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1 Introduction

The QCD axion is a hypothetical elementary particle that solves the strong CP problem [1–
3] and is a candidate of dark matter (DM) of the universe [4–6] (see refs. [7–9] for reviews).
Recently people often consider axion-like particles (ALPs) in a broad sense, partly moti-
vated by the developments in string theory [10–12]. ALPs do not necessarily address the
strong CP problem, but they are also good DM candidates and may be experimentally
probed through, e.g., the axion-photon coupling of the form L ∝ a ~E · ~B where a denotes
the ALP field and ~E ( ~B) denotes the electric (magnetic) field respectively. There are many
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experimental ideas to search for ALPs including the QCD axion,1 although still it is not
discovered yet [13–39].

On the other hand, the axion-like excitation also appears in the condensed matter
physics [40, 41] (see refs. [42, 43] for reviews). To distinguish it from the elementary
particle axion or ALP, we call such an axion-like excitation in condensed matter context
as “condensed matter axion (CM axion)”. The CM axion δθ has an interaction with the
electromagnetic field as L ∝ δθ ~E · ~B, similar to the ALP. We call such an insulator an
axionic insulator.

Let us briefly mention a relation between the topological insulator and axionic insula-
tor. In general, topological electromagnetic responses of a three-dimensional insulator are
described by the topological term in the Lagrangian:

L = θ
αe
4πFµνF̃

µν = θ
αe
π
~E · ~B. (1.1)

For example, it implies that there appears a magnetization (electric polarization) propor-
tional to the applied electric (magnetic) field: ~M ∝ θ ~E (~P ∝ θ ~B). If the Hamiltonian of the
system is invariant under the time-reversal symmetry, the coefficient θ can only take a value
either 0 or π: i.e., such an insulator is classified by a discrete Z2 index [44–49].2 The case
of θ = π corresponds to the topological insulator, in which the existence of gapless surface
states is ensured and it causes topological electromagnetic effects. On the other hand, if
there is no time-reversal symmetry, θ does not have to be quantized but can take arbitrary
values possibly with a space-time dependence: θ = θ(~x, t). If θ is a dynamical field, it is
called the CM axion. Although it is often helpful to start from the topological insulator
for understanding the origin of CM axion, the existence of CM axion does not necessarily
require that the insulator is topological. One can generally write θ(~x, t) = θ0 + δθ(~x, t) so
that δθ(~x, t) expresses the CM axion while θ0 is the background value. The value of θ0
depends on the properties of the material and can be zero. It has been known that in a
class of magnetically doped topological insulators, the fluctuation of the anti-ferromagnetic
order parameter (the so-called Neel field) plays a role of CM axion [41].

In this paper, we consider a process like the light DM conversion into the CM axion
and estimate the conversion rate. Such a process has been considered in ref. [39] for the
detection of axion-like DM. One of the main purposes of this paper is to discuss the origin
of CM axion in a comprehensive and self-consistent manner for particle physicists. We
will explicitly show the relationship between the CM axion and the spin-wave fluctuation
(magnon) based on a model presented in ref. [52]. Another purpose is to provide a useful
method to calculate the DM conversion rate into the CM axion in a quantum mechanical
way. As an illustration, we will consider the case of ALP DM and hidden-photon DM.

This paper is organized as follows. In section 2 we review the (anti-ferromagnetic)
Heisenberg model of the localized electron spin system on the lattice. It gives a basis of
the collective spin-wave excitation (magnon) and its dispersion relation, which will turn

1In the following we use the terminology “ALP” for general elementary axion-like particles including the
QCD axion.

2Time-reversal invariant topological insulators have been first considered in two-dimensional systems [50,
51].
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out to be identified with the CM axion in a certain setup. In section 3 the so-called (half-
filling) Hubbard model is briefly introduced. Electrons in solids are often modeled by a
tight-binding Hamiltonian plus the Coulomb repulsive force between electrons on the same
lattice point (Hubbard interaction). It is shown that the limit of large Hubbard interaction
reduces to the (anti-ferromagnetic) Heisenberg model. Therefore, the Hubbard model
on a certain lattice may describe both the electron energy band structure as well as the
anti-ferromagnetic order and magnon excitation around it. In section 4 we introduce the
Fu-Kane-Mele-Hubbard model as a concrete setup and show that it contains an excitation
that is regarded as the CM axion along the line of ref. [52]. It will become clear that the
CM axion is described by the use of anti-ferromagnetic magnon and its dispersion can be
estimated as explained in section 2. In section 5 we estimate the conversion rate of light
bosonic DM into the CM axion. We consider two DM models: ALP and hidden photon.
We conclude in section 6.

2 Magnon in anti-ferromagnet

Let us start with the Heisenberg anti-ferromagnet model [53–55].3 Suppose a bipartite
lattice consisting of sublattices A and B, and on each lattice point ` ∈ A or `′ ∈ B there
is an electron spin ~S. Applying an external magnetic field B0 along the z direction, the
model Hamiltonian is given by

H = −J
∑
〈`,`′〉

~S` · ~S`′ − gµB(BA +B0)
∑
`∈A

Sz` + gµB(BA −B0)
∑
`′∈B

Sz`′ , (2.1)

where J < 0 is the exchange interaction, g = 2 and µB = e/(2me) is the Bohr magneton,
and BA is the anisotropy field. The collective excitation of the spin-wave around the ground
state, called magnon, is analyzed through the Holstein-Primakoff transformation,

S+
` =

√
2s− a†`a` a`, S−` = a†`

√
2s− a†`a`, Sz` = s− a†`a`, (2.2)

S+
`′ = b†`′

√
2s− b†`′b`′ , S−`′ =

√
2s− b†`′b`′ b`′ , Sz`′ = −s+ b†`′b`′ , (2.3)

where we have defined S±` = Sx` ± iS
y
` and S±`′ = Sx`′ ± iS

y
`′ , and the creation-annihilation

operators satisfy the commutation relation[
a`, a

†
m

]
= δ`m,

[
b`′ , b

†
m′

]
= δ`′m′ . (2.4)

In addition, s is the spin quantum number; the eigenvalue of ~S` · ~S` is given by s(s + 1).
The Hamiltonian is rewritten in terms of the creation-annihilation operators as

H = 2Nzs2J − 2NsωA − Js
∑
〈`,`′〉

(
a†`a` + b†`′b`′ + a†`b

†
`′ + a`b`′

)
+ (ωA + ωL)

∑
`

a†`a` + (ωA − ωL)
∑
`′

b†`′b`′ , (2.5)

3As explained in section 3, the Heisenberg anti-ferromagnet model may be understood from the Hubbard
model in the limit of strong electron self-interaction at each site.

– 3 –



J
H
E
P
0
8
(
2
0
2
1
)
0
7
4

where N is the total number of sites in a sublattice, z denotes the number of adjacent
lattice points (e.g. z = 6 for simple bipartite cubic lattice), and

ωL ≡ gµBB0, ωA ≡ gµBBA. (2.6)

Now let us move to the Fourier space. We define the Fourier component as

a` = 1√
N

∑
~k

e−i
~k·~x`a~k, b`′ = 1√

N

∑
~k

ei
~k·~x`′ b~k. (2.7)

Substituting this into the Hamiltonian, we find

H =
∑
~k

[
(ωJ + ωA + ωL)a†~ka~k + (ωJ + ωA − ωL)b†~kb~k + ωJγ~k(a~kb~k + a†~k

b†~k
)
]
, (2.8)

where ωJ ≡ −2zsJ and

γ~k = 1
z

∑
~δ

ei
~k·~δ, (2.9)

with ~δ being the vector connecting the adjacent lattice points. Finally, it is diagonalized
through the Bogoliubov transformation:

α~k = u~ka~k − v~kb
†
~k
, β†~k

= u~kb
†
~k
− v~ka~k. (2.10)

One can check that the canonical commutation relation is maintained if |u~k|
2 − |v~k|

2 = 1.
The concrete expression is given by

|u~k|
2 = 1

2

1 + ωJ + ωA√
(ωJ + ωA)2 − |γ~k|2ω

2
J

 , |v~k|
2 = 1

2

−1 + ωJ + ωA√
(ωJ + ωA)2 − |γ~k|2ω

2
J

 ,
(2.11)

with arg(γ~k) = 2 arg(u~k) = −2 arg(−v~k). (Thus, u~kv~k is real and negative.) Note that,
when ωA � ωJ , we have large Bogoliubov coefficients |u~k|

2 ∼ |v~k|
2 � 1 for |~k · ~δ| � 1.

