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Using circularly-polarized light to control quantum matter is a highly intriguing

topic in physics, chemistry and biology. Previous studies have demonstrated helicity-

dependent optical control of spatial chirality and magnetization M . The former is cen-

tral for asymmetric synthesis in chemistry and homochirality in bio-molecules, while

the latter is of great interest for ferromagnetic spintronics. In this paper, we report

the surprising observation of helicity-dependent optical control of fully-compensated

antiferromagnetic (AFM) order in 2D even-layered MnBi2Te4, a topological Axion

insulator with neither chirality nor M . We further demonstrate helicity-dependent

optical creation of AFM domain walls by double induction beams and the direct re-

versal of AFM domains by ultrafast pulses. The control and reversal of AFM domains

and domain walls by light helicity have never been achieved in any fully-compensated

AFM. To understand this optical control, we study a novel type of circular dichroism

(CD) proportional to the AFM order, which only appears in reflection but is absent

in transmission. We show that the optical control and CD both arise from the opti-

cal Axion electrodynamics, which can be visualized as a Berry curvature real space

dipole. Our Axion induction provides the possibility to optically control a family of

PT -symmetric AFMs such as Cr2O3, CrI3 and possibly novel states in cuprates. In

MnBi2Te4, this further opens the door for optical writing of dissipationless circuit

formed by topological edge states.

Main

There is tremendous interest in finding innovative ways to control and manipulate complex

quantum materials [1]. Antiferromagnets (AFMs) have zero net M , so AFM domains are immune

to perturbing magnetic field. This leads to the prospect of robust magnetic storage [2, 3]. However,

this robustness also means that manipulating fully-compensated AFM order is extremely difficult

[3, 4, 31, 38] (discussion in SI.V.2). As such, controlling AFM order has been recognized a key

challenge toward the AFM spintronics [2, 3]. One known approach is to use the parallel E and B

fields [7, 8, 23]. Compared to such electrical approach, optical control is non-contact, flexible, has

good spatial resolution and further allows for ultrafast manipulation. It also enables fundamental

understanding of the interaction of photons with charges, spins, lattice, and quantum geometry.

In this paper, we explore the novel possibility of controlling fully-compensated AFM order by

circularly-polarized light, which has never been achieved. We got inspirations from (1) discoveries

of helicity-dependent optical control of chiral materials and magnetization M [4, 10, 11] and (2)
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previous experiments reporting novel circular dichroism (CD) proportional to the AFM order in

Cr2O3 [5, 13] and the pseudo-gap state of cuprates [14]. We report helicity-dependent optical

control of fully-compensated AFM order induced by the optical Axion electrodynamics in even-

layered MnBi2Te4.

MnBi2Te4, the first intrinsic magnetic topological insulator recently synthesized in 2019, has

attracted great interest as it bridges three primary fields in quantum condensed matter: topology,

magnetism and 2D van der Waals (vdW) materials [15–17, 20–23, 25, 26, 26, 41–45]. MnBi2Te4’s

lattice consists of septuple layers (SL) separated by vdW gaps. Its magnetic ground state is layered

AFM, which can be further tuned into a ferromagnetic state by a large B field (Fig. 1e). Previous

theoretical works have comprehensively studied the electronic, magnetic and topological properties

of MnBi2Te4 bulk and thin films (SI.V.3) [15, 41–45]. The 2D magnetic and topological ground

states can be classified into two kinds. The first kind has an obvious, nonzero static M hosting

the Chern insulator state [16, 17, 20–23, 25, 26]. It includes odd-layered MnBi2Te4 near B = 0 as

well as odd-layered and even-layered MnBi2Te4 under large B fields. By contrast, the second, more

special kind is the even-layered AFM MnBi2Te4, which will be our focus. It is expected to host

fully-compensated AFM with an Axion insulator state [16, 17, 41–43] near B = 0.

Our magneto-optical setup (Fig. 1f) allows us to investigate the interaction between circularly-

polarized light and quantum materials by probing CD, the difference between σ+ and σ− light.

Importantly, our setup can measure CD both in the reflection and transmission channels and has

a supercontinuum light source with tunable wavelength (500 nm to 1000 nm). These capabilities

are crucial for our findings, including unique helicity-dependence, wavelength-dependence, and

reflection and transmission properties. The measurement temperature is 2 K unless noted otherwise.

Optical induction in a 2D topological antiferromagnet

In this section, we show the observation of optical induction at specific wavelengths. Systematic

wavelength dependences will be presented later. As shown in Fig. 2a, starting from T = 30 K,

we shine σ+ circularly-polarized light (λinduction = 840 nm, Pinduction ' 1 mW) onto a spot on a

8SL MnBi2Te4 flake (sample-S1, see Fig. 2e) while lowering its temperature. Upon reaching 2

K, we turn off the induction light and measure the reflection CD (RCD) with the detection light

(λdetection = 946 nm and Pdetection ' 30 µW). We observe significant anomalous RCD at B = 0

(Fig. 2c). We then measure the anomalous RCD while warming up. The RCD vanishes above

TN. From T = 30 K, we repeat the same induction process (Fig. 2b) only changing the induction

helicity to σ−. We turn off the induction light at 2 K and repeat the measurements. Remarkably,
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the global sign of RCD data is reversed (Fig. 2d). We repeated the induction nine consecutive times

(Figs. 2e-g and Extended Data Fig. 4). We find that the RCD at 2 K is consistently controlled

by the induction light helicity. On the other hand, when cooling down without induction light, we

still observe the anomalous RCD. Only the sign is random (SI.Fig. S17).

Understanding the optical induction by investigating the anomalous CD

Because the anomalous RCD correlates with the AFM order, the data above hint an exciting

possibility that induction helicity can control the AFM order in 8SL MnBi2Te4. To understand

this optical induction, we first investigate the anomalous CD, because it serves as the experimental

indicator of the AFM order. Here, we focus on sample-S2 on a diamond substrate, which consists

of four connected flakes of 5 − 8 SLs (Extended Data Fig. 5a). We performed systematic RCD

measurements (Extended Data Figs. 5c-p). In 5SL and 7SL, we observed the conventional magnetic

CD proportional to M . In 6SL and 8SL, we observed the anomalous RCD. We have further

confirmed the reproducibility of the anomalous CD in more than 10 samples.

There are two possibilities for the anomalous RCD. (1) It can be the magnetic CD proportional

to M (we will explain the origin of M below); (2) Actually, in the absence of any M , there can

be an AFM CD unrelated to M but proportional to the AFM order L in PT symmetric AFMs

as reported in Cr2O3 [5, 13] (this is symmetry allowed see SI.III), which is also likely the origin of

the CD observed in the pseudogap of cuprates [14, 29, 30]. One may think that (1) and (2) can

be easily discerned because they are proportional to different order parameters. But in reality this

is often not feasible, because the M in an AFM is typically coupled with the AFM order L. For

example, suppose our sample is subject to a fixed vertical, static electric field Ez due to substrate,

which in turn generates an M due to the static ME coupling α, i.e., M = αEz. Because the two

AFM states have opposite α, if one flips the AFM order L, M will also flip. In fact, the induced

M turned out to be the dominant mechanism for RCD in even-layered CrI3 [8, 31]. Therefore, new

measurements beyond the RCD are crucial to distinguish the above two possibilities.

We now proceed to show that CD in transmission, i.e., TCD, provides the decisive new measure-

ment, as proposed in Ref. [32, 33]. Magnetic CD is known to also occur in transmission channel

(just like the Faraday effect). By contrast, the AFM CD has TCD = 0 because of PT symmetry.

Extended Data Fig. 6a describes a conceptual experiment with σ− light transmitting through sam-

ple. Upon PT inversion, the even-layered MnBi2Te4 remains invariant and light path also stays

the same, but light helicity is reversed. As such, PT enforces the transmission coefficients for

σ± light to be identical, which means TCD = 0 (similar analysis can show that RCD is allowed,
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Extended Data Fig. 6b). Therefore, what truly distinguishes the AFM CD from the magnetic CD

is TCD = 0.

As such, we study TCD and RCD simultaneously in sample-S3, which consists of 5SL and 6SL

on diamond (Fig. 3). In 5SL, the magnetic CD indeed shows up prominently in both reflection and

transmission. We now turn to 6SL. At 946 nm where significant anomalous RCD was observed at

B = 0 (Fig. 3b), the TCD, by contrast, is zero. Continuous wavelength dependence (Fig. 3c) shows

that, strikingly, TCD is negligibly small over the entire spectrum. Also, we have repeated the RCD

vs. TCD experiments in sample-S1 (Extended Data Fig. 7), on which the induction experiments

were performed. In SI.II.1, we show additional data to further substantiate this. Therefore, we

showed that the anomalous RCD in even-layered MnBi2Te4 only appears in reflection but is absent in

transmission. Such unique reflection and transmission characters, although has been long proposed

in theory [32], have never been observed before, allowing us to rule out the magnetic CD due

to uncompensated M . As such, the anomalous RCD in even-layered MnBi2Te4 is the AFM CD.

Below, we show that the AFM CD can be further categorized by the microscopic mechanisms and

our results provide the first demonstration of the optical Axion mechanism.

CD arising from the optical Axion electrodynamics

The AFM CD arises from the diagonal optical ME coupling α(ω)ii [5, 32], but the optical ME

coupling has different components corresponding to different microscopic mechanisms. Specifically,

the traceless part of α(ω)ii is known as the gyrotropic birefringence (GB) [GB = 1
3
(α(ω)xx−α(ω)zz)]

[34, 35]; while the trace part is the Axion contribution θ(ω) = 1
3

∑
i α(ω)ii = 1

3
[2α(ω)xx + α(ω)zz]

(we have applied α(ω)xx = α(ω)yy because of MnBi2Te4’s C3z symmetry). However, for a long time,

only the GB (traceless part) was theoretically derived [34]. Only very recently, the theory of Axion

electrodynamics at optical frequencies was developed [33], which allows us to compute the Axion

optical ME coupling in quasi-2D periodic systems (see Methods for expressions). Importantly, in

MnBi2Te4, because its bulk respects inversion symmetry, the GB contribution is expected to be

negligible, whereas the Axion contribution dominates. As such, MnBi2Te4 is an ideal system to

isolate the Axion optical ME contribution. Figure 3f shows the calculated GB and θ(ω) of 6SL

MnBi2Te4, from which we indeed see that Axion θ(ω) strongly dominates. Interestingly, as shown

in Fig. 3e, the physics of Axion ME coupling can be visualized by a Berry curvature real space

dipole (see derivation in the Methods): Because the top and bottom surfaces have opposite Berry

curvature, by applying E field, they feature opposite Hall currents. In fact, if one considers the

Hall currents on all four facets parallel to E field, one naturally obtains a circulating current, which
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leads to an M . This physical picture works for both static and optical Axion ME effects. We only

need the following correspondence: the static E ↔ optical Eω and Berry curvature ↔ inter-band

Berry curvature. We note that, in contrast to the static limit, for our photon energy (500 − 1000

nm), the optical transition involves many bands, not just the topological surface states; and the

contributions from the higher bands are more significant (SI.IV.2).

Using the calculated θ(ω), we can theoretically compute RCD (see expressions in SI.IV.1), and

thus compare it with the experimental RCD data. We note that the reflection from a surface with

a nonlocal ME contribution is a difficult problem with extensive previous discussions [9, 28, 37],

and we have carefully considered this (see SI.IV.3). As shown in Figs. 3c,g, we observe good

agreement between experimental data and theoretical calculation in terms of the magnitude and

the spectral shape. Therefore, by comparing data with calculations, we demonstrated the Axion

CD in even-layered MnBi2Te4, i.e., AFM CD arising from the optical Axion electrodynamics.

Optical induction arising from the optical Axion electrodynamics

Our simultaneous RCD and TCD measurements demonstrated that the M in even-layered

MnBi2Te4 is negligibly small. Instead, circularly-polarized light with opposite helicity couples

differently to the opposite AFM domains. To further confirm that this is also the origin of the

optical induction, we now investigate its wavelength dependence. In particular, we notice that the

RCD data has distinct spectral dependence (Fig. 3c): E.g. RCD at 840 nm and 540 nm have oppo-

site signs. Therefore, if the induction has the same physical origin as the CD, i.e., the optical Axion

electrodynamics, then the induction effects using λinduction = 840 nm and λinduction = 540 nm should

be opposite. Specifically, with the same light helicity, the induction using λinduction = 840 nm and

λinduction = 540 nm should lead to opposite AFM domains. As such, we carry out the induction with

λinduction = 540 nm and 840 nm (note that λdetection is fixed to achieve consistent comparison). By

directly comparing Fig. 4a,c (λinduction = 540 nm) and Fig. 4b,d (λinduction = 840 nm), we indeed

find that the results are entirely opposite (see free energy analysis in Fig. 4f). We further study the

induction at other wavelengths. As shown in Fig. 4e, our data show that the effect of induction at

540 nm and 580 nm is opposite to that of 740 nm, 840 nm and 946 nm. These results are consis-

tent with the sign of the RCD spectra for even-layered MnBi2Te4, which provide strong evidence

that the induction and CD share the same physical origin, i.e., the optical Axion electrodynamics.

Therefore, we conclude on the observation of the Axion induction, i.e., helicity-dependent control

of fully-compensated AFM order based on the optical Axion electrodynamics.
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Optical creation of AFM domain wall by double induction

The control of AFM order with light helicity makes it possible to spatially modulate the AFM

domain structure. For instance, one can think of creating AFM domain wall using two close-by

light beams of opposite helicity. Here, we demonstrate this possibility in a 8SL flake (sample-S5).

As shown in Fig. 5a, the two light beams are spatially separated and their polarizations can be

controlled separately. When both beams are σ+ polarized (Fig. 5c), the double induction yields

one AFM domain, similar to the single induction before. We then change the two beams to σ+ and

σ− (Fig. 5d). Indeed, the double induction yields opposite AFM domains separated by a domain

wall. If we further change the two beams to σ− and σ+, then both AFM domains are flipped and

again an AFM domain wall is created. In SI.II.3, we show more systematic data. By double Axion

induction, we achieve helicity-dependent optical creation of AFM domain wall for the first time.

