried out.

Factorization. Suppose A is a valuation on a finite set of variables X, and
suppose H is a hypergraph on X. If A is equal to the combination of valua-
tions on the hyperedges of h, say A = ⊗{Ah|h∈H}, where Ah is a valuation on
h, then we say that A factorizes on h.

If we regard marginalization as a reduction of a valuation by deleting
variables, then axiom A2 can be interpreted as saying that the order in which
the variables are deleted does not matter.

Axiom A3 is the crucial axiom that makes local computation possible.
Axiom A3 states that computation of (G⊗H)↓g can be accomplished without
having to compute G⊗H.

3.2. Marginalizing Factorizations
In this section, we learn how to adjust a factorization on a hypergraph to

account for the deletion of a twig. This can be accomplished by local compu-
tations, computations involving only the valuations on the twig and a branch
for the twig. This elimination of a twig by local computation is the key to the
computation of marginals from a factorization on a hypertree, for by succes-
sively deleting twigs, we can reduce the hypertree to a single hyperedge.

Suppose H is a hypergraph on X, t is a twig in H, and b is a branch for t.
The twig t may contain some vertices that are not contained in any other hy-
peredge in H. These are the vertices in the set t-b. Deleting t from H means
reducing H to the hypergraph H-{t} on the set X' = X-(t-b) = ∪(H-{t}).

Suppose A is a valuation on X, suppose A factors on H, and suppose we
have stored A in a factored form. In other words, we have stored a valuation
Ah for each h in H, and we know that A = ⊗{Ah|h∈H}. Adapting this fac-
torization on A on H to the deletion of the twig t means reducing it to a fac-
torization of A↓X' on H-{t}. Can we do this? Yes. The following proposition
tells us that if A factors on H, then A↓X' factors on H-{t}, and the second

11

factorization can be obtained from the first by a local computation that involves
only t and a branch.

Proposition 2. Under the assumptions of the preceding paragraph,

A↓X' = (Ab⊗At
↓t∩b)⊗(⊗{Ah|h∈H-{t,b}}), (3.1)

where b is any branch for t. Thus the marginal A↓X' factors on the
hypergraph H-{t}. The valuation on b is combined with At

↓t∩b, and the
valuations on the other elements of H-{t} are unchanged.

Proposition 2 follows directly from axiom A3 by letting G = ⊗{Ah|h∈H-
{t}} and H = At.

This result is especially interesting in the case of hypertrees, because in this
case repeated application of (3.1) allows us to obtain A's marginal on any
particular hyperedge of H. If we want the marginal on a hyperedge h1, we
choose a construction sequence beginning with h1, say h1h2...hn. Suppose Xk

denotes h1∪...∪hk and Hk denotes {h1, h2, ..., hk} for k=1,...,n-1. We use (3.1)
to delete the twig hn, so that we have a factorization of A↓Xn-1 on the hypertree
Hn-1. Then we use (3.1) again to delete the twig hn-1, so that we have a
factorization of A↓Xn-2 on the hypertree Hn-2. And so on, until we have deleted
all the hyperedges except h1, so that we have a factorization of A↓X1 on the
hypertree H1 - i.e., we have the marginal A↓h1. At each step, the computation
is local, in the sense that it involves only a twig and a branch. Note that such a
step-wise computation of the marginal of A for h1 is allowed by axiom A2.

3.3. Computing Marginals in Markov Trees
As we learned in section 2, the choice of a branching for a hypertree de-

termines a Markov tree for the hypertree. We now look at our scheme for
computing a marginal from the viewpoint of this Markov tree. This change in
viewpoint does not necessarily affect the implementation of the computation,
but it gives us a richer understanding. It gives us a picture in which message
passing, instead of deletion, is the dominant metaphor, and in which we have
great flexibility in how the message passing is controlled.

Why did we talk about deleting the hyperedge hk as we marginalized hk's
valuation to the intersection with its branch β(hk)? The point was simply to
remove hk from our attention. The "deletion" had no computational signifi-
cance, but it helped make clear that hk and the valuation on it were of no
further use. What was of further use was the smaller hypertree that would re-
main were hk deleted.

12

When we turn from the hypertree to the Markov tree, deletion of twigs
translates into deletion of leaves. But a tree is easier to visualize than a hy-
pertree. We can remove a leaf or a whole branch of a tree from our attention
without leaning so heavily on metaphorical deletion. And a Markov tree also
allows another, more useful, metaphor. We can imagine that each vertex of the
tree is a processor, and we can imagine that the marginal is a message that one
processor passes to another. Within this metaphor, vertices no longer relevant
are kept out of our way by the rules guiding the message passing, not by
deletion.

We cover a number of topics in this section. We begin by reviewing our
marginalization scheme in the hypertree setting and seeing how its details
translate into the Markov tree setting. We formulate precise descriptions of the
operations that are carried out by each vertex and precise definitions of the
messages that are passed from one vertex to another. Then we turn to
questions of timing - whether a vertex uses a message as soon as it is received
or waits for all its messages before it acts, how the order in which the vertices
act are constrained, and whether the vertices act in serial or in parallel. We
explain how the Markov tree can be expanded into an architecture for the
parallel computation, with provision for storing messages as well as directing
them. We explain how this architecture handles updating when inputs are
changed. And finally, we explain how our computation can be directed by a
simple forward-chaining production system.

Translating to the Markov Tree. We now translate our marginalization
scheme from the hypertree to the Markov tree.

Recall the details in the hypertree setting. We have a valuation A on X, in
the form of a factorization on a hypertree H. We want the marginal for the
hyperedge h1. We choose a hypertree construction sequence with h1 as its root,
say h1h2...hn, and we choose a branching β for h1h2...hn. On each hyperedge hi,
we have a valuation Ahi

. We repeatedly apply the following operation:

Operation H. Marginalize the valuation now on hk to β(hk). Change
the valuation now on β(hk) by combining it by this marginal.

We apply Operation H first for k=n, then for k=n-1, and so on, down to
k=2. The valuation assigned to h1 at the end of this process is the marginal on
h1.

We want now to redescribe Operation H, and the process of its repeated
application, in terms of the actions of processors located at the vertices of the
Markov tree (H,E) determined by the branching β.