Then, one finds the diagonal Hamiltonian:

H =
∑
~k

[
(ω~k + ωL)α†~kα~k + (ω~k − ωL)β†~kβ~k

]
. (2.12)

Here, ω~k represents the magnon dispersion relation (besides the overall offset coming from
the Larmor frequency ωL),

ω2
~k

= ω2
J(1− |γ~k|

2) + ωA(ωA + 2ωJ). (2.13)

In the low frequency limit |~k · ~δ| � 1, we obtain γ~k ' 1 + i
∑
~δ
(~k · ~δ)/z −∑~δ

(~k · ~δ)2/z. It
implies the linear dispersion relation, ω~k ∝ |~k| for large |~k| (but still it satisfies |~k ·~δ| � 1),
in contrast to the ferromagnetic magnon dispersion relation, which would show ω~k ∝ k2.
They are related to the so-called type-I and type-II Nambu-Goldstone boson dispersion
relation as generally classified in refs. [56, 57].
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3 Hubbard model as origin of anti-ferromagnet

3.1 Tight-binding model

A tight-binding model is one of the approaches to estimate the electron energy band struc-
ture in solids. In this approach, one starts with the picture that each electron is rather
tightly bounded by each atom and then takes into account the overlap between the nearest
electron wave function.

Let us consider only one electron orbital at each site and neglect the interaction among
different orbits, spin-orbit coupling, electron self-interaction, etc.4 In the second quantiza-
tion picture, the tight-binding Hamiltonian is given by

H = −t
∑
〈i,j〉,σ

c†iσcjσ, (3.1)

where c†iσ and ciσ denote the electron creation and annihilation operators at the site i with
spin σ (↑ or ↓) and the summation is taken over the combination of adjacent sites 〈i, j〉.
The creation and annihilation operators satisfy the anti-commutation relation{

ciσ, c
†
jσ′

}
= δijδσσ′ . (3.2)

The Fourier transformation is defined by

ciσ = 1√
N

∑
~k

e−i
~k·~xic~k,σ. (3.3)

The Hamiltonian is rewritten in a diagonal form as

H =
∑
~k,σ

ε~kc
†
~k,σ
c~k,σ, ε~k = −t(γ~k + γ∗~k). (3.4)

This ε~k denotes the electron energy band. In a simple cubic lattice, for example, we obtain
εk = 2t

(
1−∑i=x,y,z cos(kia)

)
.

The conductivity of this model is determined by the number of electrons in the system.
If each orbital is filled, i.e., there are two electrons with opposite spins at each site, the
energy band is filled and this becomes an insulator as far as there is an energy gap to the
next energy band. If there is only one electron at each orbital, the energy band is not filled
and it becomes a metal.

3.2 Half-filling Hubbard model

Let us add the effect of interaction between electrons at the same site i to the tight-binding
Hamiltonian. The resulting Hamiltonian is called the Hubbard model:

H = Ht +HU = −t
∑
〈i,j〉,σ

c†iσcjσ + U
∑
i

ni↑ni↓, (3.5)

where U > 0 represents the interaction energy and ni↑ = c†i↑ci↑ and ni↓ = c†i↓ci↓.
4Effects of the interaction among different orbitals and spin-orbit coupling are important for the topo-

logical insulator. The electron self-interaction will be taken into account in the next subsection.
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The Hubbard model is characterized by several parameters: the relative interaction
strength U/t and the number of electrons per site, Ne/Ns. The case of Ne/Ns = 1 is called
the half-filling (it is “half” because of the spin degree of freedom) and its properties are
well understood. Below, we consider the half-filling case. Naively, one may consider that
the half-filling Hubbard model describes a metal since electrons are in a conducting band.
It is true in the limit U = 0, but it is not necessarily true for sizable interaction strength.
The interaction term can split the energy band and make a gap, which would result in an
insulator. Such an insulator is called the Mott insulator.

Now we consider the large interaction limit: U/t� 1. In this limit, the tight-binding
part is regarded as a perturbation. In the ground state, one electron is localized at each
site to minimize the Hubbard interaction energy (hence it is expected that it behaves as
an insulator rather than metal). Thus, the ground state is expressed as

|σ̃〉 =
(∏

i

c†iσi

)
|0〉 , (3.6)

where σ̃ schematically represents the array of spin, e.g., σ̃ = (. . . , ↑, ↑, ↓, . . . ) and so on.
There are 2Ne degenerate ground states corresponding to the spin degree of freedom at
each site.

We want to consider an effective Hamiltonian regarding Ht as a perturbation. Noting
〈σ̃|Ht |σ̃〉 = 0, the nontrivial effect appears at the second-order in Ht. The effective
Hamiltonian is given by

Heff = −PHt
1
HU

HtP = − t
2

U
P

∑
〈i,j〉σσ′

(
c†iσcjσc

†
jσ′ciσ′ + c†jσciσc

†
iσ′cjσ′

)
P, (3.7)

where P denotes the projection operator to the Hilbert space spanned by the ground
state (3.6). The physical meaning is that, for σ 6= σ′, it exchanges the spin at the adjacent
sites i and j for a given ground state. This is rewritten in terms of the spin operator as

Heff = 4t2
U

∑
〈i,j〉

~Si · ~Sj , (3.8)

where we have defined

Szi = 1
2(c†i↑ci↑ − c

†
i↓ci↓), S+

i ≡ S
x
i + iSy = c†i↑ci↓, S−i ≡ Sx − iSy = c†i↓ci↑. (3.9)

Since the coefficient t2/U is positive, it represents the Heisenberg anti-ferromagnet model
with J = −t2/U . Thus, the half-filling Hubbard model may describe both the metal phase
in the limit U → 0 and the anti-ferromagnetic insulator phase in the large U limit.

4 A model of condensed matter axion

4.1 Energy band in Fu-Kane-Mele-Hubbard model

A three-dimensional topological insulator has been proposed in refs. [45, 46]. An example
is the diamond lattice with a strong spin-orbit coupling. On the other hand, taking account
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of the Hubbard on-site interaction between electrons may lead to the anti-ferromagnetic
phase, leading to the topological anti-ferromagnet. Such a model is called the Fu-Kane-
Mele-Hubbard model and studied in ref. [52]. Actually, it is found in ref. [52] that there is
a topological anti-ferromagnetic phase depending on the interaction strength, in which the
spin-wave excitation (magnon) has an axionic coupling to the electromagnetic field. Note
that no material is found yet that is described by the Fu-Kane-Mele-Hubbard model despite
its theoretical tractability. Materials that are associated with the condensed matter axion
modes include the Fe-doped Bismuth Selenide, but the treatment of the axion modes in this
material requires a more involved approach than the one described below. However, we only
focus on the Fu-Kane-Mele-Hubbard model in this paper to demonstrate the derivation of
the DM conversion rate into a condensed matter axion in the simplest possible way.

Now, we briefly review the Fu-Kane-Mele-Hubbard model on the diamond lattice. We
assume the half-filling case, i.e., there is only one electron at the electron orbitals of our
interest at each site. The model Hamiltonian is given by H = H0 +HU :

H0 =
∑
〈i,j〉σ

tijc
†
iσcjσ + i

4λ
a2

∑
〈〈i,j〉〉

c†i~σ · (~d1
ij × ~d2

ij)cj , (4.1)

HU = U
∑
i

ni↑ni↓, (4.2)

where ci ≡ (ci↑, ci↓)T . Here, ~d1
ij and ~d2

ij are the two vectors that connect two adjacent sites:
a
4 (1, 1, 1), a4 (1,−1,−1), a4 (−1, 1,−1), a4 (−1,−1, 1), with a being the lattice constant and λ
represents the strength of the spin-orbit coupling. Note that the diamond lattice consists
of two sublattices (which we call A and B) both of which are face-centered cubic. 〈〈i, j〉〉
denotes a set of the next-nearest neighbor sites, and hence sites i and j belong to the same
sublattice. (For more detail about the interaction of electrons in next-nearest neighbor
sites, see appendix A.)