Direct optical switching of AFM domain by ultrafast pulse

The optical induction requires warming up the entire sample and then cooling down across TN

with light. To achieve optical writing of complex AFM structures at will, direct optical switching

would be highly desirable. We have achieved such direct optical switching of the AFM domain

using ultrafast pulsed light with circular polarization. We start from the entire 8SL sample in a

single AFM domain (Fig. 6), while the sample is kept at T = 18 K (below TN). We shone ultrafast

laser pulses with circular polarization, turned off the ultrafast laser, then checked the AFM order

by RCD. As shown in Fig. 6, we indeed directly switch the AFM domain at the ultrafast laser

spot with clear helicity dependence. In SI.II.4, we show more systematic data. Direct helicity-

dependent optical switching of AFM has never been achieved before. This new result opens a

pathway to photolithography for AFM structures.

Discussions

Our results have demonstrated a new type of helicity-dependent optical control (Extended Data

Fig. 2): It has been previously known that the rotating electric field of circularly-polarized (CP)

light serves as an effective B field [(E∗×E) has the same symmetry as B], while the rotating elec-

tric field multiplies the light propagation vector leads to an effective chiral force [(E∗ × E) · q̂ has

the same symmetry as chirality]. Therefore, CP light can control magnetization M and chirality

[4, 11]. In our work, we discovered that CP light can control the AFM order. Such new control can

be visualized by the picture that CP light provides an effective Axion E ·B field [(E∗ × E) · ẑ has

the same symmetry as E ·B], where the rotating electric field of CP light serves as an effective Bz
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field and the sample surface normal as an effective Ez. Looking forward, we highlight the following

future directions: First, our simultaneous RCD and TCD measurements realize a novel symmetry

probe for both T and PT , which is valuable to investigate novel T -breaking phases in unconven-

tional superconductors and charge orders. For instance, optical nonreciprocity (Kerr rotation) with

nominally zero magnetization was also observed in unconventional superconductors such as UPt3

[39–41]. A finite Kerr signal means T -breaking. Whether this state preserves/breaks PT sym-

metry is unknown, which can be learnt by simultaneous transmission experiments. Interestingly,

theory predicts exotic PT -symmetric topological superconductivity [42]. Second, we note that the

optical Axion θ(ω) electrodynamics is quantum geometrical (i.e., it depends on the geometrical

properties of Bloch wavefunction such as Berry curvature) but not topological. This is in contrast

to the static θ [43, 44], which can lead to topological quantized effects with exciting experimen-

tal progress [17, 45–48]. This means that the optical θ(ω) cannot be used to discern topology at

photon energies larger than the band gap. On the flip side, it also makes this novel physics more

widely applicable in other PT -symmetric AFMs without mirror planes, including Cr2O3 and CrI3

and even the pseudo-gap state of cuprates [14]. Third, the direct switching by ultrafast pulses

(Fig. 6) is potentially on the ultrafast timescale. So future pump probe experiments to directly

demonstrate ultrafast AFM reversal would be highly desirable. Finally, for MnBi2Te4, because the

AFM order is directly coupled to the sign of static θ angle (a topological invariant) as well as the

half-quantized surface Hall conductivity [41–43], our definitive, versatile optical control of AFM

domains and domain walls also leads to an optical writing of ballistic circuits of topological chiral

edge states.
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Methods

Crystal growth: Bulk crystals were grown by the flux method [61]. Elemental Mn, Bi and Te

were mixed at a molar ratio of 15 : 170 : 270, and sealed in a quartz tube with argon environment.

The ampule was first heated to 900◦C for 5 hours. It was then moved to another furnace where

it slowly cooled from 597◦C to 587◦C and stayed for one day at 587◦C. Finally, MnBi2Te4 were

obtained by centrifuging the ampule to separate the crystals from the Bi2Te3 flux.

Sample fabrication: To preserve the intrinsic properties of 2D MnBi2Te4 flakes, the entire de-

vice fabrication process was performed without exposure to air, chemicals, or heat in an Ar-filled

glovebox with O2 and water levels below 0.01 ppm. First, thin flakes were mechanically exfoliated

on a 300-nm SiO2/Si wafer. The number of layers was determined based on the optical contrast

shown in Ref. [23]. Second, we picked up a desired MnBi2Te4 flake and transferred it onto a dia-

mond, sapphire, or hBN substrate by the cryogenic pickup method developed in Ref. [62], where a

thin piece of PDMS (polydimethylsiloxane) was cooled to −110◦ by liquid nitrogen to achieve the

pickup. Third, a 20−50 nm hBN flake was transferred onto the MnBi2Te4 flake. A 200 nm layer of

PMMA (poly(methyl methacrylate)) was spin-coated onto the sample to further protect it before

transferring it from the glovebox to a cryostat.
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Circular dichroism and optical induction: Optical CD measurements were performed in the

closed-loop magneto-optical cryostat OptiCool by Quantum Design (base temperature ∼ 2 K and

B field ±7 T) using a supercontinuum laser SuperK-EXR20 by NKT photonics (wavelength 500

nm to 2500 nm, pulse width ∼ 12 ps at 1064 nm). We focused on 500−1000 nm due to constraints

of the photodetector, lens, objective and beam splitter. A spectrometer SpectraPro-300i by Acton

Research was used to select the wavelength. The beam went through a photoelastic modulator

(PEM200, Hinds instruments) operating at λ
4

retardation with a frequency of 50 kHz. After an

optical chopper (1000 Hz) and a broadband plate beam-splitter (near normal, Thorlabs BSW26), the

beam was focused onto the sample by a 50X Mitutoyo Plan Apochromat Objective (MY50X-825).

The reflected beam went through the cryostat’s top window, was collimated by the same objective,

and was collected by a Si Avalanche Photodetector (APD410A, Thorlabs). The transmitted beam

was collimated by a parabolic mirror (37-282 Edmund Optics) inside the cryostat and passed

through a side window to reach the APD. The corresponding reflection and transmission APD

signals were analyzed by two lock-in amplifiers at 50 kHz (the PEM frequency) and 1000 Hz (the

chopper frequency), respectively. The RCD and TCD were the ratio of the 50 kHz and 1000 Hz

signals. Spatial imaging were achieved using a galvo scanning mirror system. The background CD

were obtained by performing the same measurement at a location immediately next to MnBi2Te4

flake (SI.II.1). In order to reduce the background CD, the beam splitter (BSW26, Thorlabs) was

intentionally used at near normal incidence (Fig. 1f)

Induction experiments were performed using the same supercontinuum laser. The induction

light shared the same beam path. When conducting induction experiments, the PEM was turned

off. An achromatic λ
4

waveplate (AQWP10M-580, Thorlabs) was installed before the objective,

which generates σ± polarization. After the induction was completed, the induction light was then

turned off, and the λ/4 waveplate was removed from the beam path, allowing us to measure the

CD using the PEM. In order to check if the phase of the signal was definitive and consistent, we

deliberately turned off and on the PEM multiple times and took the identical measurements. Every

time, the phase (sign) of the signal was consistent. We show the data and explain this based on

the PEM instrumentation in SI.II.1.

The direct switching was achieved with the sample kept at T = 18 K (below TN = 25 K). The

pulsed light was generated by an amplified Yb:KGW laser (Pharos, LightConversion) with pulse

duration 168 fs, wavelength 1030 nm, repetition rate 100 kHz. The power applied on the sample

was 0.04 mW (= 0.4 nJ per pulse). We shone the ultrafast light for 1min, turned it off, and then

checked the AFM by RCD.
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NV center magnetometry: NV center magnetic imaging was performed using a diamond sample

containing a near-surface ensemble of NV centers. A green laser (515 nm, 100 µW power, beam

spot FWHM 400 nm) was used to probe the optically-detected magnetic resonance across the NV

ensemble [63]. A pulsed electron spin resonance measurement (500 ns pulse length) was performed

on the |0〉 to |1〉 NV ground-state transition at a background field of 141 mT along the NV axis

(∼ 1.08 GHz). To determine the stray field dB due to the flake, a linear plane-fit background is

subtracted from the raw field image. The NV detection limit was about 2µB/nm2.

Optical Axion Electrodynamics:

• θ and E ·B have identical symmetry properties. They require the breaking of P , T and all

mirrors. Note that there are PT -symmetric phases with mirror symmetry [49]. They do not

support the Axion optical ME coupling because mirror forces θ = 0 but they can support

other novel optical effect such as the nonreciprocal directional dichroism.

• By adding θ(ω) e2

2πhc
Eω ·Bω into the Lagrangian, the modified Maxwell’s equations read

∇ · Eω = ρ− e2

2πhc
∇θ(ω) ·Bω (1)

∇×Bω = ∂tE
ω + jω +

e2

2πhc
(∇θ(ω)× Eω + ∂tθ(ω)Bω) (2)

The other equations (the Gauss’s law for magnetism and the Faraday’s law) are unchanged.

• The low frequency limit is defined as frequencies below the magnetic gap at the surface Dirac

point, which is typically ∼ 10 meV in magnetic topological insulators. Therefore, according

to this definition, terahertz light is in the low frequency limit.

• According to Ref. [33], θ(ω) is given by

θ(ω) = π
2h

e2
1

3
(2α(ω)xx + α(ω)zz), (3)

αxx(ω) =
e2

~L
∑
o,u

∫
d2k

εuo
εuo − ~ω

Im[
~2 〈o|v̂x|u〉 〈u| − 1

2
(v̂yr̂z + r̂zv̂y) + m̂s

x|o〉
ε2uo

], (4)

αzz(ω) =
e2

~L
∑
o,u

∫
d2k

εuo
εuo − ~ω

Im[
~2
2

(〈o|r̂z|u〉 〈u|v̂xv̂y|o〉 − 〈o|r̂zv̂x|u〉 〈u|v̂y|o〉
ε2uo

−(x↔ y)) + ~2 〈o|v̂z|u〉 〈u|m̂s
z|o〉

ε2uo
] (5)

where L is the sample thickness, εuo(k) is the energy difference between occupied (o) and

unoccupied (u) states, v̂x and v̂y are velocity operators, r̂z is the position operator along z,

and m̂s is the spin operator.
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• To get the Berry curvature real space dipole, we start from α(ω)xx (because the traceless part

is small, θ(ω) ' π 2h
e2
α(ω)xx.).

α(ω)xx =
e2

~L
∑
o,u

∫
d2k

εuo
εuo − ~ω

Im[
~2 〈o|v̂x|u〉 〈u|v̂yr̂z|o〉

ε2uo
]

=
e2

~L
∑
o,u

∫
d2k

εuo
εuo − ~ω

Im[
~2 〈o|v̂x|u〉

∑
p 〈u|v̂y|p(k)〉 〈p(k)|r̂z|o〉

ε2uo
]

' e2

~L
∑
o,u

∫
d2k

εuo
εuo − ~ω

〈r̂z〉oIm[
~2 〈o|v̂x|u〉

∑
p 〈u|v̂y|p(k)〉 δpo
ε2uo

]

=
e2

~L
∑
o,u

∫
d2k

εuo
εuo − ~ω

〈r̂z〉oIm[
~2 〈o|v̂x|u〉 〈u|v̂y|o〉

ε2uo
]

=
e2

2~L
∑
o,u

∫
d2k

εuo(k)

εuo(k)− ~ω
〈r̂z〉oΩuo (6)

Therefore, the Berry curvature real space dipole is a good approximation when the wavefunc-

tion of the electronic states is concentrated in a particular layer (〈p(k)|r̂z|o〉 ' δpo〈r̂z〉o). In

MnBi2Te4, because it is a vdW layered material, the interlayer coupling is expected to be

relatively weak. Hence, the wavefunction of the electronics states is relatively localized.

Free energy analysis: Similar to previous works [4, 11], we expand the system’s free energy in

the presence of light. Here we assume the light propagates along ẑ.

δF = βM · [E∗ × E] + γΦchiral[E
∗ × E] · q̂ + ξLz[E

∗ × E] · ẑ, (7)

where E and q̂ are the electric field and unit wavevector of light; M, Φchiral and L are the order

parameters for FM, chiral crystals and AFM, respectively; β, γ and ξ are the corresponding coupling

tensors. First, we explain how each term is constructed. The guiding principle [65] is that a valid

free energy term must be invariant under all symmetries. For instance, M is odd under T but even

under P ; one can check that the same is true for [E∗ ×E], so that M · [E∗ ×E] is invariant under

both T and P . Similarly, the spatially-chiral order Φchiral is odd under P but even under T , and

the same is true for [E∗ × E] · q̂. The AFM order Lz (as in even-layered MnBi2Te4) is odd under

both P and T , and the same is true for [E∗ × E] · ẑ.

Next, we explain the physical meaning of each term. Importantly, one can check that E∗ × E,

[E∗×E] · q̂, and [E∗×E] · ẑ all flip sign upon reversing light helicity (while keeping the propagation

direction invariant). The first term is the energy coupling between M and circularly-polarized

light, which is responsible for the helicity-dependent optical control of magnetization observed in

FMs [4]. The second term is the energy coupling between spatial chirality and circularly-polarized
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light, which is responsible for the helicity-dependent optical control of spatial chirality observed

in asymmetrical chemical reactions [10] and gyrotropic electronic order [11]. The last term is the

energy coupling between the fully-compensated AFM order and circularly-polarized light, which is

responsible for the helicity-dependent optical control of the fully-compensated AFM order, achieved

for the first time in even-layered MnBi2Te4 here. The coupling constant ξ directly arises from the

optical Axion electrodynamics, as we demonstrated from the data above.

