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Abstract: We study the system of axion strings that forms in the early Universe if the
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lish the existence of an asymptotic solution to which the system is attracted independently

of the initial conditions. We study in detail the properties of this solution, including the

average number of strings per Hubble patch, the distribution of loops and long strings, the

way that different types of radiation are emitted, and the shape of the spectrum of axions

produced. We find clear evidence of logarithmic violations of the scaling properties of the

attractor solution. We also find that, while most of the axions are emitted with momenta of

order Hubble, most of the axion energy density is contained in axions with energy of order

the string core scale, at least in the parameter range available in the simulation. While

such a spectrum would lead to a negligible number density of relic axions from strings

when extrapolated to the physical parameter region, we show that the presence of small

logarithmic corrections to the spectrum shape could completely alter such a conclusion.

A detailed understanding of the evolution of the axion spectrum is therefore crucial for a

reliable estimate of the relic axion abundance from strings.
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1 Introduction

The QCD axion [1–7] is the simplest and most robust of the known solutions of the Standard

Model (SM) Strong CP problem, and it also automatically forms a component of cold dark

matter (DM) [8–10]. Consequently, a QCD axion that makes up the entire measured

DM relic abundance is one of the best motivated scenarios for physics beyond the SM.

In addition, numerous experiments aimed at detecting axions are currently running or in

development. These will be sensitive to a substantial proportion of the relevant parameter

space, and, if an axion is discovered, they could measure its mass and couplings precisely

(see e.g. [11, 12]).

The dynamics by which QCD axion DM is produced, and its final relic abundance,

depends on the cosmological history of the Universe (see e.g. [13, 14]). If the Peccei-Quinn

(PQ) symmetry that gives rise to the axion was broken after inflation, the axion field had

initially random fluctuations over the present day observable Universe. Instead, if the PQ

symmetry was broken during inflation and never subsequently restored, the axion field was

initially homogeneous. In this case the axion relic abundance is incalculable because it

depends on the local value of the axion field after inflation.1

In this paper we study the class of models in which PQ breaking happens after inflation.

This includes theories in which inflation happened at a scale above the axion decay constant

fa, and also those with inflation at a lower scale but which were reheated to a temperature

above fa.
2 In this case, assuming a standard cosmological history, the relic abundance is

calculable in terms of the axion mass due to the random initial conditions.3 As a result,

there is in principle a unique calculable prediction for the axion mass if it is to make up the

complete DM density in such models, which would be extremely valuable for experimental

axion searches.

However, in this scenario the mechanisms by which DM axions are produced are com-

plex, and calculating the relic abundance is challenging [18–22]. The random initial axion

field after PQ symmetry breaking leads to the formation of axion strings [23–25]. These

are topologically stable field configurations that wind around the U(1) vacuum manifold

of the broken PQ symmetry as a loop in physical space is travelled. Interactions between

strings are thought to result in the length of string per Hubble volume, measured in Hubble

lengths, remaining approximately of O(1) as the Universe expands [26–31]. To maintain

such a regime the string network must release energy. This dominantly happens through

the production of axions, which form a potentially significant fraction of the total relic

abundance [32–39].

The string system persists until the temperature of the Universe drops to around the

QCD scale, when the axion mass turns on and becomes cosmologically relevant, leading

to the formation of domain walls. The subsequent dynamics depends on the anomaly

1There is only an upper bound on the axion mass for which it can make up the full relic abundance,

coming from isocurvature constraints [15–17].
2The precise boundary between the regimes depends on the details of thermalisation during reheating.
3As we will discuss later the relation between the relic abundance and the mass of the axion might be

affected for extreme choices of the model parameters.
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coefficient between QCD and the PQ symmetry, NW , which is equal to the number of

minima that are generated in the axion potential [19, 40]. NW = 1 corresponds to the

scenario in which the domain walls are automatically unstable and decay, destroying the

string network and releasing further DM axions in the process [19, 40, 41]. If NW > 1

the domain walls are generically stable, and the model is not phenomenologically viable,

unless further explicit breaking of the PQ symmetry is introduced [42–45] (which might

reintroduce the strong CP problem) or the ZNW
symmetry is gauged [46]. In the following

we set NW = 1 so that the PQ breaking scale vPQ = fa, however, since we will focus on the

early evolution of the string network, the general case can be recovered from our results

by simply replacing fa with vPQ = NW fa. After the QCD crossover the comoving axion

number density is conserved, and the coherent axion field behaves as cold DM.

In our present work we consider the string network before the axion mass turns on.

An understanding of this stage of its evolution is crucial, both to calculate the relic abun-

dance of axions produced at such times and to set the appropriate initial conditions when

analysing the system once the axion mass becomes relevant. The important properties of

the network, which we aim to determine, include: the average length of string per Hubble

volume, and the way that this is distributed in loops of different lengths; the rate of energy

release into axions; and the spectrum of axions emitted. Due to the complex evolution

and interactions of the strings, and later the domain walls, an accurate analytic calcula-

tion of the axion relic abundance appears hopeless in this scenario, and instead some form

of numerical simulation is required. The most direct approach, which we will follow, is

to simulate a complete UV theory that gives rise to the axion numerically on a discrete

lattice [47] (more details are given in section 2).

The properties of the axion strings are critically affected by the fact that they come

from a global symmetry. As we discuss further in sections 2 and 3, this means that the

energy per unit length of an isolated string is logarithmically divergent. In the early

Universe the divergence is cut off by the distance to a string of opposite orientation, or

for a small loop its diameter, both of which are typically of order of the Hubble length

H−1 [18]. Consequently, the theoretical expectation for the string tension µ, defined as the

average string energy per unit length µ = E/L, in this system is roughly

µ ≈ πf2a log
(

η
mr

H

)

, (1.1)

where m−1
r is the size of the string core and mr corresponds to the mass scale of the

degrees of freedom that UV complete the axion effective theory (in many models mr ∼ fa).

Meanwhile, η is a numerical factor that to a first approximation is expected to be of order

1, and which is likely to be time dependent due to, for example, the number of strings per

Hubble volume changing. Because of the expansion of the Universe, the majority of the DM

axions produced by strings are emitted shortly before the network is destroyed, at the time

of the QCD crossover. At this point log(mr/H) ≈ 70 is enormous for mr ∼ fa, changing

the expected string tension significantly. Further, the large scale separation between mr

and H also suppresses the coupling between strings and axions by the same logarithmic

factor [34], and is expected to render emission of heavy modes associated to the theory’s

UV completion irrelevant.
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However, the huge scale separation in the physically relevant regime presents an imme-

diate problem in attempting to study the system using numerical simulations. To resolve

the dynamics of the strings, a 2 dimensional slice of the lattice perpendicular to a string

must contain at least a few grid points inside the string core, and to capture the interac-

tions and dynamics of strings a few Hubble volumes must be simulated (we show this by

analysing the systematic errors in simulations in appendix B). Given the computational

power available, the largest grids that can be simulated have N3 ∼ 10003 lattice points.

Consequently, the maximum scale separations that can be directly studied correspond to

log (mr/H) ≈ 6. In this system, the tension of strings, and their couplings to axion and

heavy degrees of freedom, are far from the physically relevant values. Indeed, even if these

could be adjusted to the physical values by modifying the UV theory this would not be

sufficient. For example, the properties of the string network depend on whether collapsing

string loops rebound and oscillate many times before disappearing, and if strings that ap-

proach each other recombine. In order to accurately capture such dynamics, processes on

all scales between Hubble and the string core size must be resolved.

Making physically relevant predictions about the system at the time of QCD crossover

therefore requires that results from simulations are extrapolated over a vast difference in

scale separations. What makes such an extrapolation not obviously hopeless is the possible

existence of an attractor in the evolution, an understanding of which would allow a con-

trolled extrapolation to be made. A key point of our work is that this is an extremely del-

icate process. In particular, we stress that a careful analysis of which features of the string

network are being assumed to remain constant, or change, between log(mr/H) ≈ 6 and

log(mr/H) ≈ 70 is required, and that naive extrapolations can lead to misleading results.

The calculation of the axion relic abundance by strings and domain walls has been the

subject of extensive prior investigation. However, there is still substantial disagreement

about the qualitative and quantitative dynamics of strings, and predictions of the resulting

axion DM density differ dramatically. Previous work has been based on numerical simu-

lations of global strings, and also theoretical analysis and numerical simulations of local

strings, which are thought to reproduce the dynamics of global strings in the limit of large

scale separation. To enable comparison, we postpone a discussion of the literature until we

have presented our results. Instead, here we simply note that there is currently an order of

magnitude disagreement about the average numbers of strings per Hubble volume at the

time of the QCD crossover, which introduces a similar uncertainty on the axion number

density produced; and also an uncertainty on the form of the energy spectrum of the axions

produced, which can change the axion number density by almost two orders of magnitude.

Turning to the structure of this paper: in section 2 we discuss the theory that we

numerically simulate, and the technical challenges that this involves. In section 3 we

demonstrate the existence of an attractor solution, which is approached independently of

the system’s initial conditions, and analyse its properties. In section 4 we study the energy

released by the string network, and the spectrum of axions emitted. There we also discuss

the impact on the axion relic abundance, and the process of extrapolating to the physical

point in parameter space. In section 5 we summarise our results and the possibilities for

future development. Additional technical details about our simulations may be found in
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appendix A, and an extensive analysis of the systematic errors is given in appendix B.

In appendix C we present a detailed analysis of the distribution of energy into different

components, in appendix D we provide further evidence for the existence of an attractor

solution, and in appendix E we give details of how we fit the parameters of the string

network. Finally, in appendix F we analyse whether the properties of the global strings

that we simulate are converging to those of local strings.

2 Axion strings and simulations

We consider a complex scalar field φ taken to have the U(1)PQ invariant Lagrangian

L = |∂µφ|2 − V (φ) , with V (φ) =
m2

r

2f2a

(

|φ|2 − f2a
2

)2

, (2.1)

in a spatially flat Friedmann-Robertson-Walker background. The metric is ds2 = dt2 −
R2(t)dx2, and the Universe is assumed to expand as in radiation domination, so the scale

factor R(t) ∝ t1/2, and the Hubble parameter H ≡ Ṙ/R = 1/(2t).

The potential V (φ) leads to φ getting a U(1)PQ breaking vacuum expectation value

(VEV) |〈φ〉|2 = f2a/2. We decompose

φ(x) =
r(x) + fa√

2
e
i
a(x)
fa , (2.2)

into the radial field r(x), which has a mass mr, and the axion field a(x), which has a

period 2πfa. Since we focus on the properties of the system at temperatures above the

QCD crossover, the PQ breaking axion potential generated by QCD can be neglected and

the axion is massless (at lower temperatures this must be added to eq. (2.1)).

The average Hamiltonian density ρtot = 〈T00〉 of the complex field φ is

ρtot =
〈

|φ̇|2 + |∇φ|2 + V (φ)
〉

, (2.3)

where φ̇ = dφ/dt, ∇ is the gradient with respect to the physical spatial coordinates R(t)x,

and 〈A〉 ≡ limV→∞
1
V

∫

V d
3x A is the spatial average of A. After decomposing φ as in

eq. (2.2),

ρtot =

〈

1

2
ȧ2 +

1

2
|∇a|2

〉

+

〈

1

2
ṙ2 +

1

2
|∇r|2 + V (r)

〉

+

〈(

r2

2f2a
+

r

fa

)

(

ȧ2 + |∇a|2
)

〉

,

(2.4)

where V (r) = m2
r

8f2
a
r2 (r + 2fa)

2. The terms on the first line of eq. (2.4) correspond to the

kinetic and potential parts of the axion and radial modes’ energies, and the term on the

last line is the interaction energy between the two. In the small field limit |r| /fa → 0, the

Hamiltonian can be approximated as the sum of that from decoupled axions and radial

modes (i.e. by the first line of eq. (2.4)). However, away from this limit interaction terms

between the two fields are not negligible and make the axion-radial system strongly coupled.
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Note that the field’s equation of motion

φ̈+ 3Hφ̇−∇2φ+ φ
m2

r

f2a

(

|φ|2 − f2a
2

)

= 0 , (2.5)

does not depend on the ratio mr/fa directly. Indeed the dependence on the two scales fa
and mr can be reabsorbed by rescaling respectively the field φ → φfa and the space-time

coordinates t→ t/mr and x→ x/mr. Therefore, up to a trivial field rescaling, the physics

is only sensitive to the ratio mr/H = 2mrt.

The equations of motion in eq. (2.5) admit solitonic string-like solutions. As mentioned

in the Introduction, these are topologically non-trivial configurations that contain loops in

space where the axion field a wraps the fundamental domain [0, 2πfa] non-trivially. The

prototype of such solutions is a static, infinite, string lying along the z-axis. In cylindrical

coordinates (ρ, θ, z) this is given by

φ(x) =
fa√
2
g(mrρ)e

iθ , (2.6)

where g is a profile function that satisfies g(ρ) = Cρ + O(ρ3) for ρ → 0 and g(ρ) =

1 − ρ−2 +O(ρ−4) for ρ → ∞. The string core is defined as the region in which φ is close

to the maximum of its potential, i.e. when r/fa ∼ −1, which corresponds to points at a

distance less than m−1
r away from the centre of the string ρ = 0. In this part of space the

axion-radial mode system is strongly coupled, and all of the terms in eq. (2.4) contribute to

the string energy density. However, for a single string configuration the axion energy density

diverges logarithmically for ρ → ∞ due to the angular gradient 1
2〈|∇a|

2〉. Consequently,

the total string energy is dominantly in this component, and is mostly stored away from the

string core. In the early Universe this leads to a string tension of the form given in eq. (1.1).

To analyse the dynamics of the string system in the early Universe, we numerically

integrate the equations of motion, eq. (2.5), in 3 + 1 dimensions. Starting from suitable

initial conditions, for example φ random with sufficiently large fluctuations, axion strings

automatically form and evolve. In doing so, we are assuming that solutions of classical

equations of motion capture the physics of strings and axion radiation. This is justified

because strings are themselves intrinsically classical and the relevant part of the axion

radiation has large occupation number.

The complex scalar φ is discretised on a lattice with approximately N3 = 12503 grid

points, and evolved in fixed steps of conformal time τ ∼
√
t. Our simulation is carried out

with periodic boundary conditions, and in comoving coordinates x, so that the comoving

distance between grid points remains constant and the physical distance between grid

points grows ∼
√
t. Further details of the algorithms used are given in appendix A. As

the system is evolved forward, the number of Hubble lengths contained in the box side

decreases ∼ 1/
√
t and the number of lattice points inside a string core also decreases

∼ 1/
√
t, as shown in figure 1. The maximum accessible scale separation corresponds to an

upper bound on the final time that can be simulated. Other possible sources of numerical

uncertainty include the time step used in the simulation and the way that the contribution

of the string energy is excluded from the calculation of the energy in free axions, and a full

analysis is given in appendix B.

– 6 –
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 log𝑚𝑟𝐻 = logሺ        ሻ ≲ 6 

𝑁 

𝑯−𝟏
 

𝒎𝒓−𝟏 

Figure 1. An illustration of how the size of a string core, shaded red, and a Hubble volume, shaded

blue, evolve relative to the lattice points in our simulations, where N is the number of lattice points

in a spatial dimension. Requiring that the simulation contains at least a few Hubble volumes and

that a string core contains at least ∼ 1 lattice point constrains the maximum scale separation that

can be studied.