Let us study the energy bands of this model neglecting the Hubbard interaction
term [45, 46]. In the Fourier space, the Hamiltonian is expressed as the matrix form
in the basis c~k ≡ (c~k↑,A, c~k↓,A, c~k↑,B, c~k↓,B)T as

H0 =
∑
~k

c†~k
Hc~k, H =

5∑
µ=1

Rµ(~k)αµ, (4.3)

where

R1(~k) = λ
[
sin(~k · ~a2)− sin(~k · ~a3)− sin(~k · (~a2 − ~a1))− sin(~k · (~a3 − ~a1))

]
, (4.4)

R2(~k) = λ
[
sin(~k · ~a3)− sin(~k · ~a1)− sin(~k · (~a3 − ~a2))− sin(~k · (~a1 − ~a2))

]
, (4.5)

R3(~k) = λ
[
sin(~k · ~a1)− sin(~k · ~a2)− sin(~k · (~a1 − ~a3))− sin(~k · (~a2 − ~a3))

]
, (4.6)

R4(~k) = t
[
1 + cos(~k · ~a1) + cos(~k · ~a2) + cos(~k · ~a3)

]
+ δt, (4.7)

R5(~k) = t
[
sin(~k · ~a1) + sin(~k · ~a2) + sin(~k · ~a3)

]
, (4.8)
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with ~a1 = a
2 (0, 1, 1),~a2 = a

2 (1, 0, 1),~a3 = a
2 (1, 1, 0) and

αi =
(
σi 0
0 −σi

)
, α4 =

(
0 1
1 0

)
, α5 =

(
0 i

−i 0

)
. (4.9)

These α matrices are Hermite and satisfy the anti-commutation relation {αµ, αν} = 2δµν .
Then, it is easy to show that the energy eigenvalues are given by

E± = ±
√∑

µ

(
Rµ(~k)

)2
. (4.10)

This gives the dispersion relation of the bulk electron. It is found that, at the so-called
Xr points (r = 1, 2, 3) of the momentum space, ~kX1 = 2π

a (1, 0, 0), ~kX2 = 2π
a (0, 1, 0), ~kX3 =

2π
a (0, 0, 1), which are located at the boundary of the Brillouin zone, we obtain E± = 0
in the limit of δt = 0. Thus, this material is regarded as a semimetal in this limit. For
example, the dispersion relation around ~k = ~kX1 is given by

E±(~q) = ±
√

(tqx)2 + 4λ2(q2
y + q2

z) + (δt)2, (4.11)

where we have taken ~k = ~kX1 + ~q. Thus, nonzero δt gives the energy gap between two
energy bands, which makes the material the bulk insulator (topological insulator, actually).

4.2 Axionic excitation in anti-ferromagnetic phase

It is expected that the inclusion of the Hubbard interaction HU may lead to the anti-
ferromagnetic ordering. Actually, it is found that the anti-ferromagnetic phase appears for
sizable U/t in the mean field approximation [52]. Under this approximation, the Hubbard
interaction term can be rewritten as

HU ' U
∑
i

(
〈ni↑〉ni↓ + 〈ni↓〉ni↑ − 〈ni↑〉 〈ni↓〉

−
〈
c†i↑ci↓

〉
c†i↓ci↑ −

〈
c†i↓ci↑

〉
c†i↑ci↓ +

〈
c†i↑ci↓

〉〈
c†i↓ci↑

〉 )
, (4.12)

with 〈O〉 being the ensemble average of the operator O. We use the operator equations

ni↑(↓) = ±S′z
i + 1

2(ni↑ + ni↓), (4.13)

c†i↑ci↓ = S
′x
i + iS

′y
i , (4.14)

c†i↓ci↑ = S
′x
i − iS

′y
i , (4.15)

with ~S′i being spin operators in the coordinate system used in the previous subsection, with
which three Dirac points are defined. Note that, in the U →∞ limit of a half-filling model,
we can safely restrict ourselves to states with 〈ni↑ + ni↓〉 = 1. Then, neglecting constant
terms, the Hubbard interaction becomes

HU 3
∑
~k

c†~k
HUc~k, HU = −U

3∑
r=1

mrαr, (4.16)
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with mr are defined through 〈
~Si,A

〉
= −

〈
~Si,B

〉
≡ ~m, (4.17)

which characterizes the anti-ferromagnetic ordering.
Under this background and assuming U |~m| � λ, the Xr points (r = 1, 2, 3) are slightly

shifted as

~k
X̃1

=
(2π
a
,
Um2
2λa ,−

Um3
2λa

)
,~k
X̃2

=
(
−Um1

2λa ,
2π
a
,
Um3
2λa

)
,~k
X̃3

=
(
Um1
2λa ,−

Um2
2λa ,

2π
a

)
.

(4.18)

For example, the energy dispersion around the X̃1 point is given by

E±(~q) = ±
√

(tqx)2 + 4λ2(q2
y + q2

z) + (δt)2 + (Um1)2, (4.19)

where we have taken ~k = ~k
X̃1

+ ~q. It is seen that there is an additional gap due to the
anti-ferromagnetic order.

The Hamiltonian around the X̃1 point is expressed as

H
X̃1

(~q) = q̃xα1 + q̃yα2 + q̃zα3 + δt α4 + Um1α5, (4.20)

where we have rescaled the momentum as tqx → q̃x/a, 2λqy → q̃y/a, 2λqz → q̃z/a. In
deriving eq. (4.20), we have performed an appropriate change of the basis of the α matrices
through a unitary transformation, with which α1 ↔ α5 (see appendix B). The Hamiltonian
around the X̃2 and X̃3 points can also be reduced to the same form except for the last
term, which becomes Um2α5 and Um3α5, respectively. From this Hamiltonian, we can
infer the effective action for the electron which mimics the action of the relativistic Dirac
fermion as

S =
∫
d4x

∑
r=1,2,3

ψr [iγµ(∂µ − ieAµ)− δt− iγ5Umr]ψr. (4.21)

One can make a chiral rotation of the fermion to eliminate the γ5 dependent term,
ψr → eiγ5θr/2ψr. Then, there appears a topological term:5

S =
∫
d4x θ

αe
4πFµνF̃

µν , θ ≡ θ0 +
∑
r

θr = θ0 +
∑
r

tan−1
(
Umr

δt

)
, (4.22)

where θ0 is either 0 or π depending on the sign of δt. (See appendix C for another derivation
of θ.) Note that the background magnetization ~m can fluctuate: it is a spin-wave or magnon
excitation, ~m(~x). Then, θ(~x) is not a constant but a dynamical field and it has an axionic
coupling to the electromagnetic field. Therefore, in this model, the magnon effectively
behaves as an axion-like field (CM axion).

5Eq. (4.22) may not be applicable when Umr/δt � 1 [52].
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4.3 Axionic excitation as magnons

To relate the axionic excitation (or the CM axion) θ to the conventional magnons defined
in section 2, we repeat the analysis in the previous subsection, taking into account the
fluctuation of the background magnetization in terms of magnon operators. We focus only
on the spatially homogeneous spin fluctuations and consider their interaction with electrons
at around a Dirac point ~k ∼ ~k

X̃r
. Then, the relevant part of the Hubbard interaction term

is schematically expressed as

HU 3 U
∑

r=1,2,3

∑
~k∼~k

X̃r

∑
L=A,B

[
F̃L(ni↑;~0)(c†~k↓,Lc~k↓,L) + F̃L(ni↓;~0)(c†~k↑,Lc~k↑,L)

−F̃L(c†i↑ci↓;~0)(c†~k↓,Lc~k↑,L)− F̃L(c†i↓ci↑;~0)(c†~k↑,Lc~k↓,L)
]
, (4.23)

where the Fourier transform of operators Oi is defined as

F̃L(Oi; ~q) ≡
1
N

∑
i∈L
Oiei~q·~xi . (4.24)

F̃L in eq. (4.23) is determined by the magnetization, which may fluctuate around the
average value. We again use the operator equations eqs. (4.13)–(4.15) to rewrite F̃L in
terms of spin operators ~S′i. The relationship between ~S′i and ~Si, which are defined in
section 2 and directly related to magnon operators, is given by

~S
′A(B)
i = O~S

A(B)
i , (4.25)

with O ≡ (~o1 ~o2 ~o3) being a 3× 3 rotation matrix with ~m ‖ ~o3.6
Taking everything into consideration, the magnon-Dirac electron interaction term is,

up to some constant and quadratic terms of magnons, expressed as

HU 3
∑
~k

c†~k
H̃Uc~k, H̃U =

5∑
µ=1

R̃µαµ + R̃12α12 + R̃23α23 + R̃31α31, (4.26)

with αrr′ ≡ −iαrαr′ . Coefficients are given by

R̃r = −U
[
mr +

√
s

8N
(
(Or1 − iOr2)(u~0 − v~0)(α~0 − β

†
~0) + h.c.

)]
(r = 1, 2, 3), (4.27)

R̃4 = R̃5 = 0, (4.28)

where Orr′ is the (r, r′) component of the rotation matrix O, while mr ≡ Or3(s− 1
N

∑
~q v~q)

is the r-th component of the sublattice magnetization in the ground state. In addition,
here and hereafter, s = 1/2. Bogoliubov coefficients u~0 and v~0 to define the magnon mass
basis, i.e., α- and β-modes, are given by eq. (2.11). Since the magnon mass basis is a
nontrivial mixture of the original basis, the ground state includes non-zero occupation

6There is an ambiguity in the choice of ~o1 and ~o2 related to the SO(2) rotation around ~o3. However,
since (4.29) is unchanged under the SO(2) up to an overall phase factor, it does not affect the interaction
strength.
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number in terms of the original basis and |v~0|2 roughly measures it. Recalling that they
satisfy |u~0|2 − |v~0|2 = 1, the small mixing limit corresponds to u~0 − v~0 ' 1. Note that
the expectation value of R̃r is proportional to the r-th component of the order parameter
(〈Si,A〉 − 〈Si,B〉)/2, while that of R̃rr′ to the average magnetization (〈Si,A〉 + 〈Si,B〉)/2.
The R̃rr′ terms induce interactions between magnon and electron/hole. It may cause,
for example, the decay of a magnon into an electron-hole pair when the gap is small.
Because we are interested in the magnon interaction with electromagnetic fields, which
is not induced by the R̃rr′ terms, we neglect them from now on. Repeating the same
procedure as section 4.2, we obtain the relationship between the axionic excitation and
magnons. Finally, the electromagnetic interaction of magnons is described by

Hint = −αe4π

√
s

2N (u~0 − v~0)
[
D∗α†~0 −Dβ

†
~0 + h.c.

