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AXISYMMETRIC STOKES FLOW IMAGES
IN SPHERICAL FREE SURFACES

WITH APPLICATIONS TO RISING BUBBLES

J. F. HARPER1

(Received 25 August 1982)

Abstract

A theorem is derived for the hydrodynamic image of an axially symmetric slow viscous
(Stokes) flow in a sphere which is impermeable and free of shear stress. A second theorem
establishes a sense in which such a flow past an arbitrary rigid surface or shear-free sphere
becomes, on inversion in an arbitrary sphere with its centre on the axis of symmetry, a
flow past the rigid or shear-free inverse of that surface or sphere.

The theorems are used to simplify the proofs of a number of known results for images
of point singularities in plane and spherical rigid and free boundaries, and for a pair of
bubbles rising steadily in line in a viscous fluid. They also give for the first time accurate
numerical solutions for the velocities of each of a larger number of spherical bubbles
rising quasi-steadily in line. These enable one to assess the accuracy of simple approxima-
tions to those velocities.

1. Introduction

Spheres on which there is no shear stress are found as boundaries to slow viscous
(Stokes) flow in two important contexts. The Earth's core is, to a good approxi-
mation, such a boundary for the convection in its mantle, and the surface of a
small gas bubble rising in an uncontaminated viscous fluid is such a boundary for
the flow outside it. In the two cases the spherical shape is maintained by gravity
and by surface-tension forces [13,14,16], but tangential motion is unimpeded.

Theorem 1 and a lemma give the image systems in such surfaces. They are
simpler than the corresponding known results [4,5,9,10,20,23] for rigid spheres.
Theorem 2 shows how one can invert an axially symmetric configuration of
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218 J. F. Harper [2)

shear-free spheres or rigid surfaces of general shape, in any sphere and with its
centre on the axis, and relate a Stokes flow bounded by one configuration to one
bounded by the other.

The theorems permit simpler proofs to be given for a number of known results:
images of axisymmetric point singularities (Stokeslets, Stokes-multipoles and
potential-multipoles) in free or rigid spherical or plane surfaces, the flow past one
bubble rising towards a plane free surface, or two bubbles rising steadily in line.
Departures from the exact plane or spherical shape will occur in practice, of
course [1,3,17,18]; they will be small for sufficiently slow motions and are not
considered in this paper. A new problem which can be solved is the quasi-steady
rise of several bubbles in a vertical line. Two different approximations have been
given previously: ignoring all but nearest-neighbour interactions [19], and ignor-
ing all but first-order interactions [22]. Numerical solutions for the velocity of
each bubble show the superiority of the latter approximation. Geophysical
applications of the results also exist, but will be discussed elsewhere.

2. The sphere theorems

THEOREM 1. If \p(r,6) is the Stokes stream function of an axially symmetric
steady slow viscous (Stokes) flow with no singularities on the sphere r = a, then so is

*,(/-, 0) = +(r, 6) - (r3/a')t(a2/r, 6), (1)

(r, 6) being spherical polar coordinates; and the fluid motion described by ̂ , has the
sphere r = a as a shear-free stream-surface, for which

^, = 0 and (d/dr)(r'2dxpt/dr) = 0. (2)

PROOF. It is already known [9] that ^, obeys the relevant equation of motion,
i.e.,

where \i = cos 6. To show that <//, also satisfies the boundary conditions is a
straightforward exercise in differentiation. The first equation (2) makes the sphere
a stream-surface; the second makes the tangential shear stress zero on it [13, page
125-8].
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[3] Stokes flow images 219

DEFINITION. For any flow with stream-function \p(r,O) obeying equation (3), the
inverse flow in the sphere r = a is defined to be the flow with stream-function
i//(r, 0) given by

r(r, 8) = - (r7a3H(«2A, «) = - (r/r'f/2)(r', 6), (4)

where rr' — a1, and the singularities of\f/'(r, 0) are defined to be the images in the
sphere r = a of the singularities of\p(r, 6).

For this purpose we extend the term "singularity" to include axisymmetric
flows non-vanishing at infinity and regular everywhere else, i.e. uniform streams,
Stokesons, stressons and their derivatives [8].

REMARKS. The inverse of the inverse of a flow is the original flow, and the
image of an image is the original singularity. Theorem 1 is the analogue for Stokes
flow of Butler's sphere theorem [6] for inviscid flow.

LEMMA. For any flow with stream-function \p obeying equation (3) in a region
including the sphere r = a, that sphere is a shear-free stream-surface \p — 0 if and
only if the flow is its own inverse in the sphere.