First-principles calculations: First-principles band structure calculations were performed using

the projector augmented wave method as implemented in the VASP package within the generalized

gradient approximation (GGA) schemes. 9× 9× 1 Monkhorst-Pack k-point meshes with an energy

cutoff of 400 eV were adapted for the Brillouin zone integration. Experimentally determined lattice

parameters were used. In order to treat the localized Mn 3d orbitals, we follow previous first-

principles works [15, 64] on MnBi2Te4 and used an onsite U = 5.0 eV. The Wannier model for

the few-layered MnBi2Te4 was built using the Bi p, Te p and Mn d orbitals. All optical response

functions were calculated based on the Wannier model.
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FIG. 1: Helicity-dependent optical control of quantum matter and introduction to MnBi2Te4.

a,b, Previous studies have demonstrated helicity-dependent optical control of spatial chirality and mag-

netization [4, 10, 11]. c, We report the surprising observation of helicity-dependent optical control of

fully-compensated antiferromagnetic (AFM) order. d, Lattice structure of MnBi2Te4. e, Hall resistivity

of our 6SL MnBi2Te4 with the layered magnetic state shown by the pink arrows. For each state, two out

of six layers are pictured for simplicity. The Axion insulator state is realized by the fully-compensated

AFM near B = 0. f, Our circular dichroism set up. SP, PEM, BS, Obj. are spectrometer, photoelastic

modulator, beam-splitter, and objective, respectively.
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FIG. 2: Optical induction in a 2D topological antiferromagnet. a, We shine σ+ circularly-polarized

induction light (λinduction = 840 nm, Pinduction ' 1 mW) on the sample S1 (8SL MnBi2Te4 flake on a

sapphire substrate) while lowering its temperature from T = 30 K to 2 K. c, Upon reaching 2 K, we turn

off the induction light and measure the reflection CD (RCD) with the detection light at λdetection = 946

nm and Pdetection ' 30 µW. Surprisingly, we observe a significant RCD at B = 0. Upon warming up, the

RCD vanishes above TN. b,d, Same as panels (a,c) except that we shine σ− circularly-polarized induction

light on the sample while lowering its temperature from T = 30 K to 2 K. e, Spatial mapping of the optical

contrast near the 8SL flake. Scale bar: 2 µm. f, RCD signal after induction with opposite helicity. The

circle marks the spot subject to the induction light while cooling. g, RCD signal at the center of the circle

in panel (f) after consecutive induction processes with opposite helicity.
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FIG. 3: Unique reflection and transmission properties and observation of the Axion CD.

a,b, Simultaneous RCD and TCD measurements of the 5SL (panel a) and 6SL (panel b) in sample-S3.

c, Wavelength dependence of RCD and TCD at B = 0 for 6SL. d, Schematic illustration of the Berry

curvature real-space dipole. Electrons at opposite positions (±Z) in even-layered MnBi2Te4 have opposite

Berry curvature. e, the Axion optical ME coupling can be visualized an itinerant electron circulation

in response to electric field as a consequence of the Berry curvature real-space dipole. f, Optical Axion

θ(ω) and gyrotropic birefringence (Txx) of 6SL MnBi2Te4 calculated from first-principles band structures.

g, Theoretically computed RCD and TCD, which are obtained directly from the calculated α(ω) (see

expressions in SI.IV.1). The TCD is strictly zero with perfect PT symmetry. The calculated TCD here

takes account into the weak PT breaking due to asymmetric dielectric environment (hBN and diamond,

see details in SI.IV.1.(5)).
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FIG. 4: Observation of the Axion induction. a,c, We shine σ+ circularly-polarized induction light

(λinduction = 540 nm, Pinduction ' 1 mW) on the 8SL MnBi2Te4 flake (sample-S1) while lowering its

temperature from T = 30 K to 2 K (panel a). We turn off the induction light and measure the RCD

with λdetection = 946 nm while warming up (panel c). b,d, Same as panels (a,c) except the induction

wavelength is λinduction = 840 nm. e, Induction wavelength dependence. To consistently compare how

induction wavelength λinduction influences the results of induction, we fix all other experimental parameters

including induction helicity (fixed at σ+) and detection wavelength (fixed at λdetection = 946 nm) and we

only vary λinduction. f, Free energy diagrams summarize the optical control of the AFM order in even-

layered MnBi2Te4 with light helicity and wavelength.



24

σ+σ−

a

b

c

d

e

σ+σ−

8SL

C
on

tr
as

t (
a.

u.
)

0

σ−σ+ 0

-3

3

0.3

0

-3

3

σ+ σ+ 0

-3

3

σ+σ−

FIG. 5: Optical creation of AFM domain wall by double Axion induction. a, We shine two

close-by circularly-polarized induction light beams on an 8SL MnBi2Te4 flake (sample-S5). Scale bar: 2

µm. λinduction = 540 nm. b, Schematic illustration of the double induction leading to an AFM domain wall.

c-e, RCD mappings of the area subject to the double induction with (σ+, σ+), (σ−, σ+), and (σ+, σ−),

respectively.
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FIG. 6: Direct optical switch of AFM order by ultrafast pulse with circularly polarization.

a, Schematic illustration of the entire 8SL sample (sample-S1) in the same AFM domain (achieved by

sweeping the B field from +7 T to 0 T). We shine circularly-polarized ultrafast pulsed light while keeping

the sample at T = 18 K (below TN = 25 K). b,c, RCD maps after shining circularly-polarized ultrafast

pulsed light. d-f, The same as panels (a-c) but for the opposite AFM domain prepared by sweeping the

B field from −7 T to 0 T. See additional data in SI.II.4. Scale bar: 2 µm.
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Extended Data Fig. 2: Three classes of CD in chiral crystals, ferromagnets and PT -symmetric

AFM. a-c, Chiral crystals, ferromagnets and PT -symmetric AFM feature distinct nontrivial interactions

with circularly-polarized light. They can only be distinguished by their transmission and reflection prop-

erties. d-f, Equally importantly, when bands with nontrivial topology or giant Berry curvature occur in

these three classes of materials, the respective CD can dominantly arise from the Berry curvature proper-

ties, namely the Berry curvature k space dipole, the total Berry curvature, and the Berry curvature real

space dipole, respectively.
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Extended Data Fig. 3: a, The Berry curvature causes transverse electron motion in response to an

external DC E field. b, Analogously, the inter-band Berry curvature causes a transverse electron motion

in response to light’s Eω field upon an interband transition. Ref. [66] provides a detailed theoretical analysis

for the clear geometrical origin of the inter-band Berry curvature. c, The Berry curvature induced optical

ME coupling can be visualized an itinerant electron circulation in response to electric field. Specifically,

upon the application of an electric field Eω, Berry curvature leads to transverse electron motion. Because

of the Berry curvature at ±Z is opposite, the transverse motions of electrons at ±Z are in opposite

directions. This in turn leads to an itinerant electron circulation Jω, which is equivalent to magnetization

Mω. d,e, Rotation of electric field Eω0 for σ± light. f, Light’s magnetic field Bω can lead to an electric

polarization Pω0 = α(ω)Bω
0 through the optical ME effect, which rotates light’s electric field Eω. Suppose

this rotation is in the clockwise direction. Then, this additional clockwise rotation would be along the

same direction as the intrinsic rotation (also clockwise) for σ+ light but opposite to the intrinsic rotation

(counter-clockwise) for σ− light. This provides an intuitive picture for why σ± light can behave differently

in an Axion insulator, a prerequisite for nonzero CD.
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Extended Data Fig. 4: Reproducible RCD measurements for nine consecutive inductions

with alternating induction helicities. a, RCD as a function of temperature while warming up after

induction with σ− light. b, Same as panel (a) but after induction with σ+ light. c, Spatial mapping

of the optical contrast near the 8SL MnBi2Te4 flake. The square box marks the region for induction

experiments. d, RCD map after induction with opposite helicity. The circle marks the spot that is subject

to the induction light while cooling; The σ+ and σ− on each small panel denotes the helicity of the

induction light. Experimental parameters used for data in this figure: λinduction = 840 nm, Pinduction ' 1

mW; λdetection = 946 nm, Pdetection ' 30 µW. Scale bars for panels (e,f) are 2 µm.
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Extended Data Fig. 5: Circular dichroism in 2D MnBi2Te4. a, Optical contrast of sample-S2

on diamond structure, which consists of four connected flakes of 5SL, 6SL, 7SL and 8SL. b, Nitrogen

vacancy center measured stray magnetic field of sample S2. c, RCD spatial mapping at B = 0 using

λdetection = 710 nm. The sample was cooled down with a finite B field and the B field was ramped to zero

before the measurements. d, Same as panel c but using λdetection = 946 nm with. No optical induction

was performed in panels c,d. Scale bars (horizontal and vertical lines) are all 5 µm. We note that the NV

and CD measurements were performed in different setups. Hence the spatial mappings (b and c,d) are

rotated with respect to each other. e-h, Magnetic hysteresis of RCD for 5SL, 6SL, 7SL and 8SL measured

at λdetection = 710 nm. i-l, Same as panels (e-h) but measured at λdetection = 946 nm. m-p, RCD spectra

at B = 0 for 5-8SL. The spectrum strongly depends on the evenness or oddness of the layer number,

consistent with the different physical origins of the CDs in even and odd layers. It is interesting to note

that ∼ 700 nm is the symmetric (antisymmetric) point for odd (even) layers.
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Extended Data Fig. 6: Symmetry analysis for CD in PT -symmetric AFM. a, σ− light transmit-

ting through a sample. Upon PT inversion, the AFM remains invariant and the light path also stays the

same, but light helicity is reversed. As such, PT enforces the transmission for σ± to be identical, which

means TCD = 0. b, σ− light reflecting off a sample. Upon PT inversion, the AFM remains invariant

but the reflection is changed to the bottom surface. This means that PT does not impose any constraint

on RCD experiments, because RCD compares the reflections of σ± lights from the same side of the sam-

ple. Carrying out the same analysis exhaustively confirms that there is no symmetry that can relate the

reflections of light with opposite helicity while keeping the AFM invariant. Therefore, RCD is allowed.
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Extended Data Fig. 7: RCD vs. TCD measurements of the 6SL and 8SL MnBi2Te4 in sample-

S1. a,b, RCD and TCD magnetic hysteresis measurements at 946 nm. c, RCD and TCD spectra at B = 0.
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I. Addressing alternative origins for CD in even-layered MnBi2Te4

In this section, we carefully consider alternative origins for the observed CD beyond the optical

Axion electrodynamics. We enumerate systematic experimental data and theoretical analyses,

which allow us to show that these alternative origins are not significant for our experiments.

I.1. Protection layers (PMMA/hBN) induced CD

We covered hBN and PMMA (poly(methyl methacrylate)) layers on the MnBi2Te4 flakes to

protect them from oxidation before taking them out of the glovebox (see Methods section). We can

exclude the possibility that the observed CD signals come from these protection layers as follows:

• PMMA and hBN are non-magnetic. Reflection CD is strictly prohibited under T (see proof

in SI.III.3).

• As shown by the temperature-dependence and B-hysteresis measurements (Figs. 2 and 3 in

the main text), our observed CD signal clearly arises from the AFM order in MnBi2Te4.

I.2. Uncompensated magnetization induced magnetic CD

We now consider the possibility that the AFM is uncompensated with nonzero M , which

leads to magnetic CD. In even-layered MnBi2Te4, this uncompensated M could arise from sample

degradation or a vertical E field. Because this has been carefully addressed in the main text, we

only enumerate the key evidence.

• Most importantly, we observe RCD 6= 0 but TCD = 0. We emphasize that RCD and TCD

were measured simultaneously, which means on the same spot of the same flake without

changing any other condition (T , B field).

• The NV center magnetometry measurements show no observable M .

• The hBN-encapsulated 6SL MnBi2Te4 sample is expected to minimize the vertical E field.

However, as shown in Extended Data Fig.5, the RCD still persists.

• Sample degradation is minimized because the entire device fabrication process was finished

in an Ar-filled glovebox without exposure to air, chemicals, or heat. The optical CD data are
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of high quality. Using a similar fabrication process, we have also fabricated a 6SL MnBi2Te4

device with electrical contacts and performed transport experiments in the same cryostat as

the optical CD measurements. In the FM phase at B = −7 T, we observed clear topological

Chern insulator state with fully quantized Ryx and zero Rxx (Fig. S35). The high data quality

helps to rule out the degradation possibility.

Based on these systematic data, we conclude that the uncompensated magnetization induced

magnetic CD is not the dominant effect in the even-layered MnBi2Te4.

I.3. Light attenuation induced residual CD

a Laser

hBN

MBT

diamond

PMMA

a
...
...
...
...
...
...

Ei

Er

Et

1 3 2b

Fig. S1: a, Schematic illustration for the light attenuation induced residual CD. b, A layout to theoretically

compute the light attenuation induced residual CD (see SI.I.3.2).

We now consider another important possibility based on the magnetic CD: The even-layered

AFM is fully compensated, but the magnetic CD signals coming from opposite spin layers may not

cancel, because the light intensity decays due to absorption (Fig. S1a). We refer to this mechanism

as light attenuation induced residual CD.

I.3.1. Weak absorption in 2D MnBi2Te4 flakes

As shown in Fig. S2, the amplitude of the CD in 6SL is similar to that in 7SL. If we purely use

the light attenuation induced residual CD mechanism to explain, then the result would only make

sense in the very strong absorption limit. For instance, let us assume that the top layer absorbs all

light. This means that the CD only probes the top layer, so the number of layers does not matter.

In sharp contrast, the actual absorption in 2D MnBi2Te4 is weak. Based on our direct measure-

ments (Fig. S3), each MnBi2Te4 layer absorbs only ∼ 1.7% light. This means that light probes the

2D MnBi2Te4 flake as a whole, rather than only the top layer. With a total absorbance of ∼ 10%
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Fig. S2: Comparison between the RCD in 6SL and 7SL at B = 0.
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Fig. S3: Reflectance, transmittance and absorbance of 2D MnBi2Te4 flakes.

in 6SL or 7SL, it is highly unlikely that the residual CD in 6SL is similarly strong as the magnetic

CD in 7SL.

a b c4SL 6SL
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4SL

Fig. S4: Comparison between the RCD in 6SL and 4SL at B = 0.