The simulations that we carry out with mr/H ∼ 1 can be interpreted in terms of a

theory with mr ≈ fa at a time when H ≈ fa, however this is not a physically relevant part

of parameter space. First, for such models the scale separation simulated is far from that at

the time of the QCD crossover, when the majority of axions produced by the string network

are emitted. Additionally, this regime does not correspond to a system that is realisable

even at early times: when H ∼ fa, the temperature of the Universe is T ∼
√
faMPl, where

MPl is the Planck mass, and a physical theory will be in the unbroken, PQ symmetric,

phase. However, by studying the potential eq. (2.1) without including finite temperature

effects, we can use the results obtained to extrapolate the properties of the string system

to low temperatures, when such corrections are actually negligible. In particular, at the

time of the QCD crossover T ∼ GeV and finite temperature corrections to the potential

of the radial scalar are irrelevant.

Alternatively, simulations at a scale separation mr/H ∼ 1 can be interpreted as study-

ing a model with mr ≪ fa at a time when the Hubble parameter is H ≪ fa. Axion theories

with a light radial mode are less commonly considered, but in this case the simulations are

directly analysing a physically realisable point in parameter space. In particular, taking

mr ∼ 10−18GeV, the Hubble parameter is that at the time of the QCD crossover (although

such a light scalar is excluded by fifth-force experiments).4 Meanwhile, theories in an in-

termediate regime, with a radial degree of freedom that has a mass 10 keV . mr . fa,

are not experimentally excluded by evolution of stars and fifth-force experiments. These

correspond to scale separations at the time of the QCD crossover that are larger than can

be reached with simulations, so that extrapolation is still required, but which are smaller

than if mr ≈ fa.

4In such models the PQ phase transition still happens at T ∼ fa, and finite temperature corrections

to the potential of the radial mode are not important, provided that it is weakly coupled to states in the

thermal bath.
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The Lagrangian in eq. (2.1) includes only one heavy scalar degree of freedom, and it is

clearly not the most generic that can arise in UV-complete axion theories. However, when

H ≪ mr the dynamics of axion strings and radiation are expected to be largely indepen-

dent of which massive degrees of freedom are included, since these only get excited when

strings interact over distances of order m−1
r , e.g. when loops shrink or long strings intersect.

The energy of a global string configuration remains logarithmically divergent in more com-

plicated theories, since this comes from the axion angular gradient, which is always present.

In principle one could also include interactions with other fields that φ is coupled to — e.g.

SM fields — in eq. (2.1), but away from the string cores the couplings of axions to these are

suppressed by powers of fa, and are negligible. Meanwhile the radial mode can have order 1

couplings to SM fields, however it is expected to decouple from the dynamics of the strings

and axions at large scale separations. At early times, when the temperature is high, inter-

actions of strings with the visible sector thermal plasma could modify their dynamics [49],

however these effects will also be negligible at temperatures around the QCD crossover.

As well as the physical system, the literature has often used a deformed theory in

which the mass of the radial mode in eq. (2.1) is replaced with a time dependent one

mr (t) = mi
R(ti)

R(t)
= mi

√

ti
t
, (2.7)

where mi is the mass of the radial mode at the initial time ti. This is equivalent to a theory

with a quartic coupling λ ∼ m2
r(t)/f

2
a that decreases with time, and is known as the fat

string scenario. The size of the string cores increases as m−1
r (t) ∼ t1/2, and the number of

lattice points inside a string core remains constant throughout a simulation. The maximum

scale separation that can be simulated is unchanged compared to the physical potential,

however the time taken to reach a particular scale separation (starting from H ∼ mr) is

increased, and simulations can be run for longer before arriving at the upper bound. As a

result, energy left over from the initial conditions is redshifted more, and there is more time

available for properties of the string system to reach their asymptotic behaviour (there are

additional benefits that will be seen in section 4). Despite these advantages, we stress that

by making the potential time dependent the equations of motion of the system are changed

by an order 1 amount. Consequently, although the dynamics of axion strings might remain

qualitatively similar to those of the physical Lagrangian this is not guaranteed, and the

numerical values of the parameters of the scaling solution are not expected to be the same in

the two cases. We perform simulations using both techniques and discuss their advantages

and disadvantages.

In both the fat string and the physical scenarios, the axions produced in the simulations

are massless, and their energy densities redshift as ∼ 1/R (t)4. Meanwhile, the radial

modes produced are highly non-relativistic. In simulations with the physical Lagrangian

their energy density redshifts as ∼ 1/R (t)3. In simulations of the fat string Lagrangian

the scalar mass decreases with time, and the energy density of these states redshifts as

∼ 1/R (t)4, the same as axions.

– 8 –
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3 The scaling solution

It has long been claimed that a system of axion strings is driven towards a particular

solution, which is independent of its initial conditions [23–25]. Indeed, this feature is

crucial for making predictions about the properties of the string system at late times, and

in particular of the axion relic abundance from strings, that do not depend on the dynamics

of the system at early times, which are model dependent.

The existence of such an attractor solution is simple to motivate qualitatively. Strings

can lose the energy stored in their length by radiating axions and radial modes. Therefore

bends in strings with curvature larger than the Hubble scale tend to straighten, and closed

string loops smaller than the horizon are expected to disappear, emitting radiation. Ad-

ditionally, long strings (or equivalently string loops larger than the horizon) can interact

when they enter each other’s horizon through a process called recombination: when strings

cross they can recombine into a new configuration with a lower tension, and similarly a re-

gion of high curvature in a long string can split off forming an isolated loop. The net effect

is a reduction of the total string length and the production of smaller loops, string segments

with larger curvatures, and radiation. The rate at which such processes occur depends on

the density of strings within the horizon. Below some critical density recombination is in-

efficient. In this case, the number of strings in each Hubble patch increases as the Universe

expands and new strings enter the horizon. On the other hand, above a critical density

recombination becomes efficient, reducing the number of strings within the horizon. As a re-

sult, the density of strings is pushed towards a particular (not necessarily time independent)

value. Other statistical properties of the network, such as the distribution of the string den-

sity in loops of different length, are expected to converge similarly to a common behaviour.

We define the average number of strings per Hubble patch ξ(t) as

ξ(t) ≡ lim
L→∞

ℓtot(L) t
2

L3
, (3.1)

where ℓtot(L) is the total length stored in strings in a volume L3. Hence the energy density

of strings is

ρs(t) = ξ(t)
µeff(t)

t2
, (3.2)

where, given eq. (1.1), the effective string tension µeff(t) is expected to be

µeff(t) = γ(t)µ0 log

(

mr η(t)

H
√

ξ(t)

)

, (3.3)

with µ0 = πf2a , and γ(t) the effective boost factor associated to the kinetic energy of the

string configuration, which, as we will see, is O(1). The factor mr/(H
√
ξ) is anticipated to

capture the main time dependence of µeff(t) since the logarithm is cut-off by the average

distance between strings (∝ t/
√
ξ). The remaining time dependence is encoded in the

factor η(t), which takes into account the non-trivial shape of the strings and is expected

either to be constant or to have at most a very mild time dependence. Indeed, it will be

– 9 –
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a non-trivial check of the string network’s properties that the energy density in strings

extracted from the simulations is well reproduced by eqs. (3.2) and (3.3).

The existence of the scaling law (3.2) with constant ξ(t) = ξ0 can easily be understood

for local strings. For these the string tension is localised on the core and is constant

µeff(t) = µ. Neglecting the core size the problem only has one scale, H = 1/2t, which

completely fixes the scaling law for the energy density ρs(t) = ξ0µ/t
2. The presence

of a single scale suggests that during the scaling regime all the properties of the string

configuration should be scale invariant.

On the other hand, for the global case several properties of the strings, including

their tension and their coupling to axions [34], depend logarithmically on the core size

mr, therefore logarithmic corrections to the scaling law can be expected. To account for

these effects we leave an explicit time dependence both in ξ(t) and in η(t), besides the one

contained in mr/H inside µeff(t).

In the rest of the section we will establish the existence of the (approximate) scaling

solution for axion string networks, and study its properties in detail. In particular we will

present results from numerical simulations demonstrating the presence of the attractor,

its independence from the initial conditions, the behaviour of the parameter ξ(t), and the

distribution of loops and long strings during the scaling regime.

3.1 The attractive solution

The existence of the attractor can be tested by studying if different statistical properties of

the string network converge to the same values independently of the initial conditions of the

field. As a representative example, here we focus on the evolution of the average number

of strings per Hubble patch ξ(t). In appendix D we present additional results showing that

the number density, the total and the instantaneous spectrum of axions emitted from the

string network also clearly converge, regardless of the initial conditions. The convergence

is particularly evident in the instantaneous emission spectrum, which depends only on the

string configuration at a particular moment and has no memory of earlier times.

We set the initial conditions in two different ways. In the first, we just generate sets

of random fields. In the second, we construct initial conditions with a fixed number of

strings by evolving random configurations until the total string length in the box reaches

a required value, and then we reset the clock rescaling Hubble (more details about the

procedure can be found in appendix A). Besides allowing us to start simulations with a

predetermined density of strings, the second method produces initial field configurations

that have less primordial background radiation (although this would redshift away anyway)

and more suitable for a cleaner study of the instantaneous spectrum. In appendix D we

show that the properties and evolution of the string network are independent of the way

in which the initial conditions are set.

In figure 2 we show the evolution of ξ with time in simulations, starting from initial

conditions with different numbers of strings using the second method described above. ξ

has been computed at different time shots from its definition eq. (3.1), using the algorithm

described in appendix A. As discussed in section 2, it takes a longer time to get to the same

value of log(mr/H) in the fat string scenario than for the physical theory. As a result the
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Figure 2. The evolution of the average number of strings per Hubble patch ξ(t) as a function of

time (here represented by Hubble) using the fat string trick (for which mr ∝ t−1/2, left) and for

the physical case (mr = const, right) for different initial conditions. Each curve corresponds to the

average of many simulations with the same initial value of ξ. The position of the coloured dots indi-

cates the initial time and the value of ξ for each simulation set. The number of simulations has been

taken large enough that the statistical uncertainties are smaller than the thickness of the curves.

attractor regime is reached at smaller values of the log in the fat string case (here and in the

rest of the paper we sometimes use the short-hand notation “log” to refer to log(mr/H)).

In both the fat string and the physical models, the convergence towards a common

value of ξ is manifest. In the fat string case, the initial values of ξ span more than three

orders of magnitude and, by the end of the simulations, they lead to the same value of ξ to

within 10%. For the physical case the convergence is a little slower but it is still clear. In

simulations starting at H = mr it is not possible to initially have more than one string per

Hubble patch. As a result, to achieve initial conditions with a clear overdensity of strings

we started such simulations later, when H < mr. The corresponding data in the figure 2

have the initial points (the coloured dots) at larger values of log(mr/H).

The network of global strings was first studied using field theoretic computer simula-

tions in [37, 38], and more recently over a longer time range in [50]. Refs. [51, 53] showed

evidence for the existence an attractor for the fat string system, respectively in two and

three dimensions. Our simulations have a similar time range and constitute an independent

check of the convergence of ξ in the fat string system starting from a wide range of initial

conditions, and a demonstration of the attractor’s existence for the physical case. Further,

in appendix D, we show that other properties of the network, including the spectrum of

axions emitted, also converge.

3.2 Scaling violation

Having shown that the attractor solution exists, we now turn to study its properties. One

prominent feature is that, although different boundary conditions converge to a common

value of ξ, this value does not seem to be constant in time. To see the change more clearly, in
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Figure 3. The growth of ξ(t) with time (log(mr/H)) for different initial conditions using the

fat string trick (left) and in the physical case (right). The black curves correspond to the initial

conditions that are the closest to the attractor solution.

figure 3 we show the plots of figure 2 on a linear scale. A growth of ξ linear in log(mr/H)

is evident both for the fat string and for the physical cases. The fact that simulations

with an overdensity of strings first rapidly evolve to smaller values of ξ, converging to

the attractor, and then start increasing again is particularly convincing. This strongly

indicates that the growth is an intrinsic property of the scaling solution, rather than the

sign that the attractor has not yet been reached.

The behaviour shown in figure 3 is compatible with the asymptotic form

ξ(t) = α log
(mr

H

)

+ β . (3.4)

In particular, at late times β is subleading, and the value of ξ(t) is dominated by the loga-

rithmic term. From figure 3 it can be seen that the coefficient α is universal, independent

of the initial conditions. Indeed, the derivatives t ξ′(t) = ∂ξ/∂[log(mr/H)] of the curves

tend towards a common value α more rapidly than ξ itself.

We can use the convergence of the slopes to a constant value to select the optimal initial

conditions, i.e. those for which the scaling regime is reached the earliest. The corresponding

lines are those plotted in solid black in figure 3, and curves starting from different boundary

conditions reach the same constant slope at later times. Considering only simulations that

reach the scaling regime (i.e. those that show a sufficiently large region of constant slope)

we extract estimates for α

αfat = 0.22(2) , αphys = 0.15(5) . (3.5)

Here the errors clearly have no statistical significance, but rather they represent our ed-

ucated, conservative, guesses about the uncertainty. Plots showing the behaviour of the

slope for different boundary conditions, and more details about the fit, can be found in the

appendices D and E. We do not report the values of β, since the uncertainty on these from
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different initial conditions is larger, and they are irrelevant for the physically interesting

values of the log.

As mentioned, a logarithmic violation of the scaling behaviour is not completely unex-

pected, since several properties of the string network, including the string tension and cou-

pling to axions, have a similar dependence. If such behaviour is maintained at later times,

as seems plausible, the average number of strings per Hubble patch will grow substantially

for values of the log relevant to the QCD axion. For example, if mr ∼ fa eq. (3.5) would

imply ξ = 10.5±3.5 at the physically relevant separation, log(mr/H) ≈ 70. This value is an

order of magnitude larger than that found in refs. [37, 38, 50] from numerical simulations on

smaller grids, and the value that is usually assumed in rough estimates of the axion abun-

dance produced by strings. Meanwhile, the extrapolated value of ξ that we obtain is only a

factor of 2 larger than that recently obtained in ref. [51], which used the fat string trick and a

different UV completion of the core. We stress that although the fat string system shows the

same qualitative linear growth with the log as physical strings, the numerical parameters are

somewhat different in the two cases. This is not surprising, and in extrapolating to the phys-

ical scale separation it is important to study the physical system, not just the fat string case.

The logarithmic enhancement in ξ was first observed and studied in the 2+1 di-

mensional simulations of ref. [52], but it was missed in the 3+1 dimensional ones of

refs. [37, 38, 50], perhaps due to the use of smaller grids (which limited the time range of

their simulations) and the choice of overdense initial conditions. Indeed, the combination

of these two factors can produce a fake plateau at the intermediate values of the logs that

were analysed (see e.g. the top curve of the right hand plot in figure 3).

Conversely, the later simulations of the fat string case in ref. [53], made on larger

grids, also observe a logarithmic increase, in agreement with our results. Finally, in the

recent analysis of ref. [51], which use fat strings and a different UV completion of the core

to partly include the effects of a large scale separation, the value of ξ increases with the

log. The growth rate is not clear and the authors suggest that part of it may be due to

spurious H/mr effects. However, the results of this reference for purely global strings are

in agreement with our numerical fit, and correspond to initially overdense networks.