13

The vertices of (H,E) are the hyperedges h1, h2, ..., hn. We imagine that a
processor is attached to each of the hi. The processor attached to hi can store a
valuation defined on hi, can compute the marginal of this valuation to hj, where
hj is a neighboring vertex, can send the marginal to hj as a message, can accept
a valuation on hi as a message from a neighbor, and can change the valuation it
has stored by combining it by such an incoming message.

The edges of (H,E) are {hn ,β(hn)},{hn-1,β(hn-1)},...,{h3,β(h3)}, {h2,h1}.
When we move from hn to β(hn), then from hn-1 to β(hn-1), and so on, we are
moving inwards in this Markov tree, from the outer leaves to the root h1. The
repeated application of Operation H by the processors located at the vertices
follows this path.

In order to recast Operation H in terms of these processors, we need some
more notation. Let Curh denote the valuation currently stored by the processor
at vertex h of (H,E). In terms of the local processors and the Curh, Operation H
becomes the following:

Operation M1. Vertex h computes Curh
↓h∩β(h), the marginal of Curh to

β(h). It sends Curh
↓h∩β(h) as a message to vertex β(h). Vertex β(h)

accepts the message Curh
↓h∩β(h) and changes Curβ(h) by multiplying it by

Curh
↓h∩β(h).

At the outset, Curh = Ah for every vertex h. Operation M1 is executed first
for h=hn, then for h=hn-1, and so on, down to h=h2. At the end of this
propagation process, the valuation Curh1

, the valuation stored at h1, is the
marginal of A on h1.

An Alternative Operation. Operation M1 prescribes actions by two pro-
cessors, h and β(h). We now give an alternative, Operation M2, which is exe-
cuted by a single processor. Since it is executed by a single processor,
Operation M2 will be easier for us to think about when we discuss alternative
control regimes for the process of propagation.

Operation M2 differs from Operation M1 only in that it requires a processor
to combine the messages it receives all at once, rather than incorporating them
into the combination one by one as they arrive. Each time the Operation M1 is
executed for an h such that β(h)=g, the processor g must change the valuation it
stores by combining it by the incoming message. But if processor g can store
all its incoming messages, then it can delay the combination until it is its turn
to marginalize. If we take this approach, then we can replace Operation M1

with the following:

14

Operation M2a. Vertex h combines the valuation Ah with all the
messages it has received, and it calls the result Curh. Then it computes
Curh

↓h∩β(h), the marginal of Curh to h∩β(h). It sends Curh
↓h∩β(h) as a

message to β(h).

Operation M2a involves action by only one processor, the processor h.
When Operation M2a is executed by hn, there is no combination, because hn,
being a leaf in the Markov tree, has received no messages. The same is true for
the other leaves in the Markov tree. But for vertices that are not leaves in the
Markov tree, the operation will involve both combination and marginalization.

After Operation M2a has been executed by hn, hn-1, and so on down to h2, the
root h1 will have received a number of messages but will not yet have acted.
To complete the process, h1 must combine all its messages and its original
valuation Ah1

, thus obtaining the marginal A↓h1. We may call this Operation
M2b:

Operation M2b. Vertex h combines the valuation Ah with all the
messages it has received, and it reports the result to the user of the
system.

So Operation M2 actually consists of two operations. Operation M2a is ex-
ecuted successively by hn, hn-1, and so on down to h2. Then Operation M2b is
executed by h1.

Operation M2 simplifies our thinking about control, or the flow of compu-
tation, because it allows us to think of control as moving with the computation
in the Markov tree. In our marginalization scheme, control moves from one
vertex to another, from the outer leaves inward towards the root. If we use
Operation M2, then a vertex is computing only when it has control.

Formulas for the Messages. We have described verbally how each vertex
computes the message it sends to its branch. Now we will translate this verbal
description into a formula that constitutes a recursive definition of the mes-
sages. The formula will not make much immediate contribution to our un-
derstanding, but it will serve as a useful reference in the next section, where we
discuss how to extend our scheme for computing a single marginal to a scheme
for computing all marginals.

Let Mh→β(h) denote the message sent by vertex h to its bud. Our description
of Operation M2a tells us that Mh→β(h) = Curh

↓h∩β(h), where Curh =
Ah⊗(⊗{Mg→β(g)|g∈H and β(g)=h}). Putting these two formulas together, we
have

Mh→β(h) = (Ah⊗(⊗{Mg→β(g)|g∈H and β(g)=h}))↓h∩β(h). (3.2)

15

If h is a leaf, then there is no g∈H such that h=β(g), and so (3.2) reduces to

Mh→β(h) = Ah
↓h∩β(h). (3.3)

Formula (3.2) constitutes a recursive definition of Mh→β(h) for all h, ex-
cepting only the root h1 of the budding β. The special case (3.3) defines
Mh→β(h) for the leaves; a further application of (3.2) defines Mh→β(h) for vertices
one step in towards the root from the leaves; a third application defines Mh→β(h)

for vertices two steps in towards the root from the leaves; and so on.
We can also represent Operation M2b by a formula:

A↓h = Ah⊗(⊗{Mg→β(g)|g∈H and β(g)=h}). (3.4)

Storing the Messages. If we want to think in terms of Operation M2, then
we must imagine that our processors have a way to store incoming messages.

Figure 3.1 depicts an architecture that provides for such storage. The figure
shows a storage register at vertex g for each of g's neighbors. The registers for
neighbors on the side of g away from the goal vertex are used to store
incoming messages. The register for the neighbor in the direction of the goal
vertex is used to store the vertex's outgoing message. The registers serve as
communication links between neighbors; the outgoing register for one vertex
being the incoming register for its neighbor in the direction of the goal vertex.

The message Mg→β(g), which vertex g stores in the register linking g to its
bud, is a valuation on g∩β(g). It is the marginal for the bud of a valuation on
g.

Flexibility of Control. Whether we use operation M1 or M2, it is not nec-
essary to follow exactly the order hn, hn-1, and so on. The final result will be
the same provided only that a processor never send a message until after it has
received and absorbed all the messages it is supposed to receive.

This point is obvious when we look at the operations in a Markov tree.
Consider, for example, the Markov tree with 15 vertices in Figure 3.2. The
vertices are numbered from 1 to 15 in this picture, indicating a construction
sequence h1h2...h15. Since we want to find the marginal for vertex 1, all our
messages will be sent towards vertex 1, in the directions indicated by the ar-
rows. Our scheme calls for a message from vertex 15 to vertex 3, then a
message from vertex 14 to vertex 6, and so on. But we could just as well begin
with messages from 10 and 11 to 5, follow with a message from 5 to 2, then
messages from 12, 13, and 14 to 6, from 6 and 15 to 3, and so on.