We have further studied the CD in 4SL, which is found to be even stronger than 6SL (Fig. S4)

but the total absorbance in 4SL is as low as ∼ 6%. These studies show that the light attenuation

induced residual CD cannot explain our experiments.
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Notes: We determined the absorbance of MnBi2Te4 in two independent ways. First, as shown

in Fig. S3, we measured the reflectance and transmittance simultaneously in our 2D MnBi2Te4

flakes, and obtain the absorbance. Second, a recent FTIR experiment [1] measured the optical

conductivity of bulk MnBi2Te4, based on which we can obtain the light attenuation coefficient and

therefore the averaged absorbance per layer. Both methods yield the consistent result , i.e., ∼ 1.7%

absorbance per layer.

I.3.3. Quantitative estimation of the light attenuation induced residual CD

To make our conclusion above more precise, we aim to quantitatively calculate the magnitude

of the light attenuation induced residual CD. In fact, this attenuation induced residual CD effect

has been theoretically derived in Ref. [2] by expanding the off-diagonal part of the dielectric tensor

εxy to the first order in d
λ

(the interlayer distance d ' 1 nm) following the standard light scattering

theory [3]. εxy(z) = γ̄d
∑N−1

n=1 (−)nδ(z− nd), where γ̄ represents the rotation power for a single FM

layer and N is the number of layers. The E field in the entire space can be obtained by solving the

following equation: (ε4π
2

λ2
− curl curl)E = −4π2

λ2
εxy(z)E3, where ε = εxx = εyy is the diagonal part

of the dielectric tensor, E and E3 are the electric fields outside and inside the AFM (see layout in

Fig. S1b). This was solved in Ref. [2]. In the thin film limit (number of layer N is small), the

magnetic CD and attenuation induced residual CD can be both expressed by the RCD of a single

FM layer,

Magnetic CD =
1

N
RCD1SL N is odd (S8)

= 0 N is even (S9)

attenuation induced residual CD = 2π
d

λ
RCD1SL both odd and even (S10)

We know that the magnetization M in odd layers is inversely proportional to the layer number

N , and the M in even layers is zero. Indeed, from From Eqs. S8 and S9, we see that the magnetic

CD behaves in the same way, consistent with the expectation that the magnetic CD is proportional

to M . On the other hand, for the attenuation induced residual CD, we see that the relevant

quantity is d
λ
∼ 1

1000
from Eq. S10, which is very small (d ' 1 nm and typical λ = 1000 nm). In

fact, the factor of d
λ

can be intuitively derived by the following picture: as light propagates and

attenuates, each spin layer feels a spatially varying electric field E(z) = E0e
ikzz (kz is the light

wave-vector). By considering the reflection from each spin layer, the ratio between attenuation
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induced residual CD and RCD1SL can be estimated as (1− e2ikzd + e4ikzd− e6ikzd + . . .)/(1 + e2ikzd +

e4ikzd + e6ikzd + . . .) ∝ d
λ
. We could now estimate the attenuation induced residual CD based on

our own experimental data. Using Eqs. S10 and S8, we can express the light attenuation induced

residual CD by the measured magnetic CD in 7SL. By using d = 1, λ = 1000 nm, and N = 7, we

obtain attenuation induced residual CD ∼ 4% of the magnetic CD in 7SL. By contrast, our 6SL

RCD experimental data is similarly large as 7SL (Fig. S2).

I.4. Higher order effects

We now explore the possibility of CD due to higher order effects in electromagnetic fields,

which in general can arise from many microscopic mechanisms. However, a unifying property is that

the CD amplitude due to higher order effects is expected to depend strongly on the optical power.

To be more specific, let us consider the following mechanism as an example: The even-layered AFM

is fully compensated, but light can generate a nonzero static M (e.g. the inverse Faraday effect),

which in turn leads to a magnetic CD. In this case, the CD is expected to be proportional to the

laser power. This is quite intuitive: Without light, the material has M = 0. Light induces M . As

such, stronger light means larger light-induced M , which in turn results in stronger CD.

By contrast, the CD processes we considered in the main text are linear optical effects, i.e., the

amplitude of CD is independent of the optical power. This can be understood by the fact that

they are direct measures of the material’s properties. For example, the Axion CD is proportional

to the material’s ME coupling; the magnetic CD is proportional to the material’s M ; the natural

optical activity is proportional to the material’s spatial chirality. Therefore, their magnitude is

independent of the optical power.

We have carefully studied how CD depends on the opitcal power. As shown in Fig. S7, our CD

in both 5SL and 6SL MnBi2Te4 is clearly independent of optical power, therefore ruling out the

possibility of higher order effects.
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II. Additonal data

II.1. Additional CD data

RCD magnetic hystereses at multiple wavelengths: To better understand the RCD

signals of the MnBi2Te4 system, in Figs. S5a-p, we show the RCD magnetic hystereses for 5SL-8SL

at multiple wavelengths, including 540 nm, 710nm, 840 nm and 946 nm. These data are all

consistent with the RCD spectra shown in Figs. S5q-t.

Temperature dependence of RCD data: In order to highlight the nonzero RCD signal at

B = 0, we define δRCD(B) = RCDBackward(B) − RCDForward(B) (Backward/Forward refer to the

scanning direction of the magnetic hysteresis). Figures S6a,b show the T and B dependence of

δRCD in 6SL, where the Axion CD near B = 0 is clearly observed. Figures S6c,d show the T and

B dependence of δRCD in 5SL, where the magnetic CD near B = 0 is clearly observed.

Optical power dependence of the RCD data: As shown in Fig. S7, the RCD data for both

5SL and 6SL are independent of the detection optical power, which shows that both the magnetic

CD and Axion CD are linear optical effects.

Additional TCD magnetic hysteresis and spectrum: In the main text, we showed that

the TCD signals of 6SL MnBi2Te4 vanish at B = 0. To substantiate this conclusion, we measured

TCD magnetic hystereses for 6SL at multiple wavelengths (540 nm, 800 nm, 840 nm and 900

nm, Fig. S8), which all show vanishing TCD signals at B = 0. On the other hand, we also

measured TCD magnetic hystereses for 5SL at multiple wavelengths (800 nm, 840 nm and 900 nm,

Fig. S9a-c), which further demonstrate that magnetic CD exists in transmission. Additionally,

Fig. S9d shows the 5SL TCD spectrum, which is quite similar to the 5SL RCD spectrum shown

in Fig. S5q.

Reproducibility of simultaneous TCD and RCD measurements: One of our most

crucial observations is that the Axion CD only shows up in reflection but is absent in transmission

(i.e., nonzero RCD but zero TCD). This conclusion was found to be highly reproducible. First,

we performed measurements of 6SL flakes on different substrates (see Figs. S10b,e). Independent

of the substrates, we found nonzero RCD but zero TCD. Second, on the same substrate, we
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performed measurements on flakes with different thicknesses (6SL and 8SL, see Figs. S10e,h).

For both 6SL and 8SL, we found nonzero RCD but zero TCD. These systematic results further

demonstrate the unique transmission and reflection properties of Axion CD.

RCD signal in hBN-encapsulated MnBi2Te4 sample: In the main text, we discussed the

possibility of uncompensated magnetization due to a built-in electric field induced by asymmetric

dielectric environment, which is an alternative mechanism for our observed RCD signal. To further

rule out this possibility, here we show the RCD signals measured in a hBN-encapsulated sample

(S4). The hBN-encapsulated sample is supposed to give minimal built-in electric field. As shown

in Fig. S11, the RCD hysteresis and spectra of hBN-encapsulated sample is very similar to that of

sample-S3, which has diamond on bottom and hBN on top. This is contradictory to the possibility

of built-in electric field induced magnetization.

Reproducibility of Axion CD on different substrates: In Fig. S12, we summarize all

samples mentioned in the main text, which are on different substrates (diamond, sapphire and

hBN). Despite the different substrates, all 6SL flakes show highly reproducible Axion CD signals

(Figs. S12b,e,h,k). Furthermore, their RCD spectra are quite similar in terms of both amplitude

and shape (Figs. S12c,f,i,l). The small variation of the RCD amplitude could come from the

different substrate refractive indices. In conclusion, Axion CD is robust and reproducible, and

does not rely on a specific type of substrate.

Thickness dependence of RCD: Figure S13a shows the measured RCD for 4, 6, 8, 10 SLs

and thick samples. RCD were observed in all thicknesses. From our data, we see that the RCD is

slightly weaker with increasing thickness and remains finite in the very thick limit. Theoretically,

we have computed the RCD for 2, 4, 6 SLs based on DFT band structures. As shown in Fig. S13b,

the calculated RCD are similarly large. For larger thickness than 6SL, the DFT calculations

become too heavy to run. Using a simple tight-binding (TB) effective model [4], we can simulate

up to 50SL (Fig. S13c), which shows that the Kerr effect indeed persists. But we caution that

band structures of this TB effective model may not be able to capture the realistic MnBi2Te4 band

structure, especially for the high energy states. Nevertheless, the purpose of TB model is to show

that optical Axion electrodynamics persists in thick samples.

Consistent sign of the CD: In order to check if the sign of the CD is consistent every
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time we turn on the PEM, we have performed the following testing: (1) We measured the CD

value of an MnBi2Te4 sample, (2) We turned off the PEM and turned it back on, (3) We redid

the same measurement. We repeated the above steps many times. As shown in Fig. S14b, for

every measurement, the sign of the CD (the phase of the lock-in) is invariant. We explain this

based on the PEM+lock-in setup shown in Fig. S14a. The PEM output reference wave (also

reference for lock-in) definitively corresponds to the σ+ and σ− polarizations. This is because the

PEM reference wave is synchronized with the piezoelectric voltage, which is used to control the

retardation of the optical head.

Background removal for CD: It is well-known that beam splitter when used at ∼ 45◦ can

lead to significant CD offset. In order to minimize the unwanted background, we used a plate

beam splitter at near-normal incidence. To check our background level, we measure CD both on

the sample (Fig. S15b), and next to the sample (Fig. S15a). We see that the background is in

general ∼ 5 times smaller than the signal. We therefore remove the background from the signal by

subtracting Fig. S15b with Fig. S15a.

RCD signal of Cr2O3 single crystal: In order to substantiate the broad applicability of

Axion optical induction, we also measured the RCD signal of Cr2O3 (shown in S16). The RCD

signal of Cr2O3 is consistent with previous pioneering work by Krichevtsov et al[5].
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Fig. S5: a-p, Magnetic hystereses of RCD for 5SL, 6SL, 7SL and 8SL measured using different wavelengths.

q-t, RCD spectra for 5SL, 6SL, 7SL and 8SL.
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Fig. S7: a, Optical power dependence of the 5SL RCD signal (λdetection = 710 nm). b, Detection power

dependence of the 6SL RCD signal (λdetection = 946 nm).
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Fig. S8: a-d, Magnetic hystereses of TCD for 6SL measured at 540 nm, 800 nm, 840 nm and 900 nm.
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Fig. S9: a-c, Magnetic hystereses of TCD for 5SL measured at 710 nm, 800 nm and 840 nm. d, TCD

spectrum at B = 0 for 5SL.
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Fig. S10: Simultaneous RCD and TCD measurements in both samples-S3 and S1. a-c, Sample

schematic (panel a), simultaneous RCD and TCD magnetic hystereses using λdetection = 946 nm (panel

b), and RCD and TCD spectra at B = 0 (panel c) for the 6SL flake of sample-S3 on diamond substrate.

d-i Same as panels a-c but for the 6SL and 8SL flakes of sample-S1 on sapphire substrate.
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Fig. S11: Comparison between sample-S2 on diamond and sample-S4 encapsulated by hBN.

a-c, For the sample-S2 on diamond substrate. a, Sample schematic, b, RCD magnetic hysteresis at 946

nm, c, RCD spectrum at B = 0. d-f, Same as panels (a-c) but for sample-S4 encapsulated by hBN.
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Fig. S12: Reproducible observations of the Axion CD in multiple samples on different sub-

strates. a-c, Sample schematic (panel a), RCD magnetic hysteresis using λdetection = 946 nm (panel

b), and RCD spectrum at B = 0 (panel c) for Sample-S1. Similar results for sample-S2 (panels d-f),

sample-S3 (panels g-i) and sample-S4 (panels j-l).
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Fig. S13: a, Measured RCD data. b, Calculated RCD based on DFT band structures. c, Calculated

complex Kerr angle based on an effective tight-binding model described in Ref. [4].
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Fig. S14: a, PEM+lock-in setup. The PEM reference wave has definitive correspondence with σ+ and

σ− polarizations. b, We parked the beam on a particular spot on an 8SL sample. We turned the PEM off

multiple times and measure the lock-in phase (the sign of the CD) every time we turn the PEM back on.
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Fig. S16: RCD signal of Cr2O3 single crystal. Inset is the image of the Cr2O3 crystal (grid: 1 mm).

λdetection = 540 nm.
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II.2. Additional induction data

Default experimental conditions: In order to systematically study the Axion induction,

it is important to keep a consistent set of experimental conditions. In our experiments, we keep

the following set of default experimental conditions: λinduction = 840 nm, Pinduction ' 1 mW;

λdetection = 946 nm and Pdetection ' 30 µW; induction initial and ending temperatures at 30 K and

2 K. When we try to study how the induction depends on a specific parameter, we keep all the

other parameters at their default condition and only vary that specific parameter.

