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ABSTRACT

One of the intriguing properties characteristic to three-dimensional topological materials is the topological magnetoelectric phenomena
arising from a topological term called the θ term. Such magnetoelectric phenomena are often termed the axion electrodynamics since the θ
term has exactly the same form as the action describing the coupling between a hypothetical elementary particle, axion, and a photon. The
axion was proposed about 40 years ago to solve the so-called strong CP problem in quantum chromodynamics and is now considered a can-
didate for dark matter. In this Tutorial, we overview theoretical and experimental studies on the axion electrodynamics in three-dimensional
topological materials. Starting from the topological magnetoelectric effect in three-dimensional time-reversal invariant topological insula-
tors, we describe the basic properties of static and dynamical axion insulators whose realizations require magnetic orderings. We also
discuss the electromagnetic responses of Weyl semimetals with a focus on the chiral anomaly. We extend the concept of the axion electrody-
namics in condensed matter to topological superconductors, whose responses to external fields can be described by a gravitational topologi-
cal term analogous to the θ term.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0038804

I. INTRODUCTION

Conventionally, metals and insulators have been distinguished by
the existence of bandgaps. In 2005, a novel phase of matter that does
not belong to either conventional metals or insulators, called the topo-
logical insulator, was discovered.1–5 It is notable that topological insu-
lators have bulk bandgaps but also have gapless boundary (edge or
surface) states. Furthermore, a topological insulator phase and a trivial
insulator phase cannot be connected adiabatically to each other. In
other words, bulk bandgap closing is required for the transitions
between topologically nontrivial and trivial phases. In addition, before
the establishment of the concept of topological insulators, different
phases of matter had usually been distinguished from each other by
the order parameters that indicate spontaneous symmetry breaking.
For example, magnetism can be understood as a consequence of spon-
taneous spin rotational symmetry breaking. However, from the view-
point of symmetry analysis, time-reversal invariant topological
insulators and time-reversal invariant band insulators cannot be dis-
tinguished. The ways to distinguish such topologically nontrivial and
trivial insulator phases can be divided into two types (which, of
course, give rise to equivalent results). One way is introducing a

“topological invariant” such as Z2 invariant,1,6–8 which are calculated
from the Bloch-state wave function of the system. The other way is the
“topological field theory,”9 which describes the responses of topologi-
cal phases to external fields and is the focus of this Tutorial.

In the topological field theory, the responses of a topological
phase to external fields are described by a topological term. In two
spatial dimensions, it is well known that the quantum Hall effect of a
time-reversal symmetry broken phase can be described by a Chern–
Simons action with the quantized coefficient given by the first Chern
number.10,11 In three spatial dimensions, time-reversal symmetry plays
an important role. The topological magnetoelectric effect described by
the so-called θ term9 is a hallmark response of three-dimensional
(3D) time-reversal invariant topological insulators to external electric
and magnetic fields. In the presence of time-reversal symmetry,
the coefficient of the magnetoelectric effect θ takes a quantized value
θ ¼ π (mod 2π) for topological insulators, while θ ¼ 0 in trivial insu-
lators. However, in systems with broken time-reversal symmetry, e.g.,
in magnetically ordered phases, the value of θ can be arbitrary, i.e.,
can deviate from the quantized value π or 0, which means that the
value of θ can even depend on space and time as θ(r, t). It should be
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noted that spatial-inversion symmetry breaking can also lead to the
deviation of θ from the quantized value π or 0.

In the field theory literature, the phenomena described by the
θ term is termed the axion electrodynamics12 because the θ term
has exactly the same form as the action describing the coupling
between a hypothetical elementary particle, axion, and a photon.
The axion was proposed about 40 years ago to solve the so-called
strong CP problem in quantum chromodynamics.13–15 By subse-
quent studies in particle physics and astrophysics, the axion is now
considered as a candidate for dark matter.16–19 However, regardless
of intensive experimental searches, the axion has not yet been
found. Since the coefficient of the θ term, θ(r, t), is a field describ-
ing the axion, observing the magnetoelectric responses in materials
whose effective action is described by a θ term is equivalent to real-
izing the (dynamical) axion field in condensed matter.20 So far, it
has been shown theoretically that in a class of magnetic insulators
such as magnetically doped topological insulators, the value of
θ(r, t) is proportional to the antiferromagnetic order parameter
(i.e., the Néel field), i.e., the antiferromagnetic spin fluctuation is
identical to a dynamical axion field.20 In Fig. 1, a classification of
3D insulators in terms of the value of θ is schematically shown.

The effective action of the form of the θ term appears not
only in insulator phases but also in semimetal phases. The key in
the case of topological semimetals is the breaking of time-reversal
or spatial-inversion symmetry, which can lead to nonzero and
nonquantized expressions for θ. For example, in a time-reversal
broken Weyl semimetal with two Weyl nodes, its response to
external electric and magnetic fields is described by a θ term with
θ(r, t) ¼ 2(b � r � b0t),

21–25 where b is the distance between the
two Weyl nodes in momentum space and b0 is the energy

difference between the two nodes. In contrast, in the case of topo-
logical superconductors, their topological nature is captured only
by thermal responses,26–28 since charge and spin are not con-
served. It has been heuristically suggested that the effective action
of 3D time-reversal invariant topological superconductors may be
described by an action which is analogous to the θ term but is
written in terms of gravitational fields corresponding to a temper-
ature gradient and a mechanical rotation.29,30

In this Tutorial, we overview theoretical and experimental
studies on the axion electrodynamics in topological materials. In
Sec. II, we start by deriving the topological magnetoelectric effect
described by a θ term in phenomenological and microscopic ways
in 3D time-reversal invariant topological insulators. We also review
recent experimental studies toward observations of the quantized
magnetoelectric effect. In Sec. III, we review the basics and recent
experimental realizations of the so-called axion insulators in which
the value of θ is quantized due to a combined symmetry (effective
time-reversal symmetry), regardless of the breaking of time-reversal
symmetry, focusing on MnBi2Te4 family of materials. In Sec. IV,
we consider generic expressions for θ in insulators and extend the
derivation of the θ term in a class of insulators with broken time-
reversal and inversion symmetries whose realization requires anti-
ferromagnetic orderings. In Sec. V, we describe emergent dynami-
cal phenomena from the realization of the dynamical axion field in
topological antiferromagnetic insulators. In Secs. VI and VII, we
extend the study of the axion electrodynamics in condensed matter
to Weyl semimetals and topological superconductors, respectively,
whose effective action can be described by topological terms analo-
gous to the θ term. In Sec. VIII, we summarize this Tutorial and
outlook future directions of this fascinating research field.

FIG. 1. Schematic of a classification of 3D insulators in terms of time-reversal symmetry and the orbital magnetoelectric coupling coefficient θ. In the first classification
process, 3D insulators are divided into two types: insulators with or without time-reversal symmetry. In the second classification process, 3D insulators with time-reversal
symmetry are divided into types: topological insulators and normal (trivial) insulators. Topological insulators are characterized by the topological magnetoelectric effect with
the quantized coefficient θ ¼ π (mod 2π). In the second classification process, 3D insulators with broken time-reversal symmetry are divided into two types: axion insula-
tors and magnetic insulators. In axion insulators, time-reversal symmetry is broken but an “effective” time-reversal symmetry represented by a combination of time-reversal
and a lattice translation is present, leading to the topological magnetoelectric effect with the quantized coefficient θ ¼ π (mod 2π). In magnetic insulators, the value of θ is
arbitrary, including θ ¼ 0. In a class of magnetic insulators termed topological magnetic insulators, θ is proportional to their magnetic order parameters M such as the
Néel vector (i.e., antiferromagnetic order parameter), and the fluctuation of the order parameter realizes a dynamical axion field δθ(r , t)/ δM(r , t) in condensed matter.
Here, note that spatial-inversion symmetry must be broken in order for the value of θ to be arbitrary, i.e., in the magnetic insulators we have mentioned above, whereas its
breaking is not required in the other three phases. See also Table I for the role of inversion symmetry.
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II. QUANTIZED MAGNETOELECTRIC EFFECT IN 3D
TOPOLOGICAL INSULATORS

In this section, we describe the basics of the topological mag-
netoelectric effect, one of the intriguing properties characteristic to
3D topological insulators. We derive phenomenologically and
microscopically the θ term in 3D topological insulators, which is
the low-energy effective action describing their responses to exter-
nal electric and magnetic fields, i.e., the topological magnetoelectric
effect. We also review recent theoretical and experimental studies
toward observations of the topological magnetoelectric effect.

A. Overview

As has been briefly mentioned in Sec. I, topological phases
can be characterized by their response to external fields. One of the
noteworthy characters peculiar to 3D topological insulators is the
topological magnetoelectric effect, which is described by the
so-called θ term.9 The θ term is written as

Sθ ¼
ð

dtd3r
θe2

4π2�hc
E � B, (1)

where h ¼ 2π�h is the Planck’s constant, e . 0 is the magnitude of
the electron charge, c is the speed of light, and E and B are external
electric and magnetic fields, respectively. From the variation of this
action with respect to E and B, we obtain the cross-correlated
responses expressed by

P ¼ θe2

4π2�hc
B, M ¼ θe2

4π2�hc
E, (2)

with P being electric polarization and M being magnetization. We
see that Eq. (2) clearly exhibits a linear magnetoelectric effect, as
schematically illustrated in Fig. 2. Since E � B is odd under time
reversal (i.e., E � B ! �E � B under t ! �t), time-reversal symme-
try requires that the action (1) is invariant under the transforma-
tion θ ! �θ. Then, it follows that in the presence of time-reversal
symmetry θ takes a quantized value θ ¼ π (mod 2π) for topological

insulators, while θ ¼ 0 in trivial insulators. A simple and intuitive
proof of this quantization has been given.31 However, in systems
with broken time-reversal symmetry, e.g., in magnetically ordered
phases, the value of θ can be arbitrary, i.e., can deviate from the
quantized value π or 0,32 which means that the value of θ can even
depend on space and time as θ(r, t). A similar argument can be
applied to spatial-inversion symmetry. Namely, θ takes a quantized
value θ ¼ π or θ ¼ 0 (mod 2π) in the presence of inversion sym-
metry,33,34 and inversion symmetry breaking can also lead to the
deviation of θ from the quantized value, because E � B is also odd
under spatial inversion. Table I shows the constraints on the value
of θ by time-reversal and spatial-inversion symmetries.

B. Symmetry analysis of the magnetoelectric coupling

The magnetoelectric effect is the generation of bulk electric
polarization (magnetization) by an external magnetic (electric)
field. The linear magnetoelectric coupling coefficient is generically
described by

αij ¼
@Mj

@Ei

�

�

�

�

B¼0

¼ @Pi
@Bj

�

�

�

�

E¼0

, (3)

where i, j ¼ x, y, z indicates the spatial direction, E and B are exter-
nal electric and magnetic fields, and P and M are the electric polar-
ization and the magnetization. In general, both time-reversal and
spatial-inversion symmetries of the system must be broken, since
the occurrence of nonzero P (M) breaks spatial-inversion (time-
reversal) symmetry. This requirement is consistent with the con-
straints on the value of θ by time-reversal and spatial-inversion
symmetries (see Table I). Among several origins of the magneto-
electric effect, we are particularly interested in the orbital (i.e., elec-
tronic band) contribution to the linear magnetoelectric coupling of
the form

αij ¼
e2θ

4π2�hc
δij, (4)

where δij is the Kronecker delta. Here, note that θ is a dimension-
less constant. Equation (4) implies the Lagrangian density
L ¼ (e2θ=4π2�hc)E � B, since the magnetization and polarization can
be derived from the free energy of the system F as M ¼ �@F=@B
and P ¼ �@F=@E. Notably, the susceptibility of the topological

FIG. 2. Schematic picture of the topological magnetoelectric effect in a 3D topo-
logical insulator. (a) Magnetization M induced by an external electric field E. jH
is the anomalous Hall current on the side surface induced by the electric field.
(b) Electric polarization P induced by an external magnetic field B. Surface
states are gapped by magnetic impurities (or a proximitized ferromagnet) whose
magnetization direction is perpendicular to the surface, as indicated by green
arrows.

TABLE I. Constraints on the value of θ by time-reversal and spatial-inversion sym-
metries. The mark ✓ (×) indicates the presence (absence) of the symmetry. Here,
the notation of time-reversal symmetry in this table includes an “effective” time-
reversal symmetry represented by a combination of time-reversal and a lattice trans-
lation, as well as “true” time-reversal symmetry.

Time reversal Inversion Value of θ (mod 2π)

✓ ✓ 0 or π
✓ × 0 or π
× ✓ 0 or π
× × Arbitrary
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magnetoelectric effect in Eq. (4) with θ ¼ π reads (in SI units)

e2

4π�hc
1
μ20c

≃ 24:3 ps=m, (5)

which is rather large compared to those of prototypical magneto-
electric materials, e.g., the total linear magnetoelectric susceptibility
αxx ¼ αyy ¼ 0:7 ps=m of the well-known antiferromagnetic Cr2O3

at low temperatures.35,36

It should be noted here that we need to take into account the
presence of boundaries (i.e., surfaces) of a 3D topological insulator,
when we consider the realization of the quantized magnetoelectric
effect in a 3D topological insulator. This is because, as is mentioned
just above, finite P and M require the breaking of both time-reversal
and spatial-inversion symmetries of the whole system, whereas the
bulk of the topological insulator has to respect both time-reversal and
inversion symmetries. As we will see in the following, the occurrence
of the quantized magnetoelectric effect is closely related to the (half-
quantized) anomalous Hall effect on the surface, which requires a
somewhat special setup that breaks both time-reversal and inversion
symmetries as shown in Fig. 2. In this setup, time-reversal symmetry
is broken due to the surface magnetization. Inversion symmetry is
also broken because the magnetization directions on a side surface
and the other side surface are opposite to each other (spatial inver-
sion does not change the direction of spin).

C. Surface half-quantized anomalous Hall effect

Before deriving the quantized magnetoelectric effect in 3D topo-
logical insulators, we briefly consider the anomalous Hall effect on
the surfaces in which the Hall conductivity takes a half-quantized
value e2=2h. Let us start with the effective Hamiltonian for the
surface states of 3D topological insulators such as Bi2Se3, which is
described by 2D two-component massless Dirac fermions,37

Hsurface(k) ¼ �hvF(kyσx � kxσy) ¼ �hvF(k � ez) � σ, (6)

where vF is the Fermi velocity of the surface state (i.e., the slope
of the Dirac cone) and σx , σy are the Pauli matrices for the spin
degree of freedom. The energy eigenvalues of the Hamiltonian

(6) are readily obtained as Esurface(k) ¼+�hvF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y

q

from a

simple algebra H2
surface ¼ �h2v2F(k

2
x þ k2y)12�2. The Fermi velocity

of the surface states in Bi2Se3 is experimentally observed as
vF � 5� 105 m/s.38

Due to the spin-momentum locking, the surface states are
robust against disorder, as long as time-reversal symmetry is pre-
served. Namely, the backscattering of surface electrons from
(k, " ) to (� k, " ) are absent.39 Theoretically, it has been shown
that 2D two-component massless Dirac fermions cannot be local-
ized in the presence of nonmagnetic disorder.40,41 However,
surface states are not robust against magnetic disorder that breaks
time-reversal symmetry. This is because the surface Dirac fermions
described by Eq. (6) can be massive by adding a term proportional
to σz , i.e., mσz , which opens a gap of 2m in the energy spectrum.
More precisely, such a mass term can be generated by considering
the exchange interaction between the surface electrons and magnetic

impurities42–44 such that Hexch: ¼ J
P

i Si � σδ(r � Ri), where Si is
the impurity spin at position Ri. Then, the homogeneous part of the
impurity spins gives rise to the position-independent Hamiltonian,

Hexch: ¼ Jnimp�Simp � σ ; m � σ, (7)

where nimp is the density of magnetic impurities and �Simp is the
averaged spin of magnetic impurities. Adding Eq. (7) to the
Hamiltonian (6) leads to a gapped spectrum

Esurface(k) ¼+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(�hvFkx þmy)
2 þ (�hvFky �mx)

2 þm2
z

q

: (8)

We see that mx and my do not open the gap but only shift the posi-
tion of the Dirac cone in the momentum space.Let us consider a
general 2� 2 Hamiltonian given by H(k) ¼ R(k) � σ. In the case of
massive Dirac fermions, R(k) is given by R(k) ¼ (vFky , � vFkx , mz).
The Hall conductivity of the system with the Fermi level being in the
gap can be calculated by45

σxy ¼ � e2

h

1
4π

ð

dkxdky R̂ � @R̂

@kx
� @R̂

@ky

� �

¼ �sgn(mz)
e2

2h
, (9)

where R̂ ¼ R(k)=jR(k)j is a unit vector. The integral is equivalent to
the area where the unit vector R̂ moves on the unit sphere, which,
namely, gives the winding number of R̂. At k ¼ 0, the unit vector R̂
points to the north or south pole, that is, R̂ ¼ (0, 0, sgn(mz)). At
large k with jkj � jmzj, R̂ almost points to the horizontal directions.
Hence, varying k, R̂ covers the half of the unit sphere, which gives 2π.