16

Figure 3.1. A typical vertex processor g, with incoming messages
from vertices f and e and outgoing message to h; here g=β(f)=β(e) and
h=β(g).

f

g eh g (g)→β
M

f (f)→βM

e (e)→βM

Figure 3.2. A tree with 15 vertices.

01 02

04

15

12
11

1009

08

07 03 1306

05

14

Returning to the metaphor of deletion, where each vertex is deleted when it
sends its message, we can say that the only constraint on the order in which the
vertices act is that each vertex must be a leaf when it acts; all the vertices that
used it as a branch must have sent their messages to it and then been deleted,
leaving it a leaf.

The different orders of marginalization that obey this constraint correspond,
of course, to the different tree construction sequences for (H,E) that use the
branching β.

So far, we have been thinking about different sequences in which the ver-
tices might act. This is most appropriate if we are really implementing the

17

scheme on a serial computer. But if the different vertices really did have in-
dependent processors that could operate in parallel, then some of the vertices
could act simultaneously. Figure 3.3 illustrates one way this might go for the
Markov tree of Figure 3.2. In step 1, all the leaf processors project to their
branches. In step 2, vertices 4, 5, and 6 (which would be leaves were the
original leaves deleted) project. And so on.

If the different processors take different amounts of time to perform
Operation M2 on their inputs, then the lock-step timing of Figure 3.3 may not
provide the quickest way to find the marginal for h1. It may be quicker to
allow a processor to act as soon as it receives messages from its leaves,
whether or not all the other processors that started along with these leaves have
finished.

In general, the only constraint, in the parallel as in the serial case, is that
action move inwards towards the root or goal, vertex h1. Each vertex must
receive and absorb all its messages from vertices farther away from h1 before
sending its own message on towards h1. (In terms of Figure 3.1, each proces-
sor must wait until all its incoming registers are filled before it can compute a
message to put in its outgoing register.) If we want to get the job done as
quickly as possible, we will demand that each processor go to work as quickly
as possible subject to this constraint. But the job will get done eventually
provided only that all the processors act eventually. It will get done, for ex-
ample, if each processor checks on its inputs periodically or at random times
and acts if it has those inputs [Pearl 1986].

If we tell each processor who its neighbors are and which one of these
neighbors lies on the path towards the goal, then no further global control or
synchronization is needed. Each processor knows that it should send its out-
going message as soon as it can after receiving all its incoming messages. The
leaf processors, which have no incoming messages, can act immediately. The
others must wait for their turn.

18

Figure 3.3. An example of the message-passing scheme for com-
putation of the marginal of vertex 1.

01 02

04

15

12
11

1009

08

07 03 1306

05

14

Step 2

01 02

04

15

12
11

1009

08

07 03 1306

05

14

Step 3

01 02

04

15

12
11

1009

08

07 03 1306

05

14

Step 5

01 02

04

15

12
11

1009

08

07 03 1306

05

14

Step 4

01 02

04

15

12
11

1009

08

07 03 1306

05

14

Step 1

Updating Messages. Suppose we have completed the computation of A↓h1,
the marginal for our goal vertex. And suppose we now find reason to change A
by changing one or more of our inputs, the Ah. If we have implemented the
architecture just described, with storage registers between each of the vertices,
then we may be able to update the marginal A↓h1 without discarding all the
work we have already done. If we leave some of the inputs unchanged, then
some of the computations may not need to be repeated.

Unnecessary computation can be avoided without global control. We
simply need a way of marking valuations, to indicate that they have received
any needed updating. Suppose the processor at each vertex h can recognize the
mark on any of its inputs (on Ah, our direct input, or on any message Mg→β(g)

from a vertex g that has h as its bud), and can write the mark on its own output,
the message Mh→β(h). When we wish to update the computation of A↓h1, we put

19

in the new values for those Ah we wish to change, and we mark all the Ah, both
the ones we have changed, and the others, which we do not want to change.
Then we run the system as before, except that a processor, instead of waiting
for its incoming registers to be full before it acts, waits until all its inputs are
marked. The processor can recognize when an input is marked without being
changed, and in this case it simply marks its output instead of recomputing it.

Of course, updating can also be achieved with much less control. As Pearl
[1986] has emphasized, hardly any control at all is needed if we are indifferent
to the possibility of wasted effort. If we do not care whether a processor
repeats the same computations, we can forget about marking valuations and
simply allow each processor to recompute its output from its inputs periodi-
cally or at random times. Under these circumstances, any change in one of the
Ag will eventually be propagated through the system to change A↓h1.

A Simple Production System. In reality, we will never have a parallel
computer organized precisely to fit our problem. Our story about passing
messages between independent processors should be thought of as a metaphor,
not as a guide to implementation. Implementations can take advantage, how-
ever, of the modularity the metaphor reveals.

One way to take advantage of this modularity, even on a serial computer, is
to implement the computational scheme in a simple forward-chaining pro-
duction system. A forward-chaining production system consists of a working
memory and a rule-base, a set of rules for changing the contents of the mem-
ory. (See Brownston et al. [1985] or Davis and King [1984].)

A very simple production system is adequate for our problem. We need a
working memory that initially contains Ah for each vertex h of (H,E), and a
rule-base consisting of just two rules, corresponding to Operations M2a and
M2b.

Rule 1: If Ah is in working memory and Mg→β(g) is in working
memory for every g such that β(g)=h, then use (3.3) to compute Mh→β(h),
and place it in working memory.

Rule 2: If Ah1
 is in working memory and Mg→β(g) is in working

memory for every g such that β(g)=h1, then use (3.4) to compute A↓h1,
and print the result.

Initially, there will be no Mg→β(g) at all in working memory, so Rule 1 can
fire only for h such that there is no g with β(g)=h - i.e., only for h that are
leaves. But eventually Rule 1 will fire for every vertex except the root h1.

20

Then Rule 2 will fire, completing the computation. Altogether, there will be n
firings, one for each vertex in the Markov tree.

Production systems are usually implemented so that a rule will fire only
once for a given instantiation of its antecedent; this is called refraction
[Brownston et al. 1985, pp. 62-63]. If our simple production system is im-
plemented with refraction, there will be no unnecessary firings of rules; only
the n firings that are needed will occur. Even without refraction, however, the
computation will eventually be completed.