General remarks about the induction experiments: In our optical experiments (both

induction and CD), light is focused to a spot of the diffraction limit (∼ 1 µm). For the areas that

are chosen for induction (see Fig. S18), we have carefully studied their RCD signals as a function

of B-field (by measuring magnetic hysteresis at 2 K) and T (upon multiple cooldowns without

induction light). We found that after cooling down from 30 K to 2 K without induction, the RCD

always reaches the maximal amplitude; only the sign is random (shown in Fig. S17). This suggests

that, at least on the length scale of diffraction limit (∼ 1 µm), the areas chosen for induction are

always in a single-domained state. Therefore, the results of induction are ternary: (1) the induction

leads to the AFM state I (positive RCD at λdetection = 946 nm); (2) the induction leads to the AFM

state II (negative RCD at λdetection = 946 nm); (3) the induction cannot favor one state, so the

results are random just like no induction.

The induction ability: To characterize these different induction results, we define the quantity

of induction ability. We define the RCD after induction from 30 K to 2 K with λinduction = 840 nm

and Pinduction = 1 mW as the reference RCD (RCDref). We can then perform induction at other

conditions and measure RCD. The induction ability is the ratio between the measured RCD and

the reference RCD. Induction ability = RCD
RCDref . Therefore, if the induction leads to the same AFM

state as the reference induction, then the induction ability will be ' +1; if the induction leads

to the opposite AFM state as the reference induction, then the induction ability will be ' −1. If

the induction has no effect, then we perform the induction 6 consecutive inductions and take the

averaged RCD value, and the induction ability will be ' 0.

Spatial reproducibility: To substantiate the Axion induction, we have performed induction

experiments at multiple locations on the 8SL MnBi2Te4 flake (sample-S1), which gave consistent

results (shown in Fig S18).

Induction wavelength dependence: In addition to the induction wavelength dependence
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data in the main text, Fig. S19 shows additional RCD spatial maps and temperature dependence

data at multiple induction wavelengths (λinduction = 540 nm, 580 nm, 740 nm, 840 nm and 946 nm).

Induction power dependence: We investigate how induction depends on the optical power

of the induction light. As shown in Fig. S21, we found that, for Pinduction & 400 µW, the induction

can effectively control the AFM state. Below this power, the induction was found to show no effect,

possibly due to the influence of defects and disorder.

Laser heating effect: It is important to characterize the effect of laser heating both in the

induction and the CD detection processes (we use the same light source for induction and CD). In

order to do so, we measured the temperature dependence of RCD while warming up at multiple

laser powers, as shown in Fig. S22a. We focus on the temperature at which the RCD signal vanishes

(defined as T ∗). Without laser heating, T ∗ = TN. Laser heating will manifest as a decrease of T ∗

(See detailed explanation in the caption of Fig. S22). As shown in Fig. S22b, at Pdetection = 1 mW,

T ∗ decreases by ' 2 K, indicating that laser heating caused a 2 K temperature increase locally at

the sample. Therefore, we can draw the following conclusions about laser heating effect.

(1) For all RCD measurements, we consistently use Pdetection = 30 µW. So laser heating during

RCD measurements is minimal.

(2) For the optical induction, we consistently use Pinduction = 1 mW. So laser heating caused the

sample temperature to increase by ∼ 2 K. In our typical induction process, we start to shine the

induction light at 30 K and turn off the induction light at 2 K. Therefore, this small temperature

increase is unimportant for our induction.

Magnetic hysteresis after optical induction: To further substantiate the Axion induction,

we measure the magnetic hysteresis of the RCD after performing optical induction. As shown in

Fig. S20, after induction with opposite helicity, the RCD is found to start from opposite branches

of the magnetic hysteresis. This further confirms that induction with opposite helicity leads to

opposite AFM states at low temperatures.

RCD spectra after optical induction: Figure S23 shows the RCD spectra after optical

induction. The RCD spectra are opposite if we performed optical induction with opposite light

helicity or different induction wavelengths (840 nm vs. 540 nm).

Induction initial temperature and ending temperature: The novel coupling between

circular light and the Axion insulator state allows us to lift the energy degeneracy between the

opposite AFM states. In order to actually choose one AFM state over the other, we need to further

overcome the potential barrier between the opposite AFM states. In the vicinity of the Néel
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temperature, the potential barrier is small, allowing us to achieve the control. For all induction

experiments in the main text, the induction initial and ending temperatures were kept at 30 K and

2 K.

We now investigated how the induction initial and ending temperatures influence the induction

result. First, we keep the ending temperature at 2 K while varying the initial temperature. As

shown in Fig. S24a, for initial temperature higher than 23 K, the induction can effectively control

the AFM state; by contrast, for initial temperature below 23 K, the induction ability approaches

zero, suggesting that the potential barrier between opposite AFM states at low temperature is too

strong to overcome. Second, we keep the initial temperature at 30 K while varying the ending

temperature. As shown in Fig S24b and Fig S25, for ending temperature lower than 23 K, the

induction can effectively control the AFM state.

Induction of 6SL: In Fig. S26, we show the induction results of 6SL sample.

Induction of 5SL: In Figs. S27a,b, we show the induction results of 5SL sample. Because

odd-layered samples has an obvious M (like a ferromagnet), the primary interaction is between

M and circularly-polarized light (confirmed by our simultaneous RCD TCD measurements in 5SL

Figs. S27c,d). Therefore, the induction of odd-layered sample arises from the helicity-dependent

optical control of M, which has been demonstrated previously in a range of ferromagnets.
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Measurement 1 Measurement 2 Measurement 3

Measurement 4 Measurement 5 Measurement 6

Measurement 7 Measurement 8 Measurement 9

a b c

d e f

g h i

Fig. S17: Consecutive temperature dependent RCD measurements without induction of 8SL MnBi2Te4

in sample-S1 measured at λdetection = 946 nm. These measurements show that cooling down without

induction leads to a single-domained state, but the sign is random.
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Fig. S18: Spatial reproducibility of the Axion induction. a, On the left is the optical contrast map

of the 8SL MnBi2Te4 flake in sample-S1. The red dot marks the laser spot for induction experiments.

On the right is the RCD signal as a function of temperature while warming up after induction with

σ± light. Scale bar: 2 µm. b-e, Same as panel (a) but at different spatial locations of the sample.

Experimental parameters for data in this figure: λinduction = 840 nm, Pinduction ' 1 mW; λdetection = 946

nm, Pdetection ' 30 µW.
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Fig. S19: Detailed results of Axion induction at multiple wavelengths. a, On the left is the RCD

map at a particular area after induction (λinduction = 540 nm) with opposite helicity. The circle marks

the laser spot for the induction light. On the right is the RCD signal as a function of temperature while

warming up after induction with σ± light. Scale bar:2 µm. b-e, Same as panel (a) but with the λinduction

being 580 nm, 740 nm, 840 nm and 946 nm. Experimental parameters for data in this figure: λinduction

noted in the figure, Pinduction ' 1 mW; λdetection = 946 nm, Pdetection ' 30 µW.
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a b

c d

fe σ+ induct with 540 nm lightσ− induct with 540 nm light 

hg σ+ induct with 840 nm lightσ− induct with 840 nm light 

σ+ induction hysteresis σ− induction hysteresis

Fig. S20: a-d, Magnetic hysteresis of RCD after induction with opposite helicity in 8SL MnBi2Te4 of

sample-S1. The starting points at B = 0 (green dots in panels (a,b)) are clearly on opposite hysteresis

branch, again showing that the opposite induction helicity leads to opposite AFM domains. Experimental

parameters for data in this figure: λinduction = 840 nm, Pinduction ' 1 mW; λdetection = 946 nm, Pdetection '

30 µW.

b

c Detection power dep. Detection power dep.

Detection power dep.

d

840 nm

840 nm
Fig. S21: Induction ability (see definition in the text SI.II.2) as a function of induction optical power.

Experimental parameters for data in this figure: λinduction = 840 nm; λdetection = 946 nm. Pdetection = 30

µW. The induction power is noted in the figure.
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a Detection power dep. Detection power dep.b

Fig. S22: a, RCD as a function of T measured while warming up at different optical powers. Note that

T is the temperature of sample holder. In the presence of laser heating, when the sample reaches the

Néel temperature TN (i.e., when RCD signal vanishes), the sample holder temperature T ∗ is lower than

TN. Therefore, the difference between T ∗ and TN is a measure of the laser-heating-induced temperature

increase. b, T ∗ as a function of the optical power. T ∗ decreases with increasing Pdetection. At Pdetection = 1

mW, T ∗ decreases by ' 2 K, indicating that laser heating caused a 2 K temperature increase locally at

the sample. λdetection = 840 nm.
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Fig. S23: RCD spectra after induction. a,c, We shine σ− induction light (λinduction = 840 nm,

Pinduction ' 1 mW) on the 8SL MnBi2Te4 flake (sample-S1) while lowering its temperature from T = 30

K to 2 K (panel a). Upon reaching 2 K, we turn off the induction light, and measure the RCD’s spectra

(panel c) at 2 K. b,d, Same as panels (a,c) except that we perform induction with σ+. e-h, Same as

panels (a-d) except that we change λinduction to λinduction = 540 nm.
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a b

23 K 23 K

Fig. S24: Dependence of induction initial temperature and ending temperature. The initial

(ending) temperature is the temperature at which we turn on (off) the induction light. a, We keep the

ending temperature at 2 K and measure the induction ability as a function of the initial temperature. b,

We keep the initial temperature at 30 K and measure the induction ability as a function of the ending

temperature. Experimental parameters for data in this figure: λinduction = 840 nm, Pinduction ' 1 mW;

λdetection = 946 nm, Pdetection ' 30 µW.
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Fig. S25: a-d, We performed induction with σ− helicity by keeping the initial temperature at 30 K and

varying the ending temperature Tend. After induction, we cool the sample to 2 K. We then measure RCD

as a function of temperature while warming up. e-h, Same as panels (a-e) but induction was performed

with σ+ helicity. This figure is in supplementary to Fig. S24b. Experimental parameters for data in this

figure: λinduction = 840 nm, Pinduction ' 1 mW; λdetection = 946 nm, Pdetection ' 30 µW.
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Fig. S26: a, Left: Optical contrast of the 6SL flake. Right: RCD upon induction using σ±. b,

Temperature-dependence of RCD after induction using σ±.
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Fig. S27: a, Left: Optical contrast of the 5SL flake. Right: RCD upon induction using σ±. b,

Temperature-dependence of RCD after induction using σ±. c,d, Simultaneous RCD TCD measurements

for 5SL and 6SL.
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II.3. Additional double induction data

Optical set-up for the double induction experiments: As shown in Fig. S28a, starting

from a single beam, we constructed two collinear, spatially separated beams by the two beam

splitters. Their polarizations were controlled separately by the combination of the half-waveplate

and quarter-waveplate. Figures S28b-c show the optical contrast map and microscope image of

double induction beams.

Single optical induction experiments on sample-S5: The double induction experiments

were conducted on a new sample (S5). For consistency, we conducted single induction experiments

as shown in Fig. S29. We observed consistent optical induction results as before, which provide the

basis for the double induction experiments.

Detailed investigation into the AFM domain wall: In the main text, we showed that

double induction beams with opposite helicity could create an AFM domain wall (also shown in

Figs. S30a-d). Here, we scan a line-cut plot across the AFM domain wall (Figs. S30e-f). In contrast

to both domains, the domain wall itself showed zero RCD signal, consistent with either Néel type or

Bloch type AFM domain walls. In Figs. S30g-h, the temperature dependence of the RCD line-cut

further supports our conclusion.
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Fig. S28: a, Schematic drawing of optical set-up for double induction experiments. SC Laser: super-

continuum Laser, SP: spectrometer, BS: beamsplitter, HWP: half-waveplate, QWP: quarter-waveplate,

Obj: Objective, PM: parabolic mirror. b, Optical contrast of the 8SL flake. c, Microscope image of the

8SL flake with double induction beams. Scale bar: 2 µm.
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Fig. S29: a,b, Temperature dependence of RCD after induction using σ± (with λinduction = 540 nm). c,

Optical contrast of the 8SL flake. d, RCD map upon induction using σ±.
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Fig. S30: a-b Schematics of the double induction. c-d, RCD map after double induction. e-f, RCD

line-cut plot along the dashed lines in panels (c,d). g-h, Temperature dependence of the line-cut plot.
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II.4. Additional ultrafast switching data

Optical induction experiments with ultrafast laser: In the main text, we showed direct

switching by ultrafast pulses while the sample temperature was kept at 18 K. Before doing that,

we also conducted optical induction experiments with ultrafast pulses, i.e., we shone the ultrafast

pulsed light while cooling the entire sample from 30 K to 2K. We found that the ultrafast pulses

can also achieve optical induction with similar results as the super-continuum laser (Fig. S31).

Comparison of RCD map before and after ultrafast switching: Figures S32a,d show the

RCD map of the prepared single domain state before ultrafast switching, which is in clear contrast

to RCD map after ultrafast switching (shown in Figs. S32b-c,e-f).

Reproducibility of ultrafast switching: To further substantiate the ultrafast switching

results, we repeated the switching experiments multiple times for each helicity and domain type

(as shown in Fig. S34), which all yielded consistent results.

Statistics of ultrafast switching: As shown in Fig. S33, we measured the statistics of ultrafast

switching. While we can definitely switch the sign of the RCD based on helicity, we cannot reach

the saturated RCD value every time. We note that our preliminary results can be further improved

by detailed explorations in the future. With optimized conditions (e.g. wavelength, rep. rate, pulse

energy, etc.), it may be possible to switch to a fully-saturated state.
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Fig. S31: Axion induction with the circularly-polarized ultrafast light. a-b, Temperature-

dependence of RCD after induction using σ± ultrafast light (with λinduction = 1030 nm). c, Optical

contrast of the 8SL flake. d, RCD map upon induction using σ±.
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Fig. S32: a, RCD map of the single domain state prepared by sweeping the B field from +7 T to 0 T. b-c,

RCD map after optical induction with σ± ultrafast pulse. d-f, Same as panel (a-c) but with the single

domain state prepared by sweeping the B field from −7 T to 0 T.