We will resist the temptation to interpret the log-increase of ξ(t) in terms of the

reduction of the string-axion coupling or the increase of the string tension. In fact a

similar growth also seems to be present for local strings, and can be seen in figure 3 of

ref. [51] and is hidden in figure 7 of ref. [54].5 Neglecting gravity, the only way that local

strings can maintain a scaling regime is through the production of heavy modes associated

to the core scale. The latter then cannot be neglected and its presence allows for a violation

of the scaling law ρs = ξ0µ/t
2 argued before. As we will discuss below, the way that global

strings lose energy is not so different from the one above, which might explain the similarity

in the way that the scaling is violated.

5We have carried out preliminary simulations of local strings to study this effect, and these appear to

confirm such a growth.
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Figure 4. The fraction of the total string length ξℓ/ξ∞ that is contained in loops smaller than ℓ

for different time shots.

3.3 Long vs short: the scale-invariant distribution of loops

In order to further characterise the attractor solution, and to better understand its prop-

erties, we also study how the total string length per Hubble patch ξ is distributed over

different loop sizes. If we call dnℓ/dℓ the loop number density, i.e. the number of loops per

unit volume and per unit of loop length, then the quantity

ξℓ ≡ t2
∫ ℓ

0
dℓ′ ℓ′

dnℓ′

dℓ′
, (3.6)

represents the contribution to ξ from loops of size smaller than ℓ and, in particular, ξ∞ = ξ.

We have performed a large number of simulations using the fat string trick to acquire

enough statistics to study ξℓ as a function of time and loop size ℓ. The initial conditions

were fixed as for the thick line in figure 3 left, so that the system started close to the scaling

solution.

The results for the ratio ξl/ξ∞, which gives the percentage of string length contained

in loops of size smaller than l, are plotted in figure 4, and reveal several features of the

string network. Most of the string length, more than 80%, is contained in loops much

larger than Hubble, of order of the full box size (in fact it seems that most of the string

length is contained in a single loop wrapped around the simulation box multiple times).

This leads to the abrupt increase in the right part of the plot, which saturates ξℓ to its

asymptotic value ξ. Less than 20% of the total contribution to ξ is contained in loops of size

– 14 –



J
H
E
P
0
7
(
2
0
1
8
)
1
5
1

of order H−1 and smaller, which results in the appearance of the plateau with ξℓ/ξ∞ ≈ 0.2

at Hℓ ≫ 1.6 On the left of the plot the UV cut-off corresponding to the smallest possible

loops, of order the core size, is also visible. As the Universe expands the physical size of

the simulation box in units of Hubble shrinks, and as a result ξℓ saturates its asymptotic

value ξ at smaller and smaller values of Hℓ. At the same time, the value of mr/H grows

so the UV cut-off moves to the left.

The lines in figure 4 corresponding to different times approximately overlap for values

of ℓ sufficiently far from the UV and IR cutoffs. Therefore, since ξ∞ grows logarithmically

with time, the corresponding growth in ξℓ is homogeneous in ℓ. This signals that the

logarithmic increase of ξ is equally distributed over all scales, and that the ratio between

long and short strings stays constant in time (see also figure 17 in appendix B). The fact

that ξℓ/ξ∞ remains constant in time for ℓ . 10π/H also shows that the number of loops of

a particular length per Hubble patch does not change, apart from this logarithmic increase.

As loops shrink and disappear (or recombine with other strings) they are replaced at the

same rate by larger loops themselves shrinking, or by new loops being produced from

interactions of long strings, which is an indication that the attractor solution has been

reached. When, at the final times, the Hubble scale becomes of order of the box size there

is no longer a sharp distinction between long and short strings.

Another feature of the loop distribution is evident from the plot: for loop lengths

smaller than Hubble ξℓ ∝ ℓ (the dashed line in the plot), so dξℓ/dℓ ∝ ℓdnℓ/dℓ =const.

This means that the number of loops in each logarithmic interval of length is constant,

over almost two orders of magnitude. Equivalently, the 10% of the full string length

contained in sub-Hubble loops is equally distributed over all loop sizes on a linear scale.

This approximate power law seems to become a better fit as time progresses, suggesting

that it is an intrinsic property of the attractor solution, and further confirming that the

attractor regime has been reached within the time range of the simulation.7

Our analysis suggests that, in the infinite volume limit, the distribution of string length

in the attractor solution is of the form depicted in figure 5. Roughly 80% of the string length

per Hubble patch is contained in long strings (infinite string loops), while the remaining

20% is distributed in loops ranging from the core to the Hubble size, with equal numbers

of loops in each decade of length. The total string length grows logarithmically according

to eq. (3.4) with the relative 4:1 ratio fixed.

In the literature the parameter ξ is sometimes defined restricting to long strings only.

However, the loop distribution that we observe implies that the two definitions only differ

by 20%, and more importantly the factor of proportionality is constant in time.

Since we do not directly use the quantitative behaviour of ξℓ in our subsequent esti-

mates of the final axion abundance, we have only performed this analysis in the fat string

case. The similarity in the behaviour of all of the other properties studied suggests that

the picture for the physical case should be qualitatively similar.

6The fact that only approximately 10% of the string length is contained in sub-Hubble loops was men-

tioned in [51], which matches our more detailed analysis.
7At late times a similar power law behaviour is also present in field theoretic simulations of local strings,

see ref. [55].

– 15 –



J
H
E
P
0
7
(
2
0
1
8
)
1
5
1

π mr
π H

~20%
~80%

Figure 5. A cartoon of the distribution of string loops, dξℓ/dℓ, in the scaling regime. A constant

fraction of the total length is in sub-Horizon loops, with equal numbers of loops in each logarithmic

interval down to the scale of the string cores.

4 The spectrum

We now discuss how the string network radiates energy, and study in detail how the energy

in the system is split among the different components (strings, axions, radial modes), and

the way that the energy in axions is distributed in modes of different frequencies. We then

analyse the evolution of the axion number density, and the extrapolations of this to the

physically relevant point. However, before turning to the results of our simulations, we

first establish the physically relevant quantities and describe how these affect the axion

relic abundance.

The conservation of energy implies that, in order to maintain the scaling regime, the

string network must constantly lose energy into radiation. This is because, in the absence

of interactions, the number of strings per Hubble patch would increase fast as more strings

re-enter the horizon. To keep ξ approximately constant, the excess string length must be

destroyed, emitting energy.

The rate at which the system of interacting strings releases energy can be calculated

by comparing the energy density in the scaling regime (parameterised by eq. (3.2)), to that

of a “free” network of strings. By free we mean that long strings remain essentially at fixed

comoving coordinates, so that ξ(t) ∝ R2(t) ∝ t. The energy density of such a system is

ρfrees (t) ∝ µ(t)

R2(t)
∝ γ

f
(t)

log (mr d(t))

t
, (4.1)

where µ(t) = γ
f
(t)πf2a log(mr d(t)) is the tension of free strings with the corresponding

γ-factor, and d(t) ∝ 1/R(t) ∝ 1/
√
t parametrises the average distance between strings.

We consider a network of free strings that has the same string configuration as the

interacting system with energy ρs(t) given by eq. (3.2) at a time t0. The energy of such a

system is

ρfrees (t) =
ξ(t0)µ(t)

t0t
, (4.2)

with µ(t0) = µeff(t0), so that this matches that of the interacting network at t = t0. The

string energy density of the interacting system in the scaling regime decreases faster than
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ρfrees , and the difference corresponds to energy that is released. The rate Γ at which the

interacting network emits energy into radiation is therefore given by

Γ =
[

ρ̇frees (t0)− ρ̇s(t0)
]

t0=t
= ρs

[

2H − ξ̇

ξ
− µ0
µeff

(

H +
η̇

η
− 1

2

ξ̇

ξ

)

+
∆γ̇

γ

]

Γ
log≫1−→ 2Hρs =

ξ(t)µeff(t)

t3
. (4.3)

where ∆γ = γ
f
− γ is expected to have only a mild dependence on time, as we will see

below. The last limit holds at late times when the log is sufficiently large, as is the case in

the physically relevant regime.8

The rate of energy loss from strings can be split into two contributions Γ = Γa + Γr,

corresponding to the rate of energy transfer to axions and radial modes respectively. The

corresponding continuity equations for the axion and radial energy densities are then

ρ̇a + 4Hρa = Γa + . . . ,

ρ̇r + zHρr = Γr + . . . , (4.4)

where z is a factor ranging from 3 (for non-relativistic radial modes) to 4 (for relativistic

radial modes, and in the fat string case), and the dots represent subleading contributions

from energy transfer via axion-radial mode interactions.

At sufficiently late times in the scaling system’s evolution, most of the energy released

by the string network is expected to go into axions, since radial modes are heavy relative

to Hubble and harder to excite. The energy density in axions is therefore mostly fixed by

conservation of energy. In contrast, the number of axions produced depends on the energy

spectrum with which they are emitted by the string network.9 Indeed it is the nature of

the axion spectrum that is the source of the largest uncertainty in the relic abundance

of axions produced from strings, and this has been the subject of disagreement for many

years [21, 35, 39, 49]. Before reporting the arguments underlying the different possibilities,

we first review how the axion number density depends on the properties of the spectrum.

Since strings typically have curvature of order Hubble, the natural expectation —

always assumed in the literature, but never confirmed in simulations — is that the spectrum

of axions emitted at each instant is peaked at momenta of order the Hubble parameter at

that time. Meanwhile production of modes with momentum below Hubble or above the

string core scale is expected to be strongly suppressed. Between these scales an approximate

power law is usually assumed, which determines the hardness of the spectrum. If the

8To derive Γ we used eq. (4.1) although this only applies for long strings. Free sub-Hubble loops are ex-

pected to redshift as non-relativistic matter, however since as we saw in the previous section, they represent

only a small fraction of the total energy density of strings the corresponding correction to Γ is small. Sim-

ilarly the kinetic energy represented by the γ-coefficients would also redshift differently. We have absorbed

this effect into the time dependence of the boost factors, which is expected to disappear at late time.
9Regardless of their initial energy, cosmic expansion will redshift the momenta of the emitted axions so

that most of them are non-relativistic soon after the QCD crossover. Consequently, the spectrum affects

the subsequent phenomenology and the final relic abundance only through its impact on the axion number

density at that time.
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spectrum is soft, meaning that it is sharply peaked in the IR scale (around Hubble in

this case), a relatively large number of axions will be released to account for the total

energy lost by strings. If the spectrum is harder, with a larger UV tail, fewer axions will

be produced, although each will be more energetic. The expectation that the attractor

solution is approximately scale invariant corresponds to a prediction that the location of

the spectrum’s peak relative to Hubble, and the power law fall off, are constant up to

possible logarithmic corrections.

From eq. (4.4), if we neglect the energy emitted in radial modes (and axion-radial

interactions), which as we will see is a small fraction, we have that

1

R4(t)

∂

∂t

(

R4(t)ρa(t)
)

= Γa(t) ≈ Γ(t) , (4.5)

and therefore the energy density in axions at a time t, when they are still massless is

ρa(t) =

∫ t

dt′
(

R(t′)

R(t)

)4

Γ(t′)
log≫1−→ ξ(t)µeff(t)

3t2
log
(mr

H

)

, (4.6)

that is, integral of the energy emitted at each previous instant, appropriately redshifted

(and we omitted the initial time in the integral since it is dominated by late times).

We also introduce the differential energy transfer rate

∂Γ

∂k
[k, t] : Γ(t) =

∫

dk
∂Γ

∂k
[k, t] , (4.7)

which depends only on the axion momenta k, the time, and the core sizemr. It is convenient

to further split this up as

∂Γ

∂k
[k, t] =

Γ(t)

H(t)
F

[

k

H
,
mr

H

]

,

∫

dxF [x, y] = 1 , (4.8)

where the function F (x, y) fully characterises the shape of the spectrum (through the

variable x), and its time dependence (through the variable y). Combining eqs. (4.6), (4.7)

and (4.8) we get a formula for the axion spectral energy density

∂ρa
∂k

[k, t] =

∫ t

dt′
Γ′

H ′

(

R′

R

)3

F

[

k′

H ′ ,
m′

r

H ′

]

, (4.9)

where primed quantities are computed at the time t′, the redshifted momentum is defined

as k′ = kR/R′, and we have left a possible time dependence in the core mass scale mr

to include the fat string case. Eq. (4.9) is just the time integral of the instantaneous

spectra appropriately redshifted, and the change in power of the redshift factors compared

to eq. (4.6) is due to the extra power of k in the differential spectrum.

The total number density of axions is therefore given by

na(t) =

∫

dk

k

∂ρa
∂k

=

∫ t

dt′
Γ′

H ′

(

R′

R

)3 ∫ dx

x
F

[

x,
m′

r

H ′

]

. (4.10)
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Figure 6. The dependence of the axion number density, relative to its value in the limit q → ∞,

f(q) ≡ na/(8Hξµeff/x0) on the power q of the spectrum of axions emitted by the string network,

at the physically relevant scale separation log (mr/H) ≈ 70.

To see how the number density depends on the shape of the spectrum we consider an

analytic form that reproduces the theoretical expectation:

F [x, y] =







1
x0

(

x0
x

)q q−1

1−
(

x0
y

)q−1 x0 < x < y

0 x < x0 ∨ x > y ,
(4.11)

i.e. a single power law 1/kq with an IR cutoff at k = x0H and a UV one at k = yH ≈ mr

(the extra factors are required to have the right normalisation). Substituting this into

eq. (4.10) and taking the large time limit, which corresponds to keeping the leading log

contributions, we get

na(t) ≈
8Hξ(t)µeff(t)

x0

1− q−1

1− (2q − 1)e(1−q) log(mr/Hx0)
. (4.12)

Given the large size of the log, the last factor strongly depends on whether the power q is

larger, equal, or less than 1 (see figure 6). In fact we can rewrite the expression above as

na(t) ≈
8Hξ(t)µeff(t)

x0
×



































1− 1/q q > 1

1

log
(

mr
Hx0

) q = 1

1−q
q(2q−1)

[

Hx0
mr

]1−q
1
2 < q < 1 ,

(4.13)

in which the last factor varies from O(1) for q > 1 to O(10−2) for q = 1, and is exponentially

small (in terms of the log) for q < 1.

The dependence of the axion number density on q can be easily understood in terms

of our previous qualitative discussion. For q > 1 the spectrum is soft, most of the energy is

emitted with momenta of order Hubble, and the final number density is of order the total

energy density contained in strings, H2ξµeff , divided by the average axion momentum
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O(H). For q = 1 energy is equally distributed in logarithmic intervals of momentum.

Therefore, although most of the axions are still emitted with momenta of order H, the total

number of axions emitted is smaller by a factor of the log. For q < 1 the spectrum is UV

dominated, and the majority of the energy is distributed to axions with large momentum

so that the axion number density is power suppressed by the UV scale.

The different behaviour of the number density for different choices of q can be linked

to the change in the average momentum of the axions in the spectrum. If we define the

inverse average momentum as

〈k−1〉 = 1

ρa

∫

dρa
dk

dk

k
, (4.14)

the number and energy densities are related via na = 〈k−1〉ρa. Depending on whether q

is larger or smaller than unity the average momentum is parametrically of order H or mr

respectively.

The huge ratio of scalesmr/H in the physically relevant part of parameter space results

in an enormous range of possible values of na. It is therefore clear that understanding the

spectrum is of paramount importance if results obtained at the values of the log accessible

in the simulations are to be extrapolated to the physical values. In particular, even a small

change in the behaviour of the spectrum could change the extrapolated value of the relic

abundance by many orders of magnitude.