Equation (9) indicates that the anomalous Hall effect occurs
on the surfaces of 3D topological insulators, when magnetic
impurities are doped or a magnetic film is put on the surfa-
ces.44,46 The direction of the Hall current depends on the sign of
mz , i.e., the direction of the magnetization of magnetic impurities
or proximitized magnetization. Actually, the surface quantum
anomalous Hall effect has been observed experimentally.47,48 The
observed surface quantum anomalous Hall effect in a thin film of
Cr-doped (Bi,Sb)2Te3 is shown in Fig. 3. Note that in those
systems, the magnetization directions of top and bottom surfaces
are the same, and thus the observed Hall conductivity is
2� e2=(2h) ¼ e2=h. It can be seen from Fig. 3(b) that the Hall
conductivity takes the quantized value when the chemical poten-
tial lies in the surface bandgap.

D. Phenomenological derivation of the θ term

We have seen in Sec. II C that the surface states of 3D topo-
logical insulators can be gapped (i.e., the surface Dirac fermions
can be massive) via the exchange interaction with magnetic impuri-
ties or proximitized magnetization which breaks time-reversal sym-
metry, giving rise to the surface half-quantized anomalous Hall
effect. We show phenomenologically in the following that, as a con-
sequence of the surface half-quantized anomalous Hall effect, the
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topological magnetoelectric effect [Eq. (2)] emerges in 3D topologi-
cal insulators.

Let us consider a case where the side surface of a cylindrical
3D topological insulator is ferromagnetically ordered due to mag-
netic doping or the proximity effect,9 as shown in Fig. 2. The
resulting surface Dirac fermions are massive. When an external
electric field E is applied parallel to the cylinder, the surface anom-
alous Hall current jH is induced as

jH ¼ �sgn(m)
e2

2h
n̂� E, (10)

where n̂ is a unit vector normal to the side surface. From the
Ampère’s law, the magnetization M with jMj ¼ jjHj=c (c is the
speed of light) is obtained as [see Fig. 2(a)]

M ¼ sgn(m)
e2

2hc
E: (11)

Similarly, when an external magnetic field B is applied parallel to
the cylinder, the circulating electric field Eind normal to the mag-
netic field is induced as ∇� Eind ¼ �@B=@t. Then, the induced
electric field Eind generates the surface anomalous Hall current

parallel to the magnetic field as

jH ¼ sgn(m)
e2

2h
@B

@t
: (12)

On the other hand, a polarization current is equivalent to the time
derivative of the electric polarization. Finally, the induced electric
polarization P is given by [see Fig. 2(b)]

P ¼ sgn(m)
e2

2hc
B: (13)

Equations (11) and (13) clearly show the magnetoelectric
effect. Here, recall that the magnetization and polarization can be
derived from the free energy of the system F as M ¼ �@F=@B and
P ¼ �@F=@E. To satisfy the relations (11) and (13), the free energy
must have the following form:9

F ¼ �
ð

d3r
e2

2hc
E � B ¼ �

ð

d3r
θe2

4π2�hc
E � B, (14)

where we have omitted sgn(m) for simplicity, and θ ¼ π. The inte-
grand can be regarded as the Hamiltonian density. The equivalent
action is written as

Sθ ¼
ð

d4x
θe2

4π2�hc
E � B ¼

ð

d4x
θe2

32π2�hc
εμνρλFμνFρλ, (15)

where d4x ¼ dtd3r, Fμν ¼ @μAν � @νAμ with Aμ ¼ (A0, �A) being
the electromagnetic four potential, and εμνρλ is the Levi–Civitá
symbol with the convention ε0123 ¼ 1. Here, the electric field and
the magnetic field are given, respectively, by E ¼ �∇A0 � @A=@t
and B ¼ ∇� A. Note that e2=�hc (≃ 1=137) is the fine-structure
constant. Equation (15) is indeed the θ term [Eq. (1)]. Under time-
reversal (t ! �t), electric and magnetic fields are transformed as
E ! E and B ! �B, respectively. Similarly, under spatial inversion
(r ! �r), electric and magnetic fields are transformed as E ! �E
and B ! B, respectively. Hence, the term E � B is odd under time-
reversal or spatial inversion. On the other hand, 3D topological
insulators have time-reversal symmetry, which indicates that Sθ
remains unchanged under time-reversal. In other words, the value
of θ must be invariant under the transformation θ ! �θ. It follows
that θ ¼ π (mod 2π) in time-reversal invariant topological insula-
tors and θ ¼ 0 in normal (topologically trivial) insulators.

Note that Sθ is a surface term when the value of θ is constant,
i.e., independent of spatial coordinate and time, since we can
rewrite the integrand of Sθ in a total derivative form,

εμνρλFμνFρλ ¼ 4εμνρλ@μ(Aν@ρAλ), (16)

which indicates that the topological magnetoelectric effect in the
bulk is a consequence of the surface response to the electric and
magnetic fields. However, as we shall see later, the presence of the
θ term that is dependent of spatial coordinate and/or time results
in an electric current generation in the bulk.

Here, let us consider the inverse process of the derivation of
the θ term (15). Namely, we derive the surface anomalous Hall

FIG. 3. (a) Schematic illustration of an experimental setup to detect the
quantum anomalous Hall effect in a ferromagnetically ordered topological insula-
tor thin film. (b) Gate-voltage Vg dependence of the Hall conductivity σxy and
the longitudinal conductivity σxx in a thin film of Cr-doped (Bi,Sb)2Te3.
Reproduced with permission from Chang et al., Science 340, 167 (2013).
Copyright 2013 American Association for the Advancement of Science.
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current from Eq. (15). We have seen in Eq. (16) that the integrand
of the θ term is a total derivative when the value of θ is constant.
For definiteness, let us see what happens at a given surface in the z
direction. Using Eq. (16) and integrating out with respect to z, the
surface term can be obtained from Eq. (15) as

Ssurface ¼
ð

d3x
θe2

8π2�hc
εzνρλAν@ρAλ, (17)

where d3x ¼ dtdxdy. Recall that, in general, an electric current
density jν in the ν direction can be obtained from the variation of
an action with respect to the electromagnetic vector potential Aν :
jν ¼ δS=δAν . Without loss of generality, we may consider the
current in the x direction,

jx ¼ δSsurface

δAx
¼ θe2

4π2�hc
εzxρλ@ρAλ ¼

θe2

4π2�hc
Ey , (18)

where Ey ¼ �@yA
0 � @tA

y is the electric field in the y direction.
Since θ ¼ π in topological insulators, Eq. (18) clearly shows the
surface half-quantized anomalous Hall effect.

More precisely, we should consider an electric current derived
directly from the θ term. Namely, we should consider the spatial
dependence of θ such that θ ¼ 0 in vacuum and θ ¼ π inside the
topological insulator. Notice that the θ term can be rewritten as

Sθ ¼ �
ð

dtd3r
e2

8π2�h
εμνρλ[@μθ(r, t)]Aν@ρAλ: (19)

Then, the electric current density is obtained as

jx ¼ δSθ

δAx
¼ e2

4π2�h
@tθ(r, t)Bx � @zθ(r, t)Ey
� �

: (20)

The magnetic-field induced term is the so-called chiral magnetic
effect,49 which will be mentioned later. For concreteness, we
require that the region z � 0 (z . 0) be the topological insulator
(vacuum). The z dependence of θ(r, t) can be written in terms of
the Heaviside step function as θ(z) ¼ π[1� Θ(z)], since θ ¼ π

(θ ¼ 0) inside (outside) the topological insulator. Then, we obtain
@zθ ¼ �πδ(z), which gives rise to the half-quantized Hall conduc-
tivity at the topological insulator surface z ¼ 0.

E. Microscopic derivation of the θ term

So far, we have derived the topological magnetoelectric effect
[Eq. (2)] from a surface property of 3D topological insulators. In
this section, we derive the θ term microscopically from a low-
energy effective model of 3D topological insulators. There are
several ways to derive the θ term microscopically. One way is to use
the so-called Fujikawa’s method.50,51 Another way is the dimen-
sional reduction from (4+1)-dimensions to (3+1)-dimensions,9

which will be briefly mentioned in Sec. IV A. Here, we show the
derivation of the θ term based on Fujikawa’s method.

1. Effective Hamiltonian for 3D topological insulators

Let us start from the low-energy continuum model for proto-
typical 3D topological insulators such as Bi2Se3. The bulk electronic
structure of Bi2Se3 near the Fermi level is described by two
p-orbitals P1þz and P2�z with + denoting parity. Defining the basis
[jP1þz , "i, jP1þz , #i, jP2�z , "i, jP2�z , "i] and retaining the wave
vector k up to quadratic order, the low-energy effective Hamiltonian
around the Γ point is given by37,52

Heff (k) ¼

M(k) 0 A1kz A2k�

0 M(k) A2kþ �A1kz

A1kz A2k� �M(k) 0

A2kþ �A1kz 0 �M(k)

2

6

6

6

4

3

7

7

7

5

¼ A2kxα1 þ A2kyα2 þ A1kzα3 þM(k)α4, (21)

where k+ ¼ kx+ iky and M(k) ¼ m0 � B1k
2
z � B2k

2
?. The coeffi-

cients for Bi2Se3 estimated by a first-principles calculation read
m0 ¼ 0:28 eV, A1 ¼ 2:2 eV�Å, A2 ¼ 4:1 eVÅ, B1 ¼ 10 eVÅ2, and
B2 ¼ 56:6 eVÅ2.37,52 Here, note that we have introduced a basis
in Eq. (21) that is slightly different from that Refs. 37 and 52. The
4� 4 matrices αμ are given by the so-called Dirac representation,

αj ¼
0 σ j

σ j 0

� 	

, α4 ¼ 1 0
0 �1

� 	

, (22)

where the Clifford algebra {αμ, αν} ¼ 2δμν1 is satisfied. The above
Hamiltonian is nothing but an anisotropic 3D Dirac Hamiltonian
with a momentum-dependent mass.

Before proceeding to the derivation of the θ term, it is
informative to consider the lattice version of Eq. (21). Here,
recall that the Z2 invariant,

1,6–8 which identifies whether a phase
is topologically nontrivial or trivial, is calculated in lattice
models. This means that we cannot directly show that the phase
described by the effective Hamiltonian (21) represents a 3D
topological insulator. From this viewpoint, we need to construct
a lattice Hamiltonian from the continuum Hamiltonian (21).
The simplest 3D lattice is the cubic lattice. We replace ki and k2i
terms by ki ! sin ki and k2i ! 2(1� cos ki). Although this
replacement is valid only when ki � 1, as is shown below, it
turns out that this replacement describes the topological insula-
tor phase. We also simplify the coefficients to obtain the isotro-
pic lattice Hamiltonian

Heff (k) ¼ �hvF(α1 sin kx þ α2 sin ky þ α3 sin kz)

þ m0 þ r
X

i¼x,y,z

(1� cos ki)

" #

α4, (23)

where we have defined �hvF ¼ A1 ¼ A2 and r ¼ �2B1 ¼ �2B2. As
is mentioned below, the Hamiltonian (23) is also called the
Wilson–Dirac Hamiltonian,53–55 which was originally intro-
duced in lattice quantum chromodynamics.

In cubic lattices, the eight time-reversal invariant momenta
Λα , which are invariant under ki ! �ki, are given by (0, 0, 0),
(π=a, 0, 0), (0, π=a, 0), (0, 0, π=a), (π=a, π=a, 0), (π=a, 0, π=a),
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(0, π=a, π=a), and (π=a, π=a, π=a), where a is the lattice constant.
We can calculate the Z2 invariant of the system as6,8

(� 1)ν ¼
Y

8

α¼1

sgn m0 þ r
X

i¼x,y,z

(1� cosΛi
α)

" #

¼ �1 (0 . m0=r . �2, � 4 . m0=r . �6)

þ1 (m0=r . 0, � 2 . m0=r . �4, � 6 . m0=r):




(24)

Indeed, the topological insulator phase with 0 . m0=r . �2 satis-
fies the above realistic value for Bi2Se3; m0=r ≏ �0:1, where we
have assumed the value of the lattice constant as a ¼ 3 Å.

It should be noted here that the lattice Dirac Hamiltonian (23)
is exactly the same as the Hamiltonian of the Wilson fermions,
which was originally introduced in the lattice gauge theory to avoid
the fermion doubling problem.53 Namely, we can see that Eq. (23)
around the Γ point (0, 0, 0) represents the usual (continuum)
massive Dirac fermions with mass m0, while Eq. (23) around other
momentum points, e.g., (π=a, 0, 0), represent massive Dirac fermi-
ons with the mass m0 þ 2r.

2. Fujikawa’s method

Now, let us return to the continuum Hamiltonian (21) to
obtain the θ term. As we have seen in Eq. (24), the lattice
Hamiltonian (23) describes a topological insulator when
0 . m0=r . �2. Without loss of generality, we can set m0 , 0 and
r . 0. Then, the Hamiltonian (21) with m0 , 0 and r . 0, which
describes a topological insulator, around the Γ point can be simpli-
fied by ignoring the terms second-order in ki as

HTI(k) ¼ �hvFk � α þm0α4, (25)

where m0 , 0. Except for the negative mass m0, this is the usual
Dirac Hamiltonian. In the presence of an external electromagnetic
vector potential A, minimal coupling results in k ! k þ eA, with
e . 0 being the magnitude of the electron charge. In the presence of
an external electromagnetic scalar potential A0, the energy density is
modified as ψyH0ψ ! ψy(H0 � eA0)ψ . Using these facts, the action
of the system in the presence of an external electromagnetic four
potential Aμ ¼ (A0, � A) is written in the usual relativistic form,56

STI ¼
ð

dtd3r ψy i(@t � ieA0)� [HTI(k þ eA)]f gψ

¼
ð

dtd3r �ψ[iγμ(@μ � ieAμ)�m0]ψ , (26)

where ψy(r, t) is a fermionic field representing the basis of the
Hamiltonian (21) and �ψ ¼ ψyγ0. Here, the gamma matrices γμ are
given by the so-called Dirac representation as

γ0 ¼ α4 ¼
1 0

0 �1

� 	

, γ j ¼ α4αj ¼
0 σ j

�σ j 0

� 	

,

γ5 ¼ iγ0γ1γ2γ3 ¼ 0 1

1 0

� 	

, (27)

which satisfy the relation {γμ, γν} ¼ 2gμν with gμν ¼ diag(þ1,
�1, �1, �1) being the metric tensor. It is convenient to study the
system in the imaginary time notation, i.e., in Euclidean spacetime.
Namely, we rewrite t, A0, and γ j as t ! �iτ, A0 ! iA0, and γ j !
iγ j (j ¼ 1, 2, 3). The Euclidean action of the system is then written as

SETI ¼ �iSTI ¼
ð

dτd3r �ψ[γμ(@μ � ieAμ)�m0e
iπγ5 ]ψ , (28)

where we have used the fact that m0 ¼ �m0( cos π þ iγ5 sin π)
¼ �m0e

iπγ5 . Note that γ0 and γ5 are unchanged (γ0 ¼ γ0 and
γ5 ¼ γ5), so that the anticommutation relation {γμ, γν} ¼ 2δμν is sat-
isfied. Note also that, in Euclidean spacetime, we do not distinguish
between superscripts and subscripts.