Fig. S33: Ultrafast switching statistics. RCD value after illumination with ultrafast light, weighed

against the saturated value RCDs.
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Fig. S34: Reproducibility of switching with circularly-polarized ultrafast light. a-c, RCD maps

after shining σ− ultrafast pulsed light (we first prepare the single domain state by sweeping the B field

from +7 T to 0 T). d-f, The same as panels (a-c) but with σ+ ultrafast pulsed light. g-i, Same as panels

(a-f) but with the single domain state prepared by sweeping the B field from −7 T to 0 T. Scale bar: 2

µm.
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II.5. Additional electrical transport data

The entire device fabrication process was finished in an Ar-filled glovebox without exposure to

air, chemicals, or heat. Using a similar fabrication process, we have also fabricated a 6SL MnBi2Te4

device with electrical contacts and performed transport experiments in the same cryostat as the

optical CD measurements (Fig. S35). In the FM phase at B = −7 T, we observed clear topological

Chern insulator state with fully quantized Ryx and zero Rxx.

Vtg=8.8 V Vtg=8.8 V

B=−7 T

a

c d

b

hBN

MBT

p-Si/SiO2 wafer
hBN

Graphene
Vtg

Fig. S35: a, Schematic layout for the 6SL MnBi2Te4 sample (Sample-S5) used for electrical transport.

The transport experiments were performed in the same cryostat as the optical CD. b, Longitudinal (Rxx)

and Hall (Ryx) responses as a function of the gate voltage in the FM phase at B = −7 T. Inset: Optical

image of the sample. Scale bar: 10 µm. c,d, Ryx and Rxx as a function of B with the gate voltage tuned

to the charge neutrality.
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III. Symmetry analysis of the CD

III.1. General principles

We start by outlining the general principles for the symmetry analysis of the CD. We need

to specify a system (i.e., a chiral crystal, a FM, or an AFM) and enumerate all the symmetries of

that particular system. We also need to specify a particular CD process, e.g. RCD or TCD. Once

both the system and the CD process are specified, then the general principles for the symmetry

analysis are as follows:

(1) To prove the CD is zero: One needs to identify a symmetry which can keep the system

and the light path invariant but flip the light helicity.

(2) To prove the CD is allowed: One needs to exhaustively examine all symmetries, to show

that there is no symmetry that can achieve (1).

III.2. Three material classes and their symmetries

a b c

𝒫𝒯 𝒫 𝒯 𝒫𝒯 𝒫 𝒯 𝒫𝒯 𝒫 𝒯

Fig. S36: Three material classes (Chiral crystals, FM and AFM) and their respective symme-

try properties. Note that the symmetries described here are for the typical cases. Strictly speaking, it is

possible for FMs to be in a noncentrosymmetric lattice (P-breaking), or chiral crystals to have magnetism

(T -breaking). But most FMs are not considered to be associated with inversion symmetry breaking and

most spatially chiral systems are not considered to be associated with time-reversal symmetry breaking.

When all symmetries are broken, then all kinds of CD would be allowed in the system (in some sense, the

distinction between different material classes is lost when all symmetries are broken, because phases of

matter are only classified based on the symmetry).

III.3. Application to AFM and other systems

We now carry out symmetry analysis for CD in these three material classes.
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We start from the PT -symmetric AFMs. In the main text, we have shown that PT enforces

TCD = 0. So we will be brief: As shown in Fig. S37a, upon PT , both the AFM order and light path

remain invariant, but light helicity is reversed. As such, PT enforces the transmission coefficients

for σ± to be identical, which means TCD = 0. We can also show that RCD is allowed, because

there is no symmetry that can keep the AFM order and reflection light path invariant but only flip

the light helicity. For instance, PT changes the reflection to the bottom surface (Fig. S37b). On

the other hand, T flips the AFM order (Fig. S37c).

We now study the chiral crystals. We show that T enforces RCD = 0. As shown in Fig. S37d,

upon T , the chiral crystal remains invariant, the reflection light path also stays the same, but light

helicity is reversed. As such, T enforces the reflection coefficients for σ± to be identical, which

means RCD = 0 in chiral crystals.

Using the same method, we can show that chiral crystals allow TCD, and that FMs allow both

RCD and TCD.
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Fig. S37: Symmetry transformation for different CD experiments on different material systems (see de-

tailed analysis in SI III.3).

r1

r2

Light source

Sample

Detector

0

Fig. S38: Schematics

layout.

III.4. Math derivation for symmetry analysis

We now provide mathematical derivation for the above symmetry anal-

ysis. We will be brief in this section because the detailed derivation can be

found in previous works by Halperin and others [6–9]. We consider a generic

experimental layout (Fig. S38), which consists of the sample at the origin, the

light source at position r1, and the detector at position r2. The propagator

χij(r1, r2) (the Green’s function) contains all information about how the light

starts from the light source at r1, interacts with sample at the origin, and

reaches the detector at r2. This propagator is defined as follows

〈Âa(t1, r1)〉 = 〈Âa(t1, r1)〉J=0 +

∫
dt2dr2χab(t1, r1; t2, r2)Jb(t2, r2), (S11)

where Â is the vector potential, Ja(t
′, r′) is the source current, and

χab(t1, r1; t2, r2) = 〈Âa(t1, r1)Âb(t2, r2)〉 =
∑
n

ρn 〈Âa(t1, r1)ψn|Âb(t2, r2)ψn〉 (S12)
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is the Green’s function for the vector potential Â, where ψn is the eigenstate of the density operator

ρ̂ of the whole medium, including the sample and the vacuum while excluding the detector and

source, where ρn is the corresponding eigenvalue.

Therefore, we can perform symmetry analysis for the Green’s function χij(r1, r2). In particular,

the circular dichroism with light propagating along the z direction is given by the antisymmetric

part of the Green’s function

circular dichroism ∝ χxy − χyx (S13)

1. Reflection CD: For reflection CD, the key feature is that the light source and the detector

are on the same side of the sample, so we can make them spatially overlap, i.e., r2 = r1. Therefore,

we have

Reflection CD ∝ χxy(r1, r1)− χyx(r1, r1). (S14)

One can show that time-reversal symmetry T enforces

χxy(r1, r1) ≡ χyx(r1, r1) under T symmetry (S15)

As such, we see that RCD identically vanishes under T .

2. Transmission CD: For transmission CD, the key feature is that the light source and the

detector are on the opposite side of the sample, so we can require, i.e., r2 = −r1. Therefore, we

have

Transmission CD ∝ χxy(r1,−r1)− χyx(r1,−r1). (S16)

One can show that space-time symmetry PT enforces

χxy(r1,−r1) ≡ χyx(r1,−r1) under PT symmetry (S17)

As such, we see that TCD identically vanishes under PT .
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IV. Theoretical studies

IV.1. Theoretical expressions for calculating the Axion CD

In this section, we provide the theoretical expressions that are needed to compute the RCD

based on the optical Axion electrodynamics. The detailed derivations for these expressions can be

found in Ref. [4] (Please note the same ME coefficient is denoted as α in our paper but G(z) in Ref.

[4]). An illustration of the key steps is shown in Fig. S39.

Band structure and  wannier 
model of MnBi2Te4 

Optical ME coupling 
tensor αω

Reflection matrix based on
 modified Maxwell equation

RCD calculation

Band structure and
 wannier model 

of MnBi2Te4 

Optical ME coupling 
tensor α(ω)

Reflection matrix
 based on modified 
Maxwell equation

RCD
 calculation

Fig. S39: Key steps for the theoretical calculations of the Axion CD

IV.1.1. Band Structure and the Wannier model

First we calculated the band structure and Wannier functions of 2D even-layer MnBi2Te4

flakes using first-principles DFT calculations.

IV.1.2. The Optical ME coupling

Using the first-principles electronic structure, we can calculate the optical ME coupling.

Based on the detailed theoretical studies in Ref. [4], the expression for optical ME coupling is as

follows:

αxx(ω) =
e2

~L
∑
o,u

∫
d2k

εou(k)

εuo(k)− ~ω
Im[

~2 〈o(k)|v̂x|u(k)〉 〈u(k)| − 1
2

(v̂yr̂z + r̂zv̂y) + m̂s
x|o(k)〉

ε2uo(k)
],

(S18)

o(k) and u(k) are the occupied and unoccupied Bloch states and εuo(k) is their energy difference.

As explained in the main text, the ME coupling can be decomposed into the spin and orbital (Berry
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curvature) contributions as follows:

αxx(ω) = αBerry
xx (ω) + αspin

xx (ω), (S19)

αBerry
xx (ω) =

e2

~L
∑
o,u

∫
d2k

εuo(k)

εuo(k)− ~ω
Im[

~2 〈o(k)|v̂x|u(k)〉 〈u(k)|v̂yr̂z|o(k)〉
ε2uo(k)

], (S20)

αspin
xx (ω) =

e2

~L
∑
o, u

∫
d2k

εou(k)

εuo(k)− ~ω
Im[

~2 〈o(k)|v̂x|u(k)〉 〈u(k)|m̂s
x|o(k)〉

ε2uo(k)
], (S21)

Here we have assumed that r̂z commutes with v̂y (we have confirmed that this is a good approx-

imation for our first-principles calculated DFT electronic structure). Equation S20 is the Berry

curvature induced optical ME coupling we used in the main text. Equation S21 is the spin induced

optical ME coupling. Figure S40 shows the real and imaginary components of αxx(ω) for both spin

and orbital (Berry curvature) contributions.

In addition, we clarify the relationship between the optical ME coupling coefficients and Axion

angle θ(ω).

θ(ω) = π
2h

e2
1

3

∑
i=x,y,z

αii(ω), (S22)

αxx(ω) =
e2

~L
∑
o,u

∫
d2k

εou(k)

εuo(k)− ~ω
Im[

~2 〈o(k)|v̂x|u(k)〉 〈u(k)| − 1
2

(v̂yr̂z + r̂zv̂y) + m̂s
x|o(k)〉

ε2uo(k)
],

(S23)

αyy(ω) =
e2

~L
∑
o,u

∫
d2k

εou(k)

εuo(k)− ~ω
Im[

~2 〈o(k)|v̂y|u(k)〉 〈u(k)|+ 1
2

(v̂xr̂z + r̂zv̂x) + m̂s
y|o(k)〉

ε2uo(k)
],

(S24)

αzz(ω) =
e2

~L
∑
o,u

∫
d2k

εou(k)

εuo(k)− ~ω
Im[

~2
2

(〈o(k)|r̂z|u(k)〉 〈u(k)|v̂xv̂y|o(k)〉 − 〈o(k)|r̂zv̂x|u(k)〉 〈u(k)|v̂y|o(k)〉
ε2uo(k)

−(x↔ y)) + ~2 〈o(k)|v̂z|u(k)〉 〈u(k)|m̂s
z|o(k)〉

ε2uo(k)
]

(S25)

We see that θ(ω) is proportional to the trace of the optical ME tensor. For our CD experiments,

αxx and αyy are relevant since the light’s E and B fields are inside the 2D plane. Moreover,

αxx ≡ αyy because of MnBi2Te4’s three-fold rotational symmetry. As such, αxx(ω) is sufficient for

the CD calculations, so in the main text we omitted the subscript xx. In fact, our calculations

(Fig. S42) show that αxx, αyy and αzz have very similar amplitude. Therefore, we have
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a b

Fig. S40: Real and imaginary parts of αspin
xx and αBerry

xx .

θ(ω) = π
2h

e2
1

3

∑
i=x,y,z

αii(ω) ' π
2h

e2
αxx(ω) (S26)

Fig. S41: Schematics of

reflection and transmis-

sion.

IV.1.3. Reflection matrix based on modified Maxwell equations

We now aim to analyze the light reflection based on the optical

Axion electrodynamics. As shown in Fig. S41, we consider an Axion

insulator film (medium 2) sandwiched by two dielectric media (1 and 3).

Suppose the incident electric field is EI = (EI
x, E

I
y). Then the reflected

electric field can be related by a reflection matrix ER = REI, and the

reflection matrix R is defined in Eq. S27

R =

 Rxx Rxy

−Rxy Rxx

 (S27)

For the film with finite thickness considered here (Fig. S41b), the final reflected electric field ER

consists of contributions from both the top (t) and the bottom (b) surfaces, which can be described

as follows:
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a b c d

e f g h
π/2
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π/2

Fig. S42: Real and imaginary parts of α and θ. Note that we only show the orbital (Berry curvature)

contribution here, since the spin contribution is vanishingly small.

(Rt)xx =
(n1 − n2)(n1 + n2)− (µ0cαxx)

2

(µ0cαxx)2 + (n1 + n2)2
,

(Rt)xy =
−2n1(µ0cαxx)

(µ0cαxx)2 + (n1 + n2)2
,

(R′t)xx =
−(n1 − n2)(n1 + n2)− (µ0cαxx)

2

(µ0cαxx)2 + (n1 + n2)2
,

(R′t)xy =
−2n2(µ0cαxx)

(µ0cαxx)2 + (n1 + n2)2
,

(Rb)xx =
(n2 − n3)(n2 + n3)− (µ0cαxx)

2

(µ0cαxx)2 + (n2 + n3)2
,

(Rb)xy =
2n2(µ0cαxx)

(µ0cαxx)2 + (n2 + n3)2
. (S28)

where Rt and R′t are reflections of the top surface from medium 1 to 2 and from medium 2 to

1, Rb is the reflection of the bottom surface from medium 2 to 3, and ni is the refractive index of

the medium i. We see that αxx appears in the expressions. This is because to solve for Rt, R
′
t and

Rb, we needed to use the optical Axion electrodynamics based on the modified Maxwell equations.

The detailed derivations are described in Ref. [4].

We then plug in Rt, R
′
t and Rb to the following equation. The final reflection matrix R is then

obtained by solving this equation:
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R = Rt + e2iφ(1 +R′t)Rb

(
1− e2iφR′tRb

)−1
(1 +Rt), (S29)

Here, φ = n2ωL/c is the complex-valued phase obtained by the one-way propagation through the

sample (L: sample thickness).