We can now identify the main source of disagreement in the literature. Refs. [21,

22, 35, 36] claim that at late times, when the scale separation is large, the coupling of

strings to axions is small and the rate that axions are emitted is suppressed, and as a

result the dynamics of axion strings are close to those of local strings. If this is the

case, the expectation based on the Nambu-Goto effective theory is that loops will oscillate

many time before emitting their energy, producing a spectrum that is sharply peaked at

small frequencies, of order their initial size, i.e. Hubble. Consequently, they predict that

q > 1, and that the number density of axions produced by strings in the scaling regime

will dominate over the contribution from misalignment, here taken as a reference value

nmis
a = θ20Hf

2
a , with θ

2
0 ≈ 5.10 Setting µeff = πf2a log following the theoretical expectation

in eq. (3.3), log ≈ 70 and x0 ≈ 10 we get

nq>1
a

nmis
a

≈ 8π

θ20x0
ξ log ∼ 30ξ , (4.15)

which ranges from 30 to 300 depending if ξ is taken to be close to 1 or 10.

Conversely, refs. [49, 56] claim that string loops do not oscillate, but instead efficiently

shrink emitting all of their energy at once and producing a spectrum with q = 1. In this

case the number density from strings is suppressed

nq=1
a

nmis
a

≈ 8π

θ20x0
ξ ∼ 0.5 ξ , (4.16)

and can even be subleading with respect to that from misalignment if ξ is taken to be 1.

10In this expression for nmis
a , H is the Hubble parameter when the axion mass becomes cosmologically

relevant, which is around the time of the QCD crossover although the exact value depends on fa.
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In the rest of this section we present a detailed analysis of the spectrum obtained

from simulations with the aim of understanding which of these possibilities is more likely.

We therefore postpone further discussion to the end of the section, when we compare our

findings with the existing literature.

To analyse the spectrum emitted by the scaling solution we fixed the initial conditions

in simulations to be as close to the attractor as possible, corresponding to the black curves

in figure 3. This isolates the radiation emitted in the scaling regime as much as possible, and

reduces contamination from pre-existing radiation. In appendix D we show that, starting

with different initial conditions, the spectrum and number density converge to those of the

scaling solution, so that the results we obtain do not depend on this convenient choice.

4.1 Energy budget

In analysing the distribution of energy in the scaling solution, and the rate at which axions

are produced by strings, it is useful to organise the total energy density stored in the

complex scalar field into three components, namely

ρtot = ρs + ρa + ρr . (4.17)

Here ρtot = 〈T00〉 is the total energy density of the scalar field as given by the average

Hamiltonian density eq. (2.3); ρs is the contribution contained in strings; ρa is the energy

density in axion particles; and ρr is that in radial modes. At early times axions, strings,

and radial modes are strongly coupled to each other so this separation is ill-defined, but at

later times the individual components decouple and the separation becomes meaningful.

In the scaling regime, the theoretical expectation is that when the energy density in strings

is parameterised as in eq. (3.3), η(t) will be of order 1 and vary only slowly with time.

The way that we actually compute the various components in eq. (4.17) is as follows:

the axion energy density is calculated from the spatial average of ȧ2 away from the core of

the strings (close to the string cores, the motion of strings gives a significant contribution

to ȧ2). By using 2〈12 ȧ2〉 rather than 〈12 ȧ2 + 1
2 |∇a|

2〉 we avoid the part of the energy that

corresponds to the strings’ tension, which is mostly contained in |∇a|2. We have checked

that our results for ρa redshift as expected (i.e. as relativistic matter) and that they are

robust against different types of string-core masking (more details about our procedure for

screening strings and the consistency tests can be found in appendix B). The radial energy

density is computed by averaging the part of the Hamiltonian density that involves only

the radial mode, i.e. 〈12 ṙ2 + 1
2 |∇r|

2 + V (r)〉, again away from the string cores. Finally ρs
is simply extracted from the difference ρs = ρtot − ρa − ρr, which avoids double-counting

energy contributions in the other components. The string energy density defined in this

way includes the energy density stored in the axion-radial interactions, corresponding to

the terms (r/fa + r2/2f2a )(∂a)
2 in the Hamiltonian (second line of eq. (2.4)), only part

of which (that in regions close to string cores) genuinely contributes to the string energy.

The remainder corresponds to interaction energy between axion and radial modes. Such

interactions could in principle trigger parametric resonance and have a substantial effect,
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however we have checked that they only give negligible oscillating corrections to the energy

densities in our simulations.11

We can compare ρs extracted in this way to the prediction obtained using the theo-

retical expectation for the string tension, based on the typical separation between strings,

and the measured values of ξ(t). In particular, we compute the effective tension µeff =

ρs(t)t
2/ξ(t) from the definition eq. (3.2), using ξ(t) and ρs(t) from the simulation. This

can be compared to the theoretically expected form

µth = µ0 log

(

mr ηc

H
√
ξ

)

, (4.18)

which is obtained by replacing, in eq. (3.3), γ(t) with 1 and η(t) with ηc = 1/
√
4π as a

reference (we choose 1/
√
4π somewhat arbitrarily based on the average distance between

strings if they were all parallel, but any roughly similar value would also be theoretically

reasonable).

In figure 7, we plot the ratio µeff/µth as a function of time, for the fat string and the

physical cases. The closeness of µth and µeff over the entire time range that the system is

in the scaling regime is highly non-trivial. These quantities could have differed by orders of

magnitude, or had different time dependences, but instead the naive theoretical prediction

reproduces the results from the simulation to within 20% throughout. As well as showing

that our method of computing ρs is meaningful, it is a strong sign that eq. (3.2) with µeff
replaced by the theoretical expectation eq. (4.18) correctly captures the dynamics of the

string system. This includes the logarithmic growth of both ξ (t) and the string tension

due to the increasing scale separation, as well as the variation of ρs compared to ρa and ρr
with time. The closeness of µth and µeff also shows that relativistic effects are not large.

This is expected on the basis that the energy density is dominated by long strings, whose

motion is damped by the Hubble expansion; indeed γc > 1 would increase the ratio µeff/µth
which is instead smaller than (and close to) unity.12

The small difference between µeff and µth is not worrisome. In fact we do not have a

reliable way to compute η analytically since its value is determined by the loop distribution

and the shape of the strings, which can also depend on time. Further, the parametrisation

µ = µ0 log (mrη/H
√
ξ) with an IR cutoff ∼ mr/H

√
ξ and constant η applies only to long

strings (for loops with radius smaller than Hubble, which make up less than 10% of ξ,

the tension is expected to be cutoff at smaller values). A simple modification of η can fix

the ratio µeff/µth = 1 at all times, however for the moment we are not interested in such

a detailed understanding of µeff , and we content ourselves with the degree of agreement

obtained in figure 7.

Turning to consider the energy in axions and radial modes, in figure 8 we show the

proportion of the total energy that is in the three components of eq. (4.17) as a function

of time, in the fat string and the physical cases. We plot this only for times corresponding

to the range log(mr/H) = 3.5 ÷ 6 for the fat string case, and log(mr/H) = 4 ÷ 6 for the

11The axion-radial interaction terms are small because |r|/fa ≪ 1 away from string cores, and the

amplitude of radial waves is rapidly decreased by redshifting.
12The analysis in the fat strings case of refs. [51, 53] indeed finds values for the γ factors close to 1.
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Figure 7. The closeness of µeff = t2ρs(t)/ (ξ(t)) to the theoretical prediction µth, defined in

eq. (4.18), (plotted in terms of the ratio of these two quantities) is a non-trivial check that our

procedure to extract the string energy density ρs is reliable. More importantly, it shows that the

relation eq. (3.2) can be used to predict the energy in the string network for a given string density

and time, by replacing µeff by µth, and that the theoretically predicted logarithmic growth in the

string tension is seen in simulations.

axions

radials
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Figure 8. The fraction of the total energy density in free axions, radial modes and strings, as

a function of time using the fat string trick (left) and in the physical case (right). The string

contribution ρs(t) is extracted from the difference ρs = ρtot − ρa − ρr as explained in the text.

physical one. Data at later time may not be safe from finite volume effects (see appendix B)

while data at earlier times is not representative of the scaling regime since there is not yet

a sufficient hierarchy between Hubble and the core scale to consider these decoupled (as

will be clear when we analyse the axion spectrum, shortly).

First, we note that in the fat string case all three components redshift as 1/t2, up

to logarithmic corrections. Therefore the time dependence in figure 8 is only a result of

the increase in energy in strings (due to the factor ξ(t)µeff(t) growing) and energy transfer

from strings to axions and radial modes. Indeed, using eqs. (4.3) and (4.6) these two effects

combined predict that ρa/ρs ∝ log(mr/H), which explains the relative change in ρa and

ρs. The proportion of energy in radial modes appears to be approximately constant in

time, accounting for around 13% of the energy budget.
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Figure 9. The fraction of the instantaneous energy density emitted by strings that is converted

into axions (as opposed to radial modes) ra = Γa/Γ as a function of time, for the fat string and the

physical simulations. At late times more than 70% (80%) of the energy released from the string

network in the scaling regime goes into axions in the physical (fat string) case. The rest of the

energy goes into the production of massive radial mode states.

The situation is less clear for the physical case. The radial mode now redshifts

as non-relativistic matter 1/t3/2, slower than the other components. If we use again

eqs. (4.4) and (4.3), and assume constant energy transfer rates Γi, then ρr/ρa ∝
t1/2/(ξ(t)µeff(t) log(mr/H)). Therefore, if the rates remain constant until late times, en-

ergy in radial modes will eventually dominate that in axions. However, over the time

range plotted in figure 8 this expression predicts that ρr/ρa remains approximately con-

stant, which matches our results from simulations. The fact that the string energy density

is not decreasing with respect to that in axions, as happens in the fat string case, may

be an indication that larger scale separations are required for the asymptotic behaviour

Γ ∝ ξ(t)µeff(t)/t
3 in eq. (4.3) to be reached in the physical case, or due to the shorter time

that simulations can be run compared to the fat string scenario.

Perhaps more revealing are the rates at which energy is transferred into axions and

radial modes. In figure 9 we show the time dependence of the ratio ra = Γa/Γ in the

simulations, which we compute from eq. (4.4) by taking derivatives of the energy densities

calculated as above (setting z = 3 in the physical case, z = 4 in the fat string one,

and neglecting the dots, i.e. including possible energy transfer between axions and radial

modes in Γa). It seems that in both cases the fraction of energy that is transferred to

axions is roughly constant, and the value in the fat string scenario is compatible with the

approximately constant proportion of the total energy that is in radial modes, plotted in

figure 8. As discussed, in the physical case a constant energy transfer will eventually lead

to radial modes dominating the total energy density, but is compatible with the results in

figure 8 for the time range that we can simulate.

Similarly to the fraction of the total energy in strings ρs/ρtot, the constant value of ra in

the physical case might only be a transient effect. In fact we expect that the rate of energy

transfer from radial modes to axions will increase if the abundance of radial modes grows, so
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Figure 10. The axion energy density spectrum ∂ρa/∂k as a function of the ratio of the physical

momentum k to the Hubble parameter. The results are shown for different times (i.e. different values

of log(mr/H)) for a string system in the scaling regime, in the fat string (left) and the physical

(right) scenarios. In both cases the spectrum is dominated by a broad peak at around k/H = 10, and

emission at lower momenta is suppressed. As a reference, for each time shot we also show the value

of k corresponding to the core (k = mr/2), above which there is very little emission, as expected.

that at sufficiently late times the dominant net effect of energy loss from the string network

should be the production of axions. Because of this, any interpretation of the fractional

rate ra computed from simulations in the physical case should be taken with a grain of salt.

To summarise, in both the fat string and the physical cases we find that most of

the energy radiated by strings in the scaling regime goes into axions, and these give the

largest contribution to the energy density at late times. Meanwhile, the string energy

density is well reproduced by the ansatz from the scaling solution, with the theoretically

expected string tension and the values of ξ(t) measured in simulations. There is a non-

negligible component of the energy density in radial modes, and an approximately constant

proportion of the energy emitted by strings goes into such states. This surprising result

clashes with the expectation that heavy modes decouple from the evolution of macroscopic

soft objects, and that their production is suppressed. We will see that this phenomenon

has a close analogue in the rate at which high momentum axions are emitted.

4.2 Axion spectrum

We finally arrive at our analysis of the spectrum of axions emitted, the shape of which has

a dramatic effect on the axion relic density, as previously discussed.

In figure 10 we show the differential energy density ∂ρa/∂k at different time shots, for

both the fat string and the physical cases. The spectrum is such that
∫

dk ∂ρa/∂k = ρa,

and it has been computed from the Fourier transform of ȧ, with the strings appropriately

masked out, as explained in appendix C. We plot the spectrum as a function of k/H to

highlight that it remains peaked around momenta of order Hubble as this decreases, and

we divide it by the factor Hf2a to remove the main time dependence (see eq. (4.6)).

The spectra have a number of relevant features. We start with the fat string case,

for which the core scale mr evolves in exactly the same way as physical momenta redshift.

As a result, radiation produced by the cores with k ∼ mr remains at k ∼ mr at all
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later times, and contributes to the same part of the differential spectrum regardless of

when it was originally produced. Similarly, since the simulations begin with H ∼ mr,

the typical momentum of pre-existing radiation from the initial conditions is k ∼ mr and

states from these early times will subsequently remain at ∼ mr. Therefore the part of the

spectrum sufficiently below mr is entirely from genuine radiation produced by strings, and

is independent of the physics of their cores.

Figure 10 clearly shows that the spectrum is peaked in the IR at around the Hubble

scale, in particular at k/H ∼ 5÷10 for all values of the log larger than 3. There is another

small peak in the UV, which is exactly at k = mr/2, the typical frequency of parametric

resonance. These modes could be produced by the string core itself, or by the conversion

of non-relativistic radial modes into axions. The position of this peak at a particular time

identifies the part of the spectrum that is sensitive to core scale (i.e. UV) physics. For times

corresponding to log(mr/H) . 3 the peaks in the UV and the IR cannot be distinguished,

and it is only for log(mr/H) & 3.5 that there starts to be enough of a hierarchy to justify

considering the IR dynamics as decoupled from the core scale physics. For this reason we

do not consider smaller values of the log in our analyses involving the spectrum.

At late times the size of the simulated box, L(t), starts cutting off the low momentum

part of the spectrum, as can be seen from the interruption of the spectrum at the minimum

non-trivial k = 2π/L(t) in the final shots. Subsequently this would start altering the IR

peak, so we only analyse the spectrum until log(mr/H) = 6 when this effect is still harmless

(a more detailed study of the various systematics can be found in appendix B).

As expected, the spectrum is power suppressed for momenta smaller than the IR peak

or larger than the UV peak — long wavelength modes are inhibited by the horizon, while

the high energy ones are suppressed by decoupling. In particular, the spectrum seems to

fall as ∼ k3 in the far IR, and as ∼ 1/k2 in the far UV. The region of physical interest

is in between the two peaks. The spectrum reaches a stable form towards the end of the

simulation, and in the last Hubble e-folding (i.e. for logs in the interval 5 to 6) its shape

remains very similar, modulo the shift of the UV peak. However, even though ∂ρa/∂k is

largest in the IR, its area is dominantly in the UV, since the slope between the two peaks

is less steep than 1/k. This can be seen more clearly by plotting ∂ρa/∂ log k on a log

scale (shown in figure 27 in appendix E). We conclude that although most of the axions

produced by the evolution of the string network at late times are soft, the majority of the

energy density is contained in UV axions with energy of order the inverse core size.