Since refraction allows a rule to fire again for a given instantiation when the
inputs for that instantiation are changed, this simple production system will
also handle updating efficiently, performing only those recomputations that are
necessary.

3.4. Simultaneous Propagation in Markov Trees
In the preceding section, we were concerned with the computation of the

marginal on a single vertex of the Markov tree. In this section, we will be
concerned with how to compute the marginals on all vertices simultaneously.
As we will see, this can be done efficiently with only slight changes in the ar-
chitecture or rules.

Computing all Marginals. If we can compute the marginal of A on one
hyperedge in H, then we can compute the marginals on all the hyperedges in
H. We simply compute them one after the other. It is obvious, however, that
this will involve much duplication of effort. How can we avoid the du-
plication?

The first point to notice in answering this question is that we only need one
Markov tree. Though there may be many Markov tree representatives for H,
any one of them can serve for the computation of all the marginals. Once we
have chosen a Markov tree representative (H,E), then no matter which element
h of H interests us, we can choose a tree construction sequence for (H,E) that
begins with h, and since this sequence is also a hypertree construction sequence
for H, we can apply the method of section 3.4 to it to compute A↓h.

The second point to notice is that the message passed from one vertex to
another, say from f to g, will be the same no matter what marginal we are
computing. If β is the budding that we use to compute A↓h, the marginal on h,
and β' is the budding we use to compute A↓h', and if β(f) = β'(f) = g, then the
message Mf→β(f) that we send from f to g when computing A↓h is the same as
the message Mf→β'(f) that we send from f to g when computing A↓h'. Since the
value of Mf→β(f) does not depend on the budding β, we may write Mf→g instead
of Mf→β(f) when β(f)=g.

21

If we compute marginals for all the vertices, then we will eventually com-
pute both Mf→g and Mg→f for every edge {f,g}. We will compute Mf→g when
we compute the marginal on g or on any other vertex on the g side of the edge,
and we will compute Mg→f when we compute the marginal on g or on any other
vertex on the g side of the edge.

We can easily generalize the recursive definition of Mg→β(g) that we gave in
section 3.5 to a recursive definition of Mg→h for all neighbors g and h. To do
so, we merely restate (3.2) in a way that replaces references to the budding β
by references to neighbors and the direction of the message. We obtain

Mg→h = (Ag⊗(⊗{Mf→g|f∈(Ng-{h})}))↓g∩h, (3.5)

where Ng is the set of all g's neighbors in (H,E). If g is a leaf vertex, then
(3.5) reduces to Mg→h = Ag

↓g∩h.
After we carry out the recursion to compute Mg→h for all pairs of neighbors

g and h, we can compute the marginal of A on each h by

A↓h = Ah⊗(⊗{Mg→h|g∈Nh}). (3.6)

The General Architecture. A slight modification of the architecture shown
in Figure 3.1 will allow us to implement the simultaneous computation of the
marginals on all the hyperedges. We simply put two storage registers between
every pair of neighbors f and g, as in Figure 3.4. One register stores the
message from f to g; the other stores the message from g to f.

Figure 3.5 shows a more elaborate architecture for the simultaneous com-
putation. In addition to the storage registers that communicate between ver-
tices, this figure shows registers where the original valuations, the Ah, are put
into the system and the marginals, the A↓h, are read out.

In the architecture of Figure 3.1, computation is controlled by the simple
requirement that a vertex g must have messages in all its incoming registers
before it can compute a message to place in its outgoing register. In the ar-
chitecture of Figure 3.5, computation is controlled by the requirement that a
vertex g must have messages in all its incoming registers except the one from h
before it can compute a message to send to h.

This basic requirement leaves room for a variety of control regimes. Most
of the comments we made about the flexibility of control for Figure 3.1 carry
over to Figure 3.5.

22

Figure 3.4. The two storage registers between f and g.

f g→M

g f→M

gf

Figure 3.5. Several vertices, with storage registers for communi-
cation between themselves and with the user.

f

g

e

h

g f→
M

f g→
M

e g→M

→
M

g e

↓ hA

g↓ A

↓ fA

↓ eA

Ag

Af

Ae

Ah
h g→M

→
M

g h

In particular, updating can be handled efficiently if a method is provided for
marking updated inputs and messages. If we change just one of the input, then
efficient updating will save about half the work involved in simply
reperforming the entire computation. To see that this is so, consider the effect
of changing the input Ah in Figure 3.4. This will change the message Mg→f, but
not the message Mf→g. The same will be true for every edge; one of the two
messages will have to be recomputed, but not the other.

23

It may be enlightening to look at how the lock-step control we illustrated
with Figure 3.3 might generalize to simultaneous computation of the marginals
for all vertices. Consider a lock-step regime where at each step, each vertex
looks and sees what messages it has the information to compute, computes
these messages, and sends them. After all the vertices working are done, they
look again, see what other messages they now have the information to
compute, compute these messages, and send them. And so on. Figure 3.6
gives an example. At the first step, the only messages that can be computed
are the messages from the leaves to their branches. At the second step, the
computation moves inward. Finally, at step 3, it reaches vertex 2, which then
has the information needed to compute its own marginal and messages for all
its neighbors. Then the messages move back out towards the leaves, with each
vertex along the way being able to compute its own marginal and messages for
all its other neighbors as soon as it receives the message from its neighbor
nearest vertex 2.

In the first phase, the inward phase, a vertex sends a message to only one of
its neighbors, the neighbor towards the center. In the second phase, the
outward phase, a vertex sends k-1 messages, where k is the number of its
neighbors. Yet the number of messages sent in the two phases is roughly the
same, because the leaf vertices participate in the first phase and not in the sec-
ond.

There are seven vertices in the longest path in the tree of Figure 3.6.
Whenever the number of vertices in the longest path is odd, the lock-step
control regime will result in computation proceeding inwards to a central
vertex and then proceeding back outwards to the leaves. And whenever this
number is even, there will be two central vertices that send each other mes-
sages simultaneously, after which they both send messages back outwards to-
wards the leaves.

If we really do have independent processors for each vertex, then we do not
have to wait for all the computations that start together to finish before taking
advantage of the ones that are finished to start new ones. We can allow a new
computation to start whenever a processor is free and it has the information
needed. On the other hand, we need not require that the work be done so
promptly. We can assume that processors look for work to do only at random
times. But no matter how we handle these issues, the computation will
converge to some particular vertex or pair of neighboring vertices and then
move back out from that vertex or pair of vertices.