] ∫
d3x ~E · ~B, (4.29)

with

D =
∑
r

U/δt

1 + U2m2
r/δt

2 (Or1 − iOr2), (4.30)

being an O(1) factor, assuming only a moderate hierarchy between U and δt. Note that
(u~0 − v~0) is real because γ~0 = 1. The interaction Hamiltonian shows that a linear combi-
nation of magnon states is excited by a non-zero value of ~E · ~B.

One may embed the CM axions into canonically normalized scalar fields, which we
denote a(α)

CM and a
(β)
CM for α- and β-modes, respectively. Then, the effective interaction

Hamiltonian of these CM axion fields can be written as

Hint = αe√
2πfCM

∫
d3x

(
a

(α)
CM + a

(β)
CM

)
~E · ~B,

where fCM is the “decay constant” of the CM axion. Using eq. (4.29), the decay constant
is found to be fCM = 2

√
2/[(u~0 − v~0)|D|

√
sω~0Vunit] with ω~0 being the magnon frequency

at ~k = ~0 and Vunit = V/N the volume of the magnetic unit cell. The reference scale is
fCM ' 1 MeV for ω~0 = 1 meV, Vunit = (0.3 keV)−3 and (u~0 − v~0)|D| = 1.

5 Dark matter conversion into condensed matter axion

Now we discuss the detection of the elementary-particle DM axion (or ALPs) and hidden
photon through the interaction with CM axion. (To avoid confusion between the DM and
CM axions, hereafter, the DM axion and ALPs are both called ALPs.)

5.1 ALP dark matter

The dynamics of the ALP DM a and the photon in a material is described by

L = 1
2(∂µa)2 − m2

a

2 a2 + 1
2

(
ε| ~E|2 − |

~B|2

µ

)
+ gaγγa ~E · ~B, (5.1)
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where ε and µ are the permittivity and permeability of the material. Hereafter, we treat
the ALP field as a classical background

a(~x, t) = a0 cos(mat−ma~va · ~x+ δ), (5.2)

with |~va| ∼ O(10−3). When the ALP explains the total amount of the dark matter ρDM ∼
0.3 GeV/cm3, we obtain m2

aa
2
0/2 = ρDM. We consider applying a constant magnetic field

~B0 = B0ẑ to the system, where ẑ is a unit vector along the z-axis. This magnetic field,
combined with the ALP background, generates an oscillating electric field

~E(~x, t) = E0ẑ cos(mat−ma~va · ~x+ δ), (5.3)

with

E0 = −1
ε
gaγγa0B0. (5.4)

The target mass range of this set up is ma ∼ O(10−3) eV, which has a de-Broglie
length ` ∼ 1/ma|~va| ∼ O(10) cm. We assume that ` is larger than the material size and
neglect the ~x dependence of the ALP background inside the material. Since ~E · ~B is
uniform in this case, only the magnon zero-modes may be excited, which are considered
in section 4.3. Substituting the value of ~E · ~B generated by the ALP background, the
interaction Hamiltonian is rewritten as

Hint = (C∗aα
†
~0 − Caβ

†
~0 + h.c.) cos(mat+ δ), (5.5)

where

Ca ≡ −
αeE0B0V

4π

√
s

2N (u~0 − v~0)D, (5.6)

with V being the material volume. Hint describes the generation of both α- and β-modes
of the magnon. However, as we will see below, one of them is highly enhanced when the
corresponding excitation energy matches with the ALP mass; in such a case, we may expect
an observable signal rate at the laboratory. Accordingly, we will estimate a signal rate of
the magnon excitation assuming that a single mode is selectively excited.7

We start from the α-mode, while the discussion for the β-mode is parallel, as we will
comment later. We define the ground and the one-magnon states of the material through
α~q |0〉 = β~q |0〉 = 0 for any ~q and |1〉 ≡ α†~0 |0〉, respectively. Also, we express the state of
the material at the time t as8

|ψ(t)〉 ≡ a0(t) |0〉+ a1(t) |1〉 , (5.7)

7Precisely speaking, the α- and β-modes are not mass eigenstates since they mix with a photon, forming
the so-called axionic polariton [41]. However, since the mixing is expected to be small for a small momentum,
we neglect it in our analysis.

8The occupation number can be larger than 1. In the present case, however, the expectation value of the
occupation number is much smaller than 1, and the states with higher occupation numbers are irrelevant.
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and consider its time evolution described by

i
∂

∂t
|ψ(t)〉 = (H +Hint) |ψ(t)〉 , (5.8)

where H and Hint are given in eqs. (2.12) and (5.5), respectively. We treat Hint as a
perturbation and evaluate the time evolution perturbatively. Expressing the time derivative
with a dot, the evolution of coefficients a0(t) and a1(t) is described as

iȧ0 = C∗a cos(mat+ δ)a1, (5.9)
iȧ1 = mma1 + Ca cos(mat+ δ)a0, (5.10)

where the magnon mass is defined as mm ≡ ω~0 +ωL. By solving these equations, we obtain

a1(t) ' −Ca2
eiδ(ma −mm)(eimat − e−immt)− e−iδ(ma +mm)(e−imat − e−immt)

m2
a −m2

m

. (5.11)

The probability that we find a one-magnon state |1〉 at the time t is given by P (t) ≡ |a1(t)|2.
P (t) is highly enhanced when mm ' ma, with which we obtain

P (t) ' |Ca|
2t2

4 . (5.12)

For the β-mode, we can repeat the discussion by defining |1〉 ≡ β†~0 |0〉, and all the calcula-
tions are the same but replacements Ca → C∗a and ωL → −ωL.

P (t) can not become infinitely large because there is an upper limit on t for several
reasons; one of them is the ALP coherence time τa ∼ 1/mav

2
a and another is the magnon

dissipation time τm. Neglecting other possible sources of limitation for simplicity, we define
the effective coherence time τ ≡ min(τa, τm). Then, the average magnon excitation rate is
evaluated as

dNsignal
dt

= P (τ)
τ

= |Ca|
2τ

4 . (5.13)

Numerically, the signal rate is evaluated as

dNsignal
dt

∼ 0.002 s−1
(
B0
1 T

)4 (
u~0 − v~0

)2 ( Vunit
(0.3 keV)−3

)(
V

(10 cm)3

)

× |D|
2

ε2

(
gaγγ

10−10 GeV−1

)2
(

10−3 eV
ma

)2 (
τ

0.1µs

)
, (5.14)

where V/N = Vunit with Vunit being the volume of the magnetic unit cell. Note that, from
eq. (2.11), a straightforward calculation shows

(u~0 − v~0)2 =
√

2ωJ + ωA
ωA

, (5.15)

and hence the signal rate is enhanced if ωJ � ωA.
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Figure 1. Sensitivity of the magnon to the ALP DM in the ma vs. gaγγ plane. The orange (green)
region corresponds to the sensitivity of the β-mode (α-mode) with u~0−v~0 = 10 and Q = 106, while
the dot-dashed, dashed, and dotted lines in each region show the sensitivities of the same setup but
with u~0−v~0 = 1, Q = 103, and Q = 104, respectively. We postulate the target volume V = (10 cm)3

and the magnetic field scanned over 1 T < B0 < 7 T (1 T < B0 < 10 T) for the β-mode (α-mode).
We assume the total observation time ttot ∼ 1 yr for the whole scan. See the text for more details
of the material properties. Also shown as colored regions are existing constraints, while the black
solid (dashed) line shows the prediction for the KSVZ (DFSZ) model.