Now, we are in a position to apply Fujikawa’s method50,51 to
the action (28). First, let us consider an infinitesimal chiral trans-
formation defined by

ψ ! ψ 0 ¼ e�iπdfγ5=2ψ , �ψ ! �ψ 0 ¼ �ψe�iπdfγ5=2, (29)

where f [ [0, 1]. Then, the partition function Z is transformed as

Z ¼
ð

D[ψ , �ψ] e�SETI[ψ ,�ψ] ! Z0 ¼
ð

D[ψ 0, �ψ 0] e�S
0E
TI[ψ

0 ,�ψ 0]: (30)

The θ term comes from the Jacobian defined by D[ψ 0, �ψ 0] ¼
JD[ψ , �ψ]. The action (28) is transformed as

S
0E
TI ¼

ð

dτd3r �ψ[γμ(@μ � ieAμ)�m0e
iπ(1�df)γ5 ]ψ

þ i

2
π

ð

dτd3rdf @μ(�ψγμγ5ψ): (31)

The Jacobian is written as50,51

J ¼ exp �i

ð

dτd3rdf
πe2

32π2�hc
εμνρλFμνFρλ

� 	

: (32)

Here, Fμν ¼ @μAν � @νAμ, and we have written �h and c explicitly.
We repeat this procedure infinite times, i.e., integrate with respect
to the variable f from 0 to 1. Due to the invariance of the partition
function, finally, we arrive at the following expression of SETI:

SETI ¼
ð

dτd3r �ψ[γμ(@μ � ieAμ)�m0]ψ

þ i

ð

dτd3r
πe2

32π2�hc
εμνρλFμνFρλ, (33)

where we have dropped the irrelevant surface term. The first term
is the action of a topologically trivial insulator, since the mass �m0

is positive. The second term is the θ term in the imaginary time,
and we obtain Eq. (15) by substituting τ ¼ it.
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F. Toward observations of the topological
magnetoelectric effect

1. Utilizing topological insulator thin films

As we have seen in Sec. II D, the experimental realization of
the topological magnetoelectric effect in topological insulators
requires that all the surface Dirac states are gapped by the magnetic
proximity effect or magnetic doping, resulting in the zero anoma-
lous Hall conductivity of the system. However, such an experimen-
tal setup is rather difficult to be realized. As an alternate route to
realize the topological magnetoelectric effect, it has been proposed
theoretically that the ν ¼ 0 quantum Hall state, which attributes to
the difference between the Landau levels of the top and bottom
surface Dirac states, can be utilized.57,58 The ν ¼ 0 quantum Hall
state has been experimentally observed in topological insulator
(Bi1�xSbx)2Te3 films,59 as shown in Fig. 4(a). The two-component
Dirac fermions in a magnetic field are known to show the quantum
Hall effect with the Hall conductivity,

σxy ¼ nþ 1
2

� �

e2

h
, (34)

where n is an integer. Note that, as we have seen in Eq. (9), the 1
2

contribution arises as a Berry phase effect. The total Hall conduc-
tivity contributed from the top and bottom surfaces of a topological
insulator film in a magnetic field is then written as

σxy ¼ nT þ nB þ 1ð Þ e
2

h
; ν

e2

h
: (35)

The ν ¼ 0 quantum Hall state is realized when the Landau
levels of the top and bottom surface states are NT ¼ �N � 1 and
NB ¼ N (and vice versa), where N is an integer.57 This state cor-
responds to nT ¼ �N � 1 and nB ¼ N in Eq. (35), which can be

achieved in the presence of an energy difference between the two
surface states, as shown in Fig. 4(b). Here, recall that the electron
density is given by ne ¼ σxyB=e, with B being the magnetic field
strength and e being the elementary charge. Using this fact, the
charge densities (ρ ¼ �ene) at the top and bottom surfaces are
obtained as ρT ¼ (N þ 1

2 )Be
2=h and ρB ¼ �(N þ 1

2 )Be
2=h, respec-

tively. We consider the case of N ¼ 0, which is experimentally
relevant.59 The induced electric polarization in a topological
insulator film of thickness d reads

P ¼ 1
2d

dρT þ (�d)ρB½ 	 ¼ e2

2h
B, (36)

which is indeed the topological magnetoelectric effect with the quan-
tized coefficient θ ¼ π. Note that the case of N = 0, which gives
rise to θ ¼ (2N þ 1)π, still describes the topological magnetoelectric
effect, since θ ¼ π modulo 2π. Another route to realize the topologi-
cal magnetoelectric effect is a magnetic heterostructure in which the
magnetization directions of the top and bottom magnetic insulators
are antiparallel.57,58 Several experiments have succeeded in fabricat-
ing magnetic heterostructures that exhibits a zero Hall plateau.60–62

In Ref. 60, a magnetic heterostructure consisting of a magnetically
doped topological insulator Cr-doped (Bi,Sb)2Te3 and a topological
insulator (Bi,Sb)2Te3 was grown by molecular beam epitaxy. A zero
Hall conductivity plateau was observed in this study as shown in
Fig. 5, implying an axion insulator state. In Ref. 62, a magnetic heter-
ostructure of a topological insulator (Bi,Sb)2Te3 sandwiched by two
kinds of magnetically doped topological insulators V-doped (Bi,Sb)2
Te3 and Cr-doped (Bi,Sb)2Te3 was grown by molecular beam
epitaxy. Importantly, as shown in Fig. 6, the antiparallel magnetiza-
tion alignment of the top and bottom magnetic layers was directly
observed by magnetic force microscopy when the system exhibited a
zero Hall resistivity plateau. Note, however, that the above experi-
ments did not make a direct observation of the magnetoelectric

FIG. 4. (a) Quantum Hall effect in a topological insulator (Bi1�xSbx )2Te3 thin
film. (b) Schematic illustration of the Landau levels of the top and bottom
surface states in the presence of an energy difference between the two surfa-
ces. Reproduced with permission from Yoshimi et al., Nat. Commun. 6, 6627
(2015). Copyright 2015 Springer Nature.

FIG. 5. (a) Schematic illustration of the magnetic heterostructure. Red arrows
indicate the magnetization directions. (b) The observed Hall conductivity as a
function of an external magnetic field. Reproduced with permission from Mogi
et al., Nat. Mater. 16, 516 (2017). Copyright 2017 Springer Nature.
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effect, i.e., the electric polarization induced by a magnetic field or the
magnetization induced by an electric field.

2. Faraday and Kerr rotations

As has been known in particle physics12,63 before the discovery
of 3D topological insulators, the θ term modifies the Maxwell’s
equations. Since the Maxwell’s equations describe electromagnetic
wave propagation in materials, the presence of the θ term leads to
unusual optical properties such as the quantized Faraday and Kerr
rotations in topological insulators,9,64,65 which can be viewed as a
consequence of the topological magnetoelectric effect. To see
this, let us start from the total action of an electromagnetic field
Aμ ¼ (A0, �A) in the presence of a θ term is given by

S ¼
ð

dtd3r
α

4π2
θE � B� 1

16π

ð

dtd3r FμνF
μν , (37)

where α ¼ e2=�hc ≃ 1=137 is the fine-structure constant and
Fμν ¼ @μAν � @νAμ is the electromagnetic field tensor. The electric
and magnetic fields are, respectively, given by E ¼ �∇A0 �
(1=c)@A=@t and B ¼ ∇� A. Note that E � B ¼ (1=8)εμνρλFμνFρλ
and FμνF

μν ¼ 2(B2=μ0 � ε0E
2). Here, recall that the classical equa-

tion of motion for the field Aμ is obtained from the Euler–Lagrange
equation,

δS

δAμ

¼ @L

@Aμ

� @ν
@L

@(@νAμ)

� �

¼ 0, (38)

where L is the Lagrangian density of the system. From Eqs. (37)
and (38), one finds that the Maxwell’s equations are modified in
the presence of a θ term9,12,63

∇ � E ¼ 4πρ� 2α∇
θ

2π

� �

� B,

∇� E ¼ � 1
c

@B

@t
,

∇ � B ¼ 0,

∇� B ¼ 4π
c
J þ 1

c

@E

@t
þ 2α

c

@

@t

θ

2π

� �

Bþ c∇
θ

2π

� �

� E

� 	

:

(39)

The ∇θ terms in Eq. (39) play roles when there is a boundary, e.g.,
gives rise to the surface Hall current as we have seen in Eq. (20).

The modified Maxwell’s Eq. (39) can be solved under the
boundary conditions (see Fig. 7). It is found that the Faraday and
Kerr rotation angles are independent of the material (i.e., topologi-
cal insulator thin film) parameters such as the dielectric constant
and thickness.64,65 Specifically, in the quantized limit, the Faraday
and Kerr rotation angles are given, respectively, by64,65

θF ¼ tan�1 (α) ≃ α, θK ¼ tan�1 (1=α) ≃
π

2
: (40)

These quantized angles have been experimentally observed in the
anomalous Hall state66 and the quantum Hall state [Fig. 8(a)].67,68

Also, as predicted in Ref. 64, a universal relationship in units of the
fine-structure constant α between the Faraday and Kerr rotation
angles has been observed [Fig. 8(b)].66,67

III. AXION INSULATORS

In Sec. II, we have seen that the topological magnetoelectric
effect with the quantized coefficient θ ¼ π (mod 2π) occurs in 3D
time-reversal invariant topological insulators. In general, the value of

FIG. 6. Magnetic field dependence of (a) Hall resistivity and (b) magnetic
domain contrasts. (c)–( j) Magnetic force microscopy images of the magnetic
domains. Red and blue represent, respectively, upward and downward parallel
magnetization alignment regions, while green represents antiparallel magnetiza-
tion alignment regions. Reproduced with permission from Xiao et al., Phys. Rev.
Lett. 120, 056801 (2018). Copyright 2018 American Physical Society.

FIG. 7. Schematic figure of a measurement of the quantized Faraday and Kerr
rotations in a topological insulator thin film. Reproduced with permission from
Maciejko et al., Phys. Rev. Lett. 105, 166803 (2010). Copyright 2010 American
Physical Society.

Journal of
Applied Physics

TUTORIAL scitation.org/journal/jap

J. Appl. Phys. 129, 141101 (2021); doi: 10.1063/5.0038804 129, 141101-9

© Author(s) 2021

https://aip.scitation.org/journal/jap


θ is no longer quantized and becomes arbitrary in systems with
broken time-reversal symmetry. However, in a class of 3D antiferro-
magnetic insulators, an “effective” time-reversal symmetry repre-
sented by a combination of time-reversal and a lattice translation is
present, leading to the topological magnetoelectric effect with the
quantized coefficient θ ¼ π (mod 2π). In this section, we review the-
oretical and experimental studies on such antiferromagnetic topologi-
cal insulators, which are also called the axion insulators. Starting
from the basics of the antiferromagnetic topological insulators, we
focus on the MnBi2Te4 family of materials that are layered van der
Waals compounds and have recently been experimentally realized.

A. Quantized magnetoelectric effect in
antiferromagnetic topological insulators

Following Ref. 69, we consider a class of insulators in which
time-reversal symmetry is broken but the combined symmetry of
time-reversal and a lattice translation is preserved. We note here
that the presence or absence of inversion symmetry does not
affect their topological classification, although the presence of
inversion symmetry greatly simplifies the evaluation of their
topological invariants as in the case of time-reversal invariant
topological insulators.8 Let us start from some general arguments
on symmetry operations. The time-reversal operator Θ for
spin-1/2 systems is generically given by Θ ¼ iσyK with Θ

2 ¼ �1,
where σ i are Pauli matrices and K is complex conjugation opera-
tor. In the presence of time-reversal symmetry, the Bloch

Hamiltonian of a system H(k) satisfies

ΘH(k)Θ�1 ¼ H(�k): (41)

Recall that momentum is the generator of lattice translation. An
operator that denotes a translation by a vector x is given by
T(x) ¼ e�ik�x . Then, the translation operator that moves a lattice
by half a unit cell in the a3 direction is written as

T1=2 ¼ e�(i=2)k�a3 0 1

1 0

� 	

, (42)

where a3 is a primitive translation vector and 1 is an identity
operator that acts on the half of the unit cell.69 One can see that
T2
1=2 gives a translation by a3 because T2

1=2 ¼ e�ik�a3 . Now, we con-
sider the combination of Θ and T1=2 defined by S ¼ ΘT1=2. It
follows that S2 ¼ �e�ik�a3 , which means that the operator S is
antiunitary like Θ. Here, we have used the fact that Θ and T1=2 are
commute. Note, however, that S2 ¼ �1 only on the Brillouin zone
plane satisfying k � a3 ¼ 0, while Θ2 ¼ �1. When a system is invari-
ant under the operation S, the Bloch Hamiltonian H(k) satisfies

SH(k)S�1 ¼ H(�k), (43)

which has the same property as time-reversal symmetry in Eq. (41).
Therefore, the Z2 topological classification can also be applied in
systems with the S symmetry.69,70 Figure 9 shows a schematic illustra-
tion of an antiferromagnetic topological insulator protected by the
S ¼ ΘT1=2 symmetry. In this simple model, the unit cell consists of
nonmagnetic equivalent A1 and A2 atomic layers and antiferromag-
netically ordered B1 and B2 atomic layers. The half-uni-cell transla-
tion T1=2 moves the B1 layer to the B2 layer, and time-reversal Θ
changes a spin-up state into a spin-down state. Therefore, the system
is obviously invariant under the S ¼ ΘT1=2 transformation.

Next, let us consider the resulting surface states. Since S2 ¼ �1
on the Brillouin zone plane satisfying k � a3 ¼ 0, the 2D subsystem
on the (k1, k2) plane is regarded as a quantum spin-Hall system with

FIG. 8. (a) Magnetic field dependence of the Faraday rotation angle. From
Dziom et al., Nat. Commun. 8, 15197 (2017). Copyright 2017 Author(s),
licensed under a Creative Commons Attribution (CC BY) License. (b) Evolution

of the scaling function f (θF, θK) ¼ cot θF�cot θK
cot2 θF�2 cot θF cot θK�1

as a function of dc Hall

conductance towards the universal relationship f (θF, θK) ¼ α. From Okada
et al., Nat. Commun. 7, 12245 (2016). Copyright 2016 Author(s), licensed under
a Creative Commons Attribution (CC BY) license.

FIG. 9. Schematic illustration of an antiferromagnetic topological insulator
protected by the S ¼ ΘT1=2 symmetry.
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time-reversal symmetry. This means that the k1 or k2 dependence of
the surface spectra must be gapless because the k � a3 ¼ 0 line of the
surface states is the boundary of the 2D subsystem (the k � a3 ¼ 0
plane) in the bulk Brillouin zone. In other words, at the surfaces that
are parallel to a3, which preserve the S symmetry, there exist an odd
number of gapless surface states (as in the case of a strong time-
reversal invariant topological insulator). On the other hand, at the
surfaces that are perpendicular to a3, which break the S symmetry,
such a topological protection of the surface states no longer exists,
and the surface states can have gapped spectra.

As we have seen above, the presence of S symmetry results in a
realization of a new 3D topological insulator. This implies that such
topological insulators exhibit a quantized magnetoelectric effect
described by a θ term, as in the case of time-reversal invariant 3D
topological insulators. To see this, recall that the magnetoelectric
effect resulting from a θ term is expressed as P ¼ θe2=(4π2�hc)B,
and M ¼ θe2=(4π2�hc)E, where P and M are the electric polarization
and the magnetization, respectively. Under time-reversal Θ, the
coefficient θ changes sign θ ! �θ, because P ! P and E ! E,
while M ! �M and B ! �B. On the other hand, the lattice trans-
lation T1=2 does not affect θ.69 Combining these, the S operation
implies the transformation such that θ ! �θ þ 2πn with n being
an integer. Then, it follows that θ ¼ 0 or θ ¼ π modulo 2π.

B. MnBi2Te4

1. Electronic structure of MnBi2Te4 bulk crystals

With the knowledge of antiferromagnetic topological insula-
tors with the S symmetry, here we review recent experimental reali-
zations of the antiferromagnetic topological insulator state in
MnBi2Te4.

71–81 The crystal structure of MnBi2Te4 is shown in
Fig. 10. The septuple layer consisting of Te–Bi–Te–Mn–Te–Bi–Te
is stacked along the [0001] direction by van der Waals forces. A
theoretical calculation of the exchange coupling constants between

Mn atoms shows that the intralayer coupling in each Mn layer is
ferromagnetic, while the interlayer coupling between neighboring
Mn layers is antiferromagnetic.71 The magnetic ground state is thus
considered to be antiferromagnetic with the Néel vector pointing
the out-of-plane direction (i.e., the z direction), which is called
A-type AFM-z. The Néel temperature is reported to be about
25 K.71,74,79,81 The unit cell of the antiferromagnetic insulator state
consists of two septuple layers (Fig. 10), where τc1=2 is the half-cell
translation vector along the c axis that connects nearest spin-up and
spin-down Mn atomic layers. It can be easily seen that this inter-
layer antiferromagnetism between the Mn atonic layers preserves
the S ¼ Θτc1=2 symmetry, indicating that the system is a topological
antiferromagnetic insulator, which we have discussed in Sec. III A.
Interestingly, the bulk bandgap is estimated to be about 0.2 eV,71,72

which is comparable to that of the time-reversal invariant topologi-
cal insulator Bi2Se3.