The situation for the physical case seems similar, although the uncertainties are larger.

In fact it is in studying the spectrum that the advantages of the fat string trick are most

pronounced. In the physical case, axions produced at early times with momentum of order

the core-scale redshift with respect to mr, which is constant. This means that, although the

distance between the IR peak and mr/2 at late times is the same as in the fat string case

(for the same value of log(mr/H)), the spectrum is contaminated by core-scale radiation

produced earlier and redshifted down to k ∼
√

Hmr/2. This effectively halves the region

of the spectrum that is free from UV dependent contributions. Indeed the spectrum shows

that the IR and the UV dynamics are not decoupled before logs of order 4.5 or 5, and for this

reason we do not consider quantities that rely on the spectrum at times corresponding to
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log < 4.5. Similarly, the UV peak is now replaced by a broader feature, caused by the convo-

lution of core-scale radiation emitted at different times and redshifted by different amounts.

Because of these disadvantages, extracting the shape of the spectrum between the

peaks is more challenging in the physical case. The rest of the spectrum shows similar

features to the fat string case, with a strong suppression of modes below k ∼ (5÷ 10)H

and above k = mr/2 (for the UV modes, this time with a stronger suppression, ∼ 1/k3

instead of ∼ 1/k2). As for the fat string case, the IR peak seems to dominate the spectrum,

especially at late times, while the area is still dominated by the UV region. Therefore, most

of the axions produced by the evolution of the string network at late times are again soft,

but most of the energy density is in UV axions. However, we stress that the results in the

physical case are less clear and should be interpreted with caution.

To the best of our knowledge, the only other serious attempt to extract the axion

spectrum in the scaling regime was in ref. [50], based on results of simulations carried out

on a somewhat smaller grid than ours. In that paper the authors observe an exponential

suppression of the spectrum at large momenta, which they interpreted as indicating a

strongly IR peaked distribution. However, the range of momenta that shows such behaviour

seems to lie above the scale of the core, mr/2. Unfortunately, the region at smaller momenta

has been very poorly binned, so that little information on the actual behaviour of the

spectrum in this region is available.

4.2.1 Instantaneous emission

In addition to the overall spectrum, the shape of the instantaneous axion spectrum, i.e. the

function F (x, y) in eq. (4.8), is crucial for understanding the properties of the emitted ax-

ions, and in particular for inferring the evolution of the axion number density at later times.

We compute F from the spectrum by inverting eq. (4.9), namely

F

[

k

H
,
mr

H

]

=
A

R3

∂

∂t

(

R3∂ρa
∂k

)

, (4.19)

where the factor A = H/Γ is fixed by requiring that F is normalised to 1. To evaluate the

derivative numerically we took the difference of R3∂ρa/∂k between two subsequent time

shots (separated by ∆log = 1/4). The results are shown in figure 11. Since interactions

with radial modes induce small oscillations in time with frequency ∼ mr of the axion

energy density (see appendix C.1) the procedure to extract F is subject to fluctuations at

frequencies near the core, as evident in the plots (as explained in appendix C.1 this effect

is more pronounced for physical strings than for fat ones).

For the fat string case we plot F at three time shots, i.e. at three values of the log. At

all of these times F has an IR peak at momentum around the Hubble scale (and suppressed

emission at lower momenta), and a UV peak at the scale of the string cores. In particular,

the IR peak is located around k/H ≈ 5 and extends to k/H ≈ 10, while the UV peak is

at k ∼ mr/2. As a result, the ratio between the maximum and the minimum momenta

between which the instantaneous spectrum can show a power law behaviour is bounded

by kmax/kmin . mr/40H . N/120, where N is the number of points in the spatial grid of

the simulations (assuming a lattice spacing a = m−1
r and that the simulations are stopped
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Figure 11. The shape of the spectrum of axions emitted instantaneously by the string network

F (k/H, y) for the fat string (left) and the physical (right) cases, for different scale separations, i.e.

different values of y = mr/H.

when the box size L = 3/H, and also requiring k/H > 20 to be safely away from the IR

peak). For our simulations this means that kmax/kmin ∼ 10.

Although the separation of the UV and IR peaks is not yet large for log = 4, at values

above 5 an intermediate momentum range can be clearly identified in which the differential

spectrum shows a definite power law behaviour. In this region the instantaneous spectrum

of axion emitted is compatible with a behaviour 1/kq with q ≈ 0.7 ÷ 0.8. More details

about how we extract q, and further plots, can be found in appendix E. Consistent with

our analysis of the convoluted spectrum, this value means that most of the energy released

by the string network goes into high energy axions, although most of the axions are soft.

We also note the constant form of F at different times (over a range in which H changes

by 2 orders of magnitude) is another demonstration of the scaling behaviour of the system.

In particular, the IR and UV peaks remain their expected positions, and the intermediate

power law with q ≈ 0.75(5) is constant with time to within the uncertainty. Although

there is no noticeable change in q in the interval of logs between 5 and 6, the uncertainty is

relatively large. Consequently, we cannot exclude the possibility that, as for ξ, a logarithmic

scaling violation occurs. This could lead to, for example, a behaviour q ∼ 0.7+ǫ log(mr/H)

for some small constant ǫ. In appendix D we also show that F is independent of the string

systems initial conditions, confirming that we are indeed analysing the properties of the

attractor solution.

As expected, the analysis of the physical case is more difficult. UV modes pollute the

convoluted spectrum well below the scale mr, so useful results only start appearing at late

times. Because of this, in figure 11 we only show F for the last time shot at log = 6.

Although there are still large fluctuations due to higher frequency modes, an approximate

power law can be recognised at this time, with a value of q that is again smaller than 1

and which appears to be similar to in the fat string scenario.

The form of the instantaneous emission found above clashes with either of the theo-

retical expectations discussed in eqs. (4.15) and (4.16), which predicted q ≥ 1. Similarly to

the radial modes, axions with momentum of order the string core scale have not decoupled

– 28 –



J
H
E
P
0
7
(
2
0
1
8
)
1
5
1

fat

physical

3.5 4.0 4.5 5.0 5.5 6.0

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

log(mr/H)

na

H fa
2

Figure 12. The axion number density, normalised by Hf2a , as a function of time for the fat string

and the physical cases.

from the dynamics of strings at the final times log(mr/H) . 6, despite the relatively large

hierarchy mr/H ∼ 500. To investigate this surprising result further, in appendix F we

study the dynamics of the collapse of a single axion string loop. In particular we analyse

whether this is converging to the prediction for a Nambu-Goto string in the limit that

its initial radius is large compared to its core size. We find that the radius of the axion

string loop as a function of time during its initial collapse does indeed get closer to the

cosine prediction (and is extremely close to the prediction based on the effective theory of

global strings coupled to radiation in the limit of large scale separation [34]). At the scale

separations that can be simulated (log(mr/R0) . 5 where R0 is the initial loop radius)

the loop does not rebound significantly, as opposed to the case where log(mrR0) ≫ 1 in

which the loop is expected to rebound many times according to arguments based on the

use of the Nambu-Goto string action [31]. On the other hand, whether the loop bounces

also depends on its dynamics at small radius, a regime in which the Nambu-Goto approx-

imation is not valid. Since it is at such times that energetic modes are more efficiently

produced, this result is consistent with our observation that the spectrum also deviates

from the expectation based on a loop oscillating many times.

4.3 Number density

We are now ready to consider the axion number density. We evaluate this in simulations

using the differential spectrum ∂ρa/∂k at different time shots, and eq. (4.10). The results

for na, normalised with the factor Hf2a , as a function of time are shown in figure 12 for the

fat string and the physical scenarios. In both cases na/H increases logarithmically over the

time range plotted, although the values and the slopes are different. Therefore, similarly

to the fit of ξ(t), our first conclusion is that at the quantitative level the fat string system

differs from the physical theory, although they seem to have the same qualitative features.
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As we have stressed, the values of the log that can be analysed with numerical simu-

lations are nowhere near large enough to reach the physically relevant region of parameter

space. Consequently, na must be extrapolated to extract predictions, and the way that

this is carried out has a dramatic impact on the results obtained. Such an extrapolation is

a viable possibility because we have shown the existence of an attractor solution, and we

have found that the energy of the string network is accurately reproduced by eq. (3.2) with

the theoretical prediction for µeff , eq. (4.18). Additionally, given our results for ξ(t) it is

plausible that the fit in eqs. (3.4) and (3.5) can be extended all the way to the physical scale

separation. The remaining component needed in order to predict the axion relic abundance

is an understanding of the form of the instantaneous emission spectrum at late times.

As usual we will discuss the fat string case before moving to the physical one. From fig-

ure 12 it is tempting to extrapolate na/
(

Hf2a
)

linearly in the log, however this procedure is

too naive. From eq. (4.13), a linear behaviour is expected only for very large logs and even

then only if the power law of the instantaneous emission spectrum is q = 1 (and ξ(t) also

increases linearly with the log). This is not the case in simulations since, as we saw in the

previous section, q ∼ 0.75 and the logs are not large enough to neglect 1/ log corrections in

eqs. (4.3) and (4.10). We conclude that the linear behaviour observed is most likely a tran-

sient effect. Indeed, should the power q remain constant below 1 the number density would

start decreasing exponentially with the log at late times (from eq. (4.13)). Meanwhile, if q

grows to be significantly larger than 1 the number density will increase as the log squared.

The different behaviours at large values of the log are shown in figure 13, assuming that

ξ continues to increase logarithmically. It is clear that a naive linear extrapolation leads

to significantly different results compared to if q is assumed to remain constant at 0.75.

Since we are not able to reliably study the behaviour of q with time, we cannot exclude

the possibility that a small scaling violation results in q growing to 1 or even larger values,

and we also show the axion number densities at large values of the log in these cases. It

can be seen that if such a change does occur, the large log behaviour of na is completely

different to both the linear extrapolation and the q = 0.75 possibilities, leading to much

larger number densities. The extrapolations in figure 13 have been obtained from eq. (4.10)

using a form for F fitted from the results shown in figure 11 with q modified between the

IR and UV peaks, although the results are not very sensitive to the exact shape of F away

from the power law region (more details on the form of F used are given in appendix E).

For the physical case there is even more uncertainty in the value of q, and conse-

quently on the late time number density. In figure 13 (right) we plot the extrapolated

number density for different values of q, together with the naive linear extrapolation and

the available values from the simulation. As a comparison the reference number density

from misalignment (nmis
a = θ20Hf

2
a with θ0 = 2.2) is also shown. Similarly to the fat string

case, if q = 1 then na/
(

Hf2a
)

increases proportionally to the log, if q ≫ 1 it grows with

log squared (again assuming that ξ continues to increase logarithmically), while if q < 1 it

is exponentially suppressed in terms of the log.

It follows that if the spectrum remains UV dominated with small q (i.e. with q . 0.85)

for large values of the log, the number of axions produced from strings during the scaling

regime is negligible. However, if q increases at larger log, the axions produced by strings
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Figure 13. Possible extrapolations of the axion number density to large values of the log with

different assumptions about the late time behaviour of the power q of the instantaneous emission

spectrum. For the fat string case (left) we compare a naive linear extrapolation of na to that

assuming q = 0.75 remains constant. We also show the late time number densities if q changes

to 1, 2, or ∞ at an intermediate value of the log. For the physical case (right) we only show

extrapolations in the range log & 23÷ 70, corresponding roughly to the values of mr in the range

keV÷1011GeV, which are not excluded by fifth force experiments and star cooling bounds. In

addition to constant values q = 0.75, 1, 2 and ∞, we plot the effect of a small logarithmic scaling

violation q = 0.75 + 0.01 log (mr/H).

can easily match or dominate those from misalignment. Indeed, even a very mild log

dependence of the power q, for example of the form q = 0.7+0.01 log(mr/H), too small to

be excluded by our simulations, would be enough to make the final abundance at log = 70

more than 2 orders of magnitude larger than the misalignment contribution.

As discussed in section 2, the results of simulations only depend on the ratiomr/H, and

can be interpreted either in terms of a theory with mr ∼ fa at an early time when H ∼ fa,

or a theory with a much smaller mr ≪ fa at a later time H ≪ fa. Fixing the Hubble scale

to its value when the axion mass becomes relevant H ≈ ma ∼ Λ2
QCD/MPl, the values of

na calculated in our simulations can therefore be used to extract the physically relevant

axion number density for theories with extremely small values of mr (as would occur in

a UV completion with a complex scalar field that had a tiny quartic coupling). However,

constraints from observations of the evolution of stars and fifth force experiments require

that mr & keV in viable theories, corresponding to rather large values of the log (∼ 23 for

the reference value of fa = 1011 GeV), which is still beyond the reach of simulations. Due

to this phenomenological requirement, we only begin the extrapolations in figure 13 at this

scale separation. Meanwhile, the typical axion models with mr ∼ fa correspond to logs

≈ 70 at the physically relevant time as usual, at the right hand boundary of the plot.

The main message from this section is that an understanding of the late time evolution

of the properties of the string network is of paramount importance for a correct extrapola-

tion of the axion abundance to the physically relevant parameter range. If only small-log

data are available, very precise computations of the spectrum and its time dependence will
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be necessary, or if theoretical arguments that q → ∞ in the limit of large scale separation

are believed, a prediction for the relic abundance can already be made. In contrast, a naive

extrapolation of the axion number density (such as the linear-log one plotted above) could

easily give results that are off by several orders of magnitude.

Our final results for the axion number density calculated in simulations are not in

disagreement with those obtained by other groups. Despite this, the conclusions that have

been reached in the previous literature about the abundance at the physically relevant scale

separations are incompatible with each other, primarily due to the different ansatz used in

extrapolating. In particular:

• Refs. [21, 22, 35, 36] assume that q > 1 based on arguments related to the evolution

and emissivity of effective Nambu-Goto strings, which are expected to reproduce

the dynamics of global strings at large logs. Assuming ξ = O(10) they conclude

that strings should produce a large number of axions. Our result would only be

compatible with this estimate if the power q of the axion spectrum increases at

large scale separation, however we are not aware of any reliable evidence that this

is indeed the case beyond the Nambu-Goto approximation. In fact, as mentioned,

energetic modes are expected to be efficiently produced from collapsing loops when

their radius is comparable to the string thickness (or by long strings that are similarly

close together), and in this regime the Nambu-Goto effective description is not valid.

• Refs. [49, 56] on the contrary assume that q = 1, supported by computations of the

axion spectrum produced by collapsing loops at values of the log . 5. Using ξ = O(1)

they conclude that the abundance of axions produced by strings is not larger than

that from misalignment. While the value of ξ assumed is compatible with those

measured in our simulations, the time evolution of ξ that we observe suggests that

larger values need to be used in the physical regime. Additionally, the study of the

spectrum from collapsing loops is not sufficient to infer the spectrum emitted by the

full string network in the scaling regime. Instead, this is the result of a combination

of spectra produced by loops and long strings, and therefore also depends strongly

on the distribution and the evolution of the latter. While the value of q observed in

our simulation is not far from 1, we have no evidence to support an expectation of

an asymptotic value of q = 1 at large logs.