In figure 1, we show the sensitivity on the ALP parameter space taking (u~0 − v~0) = 1
and 10, Vunit = (0.3 keV)−3, and |D|2 = ε = 1 as the material properties and postulating
V = (10 cm)3. As for the magnon dispersion relation, we use

mm = 1.0± 0.12
(
B0
1 T

)
meV, (5.16)

where the plus (minus) sign is selected for the α- (β-)mode (see eq. (2.12)). The second term
proportional to B0 corresponds to the Larmor frequency. The reference values of Vunit, ωJ
and ωA are taken from those of (Fe-doped) Bi2Se3 [39], although it does not correspond to
the FKMH model discussed here. We define the quality factor Q ≡ mmτ/2π and consider
several setups with Q = 103, 104, and 106. Note that the last choice corresponds to the
most optimistic setup with τm � τa, in which case the coherence time is estimated as

τ = τa = 2π
mav2

a

∼ 4µs
(

10−3 eV
ma

)
. (5.17)

As a reference value, Q ∼ 300 is observed for an antiferromagnetic material Rb2MnF4 at
the temperature T = 4 K in [58]. The magnetic field is assumed to be scanned within
the range 1 T < B0 < 10 T. The β-mode is used for our analysis only when B0 < 7 T
to avoid the instability or the enhanced noise rate according to the low frequency. We
assume the total observation time of ttot ∼ 1 year for the scan of the whole range of the
magnetic field. For a fixed value of the magnetic field, we can search for a mass range of
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∆ma ∼ 2/τ ∼ 10−8 eV, which combined with ttot allows us to determine the time spent for
each scan step. We do not discuss in detail the detection method of generated magnons in
this paper; they might be observed through the conversion into photons at the boundary
of the material, which are then detected by single photon detectors [59], as demonstrated
in ref. [39], or might be detected using some specific features for axionic insulators, such
as the dynamical chiral magnetic effect [42]. For the estimation of the sensitivity, we just
assume the noise rate for the detection dNnoise/dt ∼ 10−3 s−1. We estimate the sensitivity
by requiring the signal-to-noise ratio (SNR)

(SNR) ≡ (dNsignal/dt) ∆tscan√
(dNnoise/dt) ∆tscan

, (5.18)

to be larger than 3 for each scan step.
In the figure, the orange and green regions correspond to the sensitivity using β- and

α-modes, respectively, with u~0 − v~0 = 10 and Q = 106, while the dot-dashed, dashed, and
dotted lines in each region show the sensitivities of the same setup but with u~0−v~0 = 1, Q =
103, and Q = 104, respectively. The other colored regions show existing constraints from
the Light-Shining-through-Walls (LSW) experiments such as the OSQAR [60] (yellow),
the measurement of the vacuum magnetic birefringence at the PVLAS [61] (pink), and the
observation of the ALP flux from the sun using the helioscope CAST [62] (blue). We also
show the predictions of the KSVZ and DFSZ axion models with black solid and dashed
lines, respectively. We can see that the use of both α- and β-modes gives a detectability
over a broad mass range of 10−3–10−2 eV and the sensitivity may reach both the KSVZ
and DFSZ model predictions for some mass range. It is also notable that the sensitivity
becomes much better for the lighter (heavier) mass region with the β-mode (α-mode), both
of which correspond to larger B0, due to the B4

0 dependence of the signal rate.
Let us make a comment on the mixing of CM axion to the photon (magnon-polariton).

Ref. [39] makes use of the large mixing of them for the DM detection. In our typical values
of the parameters, the mixing effect is neglected at the first-order approximation. Actually,
the b parameter defined in ref. [39] is given by

b ∼ 0.006 meV
(
B0
2 T

)(1
ε

)1/2
|D|

(
u~0 − v~0

) ( ma

1 meV

)1/2
(

V
1/3

unit
(0.3 keV)−1

)3/2

. (5.19)

Thus we have b/ma � 1 for ma ∼ O(meV) and hence the effective mixing angle is small.
Note that the estimate of the mass and decay constant of CM axion in ref. [39] is question-
able; see the final paragraph of section 6. This estimation of the effective CM axion-photon
mixing is applicable to the case of hidden photon DM discussed in the next subsection with
replacing the DM axion mass ma with the hidden photon mass.

We also comment on the effect of the size of the topological insulator material. In
the calculations so far, we have considered a hypothetical infinite size situation, but in the
actual experiment it is finite. When a CM axion that has wavelength λ ' 2d/n (with
n being odd integer) is excited in a material with size d, the CM axion reflected at the
boundary can additively superimpose the mode before the reflection, forming an amplified
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stationary wave. The momentum imbalance between DM and CM axion is compensated
by the existence of the boundary of the material. In this case, the magnitude of the output
signal may be amplified by O(10–100) [63], but we do not consider this effect because the
size of the amplification strongly depends on the details of the target material, such as
size of the mixing between CM axion and photons and reflectance and transmittance of
CM axion (or, more precisely, axionic polariton). In particular, the b parameter in our
setup is several orders of magnitude smaller than that in [63]. Thus, a detailed analysis is
necessary to see how large the amplification due to the size effect can be, which we leave
as a future work. The dark matter mass most effectively searched for also differs with d

due to the dependence of CM axion momentum on d, but we ignore this effect because
the mass difference may be much smaller than the CM axion mass for a reasonable size of
material d & O(1) mm [63].

5.2 Hidden photon dark matter

We consider a hidden U(1) gauge field Hµ, which has a kinetic mixing with the U(1)Y
hypercharge gauge boson Bµ. The relevant Lagrangian is

L = −1
4HµνH

µν − 1
4BµνB

µν + εY
2 HµνB

µν + 1
2m

2
HHµH

µ, (5.20)

where mH is the hidden photon mass. Below, we use the convention that the expressions
such as Hµν and Bµν denote the field strengths of the corresponding gauge fields Hµ and
Bµ, respectively. After redefining fields as B′µ ≡ Bµ− εYHµ and H ′µ ≡

√
1− ε2YHµ, we can

rewrite the kinetic terms in the canonical form and obtain

L = −1
4H
′
µνH

′µν − 1
4B
′
µνB

′µν + 1
2m

2
H′H ′µH

′µ, (5.21)

with mH′ ≡ mH/
√

1− ε2Y . After the electroweak symmetry breaking, there appear addi-
tional mass terms and further mixing occurs. The mass terms are given by

Lmass = m2
Z

2 (cWW 3
µ − sWBµ)2 + m2

H′

2 H ′µH
′µ, (5.22)

where mZ is the Z-boson mass, W 3
µ is the third component of the SU(2)L gauge bosons,

while cW ≡ cos θW and sW ≡ sin θW with θW being the Weinberg angle. The mass terms
are approximately diagonalized by performing the unitary transformationW

3
µ

B′µ
H ′µ

 =

 cW −sW sW cW εY
−sW cW s2

W εY
−sW εY 0 1


ZµAµ
H ′′µ

 , (5.23)

up to terms of O(εYm′2H) and O(ε2Ym2
Z). The mass-squared eigenvalues are m2

Z , 0, and m′2H
for Zµ, Aµ, and H ′′µ fields, respectively.

According to the mixing among gauge bosons described above, the interaction between
H ′′µ and electrons is induced as

Lint = −εHeH ′′µψ̄γµψ, (5.24)
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where εH ≡ εY cW and ψ is an electron field. Since the electromagnetic interaction of
magnons (4.29) originates from the triangle diagram of Dirac electrons, a hidden photon
field can replace a photon field in the interaction at the cost of a factor εH , leading to the
magnon-hidden photon-photon interaction

Hint = −εHαe4π

√
s

2N (u~0 − v~0)
[
D∗α†~0 −Dβ

†
~0 + h.c.

] ∫
d3x ~EH · ~B, (5.25)

with ~EH ≡ −~∇H ′′0 − ~̇H ′′ being the hidden electric field.
From now on, let us resort to the abbreviation of Hµ and mH for the mass eigenstate

and eigenvalue of the hidden photon for notational simplicity. We consider the light hidden
photon to explain the whole amount of the DM.9 Taking into account the equation of motion
(� + m2

H)Hµ = 0 and ∂µH
µ = 0, we can express each component of the hidden photon

field as

H0(t, ~x) = −~vH · ~̃H cos(mHt−mH~v · ~x+ δ), (5.26)
~H(t, ~x) = ~̃H cos(mHt−mH~v · ~x+ δ), (5.27)

with ρDM = m2
HH̃

2/2 and H̃ ≡ | ~̃H|. In this parametrization, the hidden electric field is
expressed as

~EH = ~̃HmH sin(mHt+ δ). (5.28)

By repeating the same analysis as in the previous subsection, we can estimate the
magnon excitation rate from the existence of the hidden photon coherent oscillation. The
rate is given by dNsignal/dt = |CH |2τ/4 with

CH = −αeH̃mHB0V

4π cos θ
√

s

2N (u~0 − v~0)D, (5.29)

and τ = min(τH , τm) with τH ∼ 1/mHv
2
H . θ is defined as an angle between ~̃H and ~B0.

Numerically, we obtain the estimation

dNsignal
dt

∼ 0.02 s−1
(
B0
1 T

)2 (
u~0 − v~0

)2 ( Vunit
(0.3 keV)−3

)(
V

(10 cm)3

)
×|D|2

(
εH

10−13

)2
(

cos2 θ

1/2

)(
τ

0.1µs

)
. (5.30)

Note that the signal rate is proportional to a different power of the magnetic field and the
DM mass compared with that for the ALP (5.14).