24

Figure 3.6. An example of the message-passing scheme for simul-
taneous computation of all marginals.

01 02

04

15

12
11

1009

08

07 03 1306

05

14

Step 1

01 02

04

15

12
11

1009

08

07 03 1306

05

14

Step 2

01 02

04

15

12
11

1009

08

07 03 1306

05

14

Step 3

01 02

04

15

12
11

1009

08

07 03 1306

05

14

Step 4

01 02

04

15

12
11

1009

08

07 03 1306

05

14

Step 5

01 02

04

15

12
11

1009

08

07 03 1306

05

14

Step 6

There is exactly twice as much message passing in our scheme for simulta-
neous computation as there was in our scheme for computing a single
marginal. Here every pair of neighbors exchange messages; there only one
message was sent between every pair of neighbors. Notice also that we can
make the computation of any given marginal the beginning of the simultaneous
computation. We can single out any hyperedge h (even a leaf), and forbid it
from sending a message to any neighbor until it has received messages from all
its neighbors. If we then let the system of Figure 3.6 run, it will behave just
like the system of Figure 3.3 with h as the root, until h has received messages
from all its neighbors. At that point, h can compute its marginal and can also
send messages to all its neighbors; the second half of the message passing then
proceeds, with messages moving back in the other direction.

25

The Corresponding Production System. Implementing simultaneous com-
putation in a production system requires only slight changes in our two rules.
The following will work:

Rule 1': If Ag is in working memory, and Mf→g is in working
memory for every f in Ng-{h}, then use (3.5) to compute Mg→h, and
place it in working memory.

Rule 2': If Ah is in working memory, and Mg→h is in working
memory for every g in Nh, then use (3.6) to compute A↓h, and print the
result.

Initially, there will be no Mf→g at all in working memory, so Rule 1' can fire
only for g and h such that Ng-{h} is empty - i.e., only when g is a leaf and h is
its bud. But eventually Rule 1' will fire in both directions for every edge {g,h}.
Once Rule 1' has fired for all the neighbors g of h, in the direction of h, Rule 2'
will fire for h. Altogether, there will be 3n-2 firings, two firings of Rule 1' for
each of the n-1 edges, and one firing of Rule 2' for each of the n vertices.

As the count of firings indicates, our scheme for simultaneous computation
finds marginals for all the vertices with roughly the same effort that would be
required to find marginals for three vertices if this were done by running the
scheme of section 3.5 three times.

4. PROBABILITY PROPAGATION
In this section, we explain local computation for probability distributions.

More precisely, we show how the problem of computing marginals of joint
probability distributions fits the general framework described in the previous
section.

For probability propagation, proper valuations will correspond to potentials.

Potentials. We use the symbol WX for the set of possible values of a vari-
able X, and we call WX the frame for X. We will be concerned with a finite set
X of variables, and we will assume that all the variables in X have finite
frames. For each h⊆X, we let Wh denote the Cartesian product of WX for X in
h; Wh = ×{WX|X∈h}. We call Wh the frame for h. We will refer to elements
of Wh as configurations of h. A potential on h is a real-valued function on Wh

that has non-negative values that are not all zero. Intuitively, potentials are
unnormalized probability distributions.

Projection of configurations. In order to develop a notation for the com-
bination of potentials, we first need a notation for the projection of configu-
rations of a set of variables to a smaller set of variables. Here projection

26

simply means dropping extra coordinates; if (w,x,y,z) is a configuration of
{W,X,Y,Z}, for example, then the projection of (w,x,y,z) to {W,X} is simply
(w,x), which is a configuration of {W,X}. If g and h are sets of variables, h⊆g,
and x is a configuration of g, then we will let x↓h denote the projection of x to
h.

Combination. For potentials, combination is simply pointwise multiplica-
tion. If G is a potential on g, H is a potential on h, and there exists an x∈Wg∪h

such that

G(x↓g)H(x↓h) > 0, (4.1)

then their combination, denoted simply by GH, is the potential on g∪h given
by

(GH)(x) = G(x↓g)H(x↓h) (4.2)

for all x∈Wg∪h. If there exists no x∈Wg∪h such that G(x↓g)H(x↓h) > 0, then we
say that G and H are not combinable.

Intuitively, if the bodies of evidence on which G and H are based are inde-
pendent, then G⊕H is supposed to represent the result of pooling these two
bodies of evidence. Note that condition (4.1) ensures that GH as defined in
(4.2) is a potential. If condition (4.1) does not hold, this means that the two
bodies of evidence corresponding to G and H contradict each other completely
and it is not possible to combine such evidence.

It is clear from the definition of combination of potentials that it is com-
mutative and associative (axiom A1).

Marginalization. Marginalization is familiar in probability theory; it means
reducing a function on one set of variables to a function on a smaller set of
variables by summing over the variables omitted.

Suppose g and h are sets of variables, h⊆g, and G is a potential on g. The
marginal of G for h, denoted by G↓h, is the potential on h defined by

Σ{G(x,y)|y∈Wg-h} if h is a proper subset of g

G↓h(x) =
G(x) if h=g

for all x∈Wh.
It is obvious from the above definition that marginalization operation for

potentials satisfies axiom A2.

27

Since multiplication distributes over addition, it is easy to show that com-
bination and marginalization for potentials satisfy axiom A3. Thus all axioms
are satisfied making local computation possible.

A number of authors who have studied local computation for probability,
including Kelly and Barclay [1973], Cannings, Thompson and Skolnick
[1978], Pearl [1986], Shenoy and Shafer [1986], and Lauritzen and
Spiegelhalter [1988], have described schemes that are variations on the the
basic scheme described in section 2. Most of these authors, however, have
justified their schemes by emphasizing conditional probability. We believe
this emphasis is misplaced. What is essential to local computation is a factor-
ization. It is not essential that this factorization be interpreted, at any stage, in
terms of conditional probabilities. For more regarding this point, see Shafer
and Shenoy [1988].

We would like to make two important observations for the case of prob-
ability propagation. First note that it is sufficient, in order for a potential A to
factor on H, that A be proportional to a product of arrays on the hyperedges.
Indeed, if

A ∝ Π{Ah|h∈H},

where Ah is a potential on h, then a representation of the form A = Π{Ah|h∈H}
can be obtained simply by incorporating the constant of proportionality into
one of the Ah. In practice, we will postpone finding the constant of
proportionality until we have marginalized A to a hyperedge using the scheme
described in section 2.