The A-type AFM-z state is invariant under spatial inversion
P1 with the inversion center located at the Mn atomic layer in each
septuple layers. Importantly, P2Θ symmetry, the combination of
spatial inversion P2 with the inversion center located between two
septuple layers and time-reversal Θ, is also preserved. The presence
of P2Θ symmetry leads to doubly degenerate bands even in the
absence of time-reversal symmetry.73,82,83 Here, following Refs. 72
and 97, we derive the low-energy effective Hamiltonian of the
A-type AFM-z state. P2Θ symmetry requires that

(P2Θ)H(k)(P2Θ)
�1 ¼ H(k), (44)

since momentum k changes sign under both P2 and Θ. As in the
case of Bi2Se3 [Eq. (21)], the low-energy effective Hamiltonian of
the nonmagnetic state of MnBi2Te4 around the Γ point is written
in the basis of [jP1þz , "i, jP1þz , #i, jP2�z , "i, jP2�z , "i], where the
states jP1þz , "#i and jP2�z , "#i come from the pz orbitals of Bi
and Te, respectively.72 In this basis, P2 ¼ τz 
 1 and
Θ ¼ 1
 iσyK , where τ i and σ i act on the orbital and spin spaces,
respectively, and K is complex conjugation operator. P2Θ symmetry
constrains the possible form of the 4� 4 Bloch Hamiltonian
H(k) ¼ P

i,j dij(k)τ i 
 σ j. It follows that the following five matrices
and the identity matrix are allowed by P2Θ symmetry:

τx 
 σx , τx 
 σy , τx 
 σz , τy 
 1, τz 
 1, (45)

due to the property (P2Θ)(τ i 
 σ j)(P2Θ)
�1 ¼ τ i 
 σ j. Note that

these five matrices anticommute with each other, leading to doubly
degenerate energy eigenvalues. Using these five matrices, the low-
energy effective Hamiltonian around the Γ point is written as72,97

H(k) ¼ τx(A2kyσx � A2kxσy þm5σz)þ A1kzτy þM(k)τz , (46)

where M(k) ¼ M þ B1k
2
z þ B2(k2x þ k2y). The mass m5 is induced by

the antiferromagnetic order. One can see that the Hamiltonian (46)
is invariant under both P2 and Θ when m5 ¼ 0. Indeed, the surface
states of the lattice model constructed from Eq. (46) in a slab geome-
try in the z direction exhibit the half-quantized anomalous Hall con-
ductivity σxy ¼+sgn(m5)e2=2h, implying the axion insulator state.97

FIG. 10. Crystal and magnetic structure of the antiferromagnetic topological
insulator state in MnBi2Te4. The unit cell consists of two septuple layers. τc1=2 is
the half-cell translation vector along the c axis that connects nearest spin-up
and spin-down Mn atomic layers. From Hao et al., Phys. Rev. X 9, 041038
(2019). Copyright 2019 Author(s), licensed under a Creative Commons
Attribution (CC BY) license.
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The surface states of antiferromagnetic MnBi2Te4 are some-
what complicated. Theoretical studies have predicted that the
(0001) surface state (i.e., at the surface perpendicular to the z axis)
which breaks the S symmetry of the A-type AFM-z state is
gapped,71,72 as indicated by the property of antiferromagnetic topo-
logical insulators (see Sec. III A). The first experimental study
reported that the (0001) surface state is gapped.71 However, subse-
quent studies reported that it is gapless.77–79,84,85 Figure 11(a)
shows an ARPES measurement of the bulk and surface states, in
which the surface state is clearly gapless Dirac cone at the (0001)
surface. Among possible spin configurations that are allowed by
symmetry, Ref. 77 proposed that the gapless surface state is pro-
tected by the mirror symmetry Mx, while the S symmetry is broken
at the surface. (Note that the mirror symmetry Mx is broken in the
A-type AFM-z state.) In other words, A-type AFM with the mag-
netic moments along the x axis (i.e., the in-plane direction), whose
bulk and surface spectra obtained by a first-principles calculation is
shown in Fig. 11(b), might be realized in MnBi2Te4 instead of the

A-type AFM-z shown in Fig. 11(c). These observations of the
gapless surface states imply the occurrence of a surface-mediated
spin reconstruction.

As pointed in Ref. 72, it should be noted here that the
antiferromagnetic order in MnBi2Te4 is essentially different
from such an antiferromagnetic order in Fe-doped Bi2Se3
which has been proposed to realize a dynamical axion field.20

In the latter case, time-reversal Θ and inversion symmetries
are both broken, allowing the deviation of the value of θ from
π. The antiferromagnetic fluctuation contributes to the dynam-
ical axion field at linear order in the Néel field. In contrast, in
MnBi2Te4, an effective time-reversal S symmetry and inversion
symmetry are both preserved, keeping the quantization θ ¼ π

and making no contribution to the dynamical axion field at
linear order in the Néel field.

2. Transport properties of MnBi2Te4 thin films

Due to the intralayer ferromagnetism and interlayer antifer-
romagnetism of the Mn layers, the layered van der Waals crystal
MnBi2Te4 exhibit interesting properties in its few-layer thin films.
In even-septuple-layer films, P2 and Θ symmetries are both
broken, but P2Θ symmetry is preserved.73 As we have seen above,
the presence of P2Θ symmetry leads to doubly degenerate bands.
On the other hand, in odd-septuple-layer films, P1 symmetry is
preserved, but Θ and P1Θ symmetries are both broken, leading to
spin-split bands.73 Consequently, the Chern number is zero in
even-septuple-layer films as required by the P2Θ symmetry, while
the Chern number in odd-septuple-layer films can be nonzero.
Indeed, first-principles calculations show that there exist gapless
chiral edge states in odd-septuple-layer films, whereas there do
not in even-septuple-layer films.73,86 It should be noted that the
zero-Chern-number state with σxy ¼ 0 is realized by the combina-
tion of half-quantized anomalous Hall states with opposite con-
ductivities σxy ¼+e2=2h at the top and bottom surfaces, as
shown in Fig. 12(a). In other words, this state is an axion insula-
tor exhibiting a topological magnetoelectric effect with the quan-
tized coefficient θ ¼ π (see Sec. II D for a phenomenological
derivation of the topological magnetoelectric effect). In contrast,
even-septuple-layer films have the quantized anomalous Hall con-
ductivity σxy ¼+e2=h that results from the half-quantized anom-
alous Hall conductivity σxy ¼+e2=2h of the same sign at the top
and bottom surfaces, giving rise to the Chern number C ¼+1 as
shown in Fig. 12(b).

Experimental observations that are consistent with theoreti-
cal predictions have been made. Figure 13 shows the resistivity
measurement in a six-septuple-layer MnBi2Te4 film,87 in which
an axion insulator behavior with a zero Hall plateau at the zero
magnetic field and a Chern insulator behavior with the quantized
Hall resistivity h=e2 in a strong magnetic field were clearly
observed. Also, the change in the Chern number between
C ¼+1 was observed in response to the change in the magnetic
field direction. Figure 14 shows the resistivity measurement in a
five-septuple-layer MnBi2Te4 film,88 in which a quantum anoma-
lous Hall effect with the quantized Hall resistivity h=e2 was clearly
observed.

FIG. 11. (a) Bulk and surface spectra of MnBi2Te4 obtained by an ARPES mea-
surement. Bulk and surface spectra of MnBi2Te4 obtained by a first-principles
calculation, which assumes (b) A-type AFM with the magnetic moments along
the x axis and (c) A-type AFM with the magnetic moments along the z axis.
From Hao et al., Phys. Rev. X 9, 041038 (2019). Copyright 2019 Author(s),
licensed under a Creative Commons Attribution (CC BY) license.
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C. MnBi2Te4 family of materials

Taking advantage of the nature of van der Waals materials,
the layered van der Waals heterostructures of (MnBi2Te4)m
(Bi2Te3)n can be synthesized. Here, it is well known that Bi2Te3 is
a time-reversal invariant topological insulator.37 So far, MnBi4Te7
(m ¼ n ¼ 1)89–93 and MnBi6Te10 (m ¼ 1 and n ¼ 2)89,93,94 have
been experimentally realized. Figure 15 shows schematic illustra-
tions of MnBi4Te7 and MnBi6Te10 and their STEM images. In
MnBi4Te7, a quintuple layer of Bi2Te3 and a septuple layer of
MnBi2Te4 stack alternately. In MnBi6Te10, two quintuple layers
of Bi2Te3 are sandwiched by septuple layers of MnBi2Te4. As in
the case of MnBi2Te4, interlayer antiferromagnetism (between
Mn layers) develops with a Néel temperature TN ¼ 13 K in
MnBi4Te7

89,90,93 and TN ¼ 11 K in MnBi6Te10,
93 and this anti-

ferromagnetic insulator state is protected by the S ¼ ΘT1=2 sym-
metry, which indicates that MnBi4Te7 and MnBi6Te10 are also
antiferromagnetic topological insulators. It was reported that,

due to the gradual weakening of the antiferromagnetic exchange
coupling associated with the increasing separation distance
between Mn layers, a competition between antiferromagnetism
and ferromagnetism occurs at low temperature � 5 K.89,90 A mag-
netic phase diagram of MnBi4Te7 is shown in Fig. 16. Also, two
distinct types of topological surface states are realized depending
on the Bi2Te3 quintuple-layer termination or the MnBi2Te4
septuple-layer termination.91,92 ARPES studies showed that the
Bi2Te3 quintuple-layer termination gives rise to gapped surface
states, while the MnBi2Te4 septuple-layer termination gives rise to
gapless surface states.91,92 Note that these terminations break the
S symmetry, which implies in principle gapped surface states
(see Sec. III A). It is suggested that the gap opening in the
Bi2Te3 quintuple-layer termination can be explained by the mag-
netic proximity effect from the MnBi2Te4 septuple layer beneath
and that the gaplessness in MnBi2Te4 septuple-layer termination
can be explained by the restoration of time-reversal symmetry at

FIG. 12. Schematic illustration of (a) an axion insulator state realized in an even-septuple-layer MnBi2Te4 film and (b) a quantum anomalous Hall insulator state realized
in an odd-septuple-layer MnBi2Te4 film. In even-septuple-layer (odd-septuple-layer) films, the anomalous Hall conductivities of the top and bottom surfaces are opposite
(the same) to each other, resulting in the total anomalous Hall conductivity σxy ¼ 0 (σxy ¼+e2=h), or equivalently, the Chern number C ¼ 0 (C ¼+1). From Li et al.,
Sci. Adv. 5, eaaw5685 (2019). Copyright 2019 Author(s), licensed under a Creative Commons Attribution (CC BY) license.

FIG. 13. Resistivity measurement in a six-septuple-layer MnBi2Te4 film,
showing (a) an axion insulator behavior with a zero Hall plateau at zero mag-
netic field and (b) a Chern insulator behavior with the quantized Hall resistivity
h=e2 in a magnetic field of 9 T. Reproduced with permission from Liu et al.,
Nat. Mater. 19, 522 (2020). Copyright 2020 Springer Nature.

FIG. 14. Resistivity measurement in a five-septuple-layer MnBi2Te4 film,
showing a quantum anomalous Hall effect with the quantized transverse resistiv-
ity h=e2 at the zero magnetic field. Reproduced with permission from Deng
et al., Science 367, 895 (2020). Copyright 2020 American Association for the
Advancement of Science.
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the septuple-layer surface due to disordered spin.92 On the other
hand, an ARPES study of MnBi6Te10 observed a gapped Dirac
surface state in the MnBi2Te4 septuple-layer termination.94

Since the bulk crystals of MnBi4Te7 and MnBi6Te10 are real-
ized by van der Waals forces, various heterostructures in the 2D
limit, which are made from the building blocks of the MnBi2Te4
septuple layer and the Bi2Te3 quintuple layer, can be obtained by

exfoliation. A theoretical calculation shows that such 2D hetero-
structures exhibit the quantum spin-Hall effect without time-
reversal symmetry and the quantum anomalous Hall effect.95

Theoretically, it is suggested that (MnBi2Te4)(Bi2Te3)n is a higher-
order topological insulator hosting surface states with a Möbius
twist.96 In contrast to MnBi2Te4 in which the value of θ is quan-
tized to be π, it is suggested that the antiferromagnetic insulator
phases of Mn2Bi6Te11 (with m ¼ 2 and n ¼ 1)97 and Mn2Bi2Te5

98

in which the S symmetry is absent, break both time-reversal and
inversion symmetries, realizing a dynamical axion field.

D. EuIn2As2 and EuSn2As2

EuIn2As2 and EuSn2As2 have also been considered a candi-
date class of materials for antiferromagnetic topological insulators
with inversion symmetry.99 Different from MnBi2Te4 which is a
layered van der Waals material, EuIn2As2 has a three-dimensional
crystal structure as shown in Fig. 17. EuSn2As2 has a very similar
crystal and magnetic structure to EuIn2As2. Two metastable mag-
netic structures with the magnetic moments parallel to the b axis
(AFMk b) and the c axis (AFMk c) have been known in EuIn2As2
and EuSn2As2.

100,101 As in the case of MnBi2Te4, the antiferromag-
netic insulator phases of EuIn2As2 and EuSn2As2 are protected by
the S ¼ ΘT1=2 symmetry, with the half-unit-cell translation vector
connecting four Eu atoms along the c axis. Indeed, ARPES measure-
ments in EuIn2As2

102 and EuSn2As2
78 suggests that they are antifer-

romagnetic topological insulators. Theoretically, it is suggested that
antiferromagnetic EuIn2As2 (both AFMk b and AFMk c) is at the
same time a higher-order topological insulator with gapless chiral
hinge states lying within the gapped surface states.99

IV. EXPRESSIONS FOR θ IN INSULATORS

We have seen in Sec. II that time-reversal symmetry and inver-
sion symmetry impose the constraint on the coefficient θ of the
topological magnetoelectric effect such that θ ¼ π in 3D topologi-
cal insulators and θ ¼ 0 in 3D normal insulators. In this section,
first, we derive a generic expression for θ which is given in terms of

FIG. 15. Schematic illustrations of (a) MnBi4Te7 and (b) MnBi6Te10. STEM images
of (c) MnBi4Te7 and (d) MnBi6Te10, showing layered heterostrucrutures. Here, QL
and SL indicate a quintuple layer of Bi2Te3 and a septuple layer of MnBi2Te4,
respectively. From Wu et al., Sci. Adv. 5, eaax9989 (2019). Copyright 2019 Author
(s), licensed under a Creative Commons Attribution (CC BY) license.

FIG. 16. Magnetic phase diagram of MnBi4Te7 as functions of temperature and
out-of-plane magnetic field, showing a complex competition between antiferro-
magnetism (AFM) and ferromagnetism (FM). From Wu et al., Sci. Adv. 5,
eaax9989 (2019). Copyright 2019 Author(s), licensed under a Creative
Commons Attribution (CC BY) license.

FIG. 17. Crystal and magnetic structures of EuIn2As2. There are two metasta-
ble magnetic structures where the magnetic moments align parallel to (a) the b
axis and (b) the c axis. Reproduced with permission from Xu et al., Phys. Rev.
Lett. 122, 256402 (2019). Copyright 2019 American Physical Society.
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the Bloch-state wave function. Then, we show explicitly that the
value of θ can be arbitrary in a class of antiferromagnetic insulators
with broken time-reversal and inversion symmetries, taking a
microscopic tight-binding model called the Fu–Kane–Mele–
Hubbard (FKMH) model as an example.