PROOF. The "only i f part is a restatement of Theorem 1; the " i f part is
another exercise in differentiation.

The purpose of this lemma is to prove the less obvious part of the following
inversion theorem.

THEOREM 2. Let \px(r,6) be the stream-function, obeying equation (3), of a flow in
which either a sphere Sx is a shear-free stream-surface on which \px — 0 and
9/9r,(rf28v^1/3r|) = 0, or any axisymmetric surface Rx is a rigid boundary on
which i//| = 0 and d\px/drx = 0, where rx is the distance from the centre of Sx. Let
the geometrical inverse of Sx or Rx in any sphere T whose centre is on the axis of
symmetry of ^ , be S2 or R2. Then the inverse flow of \pl in T has S2 or R2 as a
shear-free or rigid boundary, respectively.

PROOF. The rigid case is almost obvious, as the boundary condition R, is
\f/l = 0 , Vv/'i = 0, and the inverse flow must satisfy the same conditions on R2.
For the shear-free case it is sufficient, by the lemma, to show that if <//, is its own
inverse in 5,, then the inverse of \j/l in T is its own inverse in S2. That can be
established geometrically. By axial symmetry, S,, S2 and Thave collinear centres.
Let Ax, B, be any two points inverse with respect to S, whose centre is Ox, and let
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Figure 1. Configuration for the proof of Theorem 2.

\px be equal to ^X(AX), \px(Bx) at those points. The self-inverse property of i/-, can
then be written

If A2, B2 are the inverses of Ax, Bx in T, and if O2, P are the centres of 5, T, the

inverse flow \f/2 must obey

M^) = - (PA2/PAX)V2+X(AX), (6)

^2(^2) = ~ (PB2/PBxf
/2^x{Bx), (7)

(see Figure 1). From equations (5), (6), (7) we find that

PBl.OlBl.PB2

Now A2 is the inverse of B2 in 52 [21, Section 25.2] and the triangles PA2B2,
PBXAX are similar because PAt.PA2 = PBt.PB2, and so

PA
PA

,.OXAVPBX _ IPBX \26>,^| _ / / M 2 \ 2 O i ^ |
X.OXBX.PB2 ~ \TAX) OXBX ~ \TB~2) OXBX

_ sm(OxPAx)s\n(AxBxP) _ O2A2

~ sin(OxPBx)sin(BxAxP) ~ O2B2 '

because of the equal angles of the similar triangles already mentioned. Hence
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1 s 1 Stokes flow images 221

which is the required self-inverse property for i//2 in the sphere S2.

REMARK. The sphere T need have no simple relation to the flows: it merely
transforms boundaries.

3. Images of singularities

The inverse flow of the uniform stream ^ = { Ur2 sin2 6 in the sphere r = a has
the stream-function - jUarsin2 6. This is the flow due to a Stokeslet at the centre,
of strength F = 4-nUai\, where TJ is the viscosity of the fluid and F is a force
pointing upstream. The classical Rybczynski-Hadamard flow [13] past a shear-free
sphere is of course the superposition of the uniform stream and its inverse, and F
is the force which is exerted by the sphere on the fluid.

Now consider a Stokeslet at r = sx, 6 = 0. With cos 8 = fi as before, its
stream-function is

8i7-rj(r2 — 2/xrs, + s2)

and if s2 — a2/su

2/r,6) =
r2-2vrs2 + s2y«

The image of Stokeslet F at s, is thus a Stokeslet -Fa/sx — -Fs2/a at the inverse
point s2. It does not matter which one is inside the sphere; one points at the
centre, the other away, and the one inside has the smaller strength. It is the
simplicity of the result and the absence of higher-order singularities that enables
one to use images for problems involving rising bubbles much more easily than
for rigid spheres.

However, Theorem 2 also applies to rigid boundaries, and it is of interest to see
what the images of higher-order point singularities are. These singularities are
axisymmetric Stokes multipoles with stream functions of the form

A ^ . M ) = ^""^{Pnif1) - p
n-2(^)} for« = 2,3,4, . . . , (10)

of which the Stokeslet is the case n — 2, and axisymmetric potential multipoles of
the form

p\l>n{r,n) = r-("-]){Pn(n) - Pn-2(n)} forn = 2 ,3 ,4 , . . . , (11)

of which the potential doublet is the case n = 2. Here Pn denotes the Legendre
polynomial, and our normalisation differs from the usual one [8] in the interests
of algebraic simplicity.
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If any of these singularities is at the centre of a sphere, its image is an
appropriate and easily found singularity "at infinity". We give here the images of
singularities elsewhere. We begin with the image in r — a of the function
i// = r\pPJ<ii'\) (see Figure 2), where ju, = cos#, for / = 1,2, and sls2 = a2. Be-
cause r2 = r2 — irSjP + sf and r[i = j , + /-,/i,, we find that with \f/ as above, its
inverse \p' in r = a is

V ^ ]

0

Figure 2. Definition sketch for the coordinate systems used in Section 3.