The second observation relates to conditioning joint probability distribu-
tions. Suppose a probability distribution P represents our assessment of a
given body of information, and we have been computing marginals of P from
the factorization

P = Π{Ah|h∈H} (4.3)

where H is a hypertree on X. Suppose we now observe the values of some of
the variables in X; say we observe Y1=y1, Y2=y2, and so on up to Yn=yn. We
change our assessment from P to P|f=y where f = {Y1, ..., Yn}, y = {y1, ..., yn},
and P|f=y denotes the joint probability distribution conditioned on the
observations. Can we adapt (4.3) to a factorization of P|f=y? Yes, we can.
More precisely, we can adapt (4.3) to a factorization of a potential proportional
to P|f=y, and this, as we noted in our first observation, is good enough. The
adaptation is simple. It follows from the definition of conditional probability
that

28

P|f=y ∝ BY1=y1...BYn=ynΠ{Ah|h∈H}

where BYi=yi is the indicator potential for Yi=yi on {Yi} defined by

0 if x ≠ yi

BYi=yi(x) =
1 if x = yi

for all x∈WYi
.

We will now illustrate our propagation scheme using a simple example.

An Example. This example is adapted from Shachter and Heckerman
[1987]. Consider three variables D, B and G representing diabetes, blue toe
and glucose in urine, respectively. The frame for each variable has two con-
figurations. D=d will represent the proposition diabetes is present (in some
patient) and D=~d will represent the proposition diabetes is not present.
Similarly for B and G. Let P denote the joint probability distribution for {D, B,
G}. We will assume that diabetes causes blue toe and glucose in urine im-
plying that variables B and G are conditionally independent (with respect to P)
given D. Thus we can factor P as follows.

P = PD PB|D PG|D (4.4)

where PD is the potential on {D} representing the marginal of P for D, PB|D is
the potential for {D,B} representing the conditional distribution of B given D,
and PG|D is the potential for {D,G} representing the conditional distribution of
G given D. For example, PB|D(d,b) represents the conditional probability of the
proposition B=b given that D=d. Thus P factors on the hypertree {{D}, {D,B},
{D,G}}. Since we would like to compute the marginals for B and G, we will
enlarge the hypertree to include the hyperedges {B} and {G}. It is easy to
expand (4.4) so that we have a factorization of P on the enlarged hypertree - the
potentials on these additional hyperedges consist of all ones. Suppose that the
potentials PD, PB|D, and PG|D are as shown in Table 4.1. The enlarged hypertree
and a Markov tree representation are shown in Figure 4.1.

29

Table 4.1. The potentials PD, PB|D, and PG|D.

 d .1
~d .9

P
D

 d,b .014
 d,~b .986
~d,b .006
~d,~b .994

P
B|D

 d,g .9
 d,~g .1
~d,g .01
~d,~g .99

P
G|D

Figure 4.1. The hypertree and a Markov tree representation.

D

B G

{D,B} {D,G}

{G}{B}

{D}

Suppose we propagate the potentials using the scheme described in section
2. The results are as shown in Figure 4.2. For each vertex h, the input po-
tentials are shown as Ih and the output potentials are shown as Oh. All the
messages are also shown. Note that the output potentials have been normalized
so that they represent marginal posterior probabilities.

Now suppose we observe that the patient has blue toe. This is represented
by the indicator potential for B=b. The other potentials are the same as before.
If we propagate the potentials, the results are as shown in Figure 4.3.

Note that the posterior probability of the presence of diabetes has increased
(from .1 to .2059) and consequently the presence of glucose in urine has also
increased (from .0990 to .1932). Now suppose that after the patient is tested
for glucose in urine, the results indicate that there is an absence of glucose in
urine. This information is represented by the indicator potential for G=~g.
The other potentials are as before. If we propagate the potentials, the results
are as shown in Figure 4.4.

30

Figure 4.2. The initial propagation of potentials.

{D,B} {D,G}

{G}{B}

{D}

M
{B}→{D,B}

M
{D}→{D,G}

M
{D,B}→{B}

M
{D,G}→{G}

M
{G}→{D,G}

I
{B,D}

 = P
B|D

 d,b .0140
 d,~b .9860
~d,b .0060
~d,~b .9940

 d,g .9000
 d,~g .1000
~d,g .0100
~d,~g .9900

I
{D,G}

 = P
G|D

 d .1000
~d .9000

I
{D}

 = P
D

O
{D}

I
{B}

O
{B}

I
{G}

O
{G}

 d .1000
~d .9000

M
{D,B}→{D}

 d 1.0000
~d 1.0000

M
{D,G}→{D}

 d 1.0000
~d 1.0000

M
{D}→{D,B}

 d .1000
~d .9000

 b 1.0000
~b 1.0000

 b 1.0000
~b 1.0000

 b .0068
~b .9932

 b .0068
~b .9932

 g 1.0000
~g 1.0000

 g 1.0000
~g 1.0000

 d .1000
~d .9000

 g .0990
~g .9010

 g .0990
~g .9010

Figure 4.3. The results of propagation after the presence of blue toe
is observed.

{D,B} {D,G}

{G}{B}

{D}

M
{B}→{D,B}

M
{D}→{D,G}

M
{D,B}→{B}

M
{D,G}→{G}

M
{G}→{D,G}

I
{B,D}

 = P
B|D

 d,b .0140
 d,~b .9860
~d,b .0060
~d,~b .9940

 d,g .9000
 d,~g .1000
~d,g .0100
~d,~g .9900

I
{D,G}

 = P
G|D

 d .1000
~d .9000

I
{D}

 = P
D

O
{D}

I
{B}

O
{B}

I
{G}

O
{G}

 d .2059
~d .7941

M
{D,B}→{D}

 d .0140
~d .0060

M
{D,G}→{D}

 d 1.000
~d 1.000

M
{D}→{D,B}

 d .1000
~d .9000

 b 1.000
~b 0.000

 b 1.000
~b 0.000

 b .0068
~b .9932

 b 1.000
~b 0.000

 g 1.000
~g 1.000

 g 1.000
~g 1.000

 d .0014
~d .0054

 g .0013
~g .0055

 g .1932
~g .8068

31

Figure 4.4. The results of propagation after the observation that
patient does not have glucose in urine.