A. General expression for θ from the dimensional
reduction

It is known that the chiral anomaly in (1+1) dimensions can
be derived from the dimensional reduction from the (2+1)D
Chern–Simons action. A similar way of deriving the effective action
of (3+1)D time-reversal invariant topological insulators from the
dimensional reduction from the (4+1)D Chern–Simons action was
considered in Ref. 9. To see this, let kw be the momentum in the
fourth dimension and (kx , ky , kz) be the momentum in 3D spatial
dimensions. The second Chern number in 4D momentum space
(kx , ky , kz , kw) is given by9,103,104

ν(2) ¼ 1
32π2

ð

d4k εijkltr fijfkl
� �

, (47)

where

fij ¼ @iAj � @jAi � i[Ai, Aj],

Aαβ
j ¼ ihuαj@kj juβi:

(48)

Here, juαi is the periodic part of the Bloch wave function of the
occupied band α. By substituting the explicit expression for fij (48)
into Eq. (47), we obtain

ν(2) ¼ 1
8π2

ð

d4k
@

@kw
ε4jkltr Aj@kAl �

2
3
iAjAkAl

� 	
 �

;

ð

dkw
@P3(kw)
@kw

, (49)

where j, k, l ¼ 1, 2, 3 indicate the 3D spatial direction. Here, note
that ε4jkl ¼ �ε jkl4

; �ε jkl due to the convention ε1234 ¼ 1. On the
other hand, the corresponding topological action in (4+1) dimen-
sion (x, y, z, w) is given by

S ¼ ν(2)

24π2

ð

dtd4x εμνρστAμ@νAρ@σAτ , (50)

which can be rewritten as

S ¼ ν(2)

8π2

ð

dtd3xdw ε4νρστA4@νAρ@σAτ

¼ 1
32π2

ð

dtd3x θ(r, t)ενρστFνρFστ , (51)

where we have used the identity ε4νρστ ¼ ενρστ and defined
θ(r, t) ; ν(2)f. Here, f ¼

Þ

dw A4(r, w, t) can be regarded as the
flux due to the extra dimension. In analogy with the (1+1)D case
in which the first Chern number is given by ν(1) ¼

Ð

df@P=@f
with P the electric polarization, Eq. (49) indicates a relation

between the generalized polarization P3 and the Chern number
ν(2). Then, it follows that P3 ¼ ν(2)f=2π. Finally, we arrive at a
general expression for θ,9,32

θ ¼ � 1
4π

ð

BZ
d3k εijktr Ai@jAk �

2
3
iAiAjAk

� 	

, (52)

where i, j, k ¼ 1, 2, 3, d3k ¼ dkxdkydkz , and the integration is
done over the Brillouin zone of the system. Equation (52) can be
derived more rigorously and microscopically, starting from a
generic Bloch Hamiltonian and its wave function.105,106 Figure 18
shows a numerically calculated value of θ using Eq. (52) and
other equivalent expressions for θ in the Fu–Kane–Mele model
on a diamond lattice with a staggered Zeeman field that breaks
both time-reversal and inversion symmetries.32 One can see that
the value of θ is no longer quantized once time-reversal symmetry
is broken and varies continuously between θ ¼ 0 corresponding
to the case of a normal insulator and θ ¼ π corresponding to the
case of a topological insulator.

B. Expression for θ in topological magnetic insulators

A generic expression for θ [Eq. (52)] is applicable to the arbi-
trary band structure. However, some techniques (such as choosing
a gauge for the Berry connection A) are required to calculate
numerically. On the other hand, it has been shown that there exists
an explicit expression for θ that can be calculated easily from the
Bloch Hamiltonian of a certain class of insulators with broken
time-reversal and inversion symmetries,20 which calculation does
not rely on a specific choice of gauge. Here, we consider a generic
4� 4 Bloch Hamiltonian of the form

H(k) ¼
X

5

i¼1

Ri(k)αi, (53)

FIG. 18. Numerically obtained value of θ in the Fu–Kane–Mele model on a
diamond lattice. Here, β ¼ tan�1 (jhj=δt1) with h(¼Un) being a staggered
Zeeman field in the [111] direction of the diamond lattice, and δt1 being the
hopping strength anisotropy due to the lattice distortion in the [111] direction.
When β ¼ π (β ¼ 0), the system is a topological (normal) insulator.
Reproduced with permission from Essin et al., Phys. Rev. Lett. 102, 146805
(2009). Copyright 2009 American Physical Society.
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with matrices αi satisfying the Clifford algebra {αi, αj} ¼ 2δij1.
Here, the matrix α4 is invariant under both time-reversal and
spatial inversion. Specifically, it has been known that the antiferro-
magnetic insulator phases of 3D correlated systems with spin–orbit
coupling, such as Bi2Se3 doped with magnetic impurities such as
Fe20 and 5d transition-metal oxides with the corundum struc-
ture,109 can be described by Eq. (53). More recently, it has been
suggested that van der Waals layered antiferromagnets such as
Mn2Bi6Te11

97 and Mn2Bi2Te5
98 can also be described by Eq. (53).

In such systems, we can calculate the value of θ using the following
expression:20,109

θ ¼ 1
4π

ð

BZ
d3k

2jRj þ R4

(jRj þ R4)
2jRj3

εijklRi

@Rj

@kx

@Rk

@ky

@Rl

@kz
, (54)

where i, j, k, l ¼ 1, 2, 3, 5, jRj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P5
i¼1 R

2
i

q

, and the integration is
done over the Brillouin zone.

1. Four-band Dirac model

Let us derive a simpler expression for θ in systems whose
effective continuum Hamiltonian is given by a massive Dirac
Hamiltonian. We particularly consider a generic Dirac Hamiltonian
with a symmetry-breaking mass term of the form

H(q) ¼ qxα1 þ qyα2 þ qzα3 þm0α4 þm5α5, (55)

which can be derived by expanding Eq. (53) around some momen-
tum points X and retaining only the terms linear in q ¼ k � X.
Here, the matrix α4 is invariant under both time-reversal and spatial
inversion and the matrix α5 ¼ α1α2α3α4 breaks both time-reversal
and inversion symmetries. In other words, the system has both time-
reversal and inversion symmetries when m5 ¼ 0. For concreteness,
we require that the system be a time-reversal invariant topological
insulator when m0 , 0, as we have considered in Eq. (25). The
action of the system in the presence of an external electromagnetic
potential Aμ is given by [see also Eq. (26)]

S ¼
ð

dtd3r �ψ(r, t) iγμ(@μ � ieAμ)�m0eiθγ
5

h i

ψ(r, t), (56)

where t is real time, ψ(r, t) is a four-component spinor, �ψ ¼ ψyγ0,

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(m0)
2 þ (m5)

2
p

, cos θ ¼ m0=m
0, sin θ ¼ �m5=m

0, and we
have used the fact that α4 ¼ γ0, α5 ¼ �iγ0γ5 and αj ¼ γ0γ j

(j ¼ 1, 2, 3). Here, the gamma matrices satisfy the identities
{γμ, γ5} ¼ 0 and {γμ, γν} ¼ 2gμν with gμν ¼ diag(1, �1, �1, �1)
(μ, ν ¼ 0, 1, 2, 3). One can see that the action (56) is identical to
Eq. (28), except for the generic value of θ in the exponent. By
applying Fujikawa’s method to the action (56), the θ term is
obtained as110,111

Sθ ¼
ð

dtd3r
e2

2πh
θE � B, (57)

where

θ ¼ π

2
[1� sgn(m0)]� tan�1 m5

m0

� �

: (58)

Here, the first term in Eq. (58) is 0 or π, which describes whether
the system is topologically trivial or nontrivial. The second term
in Eq. (58) describes the deviation from the quantized value due
to the m5 mass. Note that tan�1 (m5=m0) � m5=m0, i.e., the devi-
ation is proportional to m5 when m5 � m0.

2. Fu–Kane–Mele–Hubbard model on a diamond lattice

In Eq. (58), we have seen that the m5 mass term that breaks
both time-reversal and inversion symmetries generates a deviation
of the value of θ from the quantized value π or 0. Here, following
Ref. 110, we discuss a microscopic origin of this m5 mass term and
derive an expression for θ of the form of Eq. (58) in a 3D corre-
lated system with spin–orbit coupling. To this end, we start with
the Fu–Kane–Mele–Hubbard (FKMH) model on a diamond lattice,
whose tight-binding Hamiltonian is given by6,8,110,111

H¼
X

hi,ji,σ
tijc

y
iσc jσ þ i

4λ
a2

X

hhi,jii
c
y
iσ � (d1ij�d2ij)c jþU

X

i

ni"ni#, (59)

where c
y
iσ is an electron creation operator at a site i with spin

σ( ¼" , # ), niσ ¼ c
y
iσciσ , and a is the lattice constant of the fcc

lattice. d1ij and d2ij are the two vectors that connect two sites i and j on
the same sublattice. σ ¼ (σx , σy , σz) are the Pauli matrices for the
spin degree of freedom. The first through third terms in Eq. (59)
represent the nearest-neighbor hopping, the next-nearest-neighbor
spin–orbit coupling, and the on-site repulsive electron–electron inter-
actions, respectively.

In the mean-field approximation, the interaction term is

decomposed as U
P

i ni"ni# � U
P

i

h

hni#ini" þ hni"ini# � hni"i�

hni#i � hcyi"ci#ic
y
i#ci" � hcyi#ci"i � c

y
i"ci# þ hcyi"ci#ihc

y
i#ci"i

i

. The spin–

orbit coupling breaks spin SU(2) symmetry and, therefore, the
directions of the spins are coupled to the lattice structure. Hence,
we should parameterize the antiferromagnetic ordering between
the two sublattices A and B [see Fig. 19(a)] in terms of the spheri-
cal coordinate (n, θ, w),

hSi0Ai ¼ �hSi0Bi ¼ (n sin θ cosw, n sin θ sinw, n cos θ)

; n1ex þ n2ey þ n3ez (;n), (60)

where hSi0μi ¼ 1
2 hc

y
i0μασαβci0μβi (μ ¼ A, B) with i0 denoting the i0th

unit cell. It is convenient to express the mean-field Hamiltonian in
terms of the 4�4 α matrices that anticommute with each other. We
can define the basis ck ; [ckA", ckA#, ckB", ckB#]

T with the wave vector
k in the first Brillouin zone of the fcc lattice [see Fig. 19(b)]. Then, the

single-particle Hamiltonian HMF(k) [HMF ;
P

k c
y
kHMF(k)ck] is

written in the form of Eq. (53),6,8 where the alpha matrices αi are
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given by the so-called chiral representation,

αj ¼
σ j 0
0 �σ j

� 	

, α4 ¼ 0 1
1 0

� 	

, α5 ¼ 0 �i
i 0

� 	

, (61)

which satisfies {αi, αj} ¼ 2δij1 with α5 ¼ α1α2α3α4. In the present
basis, the time-reversal operator and spatial-inversion (parity) operator
are given by T ¼ 1
 (� iσ2)K (K is the complex conjugation opera-
tor) and P ¼ τ1 
 1, respectively. We have introduced the hopping
strength anisotropy δt1 due to the lattice distortion along the [111]
direction. Namely, we have set such that tij ¼ t þ δt1 for the [111]
direction, and tij ¼ t for the other three directions. When δt1 ¼ 0,
the system is a semimetal, i.e., the energy bands touch at the three
points Xr ¼ 2π(δrx , δry , δrz) (r ¼ x, y, z) with δxx ¼ δyy ¼ δzz ¼ 1
(and otherwise zero) indicating a Kronecker delta. Finite δt1 opens a
gap of 2jδt1j at the Xr points.

It is notable that, in the ground state characterized by the anti-
ferromagnetic order parameter (60), the Dirac Hamiltonians
around the Xr points acquire another mass induced by α5 that
breaks both time-reversal and inversion symmetries. In the strongly
spin–orbit coupled case when the condition Unf � 2λ (f ¼ 1, 2, 3)

is satisfied, we can derive the Dirac Hamiltonians around the ~X
r

points, which are slightly deviated from the Xr points,110

HMF(~X
r þ q) ¼ qxα1 þ qyα2 þ qzα3 þ δt1α4 þ Unf α5: (62)

Here, the subscript f can be regarded as the “flavor” of Dirac fermi-
ons. This Hamiltonian (62) has the same form as Eq. (55), which
means that Fujikawa’s method can be applied to derive the θ term
in the FKMH model. It follows that110

θ ¼ π

2
[1þ sgn(δt1)]�

X

f¼1,2,3

tan�1 Unf

δt1

� �

: (63)

Here, note that this expression for θ is valid only when the
symmetry-breaking mass Unf (f ¼ 1, 2, 3) is small so that the con-
dition Unf � 2λ is satisfied. In other words, the Dirac
Hamiltonian of the form (62) must be derived as the effective
Hamiltonian of the system.

A comparison of the analytical result [Eq. (63)] with a
numerical result obtained from Eq. (52) in Ref. 32 has been
made.110 In the numerical result (Fig. 18), in which the Néel
vector is set to be in the [111] direction as nx ¼ ny ¼ nz ; h=U ,
the value of θ has a linear dependence on β / h=δt1 when
Unf =δt1 � 1 (i.e., around β ¼ 0 or β ¼ π). Thus, the analytical
result [Eq. (63)] is in agreement with the numerical result when
the deviation from the quantized value (0 or π) is small, since in
Eq. (63), tan�1 (Unf =δt1) � Unf =δt1 when Unf =δt1 � 1.

C. Values of θ in real materials from first principles

In real materials, there are two contributions to the linear
magnetoelectric coupling: electronic and ionic (i.e., lattice) contri-
butions. These contributions can be further decomposed in to spin
and orbital parts. Among the electronic contribution, Eq. (52) rep-
resents on an electronic orbital contribution to the isotropic linear
magnetoelectric coupling. Here, note that there exist two additional
electronic orbital (but non-topological) contributions to the isotro-
pic linear magnetoelectric coupling.105,106 Cr2O3 is an antiferro-
magnetic insulator with broken time-reversal and inversion
symmetries and is well known as a material that exhibits a linear
magnetoelectric effect with αxx ¼ αyy and αzz . Figure 20 shows the
value of θ in Cr2O3 obtained from a first-principles calculation as a
function of the nearest-neighbor distance on the momentum-space
mesh Δk.36 The value of θ extrapolated in the Δk ¼ 0 limit is
θ ¼ 1:3� 10�3, which corresponds to αii ¼ 0:01 ps=m
(i ¼ x, y, z). This value is about two orders of magnitude smaller
than the experimentally observed value (i.e., full response) of the
linear magnetoelectric tensor in Cr2O3. The values of θ in other
conventional magnetoelectrics have also been evaluated in Ref. 36
as θ ¼ 0:9� 10�4 in BiFeO3 and θ ¼ 1:1� 10�4 in GdAlO3,
which are both very small compared to the quantized value π. As a
different approach, it has been proposed that the value of θ may be
extracted from experimental observed parameters.107,108

What are the conditions for larger values of θ in real materials?
It was also shown in Ref. 36, the value of θ in Cr2O3 is approximately
proportional to the spin–orbit coupling strength, which implies that
materials with strong spin–orbit coupling can have large values of θ.

FIG. 19. (a) Schematic illustration of the antiferromagnetic order between the
two sublattices (denoted by red and blue) in the FKMH model. (b) The first
Brillouin zone of an fcc lattice. Around the Xr points with r ¼ x, y, z (repre-
sented by green circles), massive Dirac Hamiltonians are derived.
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In addition, as we have seen in Secs. IV A and IV B, the breaking of
both time-reversal and inversion symmetries are necessary to induce
the deviation of θ from the quantized values π or 0. The value of θ
changes continuously from π [see Fig. 18 and Eq. (58)]. Therefore, a
system that lies near a topological insulator phase such as magneti-
cally doped topological insulators can be one of good candidate
systems. It is notable that if a material has a large value of θ( ≏ π),
then it will exhibit a significantly large magnetoelectric effect of
αii ¼ e2θ=[(4π2�hc)(cμ20)] ≏ 24 ps=m.

V. DYNAMICAL AXION FIELD IN TOPOLOGICAL
MAGNETIC INSULATORS

So far, we have seen the “static” expressions for θ in insulators. In
other words, we have not considered what happens in a system with a
θ term when the system is excited by external forces. In general, the
total value of θ can be decomposed into the sum of the static part (the
ground-state value) θ0 and the dynamical part δθ(r, t) as

θ(r, t) ¼ θ0 þ δθ(r, t): (64)

The dynamical part δθ(r, t) is often referred to as the dynamical
axion field,20 since the θ term has exactly the same form as the action
describing the coupling between a hypothetical elementary particle,
axion, and a photon. Namely, θ(r, t) in condensed matter can be
regarded as a (pseudoscalar) field for axion quasiparticles. In this
section, first, we derive the action of axion quasiparticles in topological
antiferromagnetic insulators. Then, we consider the consequences of
the realization of the dynamical axion field in the condensed matter.