In figure 2, we show the sensitivity in the hidden photon parameter space. The assump-
tions for the material properties are the same as those used in the previous subsection, while
we assume τ ≡ min(τH , τm) with τH ∼ 2π/mHv

2
H and cos2 θ = 1/2 in this case. Again,

9The correct relic abundance of hidden photon DM of meV mass range is reasonably explained by the
gravitational production mechanism [64–67] or the production from cosmic strings [68]. See also refs. [69–72]
for other production mechanisms.
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Figure 2. Sensitivity of the magnon to the DM hidden photon in the mH vs. ε plane. The color and
line style convention and the experimental set up are the same as those explained in figure 1. The
gray region is a combination of existing constraints, while the magenta region shows a sensitivity
of the polar material [73]. The purple and green lines correspond to the sensitivity of the Dirac
material [74] with gap sizes ∆ = 2.5 meV and 0, respectively.

the orange and green regions correspond to the sensitivity of β- and α-modes, respectively.
The gray region shows existing constraints taken from [75], while the magenta region shows
a sensitivity of the proposal with a polar material [73]. The purple and green lines cor-
respond to the sensitivity of the Dirac material [74] with gap sizes ∆ = 2.5 meV and 0,
respectively. We can see that the use of magnons gives a good sensitivity over a mass
range 10−3–10−2 eV of the hidden photon. The sensitivity has a smaller mass dependence
compared with the result for the ALP because of the smaller power of B0 in the expression
of the signal rate.

6 Conclusions and discussion

The notion of “axion” appears both in the particle physics and condensed-matter physics.
In the particle physics context, the axion is a hypothetical elementary particle introduced to
solve the long-standing strong CP problem and it is also one of the good DM candidates.
There are lots of efforts to detect axion or axion-like particles, although still it is not
discovered yet. Recently there are also increasing interests on the dynamical axion in
the condensed-matter context since the developments of theory of topological insulator.
Although they share the same name “axion” and have similar electromagnetic properties,
their possible relations have been missed except for ref. [39].

Motivated by recent developments in the axion electrodynamics in the context of con-
densed matter physics, we considered a possibility of DM detection through DM conversion
into the condensed-matter (CM) axion. We formulated a way how the CM axion degree of
freedom appears starting from the tight-binding model of the electrons on the lattice. In a
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particular example, we have taken the model in [52], in which the CM axion may be inter-
preted as the spin wave or the (linear combination of) magnons in an anti-ferromagnetic
insulator.10 For the convenience of readers of particle physics side, we have reviewed the
Heisenberg model and half-filling Hubbard model in a self-consistent and comprehensive
manner. Based on these basic ingredients, we can derive the CM axion dispersion relation
and its interaction with electromagnetic fields.

As DM models, we considered two cases: the elementary particle axion (or ALP) and
the hidden photon. We calculated the DM conversion rate into the CM axion in a quantum
mechanical way and estimated the signal rate. It is possible to cover the parameter regions
which have not been explored so far in the DM mass range of about meV. It may be possible
to reach the QCD axion. One should note, however, that our calculation is just based on
an idealized theoretical model of the electron system in the anti-ferromagnetic insulator.
It is nontrivial how well such a description is when it is applied to a real material. We have
not provided a concrete way to detect the CM axion excitation. One possible way is to use
the photon emission through the CM axion-photon mixing (axionic polariton) and detect
it by the dish antenna as discussed in ref. [39]. It may also be possible to put the material
into the cavity and see the cavity photon mode through its mixing with the CM axion,
as demonstrated in the context of DM detection with ferromagnetic materials [32, 38]. In
any case, it is important to understand the origin of CM axion and its properties, and we
believe our formulation gives a basis of the estimation of the CM axion production rate
from background DM and is useful for future developments of this field.

The physics of CM axion is very rich and the CM axion in a different material may
have a different microphysical origin [42, 43, 76]. It would be interesting to explore the
physics of CM axion as a probe of DM in a broader class of materials.

Finally, let us make comments on recent related works that appeared while finalizing
this manuscript [63] and after submission of this manuscript [77]. Ref. [63] considered ALP
DM detection using the CM axion11 as an extension of the earlier analysis in ref. [39]. They
utilize the material Fe-doped Bi2Se3 or Mn2Bi2Te5 as an antiferromagnetic insulator and
calculated the CM axion mass and decay constant along the line of ref. [41]. Note that
ref. [77] pointed out that the concrete numerical values used in the previous calculations
including [41] and [63] are not natural and need to be reconsidered. On the other hand,
the present paper considers a different realisation of the CM axion from ref. [41]. We
first reduce the tight-binding electron model in the Fu-Kane-Mele-Hubbard Hamiltonian
to the Heisenberg model and identified the CM axion as a magnon. The calculation of
the magnon dispersion relation and its interaction is straightforward. The cost is that the
Fu-Kane-Mele-Hubbard model is a toy model and its relation to the real material is not
clear at present.

Here we also want to clear up some confusion in the literature. First, the CM axion
in the model of Fe-doped Bi2Se3 is not described by a linear combination of the magnon,

10In the original proposal of dynamical axion in Fe-doped topological insulators such as Bi2Se3 [41], the
CM axion is interpreted as an amplitude mode of the anti-ferromagnetic order parameter and not expressed
by a linear combination of magnons.

11The CM axion in this paper is called as “axion quasiparticle (AQ)” in their paper.
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µ \ ν s px pz dzx

s Vssσ nxVspσ nzVspσ
√

3nxnzVsdσ
px ∗ n2

xVppσ + (1− n2
x)Vppπ nxnzVppσ − nxnzVppπ

√
3n2

xnzVpdσ + nz(1− 2n2
x)Vpdπ

pz ∗ ∗ n2
zVppσ + (1− n2

z)Vppπ nxVpdπ

dzx ∗ ∗ ∗ n2
xVddπ + n2

yVddδ

Table 1. Table of off-diagonal elements of T ijµν [79]. ~n ≡ ~rj − ~ri denotes the lattice displacement
vector. We omitted the principal quantum numbers associated with µ and ν since a different choice
only results in different numerical values of V -factors such as Vssσ. The left bottom elements with
∗ markers can be obtained by the relationship T ijµν = T jiνµ = T ijνµ

∣∣
~n→−~n.

while it is actually a linear combination in the Fu-Kane-Mele-Hubbard model as shown
in this paper. Ref. [39] uses the magnon dispersion relation for the CM axion assum-
ing the Fu-Kane-Mele-Hubbard model, but the authors of ref. [39] incorrectly estimated
its decay constant quoting the result of ref. [41] that is only applicable to the Fe-doped
Bi2Se3 (as mentioned in ref. [63]). They also considered only one of the α- and β-modes.
Second, in appendix 1 of ref. [78] (arXiv version) and in sectionV.A of ref. [42], the CM
axion dispersion relation is estimated by the one-loop calculation (or the random phase
approximation), but it has been pointed out in ref. [77] that they incorrectly neglected the
tree-level contribution to the CM axion mass and also took the wrong sign for the one-loop
contribution. Note that appendix 2 of ref. [78] also considered a Heisenberg model limit
of the Fu-Kane-Mele-Hubbard model and derived the magnon dispersion relation, which is
consistent with our estimation, but its relation to their one-loop calculation is not clear.
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A Note on spin-orbit interaction term

In this appendix, we see how to derive the spin-orbit interaction term given in eq. (4.1).
We will first discuss how the hamiltonian is expressed in terms of creation and annihilation
operators of the electron. Next, we derive the effective hamiltonian of graphene as an
example, which becomes the same form as (4.1), and then show that the result is model
independent.

A.1 Tight-binding model with spin-orbit interaction

We consider a model in which atoms are attached to lattice points labeled by i with position
vectors ~ri. Each atom has its energy eigenstates generated by c†µi, where µ denotes an
electron orbital. The diagonal part of the tight-binding hamiltonian, HTB, is given by the
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µ \ ν s px py pz

s 0 0 0 0
px 0 0 −isz isy

py 0 isz 0 −isx
pz 0 −isy isx 0

µ \ ν dxy dx2−y2 dzx dyz dz2

dxy 0 2isz −isx isy 0
dx2−y2 −2isz 0 isy isx 0
dzx isx −isy 0 −isz i

√
3sy

dyz −isy −isx isz 0 −i
√

3sx
dz2 0 0 −i

√
3sy i

√
3sx 0

Table 2. Summary of the matrix elements
〈
~L · ~S

〉
µν
. It is implicitly assumed that the principal

quantum numbers of µ and ν are the same. The left (right) panel shows the results for s and p (d)
orbitals. Note that the spin operators are related to the Pauli matrices as sf = σf/2 (f = x, y, z).

sum of the hamiltonian of each atom. On the other hand, a small overlap between electron
wave functions sit at different lattice sites induces relatively small off-diagonal elements.
We are particularly interested in the case where electrons in each atom are tightly bound
on a lattice point. In this case, we can neglect the overlap between two sites unless they
are the nearest neighbors of each other. Accordingly, we obtain

HTB =
∑
µ

∑
i

εµc
†
µicµi +

∑
µ,ν

∑
〈i,j〉

T ijµνc
†
µicνj , (A.1)

where εµ denotes the energy level of the electron orbital µ of a single atom.12 The off-
diagonal elements T ijµν are calculated by Slater and Koster [79] as summarized in table 1
for several important choices of electron orbitals. One of the important features of these
results is the directional dependence (i.e., the existence of ~n ≡ ~rj − ~ri in the expressions),
which is sourced from the directional dependence of orbitals. Information of the shape of
the lattice comes into the Hamiltonian due to this dependence.