{D,B} {D,G}

{G}{B}

{D}

M
{B}→{D,B}

M
{D}→{D,G}

M
{D,B}→{B}

M
{D,G}→{G}

M
{G}→{D,G}

I
{B,D}

 = P
B|D

 d,b .0140
 d,~b .9860
~d,b .0060
~d,~b .9940

 d,g .9000
 d,~g .1000
~d,g .0100
~d,~g .9900

I
{D,G}

 = P
G|D

 d .1000
~d .9000

I
{D}

 = P
D

O
{D}

I
{B}

O
{B}

I
{G}

O
{G}

 d .0255
~d .9745

M
{D,B}→{D}

 d .0140
~d .0060

M
{D,G}→{D}

 d .1000
~d .9900

M
{D}→{D,B}

 d .0100
~d .8910

 b 1.000
~b 0.000

 b 1.000
~b 0.000

 b .0055
~b .8955

 b 1.000
~b 0.000

 g 0.000
~g 1.000

 g 0.000
~g 1.000

 d .0014
~d .0054

 g .0013
~g .0055

 g 0.000
~g 1.000

Note that the posterior probability of the presence of diabetes has decreased
(from .2059 to .0255). This concludes our example.

5. BELIEF-FUNCTION PROPAGATION
In this section, we explain local computation for belief functions. More

precisely, we show how the problem of computing marginals of a joint belief
function fits the general framework described in section 2.

For belief-function propagation, proper valuations correspond to either
probability mass assignment functions, belief functions, plausibility functions
or commonality functions. For simplicity of exposition, we will describe be-
lief-function propagation in terms of superpotentials which are unnormalized
basic probability assignment functions.

Basic Probability Assignment Functions. Suppose Wh is the frame for a
subset h of variables. A basic probability assignment function (bpa function)
for h is a non-negative, real-valued function M on the set of all subsets of Wh

such that

(i) M(∅) = 0, and

(ii) Σ{M(a)|a⊆Wh} = 1.

32

Intuitively, M(a) represents the degree of belief assigned exactly to a (the
proposition that the true configuration of h is in the set a) and to nothing
smaller. A bpa function is the belief function equivalent of a probability mass
assignment function in probability theory. Whereas a probability mass func-
tion is restricted to assigning probability masses only to singleton configura-
tions of variables, a bpa function is allowed to assign probability masses to sets
of configurations without assigning any mass to the individual configurations
contained in the sets.

Superpotentials. Suppose h is a subset of variables. A superpotential for h
is a non-negative, real-valued function on the set of all subsets of Wh such that
the values of nonempty subsets are not all zero. Given a superpotential H on h,
we can construct a bpa function H' for h from H as follows:

H'(∅) = 0, and H'(a) = H(a)/Σ{H(b)|b⊆Wh, b ≠ ∅}.
Thus superpotentials can be thought of as unnormalized bpa functions.

Superpotentials correspond to the notion of proper valuations in the general
framework.

Projection and Extension of Subsets. Before we can define combination
and marginalization for superpotentials, we need the concepts of projection and
extension of subsets of configurations.

If g and h are sets of variables, h⊆g, and g is a nonempty subset of Wg, then
the projection of g to h, denoted by g↓h, is the subset of Wh given by g↓h =
{x↓h|x∈g}.

For example, If a is a subset of W{W,X,Y,Z}, then the marginal of a to {X,Y}
consists of the elements of W{X,Y} which can be obtained by projecting
elements of a to W{X,Y}.

By extension of a subset of a frame to a subset of a larger frame, we mean a
cylinder set extension. If g and h are sets of variables, h⊆g, h≠g, and h is a
subset of Wh, then the extension of h to g is h×Wg-h. If h is a subset of Wh, then
the extension of h to h is defined to be h. We will let h↑g denote the extension
of h to g.

For example, if a is a subset of W{W,X}, then the vacuous extension of a to
{W,X,Y,Z} is a×W{Y,Z}.

Combination. For superpotentials, combination is called Dempster's rule
[Dempster 1966]. Consider two superpotentials G and H on g and h, respec-
tively. If

Σ{G(a)H(b)|(a↑(g∪h))∩(b↑(g∪h)) ≠ ∅} ≠ 0, (5.1)

33

then their combination, denoted by G⊕H, is the superpotential on g∪h given
by

G⊕H(c) = Σ{G(a)H(b)|(a↑(g∪h))∩(b↑(g∪h)) = c} (5.2)

for all c ⊆ Wg∪h. If Σ{G(a)H(b)|(a↑(g∪h))∩(b↑(g∪h)) ≠ ∅} = 0, then we say that G
and H are not combinable.

Intuitively, if the bodies of evidence on which G and H are based are inde-
pendent, then G⊕H is supposed to represent the result of pooling these two
bodies of evidence. Note that condition (5.1) ensures that G⊕H defined in
(5.2) is a superpotential. If condition (5.1) does not hold, this means that the
two bodies of evidence corresponding to G and H contradict each other com-
pletely and it is not possible to combine such evidence.

It is shown in Shafer [1976] that Dempster's rule of combination is com-
mutative and associative. Thus combination for superpotentials satisfies axiom
A1.

Marginalization. Like marginalization for potentials, marginalization for
superpotentials corresponds to summation.

Suppose G is a superpotential for g and suppose h⊆g. Then the marginal of
G for h is the superpotential G↓h for h defined as follows:

G↓h(a) = Σ{G(b)|b⊆Wg such that b↓h=a}

for all subsets a of Wh.
It is easy to see that marginalization for superpotentials satisfies axiom A2.

In Shafer and Shenoy [1988], it is shown that the above definitions of
marginalization and combination for superpotentials satisfy axiom A3. Thus
all axioms are satisfied making local computation possible.

Propagation of belief functions using local computation has been studied by
Shafer and Logan [1987], Shenoy and Shafer [1986], Shenoy et al [1988],
Kong [1986], Dempster and Kong [1986], Shafer et al [1987], Mellouli [1987],
and Shafer and Shenoy [1988]. Shafer et al [1988], Shenoy [1989], Zarley
[1988], Zarley et al [1988] and Hsia and Shenoy [1989, 1989b] discuss appli-
cations and implementations of these propagation schemes.

ACKNOWLEDGEMENTS
Research for this article has been partially supported by NSF grant IRI-

8902444 and a Research Opportunities in Auditing grant 88-146 from the Peat
Marwick Foundation. A condensed version appeared in the Proceedings of the
Fourth Workshop on Uncertainty in Artificial Intelligence in 1988.