A. Derivation of the action of axion quasiparticles

Here, following Refs. 20 and 111, we derive the action of
axion quasiparticles in topological antiferromagnetic insulators
whose effective Hamiltonian is given by a massive Dirac
Hamiltonian (55), which is applicable to magnetically doped

Bi2Se3 and the Fu–Kane–Mele–Hubbard model as we have seen.
In this case, the presence of the mass term m5α5 that breaks time-
reversal and inversion symmetries results in nonquantized values
of θ. Here, let us consider the fluctuation of m5 (which corre-
sponds to the fluctuation of the Néel field) denoted by m5 þ δm5,
and derive the action for δm5. For this purpose, it is convenient
to adopt a perturbative method. The action of the antiferromag-
netic insulator phase in the presence of an external electromag-
netic potential Aμ is written as [see Eq. (56)]

S ¼
ð

dtd3r �ψ(r, t) iγμDμ �m0 þ iγ5(m5 þ δm5)
� �

ψ(r, t), (65)

where Dμ ¼ @μ � ieAμ with e . 0 being the magnitude of the elec-
tron charge. By integrating out the fermionic field ψ , we obtain
the effective action Weff for δm5 and Aμ as

Z ¼
ð

D[ψ , �ψ] eiS ; eiWeff [δm5 ,Aμ]

¼ exp Tr ln G�1
0 (1þ G0V)

� �� 

¼ exp Tr lnG�1
0

� �

�
X

1

n¼1

1
n
Tr �G0Vð Þn

" #

: (66)

In order to obtain the action of the low-energy spin-wave excita-
tion, i.e., the antiferromagnetic magnon, we set the Green’s func-
tion of the unperturbed part as G0 ¼ (iγμ@μ �m0 þ iγ5m5)

�1,
and the perturbation term as V ¼ eγμAμ þ iγ5δm5. Note that we
have used that iγμDμ �m0 þ iγ5(m5 þ δm5) ¼ G�1

0 þ V . In the
random phase approximation, the leading-order terms read

iWeff [δm5, Aμ] ¼ � 1
2
Tr G0iγ

5δm5
� �2

þ Tr G0eγ
μAμ

� �2
G0iγ

5δm5
� �

h i

, (67)

where the first and second terms on the right-hand side corre-
spond to a bubble-type diagram and a triangle-type diagram,
respectively (see Fig. 21).

To compute the traces of the gamma matrices we use the fol-
lowing identities: tr(γμ) ¼ tr(γ5) ¼ 0, tr(γμγν) ¼ 4gμν ,
tr(γμγνγ5) ¼ 0, and tr(γμγνγργσγ5) ¼ �4iεμνρσ . The first term in
Eq. (67) is given explicitly by

W1 ¼
ð

d4q

(2π)4
Π(q)δm5(q)δm5(�q)

� iJ

ð

dtd3r (@tδm5)
2 � (vi@iδm5)

2 �m2(δm5)
2� �

: (68)

Here, J , vi, and m are the stiffness, velocity, and mass of the spin-
wave excitation mode, which are given, respectively, by20

J ¼ @2
Π(q)
@q20

�

�

�

�

q!0

¼
ð

BZ

d3k

(2π)3

P4
i¼1 R

2
i

16jRj5
, (69)

FIG. 20. Value of θ in Cr2O3 obtained from a first-principles calculation as a
function of the nearest-neighbor distance on the momentum-space mesh. The
line indicates the second-order polynomial extrapolation to an infinitely dense
mesh (Δk ! 0). Reproduced with permission from Coh et al., Phys. Rev. B 83,
085108 (2011). Copyright 2011 American Physical Society.
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Jm2 ¼ Π(q)jq!0¼ m2
5

ð

BZ

d3k

(2π)3
1

4jRj3
, (70)

where jRj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P5
a¼1 R

2
a

q

and q ! 0 indicates the limit of both
q0 ! 0 and q ! 0. The second term in Eq. (67) is the so-called tri-
angle anomaly, which gives the θ term. The final result is112,113

W2 ¼ i

ð

dtd3r
e2

4π2�h
� δm5(r, t)

m0

� 	

E � B, (71)

from which we find that the fluctuation of the m5α5 mass term
behaves just as a dynamical axion field.

For concreteness, let us consider the antiferromagnetic insula-
tor phase of Bi2Se3 family doped with magnetic impurities such as
Fe.20 In this case, the direction of the Néel field n in the ground
state is along the z axis: m5 ¼ �(2=3)Unz and nx ¼ ny ¼ 0, where
U is the on-site electron–electron interaction strength. Defining
δθ(r, t) ¼ �δm5(r, t)=m0 ¼ (2=3)Uδnz=m0 and substituting this
into Eqs. (68) and (71), we, finally, arrive at the action of the axion
quasiparticle,

Saxion ¼ g2J

ð

dtd3r (@tδθ)
2 � (vi@iδθ)

2 �m2δθ2
� �

þ
ð

dtd3r
e2

4π2�h
δθ(r, t)E � B, (72)

where g2 ¼ m2
0. Finally, we mention briefly the case of the FKMH

model. We find from Eq. (62) that there exist three m5,f α5 mass terms
with m5,f ¼ Unf (f ¼ 1, 2, 3). Namely, all the three spatial compo-
nents of the Néel field n is contained in the kinetic part of the action
of the axion field, which means that the kinetic part is described by
the nonlinear sigma model for antiferromagnets.114 This is interesting
because an effective action of an antiferromagnet is naturally derived
although our original action (65) does not explicitly indicate that the
mass m5 corresponds to a component of the Néel field.

B. Emergent phenomena from axion electrodynamics

In the following, we consider the consequences of the realization
of a dynamical axion field in condensed matter. Among several theo-
retical studies on the emergent phenomena from a dynamical axion
field,20,111,115–118 we particularly focus on three studies on the

responses of topological antiferromagnetic insulators with a dynami-
cal axion field δθ(r, t) to external electric and magnetic fields.

1. Axionic polariton

It has been proposed that the presence of a dynamical axion
field can lead to a new type of polariton, the axionic polariton.20

To see this, we start with the total action involving an axion field
δθ [Eq. (72)] and an electromagnetic field Aμ ¼ (A0, � A), which
is given by

S ¼ g2J

ð

dtd3r (@μδθ)(@
μδθ)�m2δθ2

� �

þ
ð

dtd3r
α

4π2
δθE � B� 1

16π

ð

dtd3r FμνF
μν , (73)

where α ¼ e2=�hc ≃ 1=137 is the fine-structure constant and Fμν ¼
@μAν � @νAμ is the electromagnetic field tensor. Note that E � B ¼
(1=8)εμνρλFμνFρλ and FμνF

μν ¼ 2(B2=μ0 � ε0E
2). Here, recall that

the classical equation of motion for a field f is generically obtained
from the Euler–Lagrange equation,

δS

δf
¼ @L

@f
� @μ

@L

@(@μf)

� �

¼ 0, (74)

where L is the Lagrangian density of the system. We consider the case
of a constant magnetic field B ¼ B0. Then, the equations of motion
for the axion and electromagnetic fields are obtained from Eq. (74) as

@2E

@t2
� c02∇2E � α

πε
B0

@2δθ

@t2
¼ 0,

@2δθ

@t2
� v2∇2δθ þm2δθ � α

8π2g2J
B0 � E ¼ 0,

(75)

where c0 is the speed of light in the media and ε is the dielectric cons-
tant. Neglecting the dispersion of the axion field compared to the
electric field E, the dispersion of the electric field, i.e., the axionic
polariton, ω+(k), is given by20

2ω+(k) ¼ c02k2 þm2 þ b2

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(c02k2 þm2 þ b2)2 � 4c02k2m2

q

, (76)

with b2 ¼ α2B2
0=8π

3εg2J . The photon dispersion in the absence of
the axion field is just ω(k) ¼ c0k. In the presence of the axion field,
the photon dispersion ω+(k) has two branches separated by a gap
between m and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ b2
p

. As shown in Fig. 22, this gap gives rise to
a total reflection of incident light in the case when the incident light
frequency is in the gap. The point is the tunability of the axionic
polariton gap by the external magnetic field B0.

2. Dynamical chiral magnetic effect and anomalous
Hall effect

Next, we consider an electric current response in insulators
with a dynamical axion field. To this end, we rewrite the θ term in
the Chern–Simons form, which procedure becomes possible when

FIG. 21. Schematic of (a) a bubble-type Feynman diagram and (b) a triangle-
type Feynman diagram. The solid lines, wavy lines, and double lines indicate
the Green’s function G0, the electromagnetic field A, and the Néel field δm5,
respectively.
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a dynamical axion field is realized

Sθ ¼ �
ð

dtd3r
e2

8π2�h
εμνρλ[@μθ(r, t)]Aν@ρAλ: (77)

Then, the induced four-current density jν can be obtained from the
variation of the above action with respect to the four potential Aν

as jν ¼ δSθ=δAν ¼ �(e2=4π2�h)εμνρλ[@μθ(r, t)]@ρAλ: The induced
electric current density and charge density are given by12

j(r, t) ¼ δSθ

δA
¼ e2

4π2�h
_θ(r, t)Bþ ∇θ(r, t)� E

� �

,

ρ(r, t) ¼ δSθ

δA0
¼ � e2

4π2�h
∇θ(r, t) � B,

(78)

where _θ ¼ @θ(r, t)=@t. The magnetic-field induced current is the
so-called chiral magnetic effect, which was first studied in nuclear
physics.49 The electric-field induced current is the anomalous
Hall effect, since it is perpendicular to the electric field. Note that
the electric current [Eq. (78)] is a bulk current that can flow in
insulators:111 the magnetic-field induced and electric-field
induced currents are, respectively, understood as a polarization
current @P=@t ¼ e2=(4π2�h) _θB and a magnetization current
∇�M ¼ e2=(4π2�h)∇θ � E, where P and M are directly obtained
from the θ term [see Eq. (2)]. The electric current given by Eq. (78)
has been studied in the antiferromagnetic insulator phase of the
FKMH model.111 As we have seen in Eq. (63), the dynamical axion
field can be realized in the FKMH model by the fluctuation of the
antiferromagnetic order parameter, i.e., by the antiferromagnetic
spin excitation.

The magnetic-field induced current in Eq. (78), i.e., the
dynamical chiral magnetic effect, emerges due to the time depen-
dence of the antiferromagnetic order parameter. The simplest situa-
tion is the antiferromagnetic resonance. The dynamics of the
sublattice magnetizations hSi0Ai ¼ mA and hSi0Bi ¼ mB can be

phenomenologically described by119

_mA ¼ mA � �ωJmB þ gμBBþ ωA(mA � en0 )½ 	en0f g,
_mB ¼ mB � �ωJmA þ gμBBþ ωA(mB � en0 )½ 	en0f g,

(79)

where ωJ and ωA are the exchange field and anisotropy field,
respectively. Here, we have considered the case where a microwave
(i.e., ac magnetic field) of frequency ωrf is irradiated and a static
magnetic field B ¼ Ben0 is applied along the easy axis of the anti-
ferromagnetic order. In the antiferromagnetic resonance state that
is realized when ωrf ¼ ω+, the antiferromagnetic order parameter
is described as the precession around the easy axis,119

n+(t) ; [mA(t)�mB(t)]=2 � n0en0 þ δn+e
iω+t , (80)

where ω+ ¼ gμBB+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2ωJ þ ωA)ωA

p

are the resonance frequen-
cies. Schematic illustration of the dynamics of mA and mB in the
antiferromagnetic resonance state is shown in Fig. 23(a).
Substituting the solution (80) into the first term in Eq. (78), a sim-
plified expression for the dynamical chiral magnetic effect is
obtained around the phase boundary where Unf =M0 � 1 as111

jCME(t) ¼
e2

4π2�h
UD1

M0
B
X

a¼+
ωaδna sin ωat þ αð Þ, (81)

where D1 is a constant and δn+ is a Lorentzian function of ωrf .
Equation (81) means that an alternating current is induced by the
antiferromagnetic resonance. The maximum value of the dynami-

cal chiral magnetic effect (81) jjCMEjmax ¼ e2

4π2�h
U jD1j
jM0j Bω+δn+ is esti-

mated as jjCMEjmax ≏ 1� 104 A=m2, which is experimentally
observable. It should be noted that there is no energy dissipation

FIG. 22. Axionic polariton phenomenon. (a) In the absence of a static magnetic
field, the incident light can transmit through the media. (b) In the presence of a
static magnetic field parallel to the electric field of light, a total reflection of inci-
dent light occurs when the incident light frequency is in the gap. Reproduced
with permission from Li et al., Nat. Phys. 6, 284 (2010). Copyright 2010
Springer Nature.

FIG. 23. Schematic figures of (a) an antiferromagnetic resonance state and (b)
a 1D antiferromagnetic domain wall.
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due to Joule heat in the dynamical chiral magnetic effect, unlike
the conventional transport regime under electric fields.

The electric-field induced current in Eq. (78), i.e., the anoma-
lous Hall effect, emerges due to the spatial dependence of the anti-
ferromagnetic order parameter. As an example, we consider a 1D
antiferromagnetic spin texture of length L along the Z direction, an
orientational domain wall.120,121 As shown in Fig. 23(b), the anti-
ferromagnetic order parameter n(r) ¼ [mA(r)�mB(r)]=2 at the
two edges has a relative angle δ, resulting in θ(Z ¼ 0) ¼ θ0 and
θ(Z ¼ L) ¼ θ0 þ δ in the original spherical coordinate. A simpli-
fied expression for the anomalous Hall effect is obtained around
the phase boundary where Unf =M0 � 1 as111

JXAHE ¼
ðL

0
dZ jXAHE(Z) ¼

e2

4π2�h
UD2

M0
EY , (82)

where D2(δ) ¼
P

f [nf (θ0 þ δ)� nf (θ0)] is a constant and a static
electric filed E is applied perpendicular to the antiferromagnetic
order as E ¼ EYeY . The Hall conductivity is estimated as
σXY ¼ e2

4π2�h
UD2
M0

≏ 1� 10�2 e2=h, which is experimentally observ-
able. Note that D2 ¼ 0 when δ ¼ 0, which means that this anoma-
lous Hall effect does not arise in uniform ground states.

3. Inverse process of the dynamical chiral magnetic
effect

In Eq. (81), we have seen that ac current is generated by the
antiferromagnetic resonance. It is natural to consider the inverse
process of the dynamical chiral magnetic effect, i.e., a realization of
the antiferromagnetic resonance induced by the ac electric field.116

To this end, we study a continuum model of an antiferromagnet
whose free energy is given by122,123

F0 ¼
ð

d3r
a

2
m2 þ A

2

X

i¼x,y,z

(@in)
2 � K

2
n2z �H �m

" #

, (83)

where a and A are the homogeneous and inhomogeneous exchange
constants, respectively, and K is the easy-axis anisotropy along the z
direction. n and m are the Néel vector and small net magnetization
satisfying the constraint n �m ¼ 0 with jnj ¼ 1 and jmj � 1. The
fourth term is the Zeeman coupling with H ¼ gμBB being an exter-
nal magnetic field. For concreteness, we consider the antiferromag-
netic insulator phase of the FKMH model (see Sec. IV B 2). The θ
term can be written in the free energy form [see also Eq. (14)]

Fθ ¼ � e2

4π2�h

ffiffiffi

3
p

Un0

M0

ð

d3r (n � e[111])E � B, (84)

where we have used the fact that
P

f¼1,2,3 nf ¼
ffiffiffi

3
p

n � e[111], with
e[111] being the unit vector along the [111] direction of the original
diamond lattice in the FKMH model.

Phenomenologically, the antiferromagnetic spin dynamics can
be described by the Landau–Lifshitz–Gilbert equation. From the
total free energy of the system FAF ¼ F0 þ Fθ , the effective fields
for n and m are given by f n ¼ �δFAF=δn and fm ¼ �δFAF=δm.

The Landau–Lifshitz–Gilbert equation is given by116,123

_n ¼ (γf m � G1 _m)� n,

_m ¼ (γf n � G2 _n)� nþ (γfm � G1 _m)�mþ τSP,
(85)

where γ ¼ 1=�h, G1 and G2 are dimensionless Gilbert-damping
parameters, and τSP ¼ �GSP( _n� nþ _m�m) is the additional
damping torque with a spin pumping parameter GSP.

124,126 Let us
consider a case where an ac electric field Eac(t) ¼ Eace

iω0tez and a
static magnetic field B ¼ Bez are both applied along the easy axis.
Assuming the dynamics of the Néel field n(t) ¼ ez þ δn(t) and the
net magnetization m(t) ¼ δm(t) and solving the above Landau–
Lifshitz–Gilbert equation, it is shown that the antiferromagnetic
resonance can be realized by the ac electric field Eac(t). The reso-
nance frequencies are116

ω+ ¼ ωH +
ffiffiffiffiffiffiffiffiffiffiffi

ωaωK

p
, (86)

where ωH ¼ γgμBB, ωa ¼ γa, and ωK ¼ γK . The essential point is
the coupling of the Néel field and the electric field through the θ

term, as is readily seen in Eq. (84). Note that these resonance fre-
quencies are not dependent on the parameters of the θ term. This
is because the θ term acts only as the driving force to cause the
resonance.