IV.1.4. RCD calculation

Based on the reflection matrix obtained above, we then calculate the RCD by:

RCD =
|R++|2 − |R−−|2

|R++|2 + |R−−|2
=

2Im[R∗xxRxy]

|Rxx|2 + |Rxy|2
, (S30)

where R++ = 2(Rxx − iRxy) and R−− = 2(Rxx + iRxy).

IV.1.5. TCD calculation

Similarly, we could also express the transmission matrix T as follows

T = eiφ(1 +Rb)
(
1− e2iφR′tRb

)−1
(1 +Rt) =

 Txx Txy

−Txy Txx

 . (S31)

Based on the transmission matrix obtained above, we then calculate the TCD by:

TCD =
|T++|2 − |T−−|2

|T++|2 + |T−−|2
=

2Im[T ∗xxTxy]

|Txx|2 + |Txy|2
(S32)

where T++ = 2(Txx − iTxy) and T−− = 2(Txx + iTxy).

(1) No TCD with PT symmetry

When we consider the 2D even-layered MnBi2Te4 flakes alone or hBN-encapsulated MnBi2Te4

flakes, PT symmetry is strictly preserved and TCD is strictly prohibited. Indeed, using Eqs. S31

and S32, one can check that

TCD ≡ 0 under PT (S33)

(2) Very small TCD with asymmetric dielectrics

In the experiments, the MnBi2Te4 flakes are interfaced with different dielectric materials. So we

need to reconsider the symmetry of the whole system. For the hBN/MnBi2Te4/diamond structure,
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since the refractive indices of hBN and diamond are slightly different (nhBN=2.2, ndiamond=2.4 at 1

eV [10, 11]), the PT symmetry of the whole system is slightly broken, which in principle could

allow TCD (see detailed discussion in Ref. [4]). This TCD signal should be very small, since the

degree of PT symmetry breaking is very weak. Main Fig. 4f shows the calculated results for the

hBN/MnBi2Te4/diamond structure. Indeed, our calculations show that the TCD in this case is

negligibly small.

IV.2. Band structure of MnBi2Te4 and additional calculations

In this subsection, we provide an introduction of the electronic structure of 2D MnBi2Te4.

We hope this serves as useful information for readers who are not familiar with this new material.

IV.2.1. Localized magnetic ions versus low-energy itinerant electrons

The recent discoveries of the vdW magnets [12–14] have attracted great interest as they enable us

to explore magnetism in the ultra-2D limit. MnBi2Te4 [15–26] provides novel possibilities: Known

2D magnets such as CrI3 are wide-gap magnetic insulators whose physics is dominated by the

localized magnetic ions. By contrast, in addition to localized magnetic ions, MnBi2Te4 features

low-energy itinerant electrons. These low-energy electronic states arise from the delocalized Bi and

Te p orbitals: They make up the bulk conduction and valance bands, with the topological surface

states (TSSs) in between. Figure S43 shows the first-principles calculated electronic structure of

MnBi2Te4 over a large energy window. Indeed, we see that the Mn 3d bands are located at very

high energies. Therefore, in our optical experiments (photon energy 1.2 eV to 2.4 eV), they are

not expected to directly contribute. This is consistent with our calculations showing that the spin

contribution is negligibly small in the ME coupling.

IV.2.2. Low-energy electronic structures of 2D MnBi2Te4

As a reference, Fig. S44 shows the first-principles calculated low-energy electronic structures of

2D MnBi2Te4 as a function of thickness. We note the following aspects: (1) The lowest conduction

band plus the highest valence band make up the topological surface states (TSSs). (2) The higher

bands are the bulk bands.
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Fig. S43: a, First-principles calculated electronic structure of MnBi2Te4 with the Mn 3d orbitals high-

lighted. b, Same as panel (a) but with the Bi 5p and Te 4p orbitals highlighted.
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Fig. S44: First-principles calculated band structures of 2D MnBi2Te4.

IV.2.3. Band-resolved contributions for optical ME coupling

As described above, the Mn magnetic spins are not expected to contribute significantly to our

optical ME coupling, because the Mn bands are located at very high energies (Fig. S43). By

contrast, the main contribution is from the Bi and Te electronic bands. Figure S45 shows the

band-resolved contribution for the optical ME coupling at ~ω = 1.77 eV.

In Fig. S46, we compare the total α and the α from TSS contributions (i.e., inter-band transitions

where the initial state or final state or both are the TSSs) for 2, 4, and 6SL. While the TSSs

give finite contribution, the contribution from higher bands is generally larger. For 2SL, the TSS

contribution is quite significant, which is possibly because there are fewer higher bulk bands in 2SL.

In Fig. S47a, we compute the optical conductivity σ(ω) from 550− 1000 nm for 6SL MnBi2Te4.

We observe a small bump near 700 nm (1.77 eV). In Fig. S47b, we show a band resolved contribution

for σ(ω). This small bump may arise from the transitions shown by the black arrows shown in
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Fig. S47b, where the conduction and valence bands turn out to be roughly ”parallel”.
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Fig. S45: Band-resolved contribution to the optical ME coupling at ~ω = 1.77 eV (700 nm).

𝛼 !
!
(𝑒

" /
ℎ)

0.5

0

-0.5
600       800         1000

𝜆 (nm)
600       800         1000

𝜆 (nm)
600       800         1000

𝜆 (nm)

Total
Involving TSS

Total
Involving TSS

Total
Involving TSS

2SL 4SL 6SL

Fig. S46: Calculated α(ω) for 2, 4, 6 SL from all possible contributions (black) andα(ω) from contributions

only involving the lowest CB or highest VB.
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Fig. S47: a, Calculated optical conductivity σ(ω) for 6SL. b, Band resolved contribution for the calculated

optical conductivity σ(ω). The lowest conduction and highest valence bands are the topological surface

states (TSS).
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IV.3. Mathematical derivation of RCD/Kerr under different symmetry condition

Below, we show that by considering the general wave equation and proper boundary conditions,

we can show in a unifying scheme that RCD/Kerr is zero under T -symmetry; but RCD/Kerr is

nonzero with T -breaking (especially for our MnBi2Te4 system). In this derivation, we used G for

the optical ME coupling.

1. Wave equation

The wave equation up to electric quadrupole/magnetic dipole takes the following form [27]:[
δij + ε−10 χ̃ij + iµ0nc

∑
k

κkσ̃ijk + n2(κiκj − δij)

]
Ej = 0 (S34)

where χ̃ij = χij − iχ′ij satisfying χij = χji and χ′ij = −χ′ji, κi = ki/|k| is the propagation direction

of light, n is the refractive index, σ̃ijk = σS
ijk − iσA

ijk is the complex bulk conductivity coefficient

defined by σ̃ij(q) = σ̃ij(0) + σ̃ijkqk + . . ., and

σijk = i

[
εiklGjl + εjklGil −

1

2
ω(a′ijk + a′jik)

]
= σjik,

σ′ijk = i

[
−εiklG′jl + εjklG

′
il +

1

2
ω(aijk − ajik)

]
= −σ′jik. (S35)

Let us assume C3z and C2x symmetries for simplicity. We further impose that the bulk Hall

response is zero, i.e., χ′ij = 0, in order to focus on the magneto-electric and electric-quadrupole

effects. For κ = ±ẑ, the wave equation is1 + ε−10 χxx − n2 nκzµ0cσ
′
xyz

−nκzµ0cσ
′
xyz 1 + ε−10 χxx − n2

Ex
Ey

 = 0. (S36)

The refractive index satisfying the wave equation is given by

nκz± =
√

1 + ε−10 χxx + (iµ0cσ′xyz/2)2 ∓ iκzµ0cσ
′
xyz/2, (S37)

for circular polarization ±̂ = x̂+ iŷ.

2. Reflection and transmission from a single interface

We consider the interface of medium 1 (z > 0) and medium 2 (z < 0) with the surface normal

ẑ. For normal incidence, in the circularly polarized basis,H+

H−

 =
1

µ0c

−µ0cT̃
µ
xx − inκzµ+κz 0

0 −µ0cT̃
µ
xx + inκzµ−κz

E+

E−

 (S38)
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within the media µ = 1 or 2, where n± depends on the sign κz, and κz = −1 for incident and

transmitted light, while κz = 1 for reflected light. Here,

T̃xx = Txx − iT ′xx

=
1

3
(Gxx −Gzz)−

1

6
ω(a′yzx − a′zyx)− i

[
G′xx −

1

2
ω(ayzx − azyx)

]
=
i

3
σzxy −

1

2
σ′xyz. (S39)

As we consider light incident from medium 1 to medium 2, the electric field in medium 1 consists

of incident and reflected fields while that in medium 2 is the transmitted field.

E1 = Ei + Er ≡ (1 + r)Ei,

E2 = Et ≡ tEi, (S40)

where

r =

r++ r++

r−+ r−−

 =

r++ 0

0 r−−

 , t = 1 + r (S41)

by C3z symmetry and the continuity of E at the interface.

The B field satisfies the boundary condition as follows

Bt = Bi + Br + µ0ẑ × js, (S42)

where js = [(e2/2πh)(θ
(z)
2 − θ

(z)
1 ) + (T̃ 2

xx − T̃ 1
xx)]E × ẑ is the total two-dimensional surface current

density. By solving the boundary condition, we obtain

r++ =
n1L − n2L − iµ0cσ

s
xy

n1R + n2L + iµ0cσsxy
,

r−− =
n1R − n2R + iµ0cσ

s
xy

n1L + n2R − iµ0cσsxy
,

r+− = r−+ = 0, (S43)

where nµL = n−µ+ = n+
µ− is the refractive index for left circularly polarization, and nµR = n−µ− = n+

µ+

is the refractive index for the right circularly polarization, where the expression of nκzµ+ is given by

Eq. S37, and

σsxy = (e2/2πh)(θ
(z)
2 − θ

(z)
1 ) + (T̃ 2

xx − T̃ 1
xx) (S44)
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is the two-dimensional surface conductivity. From the expressions of r++ and r−− and Eq. (S37),

we obtain the Kerr angle

ϕK = tan−1
rxy
rxx

= tan−1
[
−i(r++ − r−−)

r++ + r−−

]
. (S45)

3. Cancellation and absence of Kerr in nonmagnetic systems

In a nonmagnetic system, the T -symmetry dictates Gij = a′ijk = Txx = θ(z) = 0, G′ij, aijk, T
′
xx 6=

0, Therefore, we found

r++ − r−− ∝ [2iµ0c(T
′µ=2
xx − T ′µ=1

xx )]− [n1R − n1L − (n2R − n2R)]

= [iµ0c(σ
A,µ=2
xyz − σA,µ=1

xyz )]− [n1R − n1L − (n2R − n2R)]

= 0 (S46)

Again, we have nµL = n−µ+ = n+
µ− is the refractive index for left circularly polarization, and nµR =

n−µ− = n+
µ+ is the refractive index for the right circularly polarization, where the expression of nκzµ+

is given by nκz± =
√

1 + ε−10 χxx + (iµ0cσ′xyz/2)2∓ iκzµ0cσ
′
xyz/2. We also have T̃ µxx = T ′µxx = σA,µ=2

xyz /2

because T µxx = 0 with T symmetry (Eq. S37).

We can understand this cancellation as a compensation between bulk and surface responses.

• The refractive indices part “n1R−n1L− (n2R−n2R)′′ are responsible for circular birefringence

(the natural optical activity) in the bulk.

• σA,µ=2
xyz − σA,µ=1

xyz is responsible for the surface current that leads to the jump of B field at the

surface.

Their effects cancel such that there is no net polar Kerr rotation (i.e., no Kerr rotation at normal

incidence), compatible with results from previous papers including Refs. [28–30].

4. No cancellation and nonzero Kerr in MnBi2Te4

By contrast, in PT -symmetric AFMs, the PT -symmetry and the T -breaking dictates G′ij =

aijk = T ′xx = 0, Gij, a
′
ijk, Txx, θ

(z) 6= 0. Correspondingly, we got

rxy =
1

2i
(r++ − r−−) = −

2n1µ0c[
e2

2πh
(θ

(z)
2 − θ

(z)
1 ) + (T̃ 2

xx − T̃ 1
xx)]

(µ0c[
e2

2πh
(θ

(z)
2 − θ

(z)
1 ) + (T̃ 2

xx − T̃ 1
xx)])

2 + (n1 + n2)2
. (S47)

Here, we see that the Kerr rotation has two origins: (T̃ 2
xx − T̃ 1

xx) is the gyrotropic birefringence

(which has been known previous) and (θ
(z)
2 − θ

(z)
1 ) is the Axion contribution (our new results).
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• In MnBi2Te4, T̃
2
xx− T̃ 1

xx = 0 because the bulk MnBi2Te4 respects inversion symmetry. So the

dominant contribution is the optical Axion electrodynamics.

• In Cr2O3, both contributions exist.

In any case, there is no cancellation hence the Kerr rotation is always nonzero in PT -symmetric

AFM including even-layered MnBi2Te4.
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V. Additional discussion

V.1. Additional discussion about Berry curvature real space dipole

In the main text, we noted that the αBerry
xx (ω) can be understood as the Berry curvature real

space dipole. We provide some additional discussion about this point.

Ω(z) -Ω(-z)

Fig. S48: PT symmetry.

V.1.1. Berry curvature real space dipole is dictated by PT symmetry

PT maps real space location z to −z; PT also flips Ω to −Ω. There-

fore, we have the following relationship

Ω(z)
PT
= −Ω(−z), (S48)

which means that the Berry curvature Ω at location z is always opposite to that at−z. Therefore,

PT dictates (1) the total Berry curvature summed up all over the space identically vanishes but

(2) there is a real space dipole of Berry curvature.