Next, we take into account the effects of the spin-orbit interaction. Due to the rel-
ativistic motion of an electron inside an atom, it feels a magnetic field whose size and
direction are proportional to its angular momentum ~L. As a result, we obtain the on-site
spin-orbit interaction Hamiltonian

HSO = 1
m2
er

dV (r)
dr

~L · ~S, (A.2)

where V (r) is the centrifugal potential in which the electron moves, while ~L and ~S are the
electron angular momentum and spin operators, respectively. Given that the operator ~L · ~S
does not change the principal and azimuthal quantum numbers, this interaction induces
the term

HSO =
∑
µ,ν

∑
i

ξn`c
†
µi

〈
~L · ~S

〉
µν
cνi, (A.3)

12In general, the energy level may change against the choice of the atom. However, we only focus on the
case where it is universal for all the atoms in this paper.
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where n and ` are the common principal and azimuthal quantum numbers of µ and ν,
respectively, while ξn` denotes the radial average of the coefficient in eq. (A.2). Some of
the matrix elements

〈
~L · ~S

〉
µν

are shown in table 2 as examples.

A.2 Graphene

Graphene is made of carbon atoms that are located on the two-dimensional honeycomb
lattice on the xy plane. Three out of four electrons of the outermost shell of each carbon
in 2s, 2px, and 2py orbitals are shared among the nearest neighbor carbons to form the
so-called σ bond. On the other hand, the other electron in the 2pz orbital is also shared
and called the π bond. The unit cell consists of two lattice sites, which we call A and B
sublattices. Since we are particularly interested in the dynamics of electrons in pz orbitals
of A and B sublattices, we construct an effective theory of electron states in pz orbitals by
integrating out all the other states.

Among the full hamiltonian H ≡ HTB +HSO, we treat the off-diagonal elements, i.e.,
the second term of eq. (A.1) and HSO, as perturbations and name the corresponding part
of H as V . Also, we call an effective theory hamiltonian Heff and its off-diagonal part Veff ,
both of which are constructed only from cpz ,i and c

†
pz ,i

. Then, the matching condition of
the full theory to the effective theory is given by〈

2pz, i
∣∣∣U †(t, t0)

∣∣∣ 2pz, j〉 =
〈

2pz, i
∣∣∣U †eff(t, t0)

∣∣∣ 2pz, j〉 , (A.4)

where |µ, i〉 ≡ c†µi |0〉 with |0〉 being the vacuum state, while U and Ueff are the time evo-
lution operators in the full and effective theories, respectively. Working in the interaction
picture, they are given by

U(t, t0) = T

{
exp

[
i

∫ t

t0
dt′ VI(t′)

]}
, (A.5)

with T being the time-ordering operator, and

VI(t) ≡ eiH0tV e−iH0t, (A.6)

while Ueff can be obtained by substituting V with Veff .
The left-handed side of eq. (A.4) does not have a contribution from HSO at the first

order of VI since ~L·~S does not have a non-zero matrix element. Also, there are contributions
only with even numbers of ~L · ~S at the second order of perturbation. Such contributions
just slightly modify εµ and T ijµν and do not qualitatively change the physics, so we just
neglect it. The third order contribution can be rewritten as∫ t

t0
dt′

∫ t

t′
dt′′

∫ t

t′′
dt′′′

∑
µ,ν,k,p

〈
2pz, i

∣∣ iVI(t′) ∣∣µ, k〉 〈µ, k ∣∣ iVI(t′′) ∣∣ ν, p〉 〈ν, p ∣∣ iVI(t′′′) ∣∣ 2pz, j〉 .
(A.7)

According to [80], it is known that the contributions from the spin-orbit interaction among
3d orbitals are numerically large in this model, so we may focus only on them. As a result,
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BO
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A

i^j^
d
1

i^j^
d
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i^

j^

Figure 3. The coordinate adopted in deriving the general form of the spin-orbit interaction.

we deform (A.7) to obtain

〈
2pz, i

∣∣∣U †(t, t0)
∣∣∣ 2pz, j〉∣∣∣3rd order in VI

' −(t− t0)
ξ3dV

2
pdπ

(ε3d − ε2p)2~s · (~d
1
ij × ~d2

ij), (A.8)

where ~d1
ij ≡ ~rk − ~ri and ~d2

ij ≡ ~rj − ~rk. The factor ~d1
ij × ~d2

ij forces the matrix element to
be zero when i = j and the only non-zero matrix elements are those with (i, j) being a
pair of next-nearest neighbors. Therefore, the subscript k in the definition of ~d1,2 should
be understood as the lattice site in between i and j. The corresponding matrix element in
the right-handed side of eq. (A.4) is given by〈

2pz, i
∣∣∣U †eff(t, t0)

∣∣∣ 2pz, j〉 ' i(t− t0) 〈pz, i |Veff | pz, j〉 , (A.9)

so we conclude

Veff 3 i
ξ3dV

2
pdπ

(ε3d − ε2p)2

∑
〈〈i,j〉〉

c†2pz ,i
~s · (~d1

ij × ~d2
ij)c2pz ,j . (A.10)

This agrees with (4.1) when we set λ = a2ξ3dV
2
pdπ/4(ε3d − ε2p)2.

A.3 Model independence of the spin-orbit interaction term

So far, we have considered the spin-orbit interaction for a specific choice of the lattice
structure, i.e., the two-dimensional honeycomb lattice. Here, we argue that the structure
of the interaction, given in eq. (4.1), can be understood by symmetries.

Here, we consider the interaction between next-nearest neighbor sites induced by the
spin-orbit interaction HSO. For this purpose, we consider a set of next-nearest neighbor
sites from the A-sublattice (called Aî and Aĵ), which share only one nearest neighbor site
(called BO). The vectors pointing to Aî and Aĵ from BO are denoted as ~d1

îĵ
and ~d2

îĵ
,

respectively. Here, we adopt a coordinate in which Aî, Aĵ , and BO are on the x vs. y
plane; the position of BO is set to be the origin and the y axis is chosen to be parallel to
~d1
îĵ
− ~d2

îĵ
(see figure 3).
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Hereafter, we assume that the whole lattice is invariant under the following transfor-
mations and hence the Hamiltonian also is:

• P: parity, defined as the reflection with respect to the x vs. y plane: (x, y, z) P−→
(x, y,−z). With the P transformation, the angular momentum operator acting on
the electron on i-th site transforms as (L(i)

x , L
(i)
y , L

(i)
z ) P−→ (−L(P[i])

x ,−L(P[i])
y , L

(P[i])
z ),

where i P−→ P[i]. (Thus, P [̂i] = î.) In addition, the annihilation operator of the
electron transforms as

cµ,i
P−→ σ3cP[µ],P[i], (A.11)

where P[µ] denotes the P-transformed orbital of µ. (If µ is singlet under the P-
transformation, P[µ] = µ.)

• R: π rotation around the x axis: (x, y, z) R−→ (x,−y,−z). With this transformation,
the lattice site i is moved to the position of R[i]. With R, the angular momentum
operator transforms as (L(i)

x , L
(i)
y , L

(i)
z ) R−→ (LR[j]

x ,−LR[j]
y ,−LR[j]

z ). In addition,

cµ,i
R−→ σ1cR[µ],R[i], (A.12)

where R[µ] denotes the R-transformed orbital of µ.

For example, the diamond lattice used for the Fu-Kane-Mele-Hubbard model and the two-
dimensional honeycomb lattice considered in the previous subsection are unchanged under
the P and R transformations. Then, one can find that the Hubbard model Hamiltonian
given in eq. (3.5), tight-binding Hamiltonian given in eq. (A.1), and the spin-orbit interac-
tion given in eq. (A.3) are invariant under the P and R transformations.