As shown in Fig. 24, in the resonance state, a pure dc spin
current Js generated by the spin pumping is injected into the
attached heavy-metal layer through the interface.124 The spin
current is converted into an electric voltage across the transverse
direction via the inverse spin-Hall effect:125 VSP(ω0)/ αSHJs(ω0),
where αSH is the spin-Hall angle. For example, in the case of B ¼
0:1 T and Eac ¼ 1 V=m with possible (typical) values of the param-
eters, the magnitude of VSP in the resonance state is found to be
VSP(ω+) ≏ 10 μV,116 which is experimentally observable.
Furthermore, it should be noted that the above value of the ac elec-
tric field, Eac ¼ 1 V=m, is small. Namely, from the viewpoint of
lower energy consumption, the spin current generation using topo-
logical antiferromagnets with the θ term has an advantage

FIG. 24. Schematic figure of the electric-field induced antiferromagnetic reso-
nance and its detection. An ac electric field Eac(t) induces the antiferromagnetic
resonance. A dc pure spin current Js generated by the spin pumping into the
attached heavy metal (HM) such as Pt can be detected through the inverse
spin-Hall effect (ISHE) as a direct current Jc (i.e., the voltage VSP).
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compared to conventional “current-induced” methods that require
such high-density currents as ≏ 1010 A=m2.127

VI. TOPOLOGICAL RESPONSE OF WEYL SEMIMETALS

So far, we have focused on the axion electrodynamics in 3D
insulators. In this section, we overview topological responses of
Weyl semimetals to external electric and magnetic fields, which are
described by the θ term. Although a number of novel phenomena
have been proposed theoretically and observed experimentally in
Weyl semimetals,128–130 we here focus on the very fundamental
two effects, the anomalous Hall effect and chiral magnetic effect,
starting from the derivation of the θ term. We also discuss the neg-
ative magnetoresistance effect that arises as a consequence of the
condensed-matter realization of the chiral anomaly.

A. Derivation of the θ term in Weyl semimetals

The Weyl semimetals have nondegenerate gapless linear dis-
persions around band-touching points (Weyl nodes). The low-
energy effective Hamiltonian around a Weyl node is written as

HWeyl(k) ¼ Q�hvFk � σ, (87)

where Q ¼+1 indicates the chirality, vF is the Fermi velocity, and
σ i are Pauli matrices. The two energy eigenvalues are

+�hvF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y þ k2z

q

. In contrast to 2D Weyl fermions such as

those on the topological insulator surfaces, the 3D Weyl fermions
described by Eq. (87) cannot acquire the mass, i.e., cannot be
gapped, since all the three Pauli matrices are already used. This
indicates the stableness of a single Weyl node. Because the sum
of the chiralities of the Weyl nodes (or equivalently the mono-
poles in momentum space) in a system must be zero, the simplest
realization of a Weyl semimetal is one with two Weyl nodes of
opposite chiralities. Note that the minimal number of Weyl
nodes in Weyl semimetals with broken inversion symmetry is
four,131 while it is two in Weyl semimetals with broken time-
reversal symmetry.

For concreteness, we consider a 4� 4 continuum model
Hamiltonian for two-node Weyl semimetals with broken time-reversal
symmetry,129,132,134,135

H0(k) ¼ �hvF(τzk � σ þ Δτx þ b � σ), (88)

where τ i and σ i are the Pauli matrices for Weyl-node and spin
degrees of freedom, respectively, and Δ is the mass of 3D Dirac
fermions. The term b � σ represents a magnetic interaction such
as the exchange interaction between conduction electrons and
magnetic impurities or the Zeeman coupling with an external
magnetic field. Note that the Hamiltonian with b ¼ 0 describes a
topological or normal insulator depending on the sign of Δ [see
Eq. (25)]. Therefore, the above Hamiltonian (88) can be regarded
as a model Hamiltonian describing a magnetically doped (topo-
logical or normal) insulator. Without loss of generality, we may
set b ¼ (0, 0, b). In this case the Weyl semimetal phase is real-
ized when jb=Δj . 1, and the Weyl nodes are located at

(0, 0, +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � Δ
2

p
).129

Here, we outline the derivation of the θ term from the micro-
scopic four-band model (88). In order to describe a more generic
Weyl semimetal, we add the term μ5τz to the Hamiltonian, which
generates a chemical potential difference 2μ5 between the two Weyl
nodes. Note that this term breaks inversion symmetry. We also set
Δ ¼ 0 for simplicity, so that the momentum-space distance between
the Weyl nodes are 2b. Figure 25 shows a schematic illustration of
the Weyl semimetal we consider. The action of the system in the
presence of external electric and magnetic fields with the four
potential Aμ ¼ (A0, � A) is given by [see also Eq. (26)]

S ¼
ð

dtd3r ψy i(@t � ieA0)� [H0(k þ eA)� μ5τz]f gψ

¼
ð

dtd3r �ψiγμ(@μ � ieAμ � ibμγ
5)ψ , (89)

where e . 0, ψ is a four-component spinor, �γ ¼ ψyγ0, γ0 ¼ τx ,
γ j ¼ τxτzσ j ¼ �iτyσ j, γ5 ¼ iγ0γ1γ2γ3 ¼ τz , and bμ ¼ (μ5, �b).
Now, we apply Fujikawa’s method50,51 to the action. The procedure
is the same as that in the case of topological insulators presented in
Sec. II E 2. Performing an infinitesimal gauge transformation for
infinite times such that

ψ ! ψ 0 ¼ e�idfθ(r,t)γ5=2ψ , �ψ ! �ψ 0 ¼ �ψe�idfθ(r,t)γ5=2, (90)

with θ(r, t) ¼ �2xμbμ ¼ 2(b � r � μ5t) and f [ [0, 1], the action
of the system becomes21

S ¼
ð

dtd3r �ψ[iγμ(@μ � ieAμ)]ψ

þ e2

2π2�h

ð

dtd3r (b � r � μ5t)E � B, (91)

where the first term represents the (trivial) action of massless Dirac

FIG. 25. Schematic illustration of a Weyl semimetal with two Weyl nodes. 2b
and 2μ5 are the momentum-space distance and the chemical potential differ-
ence between the Weyl nodes, respectively. Q+ ¼+1 are the chiralities of the
Weyl nodes.
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fermions and the second term is nothing else but a θ term [Eq. (1)]
with θ(r, t) ¼ 2(b � r � μ5t). It should be noted that nonzero, non-
quantized expression for θ is due to the time-reversal symmetry
breaking by b and the inversion symmetry breaking by μ5.

B. Anomalous Hall effect and chiral magnetic effect

Next, let us consider the consequences of the presence of a θ

term in Weyl semimetals. As we have also seen in the case of insu-
lators with a dynamical axion field, an electric current is induced
in the presence of a θ term. The induced electric current density
and charge density are given by12

j(r, t) ¼ δSθ

δA
¼ e2

4π2�h
_θ(r, t)Bþ ∇θ(r, t)� E

� �

,

ρ(r, t) ¼ δSθ

δA0
¼ � e2

4π2�h
∇θ(r, t) � B:

(92)

In the present case of θ(r, t) ¼ 2(b � r � μ5t), we readily obtain a
static current of the form

j ¼ e2

2π2�h
b� E � μ5Bð Þ, (93)

in the ground state. The electric-field induced and magnetic-field
induced terms are the anomalous Hall effect and chiral magnetic
effect, respectively.21–25,49,129,133,134

To understand the occurrence of the anomalous Hall effect in
Weyl semimetals [the first term in Eq. (93)], let us consider a 2D
plane in momentum space, which is perpendicular to the vector b.
For clarity, we set b ¼ (0, 0, b) and Δ ¼ 0. In this case, performing
a canonical transformation, Eq. (88) can be rewritten in a block-
diagonal form with two 2� 2 Hamiltonians given by129

H+(k) ¼ �hvF(kxσx þ kyσy)þm+(kz)σz , (94)

with m+(kz) ¼ �hvF(b+ jkzj). The two Weyl nodes are located at
(0, 0, + b). It can be seen readily that mþ(kz) is always positive
and that m�(kz) is positive when �b � kz � b and otherwise nega-
tive. As we have seen in Eq. (9), the Hall conductivity of 2D
massive Dirac fermions of the form (94) is given by
σ+xy (kz) ¼ �sgn[m+(kz)]e2=2h. Therefore, we find that the total 2D
Hall conductivity is nonzero in the region �b � kz � b and other-
wise zero, which gives the 3D Hall conductivity as

σ3D
xy ¼

ðb

�b

dkz

2π
σþ
xy(kz)þ σ�

xy(kz)
h i

¼ be2

πh
: (95)

This value is exactly the same as that of the first term in Eq. (93). The
expression for the anomalous Hall conductivity can be generalized
straightforwardly to the case of multi-node Weyl semimetals.136 The
anomalous Hall conductivity in two-node Weyl semimetals [Eq. (95)]
is robust against disorder in the sense that the vertex correction in the
ladder-diagram approximation is absent as long as the chemical
potential lies sufficiently close to the Weyl nodes.137,138

The chiral magnetic effect in Weyl semimetals [the second term
in Eq. (93)] looks like a peculiar phenomenon. The chiral magnetic

effect indicates that a direct current is generated along a static mag-
netic field even in the absence of electric fields, when there exists a
chemical potential difference δμ ¼ 2μ5 between the two Weyl nodes.
If the static chiral magnetic effect exists in real materials, there will be
substantial possible applications. The existence of the static chiral
magnetic effect is, however, ruled out in crystalline solids as discussed
in Ref. 134, which is also consistent with our understanding that static
magnetic fields do not generate equilibrium currents. As shall be dis-
cussed in detail below, the chiral magnetic effect can be realized
under nonequilibrium circumstances, i.e., when the system is driven
from equilibrium, for example, by the combined effect of electric
and magnetic fields, which has been experimentally observed as the
negative magnetoresistance in Weyl semimetals. Another possible
situation for realizing the chiral magnetic effect is applying the
oscillating (low-frequency) magnetic field.139–142 A related current
generation by the oscillating magnetic field is the gyrotropic mag-
netic effect (natural optical activity),141,142 which is governed by the
orbital magnetic moment of the Bloch electrons on the Fermi
surface. This is in contrast to the chiral magnetic effect which is
driven by the chiral anomaly and governed by the Berry curvature.22

Finally, we note that the dynamical chiral magnetic effect in topo-
logical antiferromagnetic insulators shown in Sec. V B 2 is also one
of the dynamical realizations of the chiral magnetic effect.

C. Chiral anomaly and the negative magnetoresistance

As we have seen above, the chiral magnetic effect does not
occur in equilibrium. This means that a chemical potential differ-
ence between Weyl nodes δμ ¼ 2μ5 needs to be generated dynami-
cally in order for the chiral magnetic effect to be realized in Weyl
semimetals. In the case of Weyl semimetals, such a chemical poten-
tial difference can be generated by the so-called chiral anomaly.
The chiral anomaly in Weyl semimetals is referred to as the elec-
tron number nonconservation in a given Weyl cone under parallel
electric and magnetic fields, in which the rate of pumping of elec-
trons is given by22,138,143

@Ni

@t
¼ Qi

e2

4π2�h2c
E � B, (96)

where i is a valley (Weyl node) index and

Qi ¼
ð

d3k

2π�h
@f0(εmk )
@εmk

vmk �Ωm
k (97)

is the chirality of the valley. Here, εmk is the energy of Bloch elec-
trons with momentum k in band m in a given valley i, f0(εmk ) is
the Fermi distribution function, vmk is the group velocity, and Ω

m
k

is the Berry curvature. The difference of the total electron number
between the Weyl nodes leads to the difference of the chemical
potential between the Weyl nodes δμ. As shown in Fig. 26, this
electron pumping can also be understood by the electron flow
through the zeroth Landau level connecting Weyl nodes of oppo-
site chiralities induced by a magnetic field. It should be noted
here that electron pumping also occurs in parallel temperature
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gradient and magnetic field,144,145

@Ni

@t
¼ eB � ∇T

4π2�h2c

ð

d3k

2π�h
εmk � μ

T

@f0(εmk )
@εmk

vmk �Ωm
k , (98)

which can be termed the thermal chiral anomaly. Here, T is the
(unperturbed) temperature and μ is the chemical potential.

A phenomenon manifested by the chiral anomaly is a negative
magnetoresistance (or equivalently positive magnetoconductance)
quadratic in the magnetic field for parallel electric and magnetic
fields in Weyl and Dirac semimetals.137,138,143,144 Here, note that
the usual magnetoresistance due to Lorentz force is positive. For
concreteness, we consider the case of electric and magnetic fields
along the z direction. The positive quadratic magnetoconductivity
arising from the chiral anomaly reads137,138,143,144

σzz(B
2
z) ¼

e2

4π2�hc2
(eBz)

2v3F
μ2

τ inter, (99)

where μ is the equilibrium chemical potential and τ inter is the inter-
valley scattering time. This unusual magnetoconductivity holds in
the low-field limit Bz ! 0, since it is derived from a semiclassical
approach where the Landau quantization can be neglected.
Expression (99) is understood as coming from j/ (E � Bτ inter)B,
which indicates that it is a consequence of the chiral magnetic
effect [the second term in Eq. (93)]. It has been shown that the
vertex correction in the ladder-diagram approximation is absent
in the positive quadratic magnetoconductivity [Eq. (99)].138 Such
an unusual negative magnetoresistance has recently been experi-
mentally observed in the Dirac semimetals Na3Bi,

146

Cd3As2,
147,148 and ZrTe5,

149 and in the Weyl semimetals TaAs150

and TaP.151 As shown in Fig. 27, the observed conductance is pos-
itive and proportional to B2 in the low-field limit as expected
from Eq. (99). Also, we can see that the enhancement of the con-
ductance is largest when the angle between the applied current
and magnetic field is zero (i.e., when they are parallel), which is

in agreement with the theoretical prediction. However, it must be
noted here that those experimental observations of the negative
magnetoresistance is now generally understood to be an artifact of
“current jetting,”130 which can be large in high-mobility semime-
tals. The point is that disentangling precisely the intrinsic
quantum effect of the chiral anomaly from the extrinsic classical
effect of current jetting is not easy in experiments,152 although its
presence is manifested theoretically.

VII. GRAVITATIONAL RESPONSE OF TOPOLOGICAL
SUPERCONDUCTORS

In this section, we discuss topological responses of 3D topo-
logical superconductors and superfluids that can regarded as the
thermodynamic analog of the axion electromagnetic responses of
topological insulators and Weyl semimetals. A well-known example
of 3D topological superfluids is the superfluid 3He B phase.153 The
topological nature of such topological superconductors and super-
fluids will manifest itself in thermal transport properties, such as
the quantization of the thermal Hall conductivity,26 since charge
and spin are not conserved while energy is still conserved.

A. Derivation of a gravitational θ term

The systematic classification of topologically nontrivial insula-
tors and superconductors has been established in terms of symme-
tries and dimensionality and has clarified that topologically
nontrivial superconductors and superfluids with time-reversal sym-
metry are also realized in three dimensions.153–155 From the bulk-
boundary correspondence, there exist topologically protected
gapless surface states in topological superconductors. In particular,
the superconductivity infers that the gapless surface states are their

FIG. 26. Electron pumping due to the chiral anomaly in a Weyl semimetal
under parallel electric and magnetic fields along the z direction.