• Refs. [50] performed similar simulations of global strings to those that we have carried

out. They find a value of ξ ≈ 1, in the same approximate range as that obtained in

our simulations, but they did not observe any linear increase with the log (probably

for the reasons discussed in section 3.2). For the reasons discussed in section 4.2, they

inferred a very IR dominated spectrum and conclude that strings would efficiently

produce a large axion number density, even though their ξ is lower than our extrap-

olated value. This example shows how a different interpretation of the spectrum can

lead to a completely different conclusion, despite the fact that the spectrum measured

in the simulation for small logs might be qualitatively in agreement. At small logs, a
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very detailed study of the spectrum is mandatory to reliably extrapolate the number

density to the physical point.

• Finally in refs. [51, 57] a different UV completion of the string cores was introduced

in order to simulate fat strings with a large effective tension µeff ∼ 70µ0, despite

the actual core size remaining bounded by the lattice spacing size log(mr/H) ∼ 6.

While this trick is claimed to remove the need for a large extrapolation connected to

the string tension and the effective axion-string coupling, the one associated to the

decoupling of the radial modes of the string core remains. The results in refs. [51, 57]

confirm the non-trivial dependence of ξ on the logs, although the actual functional

dependence is not clear from the analysis. The authors did not present explicit results

for the spectrum. The final number density of axions observed, which also includes the

contribution from the domain walls and the destruction of the string network owing

to the axion mass, turns out to be smaller than that from misalignment. This result

seems to be compatible with an underproduction of axions from strings, associated

to a spectrum with q < 1, in agreement with our results if we assume that q remains

below 1 at larger logs.

However, note that in this case the spectrum (and the way that strings sustain the

scaling regime) is dominated by core scale physics. This makes the extrapolation

of the string core size from log(mr/H) ∼ 6 to log(mr/H) ∼ 70, as subtle as in the

normal case. In fact we cannot exclude the possibility that at larger logs (i.e. relatively

thinner strings) the production of energetic modes gets suppressed and q increases.

The extrapolation of log(mr/H) to the physically relevant values made in ref. [57]

is therefore just as sensitive to the uncertainties discussed as it is in conventional

simulations. A high precision study of the spectrum is therefore required to identify

the correct extrapolation.

5 Conclusions

In this paper we have studied the dynamics of the global strings that form in QCD axion

models when the U(1) PQ symmetry is broken after inflation. Using numerical simulations,

we have shown that the string network approaches an attractor solution that is independent

of its initial conditions, and which is approximately scale invariant. We have also seen that

this solution has a number of interesting properties:

• The string length per Hubble patch ξ(t), defined by eq. (3.1), increases logarithmi-

cally with the ratio of the Hubble parameter and the string core size, with best fit

parameters given in eqs. (3.4) and (3.5).

• At any time more than 80% of the string length is contained in long strings and the

rest is in loops of size Hubble and smaller, which follow a scale invariant distribution.

While such loops shrink and disappear they are replaced, at the same rate, by loops

produced from longer strings.
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• The energy density of the string network is determined by eq. (3.2) with — non-

trivially — an effective string tension µeff that is close to the theoretical expectation

eq. (4.18). This means that to a good approximation, the energy density of the string

network in the scaling regime at a particular time can be determined solely from the

density of strings ξ(t).

• Over the scale separations that can be simulated, a substantial, and approximately

constant, proportion of the energy emitted by the string network goes into heavy ra-

dial modes. Contrary to expectations, the radial modes have therefore not decoupled

from the string dynamics by the end of the simulations, despite the relatively large

scale separations mr/H ∼ 500 reached at these times.

• The instantaneous spectrum of energy emitted into axions, plotted in figure 11 in

terms of F defined in eq. (4.8), has the theoretically expected shape with a peak at

momentum around the Hubble scale. At higher momenta it follows a power law until

the string core scale above which emission is suppressed. The slope of the power

is such that the majority of energy emitted by strings goes into high momentum

axions for the scale separations that we can study (although a greater number of low

momentum axions are produced).

• In simulations with physical strings, the instantaneous emission spectrum of the

scaling solution can only be evaluated close to the end of the simulation because

the residual energy from the initial conditions has less time to redshift. The result

obtained matches the conclusions drawn from our analysis of the overall spectrum.

The fat string model ameliorates these problems, and for this system we see that

F remains similar at different times. The slope of the power law shows no sign of

changing as the scale separation increases, although the uncertainty is substantial.

Since the scale separations that can be simulated are far from the physically relevant

values, extrapolation over a vast distance is necessary if predictions relevant to the relic

abundance of the QCD axion are to be made. Given our results, it is plausible that

ξ continues to grow logarithmically (although we cannot exclude the possibility that it

eventually saturates). Such an increase would enhance the number of axions emitted by a

factor ∼ 10. Having tested that the energy density in strings is well matched by eq. (3.3)

with the theoretical expectation for the string tension, the remaining ingredient necessary

for a precise prediction of the relic abundance is the instantaneous axion emission spectrum

at large scale separations, in particular the power q in F . While q < 1 at the scale

separations that we can study, there is space within the current uncertainty for a small

logarithmic correction that would result in it increasing to ≥ 1 in the physically relevant

part of parameter space. On the other hand, if q < 1 persists at large scale separations then

the number of axions produced by strings is presumably sensitive to the UV completion

of the theory, as a significant proportion of the energy is going into exciting heavy modes,

although in this case the number density is suppressed relative to that from misalignment.

To determine whether q has a scale dependence it is desirable to carry out simulations

at larger scale separations. Indeed, even with a relatively modest increase in range, evidence
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for a change in q might be seen, which would allow an extrapolation. Improvement could

come from different directions. One possibility is to simply perform simulations on larger

high performance computing clusters, after implementing more efficient parallelisation than

we have in our present work. A more involved possibility would be to develop an adaptive

mesh algorithm, in which the scalar field is simulated on a grid with finer mesh spacing

in regions of space where this is required, close to the cores of strings. The mesh must

be updated as the strings move, which requires a more sophisticated algorithm, however

this approach has proved beneficial in simulations of, for example, astrophysical black

hole mergers [58]. It may also be interesting to further study the dynamics of individual

strings, or small numbers of strings, which could give an indication of the behaviour of

the full network. A qualitatively different approach would be to develop a numerical

simulation in which the strings themselves were treated as the fundamental degrees of

freedom, with parameterised dynamics and interactions. Such an effective theory style

simulation could allow much larger scale separations to be studied. In [59] this idea was

used to numerically simulate “strings” in 2 dimensions, although the extension to three

dimensions is challenging, and a careful analysis would be necessary to ensure that the full

dynamics of the underlying theory is capture.

A full calculation of the relic abundance must also include the axions produced when

axion mass turns on, at which time domain walls form and the string network is destroyed.

After the axion mass first becomes cosmologically relevant, when ma (T ) ∼ H, it continues

to increase fast, and quickly H (T ) ≪ ma (T ) ≪ fa. As a result, this system has three

widely separated scales, and is even harder to numerically simulate than the string network

alone. Additionally, if NW > 1 it is currently unknown if the explicit breaking permitted

such that the axion still solves the strong CP problem allows the domain walls to decay

fast enough to avoid axions overclosing the Universe. We leave a study of the dynamics at

these times to future work.
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A Details of the simulation

A.1 Evolution of the field equations

For the purpose of implementing numerical simulations, it is convenient to rewrite the

equations of motion, given in eqs. (2.5) and (2.7), in terms of the rescaled field ψ =

R(t)φ/fa, and the conformal time τ , which is defined as

τ(t) =

∫ t

0

dt′

R(t′)
∝ t1/2 . (A.1)
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The time-dependent mass in the fat string scenario, eq. (2.7), is mr(τ) = (τi/τ)mi, where

τi ≡ τ(ti) is the time at which mr = mi. In this way, the equations of motion simplify to

ψ′′ −∇2
xψ + u(τ)ψ

(

|ψ|2 − R2

2

)

= 0 , (A.2)

where ψ′ and ∇xψ are derivatives with respect to the dimensionless time and distance

variables mrτ and mrx respectively (or miτ and mix for the fat string case). In the

physical scenario u(τ) = 1, while in the fat string case u(τ) = τi/τ .

We then solve eq. (A.2) numerically on a cubic lattice with periodic boundary condi-

tions.13 Space is discretised in a box of comoving side length Lc containing N3 = 12503

uniformly distributed grid points, where the upper value of N is limited by our mem-

ory budget. Consequently the space-step between grid points in comoving coordinates is

ac = Lc/N , which is constant in time. It is again convenient to work in terms of the dimen-

sionless comoving space-step mrac in the physical case, and miac for the fat string system.

The physical length of the box is L(t) = LcR(t) and the physical space-step between

grid points a(t) = L/N = acR(t) grows ∼ t1/2. In the physical string scenario, the string

core size m−1
r is constant, and therefore the number of grid points in a core (mra(t))

−1 ∼
1/t1/2 decreases. Meanwhile, in the fat string scenario the string core size increases ∼ t1/2,

and as a result the number of grid points in a string core (mr(t)a(t))
−1 = (miac)

−1 is

constant. When considering systematic errors from the space steps in the fat string system

we use the notation mr(t)a(t) for the size of the space step due to its direct physical

interpretation (although this is entirely equivalent to miac).

The equations of motion are discretised following a standard central-difference Leapfrog

algorithm for wave-like PDEs (see e.g. [60]). The system is evolved in fixed steps of con-

formal time aτ , and we work in terms of the dimensionless time-step mraτ in the physical

case, and miaτ in the fat string case. The derivatives are expanded to fourth order in the

space-step and second order in the time-step.14 In appendix B we extensively study the

systematics from the discretisation of space and time, as well as from finite volume effects.

As discussed in section 3, we set the initial conditions in two ways, the second of which

is used to produce a cleaner initial configuration with a fixed number of strings per Hubble

volume.

(a) Random initial conditions: φ and φ̇ are both generated through the anti-Fourier trans-

form of Fourier coefficients φ̃(~k) and
˜̇
φ(~k), randomly chosen in the interval [− fa√

2
, fa√

2
]

for |~k| ≤ kmax and zero for |~k| > kmax for a fixed choice of kmax ∈ [0,mr] in each

set of simulations. Larger values of kmax lead to initial fluctuations with smaller

wavelength, of order 2π/kmax, and more initial strings. As a result, the initial string

density is controlled by the parameter kmax/mr. Even though this method produces

configurations in which the axion field winds the fundamental domain [0, 2πfa] non-

trivially, it does not lead to a clean string configuration at the initial time, because

13We parallelise the algorithm to step forward in time, and run on a cluster with 2 × 24-cores.
14The fourth order discretisation of space is probably not required, since additional tests show using a

(less precise) second order discretisation does not lead to significant differences in the results, at least for

the string length.
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|φ| does not typically resemble the profile function of string-like solutions. Instead,

the system takes some time to relax to a string network solution and in doing so

releases a large quantity of energy, which produces extra contamination to the axion

spectrum measured at later times. To solve this issue, we employ the method below

that also allows us to construct axion field configurations with a predetermined string

length, or equivalently with predetermined initial ξ.

(b) Fixed string number: this approach simply consists of evolving a field configuration

produced by method (a) with kmax = mr until the required string length inside the

box is obtained, and then using that configuration as initial condition for the actual

simulation, with a different initial value of the Hubble parameter. Since this involves

resetting the Hubble parameter, the strings produced do not in general have the right

core-size, but we have checked that they quickly relax to their expected thickness long

before the scaling regime is reached.

A.2 String identification and string length

To identify strings and measure their length, we first identify grid points that are likely to

be close to a string core. We have carried this out in two ways, and have verified that the

results obtained are extremely similar. In our main approach, we flag points such that,

as a loop that surrounds it is travelled, there is at least one change in the axion field ∆a

between consecutive lattice points encountered that satisfy |∆a| /fa > π/2. In particular,

the loop is taken to be a square of side length 2 grid points. In order to capture strings with

all possible orientations, at each point in the grid we consider loops in three orthogonal

planes, and we flag a point if a loop in any of these satisfies the condition. We have checked

that the results obtained are extremely similar for any reasonable choice of the threshold

value for the change between adjacent grid points.

Having identified points close to the string core, we then combine these into strings.

In particular, we cluster together flagged points that are adjacent in the x-y plane into an

individual string point located at the mean of the flagged points. If such a cluster has a

non-zero overlap with a cluster at the next level up or down in the z direction, these are

connected into a string segment. As expected, the reconstructed strings form loops, and

the length of each individual loop (which is required to analyse the loop distribution) as

well as the total string length is recorded.

We have validated our string identification algorithm by comparing to the results

obtained following the procedure adopted in [50]. In this, a lattice plaquette is identified

as containing a string if the minimum axion field range that includes the field values on

the four surrounding vertices satisfies |∆a|/fa > π. It can be seen that this leads to

the correct results for the prototype string solution, and indeed for any string solution for

which the 2π field change incurred in traversing an enclosing path is distributed sufficiently

homogeneously around the loop.
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Figure 14. Left: the continuum extrapolation of ξ(t) in the step-size, mra → 0. The values

obtained with mra = 1.33 appear to have already converged to the continuum limit, typically with

better than percent level accuracy. Right: results for ξ(t) for different choices of the step-size mra,

normalised to the same quantities calculated with the finest lattice spacing mra = 0.67. The other

unphysical parameters are fixed to aτ/ac = 1/3 and HfLf = 2.
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Figure 15. Axion spectrum at log(mr/Hf ) = 6 for different choices of the step-sizemra, normalised

to the same quantities calculated with the finest lattice spacing mra = 0.67. The other unphysical

parameters are fixed to aτ/ac = 1/3 and HfLf = 2.

B Analysis of systematic errors

To check that our results are free from numerical artifacts, we study how the key observables

depend on the unphysical parameters in our simulations. Of particular importance are:

(1) the lattice spacing a, (2) the time spacing aτ , (3) the number of Hubble patches HL

contained in the box, and (4) the way that the string cores are screened when evaluating the

axion spectrum and energy. In this section we study the first three of these, postponing (4)

until section C. The results that we present here are all obtained from the fat string scenario,

however we have tested that the conclusions we reach are also valid for the physical case.
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B.1 Lattice spacing

We study the dependence of ξ(t) and of the axion spectrum on the discretisation parameter

mra to find the largest value compatible with the continuum limit mra = 0. As mentioned,

mra is constant and is equal to the number of grid points per string core at all times in fat

string simulations (in contrast, for the physical system the number of points per string core

decreases with time, and this source of systematic errors only becomes relevant towards

the end of simulations). If mra ≫ 1, the number of gridpoints per string core is much

smaller than 1 and the evolution of strings is not correctly captured. Conversely, making

the space-step unnecessarily small would restrict the maximum scale separations that could

be analysed.

We have performed sets of simulations averaging over 20 samples, keeping all param-

eters fixed except mra, with identical initial conditions.

In figure 14 we plot the continuum extrapolation for ξ and its dependence on log(mr/H)

for the different values of the space-step, normalised to those from the finest lattice spacing

tested (mra = 0.67). For all mra ≤ 1.33, ξ(t) differs from the most precise result by less

than 1%. However, for larger values of mra, it is systematically larger, especially at later

times. In the main text, for our results of ξ(t) and the loop distribution in the fat string

scenario, we used the rather conservative choice mra = 1.33. In the physical scenario the

number of grid points inside a string core decreases as the simulation progresses. We use

parameters such that, at the final time, we match the resolution in the fat string case mra =

1.33 (which means that at early times there are many more grid points inside a string core).