Imagining for the moment that AB is a fixed symmetry axis in Figure 2, and O is
a variable point, we see that r"Pa[cos(92 — 0)] is a spherical harmonic of degree
n, which can be written as

because if fi2 = ±1 it is r" = (r2 ± s2)
a respectively. Equations (12), (13) and

r2 = r2 + 2r2s2fi2 + s2, with the recurrence relations for Legendre polynomials,
then enable us to write the inverses s\p^ and pii'n in the sphere r = a of the
stream-functions s^/n and p\pn as

Nt2(N-2)\(n-N)\(2N~\)srNX z ^ i n

*' = — * ' . (15)
rl

Equation (14) gives the image of a Stokes-multipole of order n in terms of a
sum of Stokes-multipoles'of all orders from 2 to n at the inverse point. Because

N ~{~ \ N 2
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equations (15) and (16) can be used also to express the image of a potential
multipole of order n in terms of both potential and Stokes multipoles at the
inverse point of orders up to n and n + 1. For example, the flow of a uniform
stream past a rigid sphere is well known to require a Stokeslet and a potential-
doublet at the centre. Inverting with respect to any point on the axis of symmetry
gives Nigam and Srinivasan's result [20] for a Stokeslet pointing at a rigid sphere;
if the point of inversion is also on the sphere we get Blake and Chwang's result [4]
for a Stokeslet pointing at a rigid plane wall. The present method would evidently
produce the corresponding results for higher orders but with rather large amounts
of algebra. They are already known [20] for the potential source and doublet.

Images of point sources can also be found, but they are not point singularities.
If, for example, \p = 0 on the side 8 = 0 of the source, a source solution
p^i(r{, JLI,) = ft, — 1 has ij = -2 on the other side, and r'i/ai

p^x = -2 r 3 /a 3 on
the inverse of that far side. That is why a line distribution of sources appears in
Nigam and Srinivasan's solution.

4. A pair of bubbles rising in a viscous fluid

Some years ago Wacholder and Weihs [24] solved three problems concerning
spherical drops or bubbles moving under gravity:

a) two of them rising in line, possibly with different radii and internal
viscosities;

b) one drop or bubble moving vertically towards or away from a horizontal
rigid surface;

c) one drop or bubble moving vertically towards or away from a horizontal free
surface.
The solutions involved elaborate calculations with infinite series of Legendre
polynomials in bispherical coordinates, as did a more recent investigation of a
rigid sphere rotating or translating in any direction near a free surface [18].

In the special case of gas bubbles of negligibly small internal viscosity, in a
liquid with surface tension high enough to keep their surfaces spherical [16], but
with negligibly small surface tension gradients [14], we give simpler routes to
Wacholder and Weihs' results for cases a) and c). Unfortunately the image
systems are far less simple when the surfaces are other than tangentially stress-free.

A single bubble of radius a moving at speed U in unbounded viscous fluid has
yp = { UR2/r in a coordinate system at rest relative to the distant fluid, where R, r
are distances from the axis and the centre; \j/ is, of course, the flow due to a
Stokeslet of strength F = -4irr}Ua at the centre of the bubble. For two bubbles of
the same or different radii rising in the same vertical line, the flow is that due to:

(1) the two central Stokeslets;
(2) the image of each in the other bubble;
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(3) the images of those images in the original bubbles, and so on.
We give further detail only for the case of two equal bubbles, though it could

be calculated for unequal ones also. If the wth order images are Fn at distance dn

below the centre of the upper bubble and above the centre of the lower one, and
if the radius of each bubble is a, and their centres are a distance b apart, then
equation (9) gives

F0 = F and d0 = 0, (17)

F.+, - -Fn-
J!±L - -Fn,

 a , for n > 0, (18)
a b- dn

and the stream function \p for the flow as a whole is

where rni, rn2 are the distances from a point in the flow field to the nth image
Stokeslet in the upper and lower bubbles (see Figure 3). The total drag force on
each bubble is the total strength of all the Stokeslets inside it, i.e.,

G - FA(T) = F(l - £, + £,£2 - £,£2e3 + • • • ) (20)

where £„ = dn/a, T = a/b, the ratio of bubble radius to distance between centres,
and