FIG. 27. Magnetic field dependence of the longitudinal conductance in the
Dirac semimetal Na3Bi. The conductance shows a quadratic dependence on the
magnetic field strength when the angle f0 between the applied current and
magnetic field is small, as expected from Eq. (99). Reproduced with permission
from Xiong et al., Science 350, 413 (2015). Copyright 2015 American
Association for the Advancement of Science.
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own antiparticles and thus Majorana fermions.153 Because of the
fact that Majorana fermions are charge neutral objects, an electric-
transport study such as quantum Hall measurement cannot charac-
terize their topological nature of topological superconductors.
Instead, since the energy is still conserved, thermal transport, espe-
cially the thermal Hall conductivity, reflects the topological charac-
ter of topological superconductors as

κH ¼ sgn(m)
π2

6
k2B
2h

T (100)

for the massive Majorana fermion with mass m.26,29

A spatial gradient in energy is related to a temperature gradi-
ent, as one can infer from the thermodynamic equality dU ¼ TdS
as follows. Here, U is the internal energy, S is the entropy, and T is
the temperature. For simplicity, let us first divide the total system
into two subsystems (subsystems 1 and 2). The equilibrium of the
total system is achieved when the total entropy is maximized:
dS ¼ dS1 þ dS2 ¼ 0. Since the energy is conserved, dE2 ¼ �dE1,
and hence dS1=dE1 � dS2=dE2 ¼ 0, i.e., T1 ¼ T2. Let us now turn
on a gradient in the “gravitational potential,” so that the gravitational
potential felt by subsystems 1 and 2 differs by δfg . In this case, we
have dE2 ¼ �dE1(1þ δfg). This suggests the generation of a tem-
perature difference T2 ¼ T1(1þ δfg). In other words, we can view
the “electric” field Eg associated with the gradient of fg , which we
call a “gravitoelectric field,” as a temperature gradient,156

Eg ¼ �∇fg ¼ �T�1
∇T: (101)

In analogy with electromagnetism, let us next consider the fol-
lowing quantity described in terms of a vector potential Ag , which
we call a “gravitomagnetic field”:

Bg ¼ ∇� Ag : (102)

For example, in a system rotating with the angular velocity Ω
z

around the z axis, Ag can be expressed as Ag ¼ (1=v)Ωzez � r,45,157

which gives Bg ¼ (2=v)Ωzez . Here, v is the Fermi velocity of the
system. Therefore, the gravitomagnetic field Bg can be understood
as an angular velocity vector. A gravitomagnetic field Bg can also
be introduced as a quantity which is conjugate to the energy mag-
netization (momentum of energy current) ME in the free energy of
a Lorentz-invariant system.29 It follows that ME ¼ (v=2)L with L
the angular momentum in Lorentz-invariant systems, which also
leads to Bg ¼ (2=v)Ω.29,45

Now, we study the responses of 3D topological superconduc-
tors to a temperature gradient Eg and a mechanical rotation Bg . For
simplicity, we consider a sample in a cylindrical geometry with
height ‘ and radius r as illustrated in Fig. 28(b). We assume
that magnetic impurities are doped near the surface and the
magnetization directions are all perpendicular to the surface so that
a uniform mass gap is formed in the surface Majorana state.
Let us first introduce a temperature gradient in the z direction,
which generates the energy current jE ¼ κH@zT on the surface.
Since jE=v

2 corresponds to the momentum per unit
area, total momentum due to the surface energy current is
Pw ¼ (2πr‘)jE=v2 and thus the induced orbital angular momentum

per volume is given by

Lzj
Ω

z¼ rPw

(πr2‘)
¼ 2

v2
κH@zT: (103)

Similarly, upon rotating the cylinder with Ω ¼ Ω
zez (without a

temperature gradient), we obtain the induced thermal energy
density (the induced entropy change) localized on the top and
bottom surfaces,29

ΔQ(z)jT¼
2TΩz

v2
κt
Hδ(z � ‘=2)þ κb

Hδ(z þ ‘=2)
� �

, (104)

where κt
H (κb

H) is the thermal Hall conductivity on the top
(bottom) surface given by Eq. (100). Here, κt

H ¼ �κb
H because the

magnetization directions on the top and bottom surfaces are oppo-
site to each other, resulting in different signs of m [see Fig. 28(b)].

In terms of the gravitoelectric field Eg ¼ �T�1
∇T and the

momentum of the energy current (i.e., energy magnetization) ME ,
Eq. (103) can be written as ME ¼ (TκH=v)Eg from the relation
ME ¼ (v=2)L. Furthermore, introducing the thermal polarization
PE by ΔQ ¼ �∇ � PE, Eq. (104) can be written similarly as
PE ¼ (TκH=v)Bg . Combining these, we find the correspondence
between topological insulators and topological superconductors,

TI:
@Ma

@Eb
¼ @Pa

@Bb
, TSC:

@Ma
E

@Eb
g

¼ @Pa
E

@Bb
g

: (105)

Since the orbital angular momentum is obtained from the internal
energy functional as La ¼ �δUθ=δΩ

a, the coupling energy of the
temperature gradient and angular velocity is written as29

U
g
θ ¼

ð

d3x
2
v2

κH∇T �Ω ¼
ð

d3x
k2BT

2

24�hv
θgEg � Bg : (106)

FIG. 28. Electromagnetic responses in (a) 3D topological insulators and
thermal and mechanical (rotation) responses in (b) 3D topological superconduc-
tors. In (a), an electric field E induces the surface Hall current j. In (b), a tem-
perature gradient Eg induces the surface thermal Hall current jE . A uniform
mass gap is induced in the surface fermion spectra by doping magnetic impuri-
ties near the surface of the 3D topological insulator (a) and topological super-
conductor (b) such that the magnetization directions are all perpendicular to the
surfaces (as indicated by red arrows).
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This is analogous to the axion electromagnetic response with
e2=�hc $ (πkBT)

2=6�hv and θg ¼ π playing the same role as θ in
the θ term. Here, note that we have considered the contribution
from one Majorana fermion to the internal energy (106). In
general, 3D time-reversal invariant (class DIII) topological super-
conductors with topological invariant N possesses N gapless
Majorana fermions localized at the surface.153 When uniform
mass gaps (of the same sign) are induced in these Majorana fer-
mions, each Majorana fermion gives rise to the half-integer
thermal Hall effect [Eq. (100)].27,30 Therefore, it follows that
θg ¼ Nπ in Eq. (106) for this generalized case.

In the case of 2D topological superconductors, the corre-
sponding term is written as

U ¼
ð

d2x (2=v2)TκH fΩ
z: (107)

This is the thermodynamical analog of the Chern–Simons term. A
similar term has been derived in the context of 3D 3He A phase
with point nodes,158 where the current flows parallel to the Ω

vector. A comparison between cross correlations in topological
insulators and topological superconductors in two and three spatial
dimensions is summarized in Table II.

B. Gravitational instanton term

Here, we overview a topological field theory approach to the
gravitational (thermal) response of 3D topological superconductors
and superfluids.27,28 In Sec. VII A, we have introduced gravitoelec-
tric and gravitomagnetic fields that are written in terms of (ficti-
tious) scalar and vector potentials. Strictly speaking, the presence of
a gravitational background should be described as a curved space-
time. Let us consider the Bogoliubov–de Gennes Hamiltonian of
the 3He B phase,

HBdG(k) ¼ (Δp=kF)k � α þ ξkα4, (108)

where kF is the Fermi wave number, Δp is the p-wave pairing
amplitude, ξk ¼ �h2k2=2m� μ with μ the chemical potential is the

kinetic energy, and 4� 4 matrices αμ satisfy the Clifford algebra
{αμ, αν} ¼ 2δμν . Clearly, Eq. (108) is a massive Dirac Hamiltonian.
When μ . 0 (μ , 0), the system is topologically nontrivial
(trivial).153,159 In the presence of such a gravitational background,
the action of a 3D topological superconductor such as the 3He B
phase is written as160

S ¼
ð

d4x
ffiffiffiffiffiffi�g

p
L,

L ¼ �ψeμaiγ
a @μ �

i

2
ωab
μ Σab

� �

ψ �m�ψψ ,

(109)

where μ ¼ 0, 1, 2, 3 is a spacetime index, a, b ¼ 0, 1, 2, 3 is a flat
index,

ffiffiffiffiffiffi�g
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�det(g)
p

with gμν the metric tensor, eμa is the viel-
bein, ωab

μ is the spin connection, and Σab ¼ [γa, γb]=(4i) is the gen-
erator of Lorentz transformation. As in the case of topological
insulators (Sec. II E 2) and Weyl semimetals (Sec. VI A), we can
apply Fujikawa’s method to the action (109), in which the topologi-
cal term of a system comes from the Jacobian. After a calculation,
we arrive at a gravitational effective action27,28

Sg ¼
1

1536π2

ð

d4x θεμνρσRα
βμνR

β
αρσ , (110)

where θ ¼ π and Rα
βμν is the Riemannian curvature tensor.

It follows that the coefficient θ in Eq. (110) is θ ¼ 0 or π

(mod 2π) due to time-reversal symmetry. However, in 3D time-
reversal invariant topological insulators with topological number
N , topological actions should have θ ¼ Nπ. This is because the
Hamiltonian of a noninteracting 3D time-reversal invariant topo-
logical insulator with topological number N can be decomposed
into N copies of the Hamiltonian of the form (108). The gravita-
tional effective action (110) provides only a Z2 classification of 3D
time-reversal invariant topological insulators, which is weaker than
the Z classification that they have.

C. Emergent phenomena from a dynamical
gravitational axion field

As we have seen in Sec. VII A, the derivation of the internal
energy term [Eq. (106)] for 3D topological superconductors and
superfluids is not a microscopic derivation but a heuristic one
based on the surface thermal Hall effect. It has been suggested that
the fluctuation of θg in a pþ is-wave superconductor can be written
as a function of the relative phase between the two superconducting
gaps.161,162 Such a fluctuation of a relative phase is known as the
Leggett mode and can depend on time. Also, in analogy with 3D
topological insulators, it is expected that the internal energy term can
be extended to the form of an action (see Sec. II D for the derivation
of the θ term in 3D topological insulators). Therefore, it would be
appropriate to consider the action of the form162,163

S
g
θ ¼

k2BT
2
0

24�hv

ð

dtd3r θg(r, t)Eg � Bg (111)

TABLE II. Comparison between cross correlations in topological insulators (TIs) and
topological superconductors (TSCs) in two and three spatial dimensions. In topologi-
cal superconductors, the orbital angular momentum L (momentum of energy current
ME) and the entropy S (thermal polarization PE in three dimensions) are generated

by a temperature gradient Eg ¼ �T�1rT and by a mechanical rotation with
angular velocity vector Ω = (v/2)Bg. In analogy with the orbital magnetoelectric polar-

izability χabθ ¼ δabe
2=(4π�hc) in 3D topological insulators, the gravitomagnetoelectric

polarizability χabθ,g ¼ δabπk
2
BT

2=(24�hv) can be introduced in 3D topological super-

conductors. Note that the relations for topological superconductors applies also to
the thermal response of topological insulators.

TI TSC

2D
σH ¼ ec

@Mz

@μ
¼ ec

@N

@Bz κH ¼ v2

2
@Lz

@T
¼ v2

2
@S

@Ωz

3D
χabθ ¼ @Ma

@Eb
¼ @Pa

@Bb
χabθ,g ¼

@Ma
E

@Eb
g

¼ @Pa
E

@Bb
g
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for non-quantized and dynamical values of θg , instead of the internal
energy Uθ

g [Eq. (106)].
In order to induce the deviation of θg from the quantized

value Nπ (with N the topological number of the system), time-
reversal symmetry of the bulk needs to be broken, as in the case
of insulators. It has been shown theoretically that the imaginary
s-wave pairing in class DIII topological superconductors such as
the 3He B phase leads to the deviation of the value of θg from π

such that θg ¼ π þ tan�1(ΔIm
s =μ) with Δ

Im
s the imaginary s-wave

pairing amplitude.161 Such an imaginary s-wave pairing term in a
Bogoliubov–de Gennes Hamiltonian corresponds to the chiral symme-
try breaking term (which also breaks time-reversal symmetry)
Γ ¼ ΘΞ, where Θ and Ξ are the time-reversal and particle-hole opera-
tors, respectively.30,109,162 Therefore, the resulting superconducting
state belongs to the class D.153,155,164 When we take into account the
superconducting fluctuations ΔIm

s ¼ jΔIm
s jeiθs(r,t) and Δp ¼ jΔpjeiθp(r,t),

the relative phase fluctuation θr(r, t) ; θs(r, t)� θt(r, t), i.e., the
Leggett mode, gives rise to a dynamical gravitational axion field, as
δθg(r, t)/ δθr(r, t).

161,162

Let us briefly consider the consequences of the realization of a
dynamical gravitational axion field in 3D topological superconduc-
tors. In the presence of a dynamical gravitational axion field
δθg(r, t), a bulk heat current is obtained from the action (111) as163

jT (r, t) ¼
k2BT

2
0

12�hv
_θg(r, t)Bg þ v∇θg(r, t):� Eg

� �

: (112)

This expression should be compared with an electric current (78)
obtained from the θ term in insulators. The first term in Eq. (112)
indicates that a heat current is induced in the bulk of a 3D supercon-
ductor by a gravitomagnetic field, i.e., by a mechanical rotation. This
phenomenon is called the chiral gravitomagnetic effect163 and can be
understood as the thermal analog of the chiral magnetic effect. The
second term in Eq. (112) indicates that a heat current is induced in
the bulk by a gravitoelectric field, i.e., by a temperature gradient,
which is the anomalous thermal Hall effect since this current is per-
pendicular to the temperature gradient.

VIII. SUMMARY AND OUTLOOK

In this Tutorial, we have overviewed the responses of 3D
condensed-matter systems to external fields, which are described by
the topological terms in their low-energy effective actions. We have
seen microscopically that the so-called θ term, which originally
appeared in particle theory, is derived in topological insulators and
Weyl semimetals. In the case of insulators, the coefficient θ in the
θ term takes the quantized value π or 0 in the presence of either
time-reversal or inversion symmetry, and it can be arbitrary in the
absence of both symmetries. The θ term with θ ¼ π leads to a
hallmark response of topological insulators, the topological mag-
netoelectric effect. We note that, in spite of intensive experimental
efforts, the direct observation of the topological magnetoelectric
effect, i.e., observing the electric polarization induced by a mag-
netic field or the magnetization induced by an electric field, in
topological insulators is yet to be realized. We have also seen that a
dynamical axion field δθ(r, t), the deviation of θ from the ground-
state value θ0, can be realized by the antiferromagnetic spin

fluctuation in a class of antiferromagnetic insulators with a θ term.
In general, it is possible that the fluctuation of order parameters
other than the antiferromagnetic order parameter also realizes a
dynamical axion field. In the case of Weyl semimetals, the expres-
sion for θ has a simpler form given in terms of the distance in
momentum space and the energy difference between Weyl nodes.
The θ term leads to a realization of the chiral anomaly in condensed-
matter systems, which has been experimentally observed in Weyl and
Dirac semimetals through the negative magnetoresistance effect due
to the chiral magnetic effect.

In Sec. III, we have focused on recent experimental realiza-
tions of the axion insulator state where θ ¼ π due to an “effec-
tive” time-reversal symmetry in MnBi2Te4 family of materials.
The MnBi2Te4 family of materials are layered van der Waals
compounds and thus the synthesis of few-layer thin films that
can realize exotic phases and phenomena is possible. Especially,
because of the intrinsic ferromagnetism of the MnBi2Te4 septu-
ple layer, the anomalous Hall conductivity of even-layer (odd-
layer) thin films is zero (quantized). Such a magnetization con-
figuration with zero anomalous Hall conductivity is indeed the
situation that has been pursued for the observation of the topo-
logical magnetoelectric effect. Therefore, an experimental obser-
vation of the topological magnetoelectric effect might be
achieved in the near future.

As we have seen in Sec. V B, the dynamical chiral magnetic
effect and its inverse effect in insulators have an important feature
that they are energy-saving. The dynamical chiral magnetic effect
in insulators is an ac electric current generation by a magnetic field
and, therefore, does not cause energy dissipation due to Joule heat,
although the dynamical axion field needs to be excited by external
forces (which may cause energy loss). Its inverse effect is an electri-
cal excitation of a dynamical axion field and the applied ac electric
field does not cause energy dissipation due to Joule heat because
the system is insulating. These effects might be utilized for low-
energy consumption devices.

Recently, it was proposed that topological antiferromagnetic
insulators with a dynamical axion field can be utilized to detect
(true) axion as dark matter,165 which will be certainly an interest-
ing possible application of such topological antiferromagnetic
insulators. The outline of the proposal is as follows. Inside the
topological antiferromagnetic insulator, the (true) axion couples
to the axionic polaritons (i.e., electric field), which are generated
in the presence of axion quasiparticles (see also Sec. V B 1). At
the topological antiferromagnetic insulator dielectric boundary,
the axionic polaritons convert to propagating photons, which are
finally detected in the THz regime. Such a conversion process is
resonantly enhanced when the axion frequency is equal to the
axionic polariton frequency.

A microscopic derivation of the gravitational θ term
[Eqs. (106) and (111)] in the bulk of 3D topological superconduc-
tors remains an important open issue, since the derivation outlined
in Sec. VII A is based on the surface thermal Hall effect of
Majorana fermions. Similarly, it has been suggested that Weyl
superconductors can exhibit the anomalous thermal Hall effect166

and that a gravitational θ term should also be derived in Weyl
superconductors,163 considering the fact that topological insulators
and Weyl semimetals are both described by the θ term. When
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treating gravitoelectric and gravitomagnetic fields microscopically,
we might need to introduce a torsion field.167–169
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