34

REFERENCES
Arnborg, S., Corneil, D. G. and Proskurowski, A. (1987), Complexity of

finding embeddings in a k-tree, SIAM Journal of Algebraic and Discrete
Methods, 8, 277-284.

Berge, C. (1973), Graphs and Hypergraphs, translated from French by E.
Minieka, North-Holland.

Bertele, U. and Brioschi, F. (1972), Nonserial Dynamic Programming,
Academic Press.

Brownston, L. S., Farrell, R. G., Kant, E. and Martin, N. (1985), Programming
Expert Systems in OPS5: An Introduction to Rule-Based Programming,
Addison-Wesley.

Buchanan, B. G. and Shortliffe, E. H., eds. (1984), Rule-based Expert Systems:
The MYCIN Experiments of the Stanford Heuristic Programming Project,
Addison-Wesley.

Cannings, C., Thompson, E. A. and Skolnick, M. H. (1978), Probability
functions on complex pedigrees, Advances in Applied Probability, 10, 26-
61.

Darroch, J. N., Lauritzen, S. L. and Speed, T. P. (1980), Markov fields and log-
linear models for contingency tables, Annals of Statistics, 8, 522-539.

Davis, R. and King, J. J. (1984), The origin of rule-based systems in AI, in
Buchanan and Shortliffe [1984, 20-52].

Dempster, A. P. (1966), New methods for reasoning toward posterior distri-
butions based on sample data, Annals of Mathematical Statistics, 37, 355-
374.

Dempster, A. P. and Kong, A. (1986), Uncertain evidence and artificial anal-
ysis, Research Report S-108, Department of Statistics, Harvard University.

Golumbic, M. C. (1980), Algorithmic Graph Theory and Perfect Graphs,
Academic Press.

Hsia, Y. and Shenoy, P. P. (1989), An evidential language for expert systems,
Methodologies for Intelligent Systems, 4, Ras, Z. (ed.), North-Holland, 9-16.

Hsia, Y. and Shenoy, P. P. (1989b), MacEvidence: A visual evidential lan-
guage for knowledge-based systems, Working Paper No. 211, School of
Business, University of Kansas.

Kelly, C. W. III and Barclay, S. (1973), A general Bayesian model for hier-
archical inference, Organizational Behavior and Human Performance, 10,
388-403.

Kong, A. (1986), Multivariate belief functions and graphical models, doctoral
dissertation, Department of Statistics, Harvard University.

35

Lauritzen, S. L., Speed, T. P. and Vijayan, K. (1984), Decomposable graphs
and hypergraphs, Journal of the Australian Mathematical Society, series A,
36, 12-29.

Lauritzen, S. L. and Spiegelhalter, D. J. (1988), Local computations with
probabilities on graphical structures and their application to expert systems
(with discussion), Journal of the Royal Statistical Society, series B, 50(2),
157-224.

Maier, D. (1983), The Theory of Relational Databases, Computer Science
Press.

Mellouli, K. (1987), On the propagation of beliefs in networks using the
Dempster-Shafer theory of evidence, doctoral dissertation, School of
Business, University of Kansas.

Pearl, J. (1986), Fusion, propagation and structuring in belief networks,
Artificial Intelligence, 29, 241-288.

Rose, D. J. (1970), Triangulated graphs and the elimination process, Journal of
Mathematical Analysis and Applications, 32, 597-609.

Shachter, R. D. and Heckerman, D. (1987), A backwards view for assessment,
AI Magazine, 8(3), 55-61.

Shafer, G. (1976), A Mathematical Theory of Evidence, Princeton University
Press.

Shafer, G. and Logan, R. (1987), Implementing Dempster's rule for hierar-
chical evidence, Artificial Intelligence, 33, 271-298.

Shafer, G. and Shenoy, P. P. (1988), Local computation in hypertrees, Working
Paper No. 201, School of Business, University of Kansas.

Shafer, G., Shenoy, P. P. and Mellouli, K. (1987), Propagating belief functions
in qualitative Markov trees, International Journal of Approximate
Reasoning, 1(4), 349-400.

Shafer, G., Shenoy, P. P. and Srivastava, R. P. (1988), AUDITOR'S
ASSISTANT: A knowledge engineering tool for audit decisions, Auditing
Symposium IX: Proceedings of the 1988 Touche Ross/University of Kansas
Symposium on Auditing Problems, 61-84.

Shenoy, P. P. (1989), A valuation-based language for expert systems,
International Journal of Approximate Reasoning, 3(5), 383-411.

Shenoy, P. P. (1989b), On Spohn's rule for revision of beliefs, Working Paper
No. 213, School of Business, University of Kansas.

Shenoy, P. P. and Shafer, G. (1986), Propagating belief functions using local
computations, IEEE Expert, 1(3), 43-52.

36

Shenoy, P. P. and Shafer, G. (1988a), Axioms for discrete optimization using
local computation, Working Paper No. 207, School of Business, University
of Kansas.

Shenoy, P. P. and Shafer, G. (1988b), Constraint propagation, Working Paper
No. 208, School of Business, University of Kansas.

Shenoy, P. P., Shafer, G. and Mellouli, K. (1988), Propagation of belief
functions: A distributed approach, Uncertainty in Artificial Intelligence 2,
Lemmer, J. F. and Kanal, L. N. (eds.), North-Holland, 325-336.

Spohn, W. (1988), Ordinal conditional functions: A dynamic theory of epis-
temic states, in Harper, W. L. and Skyrms, B., eds., Causation in Decision,
Belief Change, and Statistics, II, 105-134, D. Reidel Publishing Company.

Spohn, W. (1990), A general non-probabilistic theory of inductive reasoning,
this volume.

Tarjan, R. E. and Yannakakis, M. (1984), Simple linear time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs, SIAM Journal of Computing, 13, 566-579.

Zarley, D. K. (1988), An evidential reasoning system, Working Paper No. 206,
School of Business, University of Kansas.

Zarley, D. K., Hsia, Y. T. and Shafer, G. (1988), Evidential reasoning using
DELIEF, Proceedings of the Seventh National Conference on Artificial
Intelligence (AAAI-88), 1, 205-209, Minneapolis, MN.

Zhang, L. (1988), Studies on finding hypertree covers for hypergraphs,
Working Paper No. 198, School of Business, University of Kansas.