Starting with the model that is invariant under the P and R transformations, the
effective theory for the electrons in the orbitals of our interest should also respect these
symmetries. In the effective theory, the interaction of the next-nearest neighbor sites can
be expressed as

HNNN =
∑
〈〈i,j〉〉

(
`a,ijc

†
iσacj + tijc

†
icj
)
, (A.13)

where 〈〈i, j〉〉 is a set of the next-nearest neighbor sites. (Here, we consider the effective
theory containing only the electrons in the unique orbital of our interest, and the index for
the electron orbital is omitted for the notational simplicity.)

Now, we discuss the properties of the coefficient `a,ij and show that, with P and R
symmetries, ~̀ij is proportional to ~d1

ij × ~d2
ij . To see this, we can use the following relations:

`a,̂iĵc
†
î
σacĵ

P−→ − `1,̂iĵc
†
î
σ1cĵ − `2,̂iĵc

†
î
σ2cĵ + `3,̂iĵc

†
î
σ3cĵ , (A.14)

`a,̂iĵc
†
î
σacĵ

R−→ `1,̂iĵc
†
ĵ
σ1cî − `2,̂iĵc

†
ĵ
σ2cî − `3,̂iĵc

†
ĵ
σ3cî. (A.15)

Eq. (A.14) results in `1,ij = `2,ij = 0 while eq. (A.15) implies `3,ji = −`3,ij , and hence we
can find that ~̀ij ∝ ~d1

ij × ~d2
ij .
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α̃1 α̃2 α̃3 α̃4 α̃5
U1 α5 α2 α3 α4 −α1
U2 α1 α5 α3 α4 −α2
U3 α1 α2 α5 α4 −α3

Table 3. Transformation law of α-matrices under the unitary transformation by U1, U2 and U3.

B Transformation of α matrix

The chiral representation of α matrices are defined as

αi =
(
σi 0
0 −σi

)
, α4 =

(
0 −1
−1 0

)
, α5 =

(
0 −i
i 0

)
, (B.1)

where α5 = α1α2α3α4. They satisfy the anti-commutation relation {αµ, αν} = 2δµν . Under
the unitary transformation αµ → α̃µ = U †αµU , the anti-commutation relation remains
intact. For some choice of U , the α matrices are exchanged. Examples are summarized in
table. 3, where

U1 = 1√
2


1 0 0 −i
0 1 −i 0
0 −i 1 0
−i 0 0 1

 , U2 = 1√
2


1 0 0 −1
0 1 1 0
0 −1 1 0
1 0 0 1

 , U3 = 1√
2


1 0 −i 0
0 1 0 i

−i 0 1 0
0 i 0 1

 . (B.2)

Note that they have the form of

Ui = 1√
2

(
1 −iσi
−iσi 1

)
. (B.3)

for i = 1, 2, 3. One can easily show that they yield

U †i αjUi =

αj for i 6= j

−α5 for i = j
. (B.4)

The Dirac representation for the α matrices is given by

αi =
(

0 σi
σi 0

)
, α4 =

(
1 0
0 −1

)
, α5 =

(
0 −i
i 0

)
, (B.5)

The chiral and Dirac representations are related by the unitary transformation as

α(Dirac)
µ = U †α(chiral)

µ U, U = 1√
2

(
1 1
−1 1

)
. (B.6)

– 25 –



J
H
E
P
0
8
(
2
0
2
1
)
0
7
4

C Berry connection and topological term

C.1 Dimensional reduction of (4 + 1)-dimensional quantum Hall insulator

In section 4, we derived θ using the Lagrangian formulation following ref. [52]. On the
other hand, θ can also be expressed in terms of the Berry connection [81, 82].

It is well known that the general (2+1)-dimensional quantum Hall insulator is charac-
terized by the first Chern number N (1)

ch in terms of the integration of the Berry connection
over the Brillouin zone [83]. Its electromagnetic response is described by the action

S = N
(1)
ch

4π

∫
dtd2x εµνρAµ∂νAρ. (C.1)

Similarly, the (4 + 1)-dimensional quantum Hall insulator is characterized by the second
Chern number N (2)

ch and described by the action

S = N
(2)
ch

24π2

∫
dtd4x εµνρστAµ∂νAρ∂σAτ , (C.2)

where

N
(2)
ch = 1

32π2

∫
BZ
d4k εijklTr [FijFkl] , (C.3)

with

Fij ≡ ∂iAj − ∂jAi + i[Ai,Aj ]. (C.4)

Here we used a shorthand notation like ∂i ≡ ∂/∂ki and so on (k4 may be rather understood
as ϕ ≡ k4 +A4) and Ai denotes the Berry connection matrix in the momentum space given
by

Aαβi = −i〈uαk |
∂

∂ki
|uβk〉. (C.5)

with |uαk 〉 being the Bloch state with α representing the band index, and the trace in
eq. (C.4) is taken over the occupied bands. Note that N (2)

ch is expressed as

N
(2)
ch = 1

2π

∫
∂θ

∂ϕ
dϕ, (C.6)

where

θ ≡ 1
4π

∫
BZ
d3k εijk Tr

[
Ai∂jAk + i

2
3AiAjAk

]
. (C.7)

Now let us perform a dimensional reduction. The action (C.2) is written as

S = 1
8π2

∫
dtd3x εµνρσ

∂θ

∂ϕ
∂µϕAν∂ρAσ = − 1

8π2

∫
dtd3x θ εµνρσ∂µAν∂ρAσ, (C.8)

where we used ∂µθ = (∂θ/∂ϕ)∂µϕ. This is an action that describes the electromagnetic
response of (3 + 1)-dimensional topological insulator.
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C.2 Hamiltonian expression of θ

Let us assume the four-band model whose (momentum space) Hamiltonian is given by

H = c†k,αHαβck,β , H =
5∑

µ=1
Rµ(~k)αµ, (C.9)

where c†k,α and ck,α with α = 1–4 denote the electron creation and annihilation operator
with the wavenumber k and Rµ are real coefficients. Here we take the Dirac representation
for the α matrices (B.5). The Hamiltonian (C.9) is diagonalized by the unitary matrix U :

U =


N+(−R1 + iR2) N+(−R3 + iR5) N−(R1 − iR2) N−(R3 − iR5)
N+(R3 + iR5) N+(−R1 − iR2) N−(−R3 − iR5) N−(R1 + iR2)

0 N+(R+R4) 0 N−(R−R4)
N+(R+R4) 0 N−(R−R4) 0

 , (C.10)

where N± ≡ 1/
√

2R(R±R4) and R ≡
√∑

µ=1−5(Rµ)2. One finds

U †HU = diag(−R,−R,R,R). (C.11)

The lower two energy bands and upper two bands are degenerate and we assume that
the lower bands are occupied and upper bands are empty. One can define the cre-
ation/annihilation operator in the diagonal basis through

dk,α ≡ U †αβck,β , d†k,α ≡ c
†
k,βUβα. (C.12)

The Bloch state may be given by |uαk 〉 = d†k,α|0〉 = c†k,βUβα|0〉. Thus the Berry connection
is calculated as

Aαβi = −i〈0|U †αγck,γ
∂

∂ki
(c†k,δUδβ)|0〉 = −iU †αγ

∂Uγβ
∂ki

. (C.13)

Note that Aαβi is a 2× 2 matrix since only the two low energy states are occupied. Substi-
tuting the concrete expression (C.10), we obtain

Ai =
3∑

a=1
Aiaσa, (C.14)

where

Ai1 = −N2
+ [(R1∂iR5 −R5∂iR1) + (R3∂iR2 −R2∂iR3)] , (C.15)

Ai2 = −N2
+ [(R3∂iR1 −R1∂iR3) + (R5∂iR2 −R2∂iR5)] , (C.16)

Ai3 = −N2
+ [(R1∂iR2 −R2∂iR1) + (R5∂iR3 −R3∂iR5)] . (C.17)

Note that the term proportional to the unit matrix 1 is canceled.
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Using the trace formula Tr [σaσb] = 2δab and Tr [σaσbσc] = 2iεabc, the first and second
terms of θ in (C.7) are calculated as

εijk Tr [Ai∂jAk] = −3
R2(R+R4)2 ε

µνρσRµ(∂xRν)(∂yRρ)(∂zRσ), (C.18)

εijk Tr
[
i
2
3AiAjAk

]
= R2 −R2

4
R3(R+R4)3 ε

µνρσRµ(∂xRν)(∂yRρ)(∂zRσ), (C.19)

where µ, ν, ρ, σ = 1, 2, 3, 5. Note that terms proportional ∂jN+, ∂j∂kRµ, ∂jR1∂kR1 and so
on vanish when contracted by εijk. Thus we obtain the following expression for θ,

θ = − 1
4π

∫
BZ
d3k

2R+R4
R3(R+R4)2 ε

µνρσRµ(∂xRν)(∂yRρ)(∂zRσ). (C.20)

This expression is consistent with [76].13
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