In figure 15 we plot the axion spectrum at the time log(mr/H) = 6, for different space

steps, again normalised to the results with mra = 0.67. This is slightly more sensitive to

the value of mra than ξ(t) is, and we see that discretisation effects increase the production

of UV states, reducing the energy emitted in the form of low momentum axions. In

particular, only simulations with mra ≤ 1 seem to have converged to within few percent of

the continuum limit, while mra = 1.33 and 1.6 result in a spectrum that is systematically

smaller in the IR. In the main text we have chosen mra = 1 in our analysis of the spectrum

in the fat string system; this value is sufficiently small that we are confident that the

UV dominated spectrum obtained is not an artifact of the finite space-step. Similarly, in

the physical case we use parameters such that mra = 1 when the final time shot used in

calculating the spectrum is taken.

B.2 Time spacing

We study the dependence of our results on the time-step similarly. Given the form of

eq. (A.2), the general theory of numerical solutions of PDEs tells us that the relevant

quantity to which miaτ should be compared is the comoving space-step miac [60].
15 Con-

sequently, we perform sets of simulations that differ only in the value of aτ/ac, averaging

over 10 samples. In figure 16 we plot the results for ξ(t) and the spectrum. For all values

15The Courant condition for the stability of the finite-difference algorithm sets an upper bound on

the ratio aτ/ac < 1 for the algorithm to converge, but further analysis is still required to quantify the

systematic uncertainty.
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Figure 16. Results for ξ(t) (left) and the axion spectrum at log(mr/Hf ) = 6 (right), for different

choices of the time-step aτ . This is measured relative to the comoving space-step ac, which is fixed

to miac = mra = 0.67, and the final box size is fixed to HfLf = 2. The results are normalized to

the shortest time step tested: aτ/ac = 1/6.
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Figure 17. Left: the extrapolation of ξ(t) to the infinite box size limit, (HL)−1 → 0. The value

(HL)−1 = 1/2 seems to have already converged, with better than percent level accuracy at most

times. Right: ξ(t) calculated in simulations with different box sizes (measured by HfLf ); vertical

lines indicate the times at which HL = 2 in each simulation.

of aτ/ac, ξ(t) is within 0.5% of the continuum limit, but for aτ/ac ≤ 1/3 the difference is

less that 0.1%. The spectrum is also affected at less than percent level for aτ/ac < 1/3,

and we use aτ/ac = 1/3 for our simulations in the main text in both the fat string and the

physical scenarios.

B.3 Finite volume

Finite volume effects are a particularly delicate issue. These are controlled by the parameter

HL, which counts the number of Hubble lengths per box side length, with the physical

limit for a spatially flat Universe corresponding to (HL)−1 → 0.

Since HL decreases over the course of a simulation, we want to determine the smallest

value that it can take at the final time, HfLf , such that the results obtained match

those in the physical limit. Although we use periodic boundary conditions, if HfLf >

2 every point is causally disconnected from itself from the beginning to the end of the
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Figure 18. ξℓ/ξ∞ for the set of simulations with HfLf = 2, for different values of ℓ. The shaded

bands represent statistical errors in the average over different simulations. The other parameters

are fixed as mra = 1.33 and aτ/ac = 1/3.

simulations. Nevertheless, even choosing HfLf > 2, finite volume effects might still affect

some observables such as the loop distribution (see section 3.3).

We performed a set of simulations keeping the values of all the parameters except

for HfLf fixed (all ending at a final scale separation log(mr/Hf ) = 6). In figure 17 we

show the convergence of ξ to the infinite volume limit for HL > 2 for different values of

log(mr/H) and as a function of log(mr/H) (where we indicate with vertical lines the times

at which HL = 2 for each simulation). Finite volume effects do not affect ξ while HL > 2,

and they remain small even slightly later. However, for HL . 1 they result in a dramatic

change, since the whole network is in causal contact and starts to be destroyed.

We also study how the loop distribution is affected by finite volume effects. In figure 18

we show the ratio ξℓ/ξ∞, defined in section 3.3, for different values of ℓ, for a set of

simulations with HfLf = 2 and log(mr/Hf ) = 6.7. Vertical lines correspond to the times

at which HL = 5, 4, 3. As mentioned in section 3.3, the constant value of ξℓ/ξ∞ in time is

a strong indication that the system is in the scaling regime. However, the finite box size

limits the maximum loop radius that can be contained. As a result, finite volume effects

lead to ξℓ/ξ∞ growing at late times once larger loops are no longer possible, and the larger

ℓ is the earlier this occurs. For our analysis of ξ and the loop distribution we have chosen

HfLf = 2 for both the fat string and the physical systems. This is rather conservative for

ξ, but slightly sub-optimal for the study of the distribution of relatively long loops with

ℓH/π & 1/2 (although earlier time shots are also plotted in figure 4, so the effect of the

finite volume is clear).

In figure 19 (left) we plot the axion spectrum at log(mr/Hf ) = 6 for simulations with

different values of HfLf . The peak at the Hubble scale is well reproduced for HfLf ≥ 2,

even if its position is dangerously close to the IR cut-off (indeed, both are of order Hubble).

On the other hand, for HfLf . 1, not only is the Hubble peak not present, but there is also

a significant overproduction of UV modes, related to the shrinking of a significant fraction
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Figure 19. The spectrum at log(mr/H) = 6 (left) and axion number density (normalised to the

number density calculated in a simulation with the largest box size tested: HfLf = 4) as a function

of log(mr/H) (right) for different final numbers of Hubble patches at the end of the simulation.

Error bars represent statistical errors in the average over different samples.

of the string network, which towards the end of the simulation is made up of loops with

radius smaller than the Hubble distance.

In figure 19 (right) we plot the axion number density na as a function of log(mr/H)

for simulations with different values of HfLf ; with vertical lines corresponding to times at

which HL = 3 for each simulation. na has been normalised to the values obtained in the

simulation with HfLf = 4, which is the least affected by finite volume effects. The number

density seems to be slightly more sensitive to the finite box size than ξ. While HL > 3 the

effect on na is less than one percent, for HL < 3 finite volume effects result in a systematic

underestimation of a few percent. This is reasonable, since na is strongly dependent on

the IR of the axion spectrum, which is the part most sensitive to finite volume effects. For

this reason in the main text we chose HfLf = 3 when studying both the spectrum and the

number density, for the fat string and also the physical system.

We have also studied the dependence on HfLf of the effective string tension µeff . This

depends on the distribution of string length in loops of different shapes and sizes, since e.g.

the logarithmic divergence in the string tension is expected to be cut off at a smaller scale

for small loops than long strings. Consequently, µeff could in principle be sensitive to finite

volume effects. However, we do not observe any change in the string tension for HfLf ≥ 2.

C String screening, energies and the axion spectrum

C.1 Components of the energy

In this section we discuss in more detail the way that the total energy density of the system

ρtot splits into the contributions defined in eq. (2.4), and demonstrate that our method

of screening the strings when extracting the energy in free axions and radial modes is

consistent and does not introduce systematic errors. We also study the energy contributions

in the absence of strings, and the effect of the interaction term between axion and radial

modes. Finally, we describe the algorithm that we use to calculate the axion spectrum.
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Figure 20. Different contributions to the total energy density ρtot, each one normalised to ρtot,

as a function of time for fat string system. All contributions are calculated as the spatial average

at a distance ds = 1 from the strings’ center, except for 1

2
〈(1 + r/fa)

2ȧ2〉, which is calculated over

the whole space. The string network begins to be destroyed by the finite box size at mrt/2π ∼ 19,

corresponding to the purple line going to 1.

As summarised in section 4.1, the total energy density is written as the sum ρtot =

ρs+ρa+ρr. The energy density in free axions ρa has been calculated as the spatial average

ρa = 〈ȧ2〉 far away from string cores, and in these regions axion and radial modes are to

a good approximation decoupled at sufficiently late times. Similarly, the radial energy

density is computed from ρr = 〈12 ṙ2 + 1
2 |∇r|

2 + V (r)〉, again away from the string cores.

We define the parameter ds such that the minimum distance from the strings’ centre of the

regions that are included in the average is dsm
−1
r , so that, at all times, ds is the screening

distance in units of the core size for both the fat string and physical scenarios.

There is actually an alternative approach to calculating the energy density of axions,

which does not require screening. This consists of including the interaction terms in the

axion energy density, i.e. evaluating 〈(1 + r/fa)
2ȧ2〉 over the whole space. On the string

centre the factor (1 + r/fa)
2 vanishes, and the contribution from the core regions is thus

suppressed. Calculated in this way, the axion energy density will include the contribution

from the axion-radial interaction energy. When we discuss the energy contributions to ρtot,

we will show that energy densities in axions calculated in both ways, i.e. with 〈ȧ2〉 screened
and with 〈(1 + r/fa)

2ȧ2〉, are in close agreement.

In figure 20 we plot the ratio of different components of the energy density to ρtot as

a function of mrt/2π for a single simulation of the fat string system carried out on a small

grid, with a space-step mra = 1. The goal here is not to understand how energies behave in
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the scaling regime (which has not been reached in the simulation analysed here), but rather

to check that our approach to calculating the energy in axion and radial modes is consistent.

All of the energy contributions plotted are calculated as the spatial average over regions a

distance of at least ds = 1 away from string centres, except for 1
2〈(1 + r/fa)

2ȧ2〉, which is

averaged over the whole space. The simulation has been run until the box only contains

1/8 of a Hubble volume, i.e. HfLf = 1/2. As a result the entire system is in causal contact,

and all the strings are destroyed at about mrt/2π ≈ 19, before the end of the simulation.

Many key features concerning the way that the total energy is split up can be under-

stood from figure 20. First, the kinetic part 1
2〈ȧ2〉 of the axion energy outside the string

cores is systematically smaller than the gradient part 1
2〈|∇a|

2〉 outside the string cores

while strings are present. This is expected since the former only gets contributions from

free axions (in the approximation that the motions of strings does not have a significant

effect on ȧ far from string cores), while the latter contains energy from both axion waves

and a large fraction of the tension of strings. However, once the string network starts

shrinking 1
2〈|∇a|

2〉 decreases, and both 1
2〈ȧ2〉 and the radial energy 〈12 ṙ2 + 1

2 |∇r|
2 + V (r)〉

increase. This indicates that as the strings are destroyed the energy stored in their tension

is transferred to free axion and radial modes.

As expected for free classical waves, after the network shrinks the axion energy 〈12 ȧ2+
1
2 |∇a|

2〉 is repeatedly interchanged between its kinetic and gradient parts, which on average

are equal. Similarly, the total energy in radial modes 〈12 ṙ2 + 1
2 |∇r|

2 + V (r)〉 behaves as

expected (for free states with a mass decreasing adiabatically in time, due to the fat string

trick), with 〈12 ṙ2〉 and the sum 〈12 |∇r|
2 + V (r)〉 giving equal contributions. After the

string network disappears, the ratios of axion and radial energy to the total energy stay

approximately constant. This is a sign that axions and radial models (as well as the total

energy) redshift at the same rate, i.e. as massless radiation, or equivalently as massive

radiation with a mass decreasing with time as ∼ 1/R(t).

The two ways of computing the axion energy density: evaluating 〈ȧ2〉 outside strings

or 〈(1+r/fa)2ȧ2〉 over the whole space, are compatible within few percent while strings are

present. The small discrepancy arises because the factor (1 + r/fa) is not exactly a step

function at the edge of the string cores. As we will see in the calculation of the spectrum,

the difference is stored in UV axion modes (as expected) and therefore do not affect the

calculated axion number density. Once the strings disappear the two measurements of the

energy density give almost identical results since the difference is due to the non-vanishing

interaction energy 1
2(r

2/f2a + 2r/fa)ȧ
2, which goes to zero as the Universe expands.

The sum 〈12 ȧ2 + 1
2 |∇a|

2 + 1
2 ṙ

2 + 1
2 |∇r|

2 + V (r)〉 converges to the total energy ρtot
only once all the strings have been destroyed. Prior to this, a significant proportion of

the energy is stored in string cores, and this is largest at small values of the log. The

difference corresponds to part of the string energy, with the remainder coming from the

difference 〈12 |∇a|
2− 1

2 ȧ
2〉 away from the string cores. The small mismatch between 〈12 ȧ2+

1
2 |∇a|

2+ 1
2 ṙ

2+ 1
2 |∇r|

2+V (r)〉 and ρtot in the absence of strings is due to the non-vanishing

axion-radial interaction energy, which however decreases as the Universe expands.

We also note that the energy densities in axions and radial modes have small oscilla-

tions with frequency O(mr). The amplitude of the oscillations decreases with time due to
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Figure 21. The spectrum calculated with method (1), described in the text, for different screening

distances ds, normalised to the spectrum calculated with method (2).

redshifting, and as a result for a fixed value of the log they are larger in the physical case

compared to the fat string scenario. Calculating the instantaneous axion emission spec-

trum involves taking the difference between the axion spectra (appropriately redshifted) at

two times, which are separated by more than m−1
r . Consequently, the result obtained for

momenta aroundmr is sensitive to the phase of the oscillations at the two times. This is the

origin of the fluctuations of the instantaneous spectrum in figure 11, which as expected are

more significant in the physical case. To reduce this effect in the physical case we averaged

over simulations starting at slightly different times, with relative differences of order 2π/mr.

C.2 The axion spectrum

We now describe the details of the calculation of the differential axion spectrum ∂ρa/∂k.

In the absence of strings, the axion energy density ρa = 〈ȧ2〉 is

ρa =
1

L3

∫

d3xp ȧ
2(xp) =

1

L3

∫

d3k

(2π)3
|˜̇a(k)|2 , (C.1)

where xp = R(t)x are physical coordinates, and ˜̇a(k) is the Fourier transform of ȧ(xp). The

axion spectrum ∂ρa/∂|k| is defined by
∫

d|k| ∂ρa/∂|k| = ρa, and is therefore given by

∂ρa
∂|k| =

|k|2
(2πL)3

∫

dΩk|˜̇a(k)|2 . (C.2)

In the following, as in the main text, we use the notation ∂ρa/∂k ≡ ∂ρa/∂|k|.
In performing the integral

∫

dΩk in eq. (C.2), which converts the three-dimensional

spectrum to the one-dimensional spectrum, the three-dimensional momenta ~k ≡ 2π~n
L with
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|~n| ≤ N
2 and |~n| ∈

]

m− 1
2 ,m+ 1

2

]

, m ∈ N, are grouped into the same one-dimensional

momentum bin labeled 2πm
L . Momenta with N

2 < |~n| <
√
3N

2 have not been included since

they lie far above the string core scale and do not matter for either the spectrum or the

number density.

In the presence of strings, eqs. (C.1) and (C.2) are no longer valid because of the

contribution of the string cores to ȧ(xp) and so to ˜̇a(k). We adopted two methods to mask

strings out of the calculation of ∂ρa/∂k:

1. The first is the Pseudo Power Spectrum Estimator (PPSE) introduced in the analysis

of cosmic microwave background data [61], and first used in the context of cosmic

strings in ref. [50]. This method involves calculating the spectrum ∂ρa/∂k after re-

moving the regions of space that are less than dsm
−1
r from the strings’ center. Briefly,

it is based on eq. (C.2) with ˜̇a(k) taken to be the Fourier transform of θ(xp)ȧ(xp),

where θ(xp) = 1 for xp a distance of more than dsm
−1
r from the strings’ center, and

θ(xp) = 0 otherwise. ∂ρa/∂k is then appropriately corrected to account for the bias

introduced by the window function θ(xp) (more details may be found in [61]).