As a side note, using the same philosophy, we can study spatially-chiral materials, where time-

reversal symmetry T dictates Ω(k)
T
= −Ω(−k). So in noncentrosymmetric materials (1) total

Berry curvature summed up all over the k space identically vanishes but (2) there is a k space

dipole of Berry curvature. We can also study FMs, where space-inversion symmetry P dictates

Ω(k)
P
= Ω(−k). So the total Berry curvature in FMs is nonzero.

V.1.2. The ME effect can be visualized by the Berry curvature real space dipole

Next, we show that the ME effect can be visualized by the Berry curvature real space dipole.

Figure S49a shows the Berry curvature real space dipole. It is known that Berry curvature leads

to an anomalous velocity, i.e., a deflection of electron trajectory. Because the Berry curvature at

±z is opposite, upon applying in-plane E field, electrons at ±z deflect toward opposite directions.

As shown in Figure S49b, this can be visualized as an itinerant circulation, which in turn leads to

a magnetization M . Therefore, because of the Berry curvature real space dipole, E can generate

M , i.e., an ME effect.
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Fig. S49: The ME effect can be visualized by the Berry curvature real space dipole.

3. Mathematical derivations

As explained above, qualitatively, the ME effect is a natural consequence of the Berry curvature

real space dipole. We further establish the mathematical relationship between the ME coefficient

αBerry
xx (ω) and the Berry curvature real space dipole. As shown in Eq. S49, we have

αBerry
xx (ω) =

e2

~L
∑
o,u

∫
d2k

εuo(k)

εuo(k)− ~ω
Im[

~2 〈o(k)|v̂x|u(k)〉 〈u(k)|v̂yr̂z|o(k)〉
ε2uo(k)

]

' e2

~L
∑
o,u

∫
d2k

εuo(k)

εuo(k)− ~ω
〈r̂z〉Im[

~2〈o(k)|v̂x|u(k)〉〈u(k)|v̂y|o(k)〉
ε2uo(k)

]

=
e2

2~L
∑
o,u

∫
d2k

εuo(k)

εuo(k)− ~ω
〈r̂z〉Ωuo, (S49)

where Ωuo = 2Im[~
2〈o(k)|v̂x|u(k)〉〈u(k)|v̂y |o(k)〉

ε2uo(k)
] is the inter-band Berry curvature. The key approxi-

mation in Eq. S49 is that r̂z is moved out of the inner product. We provide additional discus-

sions/clarifications about this point. This is a good approximation when the wavefunction of the

electronic states is concentrated at a particular height z (i.e., in a particular layer). To see that, we

insert a complete Hilbert space into the inner product as shown in Eq. S50. When wavefunction

of the electronic states is concentrated in a particular layer, then we have 〈p(k)|r̂z|o(k)〉 ' δpo〈r̂z〉.

As a result, we can move r̂z out of the inner product and Eq. S50 becomes the Berry curvature real

space dipole. In the limit of decoupled layer systems, then the wavefunctions are indeed purely lo-

calized at each layers. In the presence of interlayer coupling, the wavefunction will have finite weight

on multiple layers. Nevertheless, for van der Waals materials, the interlayer coupling is expected

to be relatively weak. Hence, the wavefunction of the electronics states is relatively localized.
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αBerry
xx (ω) =

e2

~L
∑
o,u

∫
d2k

εuo(k)

εuo(k)− ~ω
Im[

~2 〈o(k)|v̂x|u(k)〉 〈u(k)|v̂yr̂z|o(k)〉
ε2uo(k)

]

=
e2

~L
∑
o,u

∫
d2k

εuo(k)

εuo(k)− ~ω
Im[

~2 〈o(k)|v̂x|u(k)〉
∑

p 〈u(k)|v̂y|p(k)〉 〈p(k)|r̂z|o(k)〉
ε2uo(k)

]

' e2

~L
∑
o,u

∫
d2k

εuo(k)

εuo(k)− ~ω
〈r̂z〉Im[

~2 〈o(k)|v̂x|u(k)〉
∑

p 〈u(k)|v̂y|p(k)〉 δpo
ε2uo(k)

]

=
e2

~L
∑
o,u

∫
d2k

εuo(k)

εuo(k)− ~ω
〈r̂z〉Im[

~2 〈o(k)|v̂x|u(k)〉 〈u(k)|v̂y|o(k)〉
ε2uo(k)

]

=
e2

2~L
∑
o,u

∫
d2k

εuo(k)

εuo(k)− ~ω
〈r̂z〉Ωuo (S50)

V.2. Additional discussion about optical control of AFM

In this section, we briefly discuss previous pioneering works on optical control of AFM [31–39],

which are of great interest especially given the difficulty of this task. This discussion also justifies

that helicity-dependent optical control of fully-compensated AFM order has not been achieved

before. Especially, we discuss three representative works:

1. Optical control through electric polarization P in TbMnO3: In the multiferroic

TbMnO3, the AFM order L is connected to P . Therefore, by reversing P , one can reverse L. In

Ref. [31], a single P domain was first prepared by electric-field in a TbMnO3 sample; a small area

was optically heated above Tc; when the laser was turned off, the small area went to opposite P

(because of the stray electric field exerted by the surrounding single P domain [40]) and therefore

the opposite L. In this way, AFM order is controlled by controlling P . The optical induced thermal

effect is the driving force for the order parameter reversal.

2. Optical control by B field and linear dichroism in MnF2: Upon applying B field,

MnF2 shows a linear dichroism (LD) [32] (different absorption when light polarization is along

[110] and [1̄10]). Moreover, the sign of LD is opposite for the opposite AFM states. Therefore, by

applying B = 0.5 T, Ref. [38] achieved control of AFM order using linearly polarized light.

3. Optical control of ferrimagnet: Ferrimagnet has M and L that are connected. M can

directly couple to circularly-polarized light like in a ferromagnet. Therefore, by reversing M , one

also reverses L, as demonstrated by Ref. [37].
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V.3. Additional discussion about previous theoretical works on MnBi2Te4

Previous theoretical works have comprehensively studied the electronic, magnetic and topolog-

ical properties of MnBi2Te4 bulk and thin films. Here we have made a table to summarize their

important pioneering findings:

Magnetization Topological phase

Topological phase at

high B field

MnBi2Te4

monolayer M 6= 0

Trivial

insulator[41] Trivial insulator[41]

MnBi2Te4 even

layer M = 0

Axion insulator[41–

43] Chern insulator[41]

MnBi2Te4 odd

layer M 6= 0

QAH insulator[41,

42] Chern insulator[41]

MnBi2Te4 bulk* M = 0 AFM TI [15, 42, 44]

Weyl semi-

metal[42, 44]

*In addition, the ‘Möbius insulator’ phase is also reported in the canted AFM phase of MnBi2Te4

bulk[45].

V.4. Additional general discussion about thickness dependence

The Axion CD, induction and the underlying optical Axion ME coupling can persist in the

thick sample limit (which is indeed what we observed in Fig. S13). Below, we explain how we can

understand the physics in the thick limit, focusing on two aspects: (1) symmetry constraints and

(2) finite optical penetration depth. Because the Axion CD and induction arises from the Axion

optical ME coupling (Fig. R13). We will focus on understanding the Axion optical ME coupling

in thick samples.

(1) Symmetry: Bulk MnBi2Te4 restores the space inversion symmetry P and the time-reversal

symmetry T (precisely T multiples a fractional lattice translation). This leads to a problem:

symmetry dictates the ME coupling to vanish under P or T , so it seems that bulk should not

support an Axion ME coupling. The key is to differentiate a periodic sample with no surface and

a finite thick sample.

For a finite thick sample: P and T symmetries are still broken in the macroscopic sense. As

shown in Fig. S50a, the interior of a thick sample respects P and T . But the surfaces strongly
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break P and T . This is crucial because the Axion ME coupling manifests as a surface response

(surface itinerant current perpendicular to the applied E field). Therefore, even though the interior

respects P and T , a thick sample still hosts Axion ME coupling.

P T

𝐽!

a b

𝐸!

𝑀!

Fig. S50: a, A finite even-layered thick sample (no matter how thick) breaks P and T macroscopically

due to the opposite magnetization at the surface. The red circle denote the macroscopic inversion center.

b, The Axion ME coupling manifests as surface itinerant current Jω ⊥ Eω.

For a periodic system: both P and T symmetries are preserved. It has no surfaces, therefore

the Axion ME coupling cannot be defined.

(2) Light penetration depth: We now try to understand how the light penetration depth influ-

ences the Axion optical ME coupling (and hence the Axion CD). The Axion optical ME coupling

can be visualized by the surface Hall currents: As shown in Fig. S50b, light electric field Eω leads

to a Hall current Jω at the surface. Because the top and bottom surfaces have opposite Berry

curvature, they have opposite Jω Fig. S50b). Globally, we can visualize the Jω at the surfaces as

a circulating current, which naturally leads to an Mω.

In a thin flake, light penetrates the sample, so the top and bottom surfaces have similarly large

Eω and hence similarly large Jω, which leads to an Mω as explained above.

In a thick sample, light strongly decays. So only the top surface has a large Eω and hence a

large Jω. Nevertheless, this still leads to a nonzero Mω.



91

[1] Xu, B. et al. Infrared study of the multiband low-energy excitations of the topological antiferromagnet

MnBi2Te4. Phys. Rev. B 103, L121103 (2021).

[2] Dzyaloshinskii, I. & Papamichail, E. Nonreciprocal optical rotation in antiferromagnets. Phys. Rev.

Lett. 75, 3004 (1995).

[3] Landau, L. D. et al. Electrodynamics of continuous media, vol. 8 (elsevier, 2013).

[4] Ahn, J., Xu, S.-Y. & Vishwanath, A. Theory of optical axion electrodynamics. Preprint at

https://arxiv.org/abs/2205.06843 (2022).

[5] Krichevtsov, B., Pavlov, V., Pisarev, R. & Gridnev, V. Spontaneous non-reciprocal reflection of light

from antiferromagnetic Cr2O3. J. Phys. Condens. Matter 5, 8233–8244 (1993).

[6] Halperin, B. The Physics and Chemistry of Oxide Superconductors,, vol. 60 (Springer Proceedings in

Physics, 1992).

[7] Fried, A. D. Relationship of time-reversal symmetry breaking to optical Kerr rotation. Phys. Rev. B

90, 121112 (2014).

[8] Armitage, N. Constraints on jones transmission matrices from time-reversal invariance and discrete

spatial symmetries. Phys. Rev. B 90, 035135 (2014).

[9] Hosur, P., Kapitulnik, A., Kivelson, S., Orenstein, J. & Raghu, S. Kerr effect as evidence of gyrotropic

order in the cuprates - revisited. Phys. Rev. B 91, 039908 (2015).

[10] Lee, S.-Y., Jeong, T.-Y., Jung, S. & Yee, K.-J. Refractive index dispersion of hexagonal boron nitride

in the visible and near-infrared. Phys. Status Solidi B 256, 1800417 (2019).

[11] Zaitsev, A. M. Optical properties of diamond: a data handbook (Springer Science & Business Media,

2013).

[12] Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer

limit. Nature 546, 270–273 (2017).

[13] Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals.

Nature 546, 265–269 (2017).

[14] Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials.

Nature 563, 47–52 (2018).

[15] Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature

576, 416–422 (2019).

[16] Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4.



92

Science 367, 895–900 (2020).

[17] Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromag-

netic topological insulator. Nature Mater. 19, 522–527 (2020).

[18] Ge, J. et al. High-Chern-number and high-temperature quantum Hall effect without Landau levels.

Natl. Sci. Rev. 7, 1280–1287 (2020).

[19] Liu, C. et al. Helical Chern insulator phase with broken time-reversal symmetry in MnBi2Te4. Nature

Commun. 12, 4647 (2021).

[20] Deng, H. et al. High-temperature quantum anomalous hall regime in a MnBi2Te4/Bi2Te3 superlattice.

Nature Phys. 17, 36–42 (2021).

[21] Yang, S. et al. Odd-even layer-number effect and layer-dependent magnetic phase diagrams in

MnBi2Te4. Phys. Rev. X 11, 011003 (2021).

[22] Ovchinnikov, D. et al. Intertwined topological and magnetic orders in atomically thin Chern insulator

MnBi2Te4. Nano Lett. 21, 2544–2550 (2021).

[23] Gao, A. et al. Layer Hall effect in a 2d topological axion antiferromagnet. Nature 595, 521–525

(2021).

[24] Cai, J. et al. Electric control of a canted-antiferromagnetic chern insulator. Nature Commun. 13,

Article number: 1668 (2022).

[25] Li, Y. et al. Nonlocal transport and one-dimensional conduction in the Axion insulator state of

MnBi2Te4. Preprint at https://arxiv.org/abs/2105.10390 (2021).

[26] Tai, L. et al. Distinguishing two-component anomalous Hall effect from topological Hall effect in

magnetic topological insulator MnBi2Te4. Preprint at https://arxiv.org/abs/2103.09878 (2021).

[27] Raab, R. E. & De Lange, O. L. Multipole theory in electromagnetism: classical, quantum, and

symmetry aspects, with applications, vol. 128 (Oxford University Press, Oxford, 2004).

[28] Agranovich, V. & Yudson, V. On phenomenological electrodynamics of gyrotropic media. Opt.

Commun. 9, 58–60 (1973).

[29] Halperin, B. I. The Physics and Chemistry of Oxide Superconductors (Springer Berlin Heidelberg,

1992), 60 edn.

[30] Hosur, P. et al. Kerr effect as evidence of gyrotropic order in the cuprates - revisited. Phys. Rev. B

91, 039908 (2015).

[31] Manz, S. et al. Reversible optical switching of antiferromagnetism in TbMnO3. Nature Photon. 10,

653–656 (2016).

[32] Kharchenko, O., Miloslavskaya, O. & Milner, A. Odd magnetic dichroism of linearly polarized light



93

in the antiferromagnetic MnF2. Low temp. Phys. 31, 825–830 (2005).

[33] Liou, Y.-D. et al. Deterministic optical control of room temperature multiferroicity in BiFeO3 thin

films. Nature Mater. 18, 580–587 (2019).
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