2. The second approach takes advantage of the automatic screening of string cores

provided by the factor (1 + r/fa), and consists of using eq (C.2) with ˜̇a(k) taken

to be the Fourier transform of (1 + r(xp)/fa)ȧ(xp). This is similar to the previous

method, except that the string cores do not have to be identified, and the degree of

masking varies smoothly as the core is approached.

We have tested that the computation of the axion spectrum ∂ρa/∂k is independent

of the method used, and in particular we studied the dependence of the first method on

the screening distance ds. In figure 21 we plot the ratio of spectra at log = 6 computed

using the two methods for different values of the screening parameter ds, including the case

ds = 0, where the strings are not screened. We see that the difference between the spectrum

from method 1 with ds = 1 and the one from method 2 is 5% at k = mr/2 and rapidly

decreases for smaller momenta. This is expected since, given the form of the string profile

function for the radial mode, method 2 is roughly equivalent to masking distances up to

m−1
r . Meanwhile, increasing ds suppresses the spectrum at momenta of order 2π/(dsm

−1
r ),

but leaves IR momenta unchanged. Again this is not surprising, since masking distances of

order dsm
−1
r only loses information about momenta larger than 2π/(dsm

−1
r ). The spectrum

for ds = 0, which is affected by the presence of strings, is much more UV dominated than

the others, but at momenta lower than mr/2 still does not differ by more than 10%.

In the main text we calculated ρa and ∂ρa/∂k using method 1 with ds = 1. The

resulting systematic uncertainty from the masking algorithm at k ∼ mr/4 is less than

1%, while for k ∼ mr/2 it can be estimated to be of order 5 ÷ 10%. As explained in

appendix D, we extract the power law of the spectrum between the IR and the UV peaks,

q, by considering momenta smaller than mr/6. As a result the systematic uncertainty on q

introduced by the masking procedure is negligible. The fact that ρa and ∂ρa/∂k are stable

under the change of algorithm, and that ρa redshifts as radiation, gives us further confidence

that, even in presence of strings, our results only include free axion modes, as required.
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Figure 22. Convergence of ξ(t) to the attractor solution starting from random initial conditions

with different values of kmax/mr, between 1/2 and 1/50, for the fat string (left) and physical (right)

scenarios.

D Convergence from different initial conditions

In section 3.1 we demonstrated the existence of the attractor solution by considering the

convergence of the string density ξ(t), starting from initial conditions with fixed values of

ξ. Here we present further evidence for the attractor solution. First, rather than fixing

initial conditions with a predetermined initial string density by the method (b) described

in section 3.1 and A.1, we use random initial conditions given by the method (a) varying

the maximum coefficients kmax/mr. Second, we show how other key properties of the string

network, in particular the axion spectrum and axion number density, also converge to the

same late time values starting with different string densities.

In figure 22 we plot ξ(t) starting from random field initial conditions for different choices

of kmax/mr at the initial time Hi = mr. Although the results obtained are slightly less

regular than those starting with fixed numbers of strings, shown in figure 3, the convergence

to the attractor, and the logarithmic increase, is clear.

To analyse the convergence of other properties of the string network, we present results

starting from fixed string number densities, which lead to the values of ξ(t) plotted in

figure 23 (left). We have also confirmed that the quantities that we study converge to the

same attractor solution starting from random initial conditions. In figure 23 (right) we

show the results for the axion number density obtained from the same set of simulations

as ξ(t) in the left panel.

Notice that while at log = 3 the values for ξ and na are spread respectively by a factor

of 3 and 15, at log = 6 the spread reduces to around 10%.

The convergence of the axion spectrum ∂ρa/∂k to the attractor, shown in figure 24

(left), is also revealing. At log(mr/H) = 3, the axion spectrum is highly suppressed in sim-

ulations with a lower initial string density than in the others. However, by log(mr/H) = 6

the spectra are very similar. This is especially the case for the modes around Hubble, which

have nearly the same amplitude for all initial conditions. More dramatically, the instanta-
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Figure 23. Convergence to the attractor for ξ(t) (left) and na (right) for fat strings. Denser initial

conditions are represented by thicker lines, and the results in both cases are obtained from the same

sets of initial conditions, with fixed string densities.
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Figure 24. The convergence of the total axion spectrum (left) and the instantaneous emission

spectrum (right), starting from the same set of initial conditions as figure 23, in the fat string

system. Simulations with more strings initially are represented by thicker lines, and spectra at the

same time instant are represented by the same colour.

neous emission shown in figure 24 (right) converges extremely fast at late times. This is

because, unlike the overall spectrum, it only depends on the properties of the network at a

fixed time instant, which are practically the same for all initial conditions by the end of the

simulations. We see that underdense networks tend to have more instantaneous emission

in the IR at early times, which is expected since at these times the typical distance between

strings is larger in this case.

Taken all together, our results provide convincing evidence that the properties of the

string scaling solution at late enough times are sufficiently insensitive to the initial condi-

tions chosen.

E Extraction of the scaling parameters

In this appendix we describe how we extract the slope α in the fit of ξ(t), eq. (3.5), and

the power law q of the instantaneous spectrum, and estimate the associated uncertainties.

We also describe how we obtain the extrapolations of the number density in figure 13.
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Figure 25. The derivative dξ/d log(mr/H) for different initial conditions. The black curves are

approximately constant for the largest amount of time and therefore the closest to scaling, and their

spread is used to estimate the error on α. Blue dashed lines represent the estimate of α, and are

plotted at times when the system is reasonably close to scaling. Error bands represent statistical

errors in the average over different samples.

Given the convergence shown in figure 3, initial conditions that result in a constant

value of dξ/d log(mr/H) ≡ dξ/d log for the longest time correspond to string networks that

are the closest to the scaling regime. Therefore, we estimate α by calculating dξ/d log for

initial conditions with different fixed initial string densities, and then restrict to those such

that dξ/d log is approximately constant at late times.16 The constant common value that

dξ/d log reaches in such simulations is a good estimate of α, and the spread indicates the

uncertainty.

In figure 25 we plot dξ/d log for different initial string densities, for both the fat string

and the physical case. Slopes of different simulations tend to converge asymptotically

at to a common constant value. This is evident in the fat case, for which the constant

approached is dξ/d log = 0.22± 0.02, where the error has been estimated from the spread

of the results from simulations that have constant dξ/d log for log(mr/H) & 4 (plotted

in black). In the physical case, the scaling regime is reached at larger values of the log

and dξ/d log is changing over most of the simulated range. As a result, the uncertainty on

dξ/d log = 0.15± 0.05, estimated as the spread of dξ/d log over the simulations for which

dξ/d log is constant for log(mr/H) & 5, is larger.

We now turn to the extraction of the power law of the spectrum q. For this purpose, we

consider simulations starting from the initial conditions that lead to string networks that

are the closest to scaling (corresponding to results for ξ(t) plotted in black in figure 3).17 As

shown in figure 11, for log(mr/H) & 5 the instantaneous emission spectrum, parametrised

by F (k/H,mr/H), has an approximate power law behaviour 1/kq for momenta that are

16Since the derivative dξ/d log is more sensitive to local fluctuation we smooth it by convoluting with a

Gaussian g(x) with σ = 1/4, i.e.
∫
dy g(x− y)dξ(y)/d log.

17As shown in appendix D, the results obtained starting from different initial conditions are very similar,

well within the uncertainties on q that we quote.
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Figure 26. Plot of xF (x, y) with x = k/H for the fat string (left) and the physical (right) cases,

for different values of y = mr/H. The growth of xF (x, y) for x between the IR and UV cutoffs

corresponds to a UV dominated spectrum, i.e. q < 1.
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Figure 27. The axion energy density spectrum ∂ρa/∂ log k for the fat string (left) and the physical

(right) cases (the data is the same as in figure 10 but represented on a log scale).

large enough with respect to the peak at around the Hubble scale (at k/H ∼ 5÷ 10) and

are small compared to the UV cutoff at k = mr/2.

The fact that q is less than 1 can be more clearly seen from figure 26, in which we

plot xF (x, y). In these plots q < 1 corresponds to the increase between the IR and UV

peaks, which is evident both in the fat string and physical cases. Moreover, most of the

area under the curves in figure 26 is at UV momenta k ∼ mr/2, which shows that the

energy density is dominantly emitted in the form of very high momentum axions, although

the axion number density is dominated by low momentum states since q > 0. In figure 27

we plot the total energy spectrum of figure 10 on a log scale, i.e. ∂ρa/∂ log k. The positive

gradients show that the energy density in axions is dominated by UV modes at all times,

for both the fat string and the physical case.

Due to the challenges in the physical case, discussed in section 4.2.1, we only attempt

a detailed analysis of q in the fat string scenario. To do this, we consider F at late times,

log(mr/H) & 5, and focus on the region with momenta a factor of 3 larger than the Hubble

peak and a factor of 3 smaller than the core peak, i.e. 30H . k . mr/6, which is sufficiently
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Figure 28. The value of d logF (x, y)/d log x as a function of the rescaled momentum x = k/H,

for different time shots, i.e. different values of y = mr/H, for the fat string system in the scaling

regime. The black sections corresponds to momenta 30H < k < mr/6, which are sufficiently far

from the IR and UV peaks to be uncontaminated by effects at these scales. The roughly constant

values in these regions correspond to the value of −q in the approximate power law, and the blue

dashed lines represent our estimated range for this.

uncontaminated by the cutoffs. The power q is then given by −d logF (x, y)/d log(x).18 In

figure 28 we plot d logF (x, y)/d log(x) for different values of y = mr/H, corresponding to

values of log(mr/H) > 5. The sections of the curves plotted in black indicate momenta in

the range 30H < k < mr/6, which are safe from contamination from the IR and UV peaks.

d logF/d log(x) crosses zero at about k ∼ 5H, signalling the position of the Hubble

scale peak, and it is smaller than −1 at large momenta, meaning that after the UV cutoff the

instantaneous spectrum falls off steeply. Moreover, in the intermediate region of interest

−d logF/d log(x) changes slowly as a function of momentum and across different time

shots, ranging from about 0.7 to 0.8. We note that in this range −d logF/d log(x) (and

therefore q) shows a tendency to increase at later times. However, given the present

uncertainties this apparent change is not significant enough to draw any conclusion, in

particular we are not able to assess whether it is due to a residual contamination from the

nearby UV peak or it constitutes a genuine feature of the spectrum (similar analysis with

larger grids and more statistics could be beneficial to understand this point). In the regime

5 . log(mr/H) . 6, we therefore estimate q = 0.75 ± 0.05, where the uncertainly mostly

comes from d logF/d log(x) not being constant over the momentum range of interest.

18Because the derivative d logF (x, y)/d log(x) is subject to more fluctuations we smooth it by convoluting

with a Gaussian g(x) with σ = 1/6, i.e. we consider
∫
d log(z) g(log(x)− log(z)) d logF (z, y)/d log(z).
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In order to extrapolate the axion number density with different power laws, we used

an analytic form of F (x, y) that closely matches the three approximate power laws visible

in figure 11,

F (x, y) = N

(

x
x1

)q1 [

1 + θ(x− x2)
(

(

x2
x

)q2−q − 1
)]

(

x
x1

)q1+q
+ 1

∝



























xq1 x≪ x1

1
xq x1 ≪ x≪ x2

1
xq2 x > x2 ,

(E.1)

where θ(x) is the step function. In this expression x1 and x2 are the positions of the IR and

UV cutoffs in units of Hubble, q1, q2 are the powers that suppress the spectrum in the IR

and in the UV respectively, and q is the power between the two cutoffs. The normalisation

N is required so that
∫

F (x, y)dx = 1. A reasonable fit for the 5 free parameters is

x1 ∼ 3, x2 = y/2 and q = 0.7 ÷ 0.8, q1 ∼ 3, q2 ∼ 2 in the fat string case, and similarly in

the physical case except that q2 ∼ 3. The extrapolations in figure 13 are carried out by

keeping all parameters fixed except for q. What matters most for the final extrapolation

is the parameter q, which regulates the hardness of the spectrum, while the remaining

parameters only lead to changes of order 1.

F Comparison with EFT estimates

As mentioned in section 4, the dynamics of global string loops can be equivalently described

by an effective theory where the fundamental degrees of freedom are the string and the

axion radiation [34], with an interaction governed by the Kalb-Ramond action [62]. This

theory is valid in the regime where the string and the emitted radiation (with frequency

ω ∼ 1/R) are not strongly coupled, which corresponds to log(mrR) ≫ 1, where R is

the loop radius (as shown in [34], the effective coupling of the emitted axion radiation to

the string is proportional to 1/ log(mrR)). As a result, for loops with a large hierarchy

between the radius and the core size, the emitted axion radiation should approximate the

one predicted by the Nambu-Goto effective theory. Indeed, using such a theory it was

shown [34] that a circular loop starting at rest with log(mrR0) = 100 follows the cosine

time-law for the Nambu-Goto strings with percent precision, at least for values of the loop

radius such that log(mrR) ≫ 1, where the theory is applicable.

We show now that the evolution of circular loops provided by the solutions of the field

equations matches the one predicted by the effective theory of strings, for the values of

log(mrR0) reachable in our field theoretic simulations. We solve eq. (2.5) in Minkowski

space, i.e. with a time independent scale factor, H = 0, and initial conditions φ(x) and

φ̇(x) that approximately resemble a static circular loop with initial radius R0.
19 In fig-

ure 29 we plot the time-law for the loop radius R(t) normalised to the initial radius R0

19More precisely, φ̇(x) = 0, while φ(x) is chosen to be cylindrically symmetric around the z-axis and in

the y = 0 plane is given by the field generated by the superposition of two point like charges with charge

±1 in the position (±R0/2, 0, 0). The field generated by a point-like charge ±1 in the origin is provided by

eq. (2.6) (with phase e±iθ resp.) and the superposition of fields is defined by their product.
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Figure 29. Circular loop radius time-law R(t), normalised to the initial radius R0. Green and

orange dashed lines correspond to the solution of the field equations for log(mrR0) = 4, 5. The

solid blue line is the effective field theory prediction for log(mrR0) = 5 and the solid black line is

the free Nambu-Goto solution RNG(t) = R0 cos(t/R0).

for log(mrR0) = 4 and 5. We also plot the prediction given by the effective theory for

log(mrR0) = 5 and the free Nambu-Goto time law, RNG(t) = R0 cos(t/R0). The result

of the simulation for log(mrR0) = 5 matches very well the EFT prediction where this is

valid. Moreover, as log(mrR0) increases, the circular loop time law gets closer to the free

Nambu-Goto prediction, indeed indicating that at large log(mrR0) global string dynamics

converge to that of free Nambu-Goto strings.

Although the convergence R(t) → RNG(t) is good when the loop radius is sufficiently

larger than the core size m−1
r , i.e. for log(mrR) ≫ 1, there is a substantial deviation when

the string becomes strongly coupled, log(mrR) . 2, which prevents the loop from bouncing

many times. This however is not in conflict with the EFT prediction, which correctly

reproduces the right time law before the loops collapses even for log(mrR0) as small as 5.

Given the limitations in performing direct field theoretic simulations at much larger

values of log(mrR0) we cannot test whether the EFT expectation that loops will bounce

many times (thus emitting an IR dominated spectrum) is correctly reproduced or whether

core effects when the loops shrink keep inhibiting the rebounce.
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