£0 = 0,

l
1 T tn—1

f o m > l . (21)

As T increases from 0 (bubbles infinitely far apart) to \ (touching), A(T)
decreases from 1 to In 2 = 0.693 • • • and is the proportional drag reduction on
either bubble due to the presence of the other. It is the same function as
A(1/2T, 0) of Wacholder and Weihs [24], but expressed in a simpler series: a
programmable pocket calculator sufficed to obtain Table 1. Figure 3 shows the
flow pattern for the extreme (and unrealistic) case of touching bubbles; it will be
close to the actual pattern for bubbles very near to each other if they remain
practically spherical, i.e., if viscous stresses are much smaller than those due to
surface tension, i.e., rjU « a, where a is the surface tension [17].

Table 1 also gives values of 1/A(T), which is the speed of each bubble divided
by the speed in the absence of the other if, as usual, gravity provides the force on
each irrespective of the position of the other. It will be seen that it is very close
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[91 Stokes flow images 225

indeed to 1 + T, being only 4% below that value for touching bubbles. The Taylor
series for 1/X(T) can be found from equations (8) and (9) as

T 7 + • • • . (22)= 1 + T - T 4 - T 6

Figure 3. A pair of rising bubbles, with the streamline pattern for the case b = 2a, calculated by using
Theorem 2 to invert with respect to O, so that the bubbles transform to parallel planes, the stream at
infinity to a Stokeslet at O, with image Stokeslets equally spaced, alternately up and down, and all the
same strengths, and then using the Fourier series [ 12, page 445], which was Cesaro-summed to improve
convergence.
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TABLE 1. Values of T, a and A ( T ) both for a pair of bubbles (T > 0) and for a bubble and a plane free
surface (T < 0).

T

0.5
0.4
0.3
0.2
0.!
0

-0.1
-0.2
-0.3
-0.4
-0.45
-0.5

a = cosh-'(l/2|TD

0.0
0.693147 = In 2
1.098612 = In 3
1.566799

00

2.292432
1.566799
1.098612 = In 3
0.693147 = In 2
0.467145
0.0

A(T)

0.693147 = ln2
0.727649
0.774205
0.834473
0.909174
1.0
1.111236
1.252656
1.448289
1.778396
2.109325
00

1/A(T)

1.442695
1.374289
1.291647
1.198361
i .099899
1.0
0.899899
0.798304
0.690470
0.562304
0.474085
0

In this expression the coefficients are all integers, the radius of convergence is \,
and the high quality of 1 + T as an approximation is due to the vanishing of the
T2 and T3 terms. In physical terms, the 1 + T approximation says that to find the
velocity of either bubble in the presence of the other, add to its velocity V when
alone in the fluid the velocity VT induced by the Rybczynski-Hadamard Stokeslet
at the centre of the other.

For general T, there is a closed-form expansion for A(T) obtained as follows.
Equation (21) implies that

^ ^ , ( x ) / P l W , (23)

where pn is a polynomial in the variable x = T2, of degree {n for even n and
j(n — 1) for odd n, with the linear recurrence relation

Po(x)=P\(x)=l,

P*+M-pM+xPn-M = 0 for«>l.
This leads to

pn(x) = (A"+<-B»+>)/(\-4Xy/2, (25)

where

(26)

If y ~ (B/A)l/2 = T/A = B/r = e~", equation (20) can be written

(28)
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[12, page 213], where 2 $ , is Heine's basic hypergeometric function, not to be
confused with Gauss's hypergeometric function 2F,, [2]. The series (27) is, term by
term, the same as the series in equation (20) and is no better for numerical work.

5. A single bubble rising beneath a plane free surface

If one spherical bubble is rising beneath a plane surface, both the sphere and
the plane being tangentially stress-free, the calculations of the previous section are
changed very little if b is interpreted as the distance from the bubble centre to its
reflection in the free surface. With T, en, A and y defined as before, we find that
the - signs in equations (20), (21) and (28) must be replaced by +, and that the
drag correction factor (K(1/2T, 0) of [24]) is

A ( - T ) = 1 + e, + e,e2 + e,£2e3 + • • • (29)

1 -y2 \ -y4 1 -y6

2j(2j)\ j

. J0.57721..-lnio , a , 7a3 , 31a5 | , .
= sinh(«)| + _ + _ _ + _ _ _ + . . . j , (30)

[7], where the asymptotic series is valid for r -* \-, i.e.,y -» 1- or a — 0 + .
The bubble velocity, which is proportional to 1/A(-T) , remains close to 1 — T

until the bubble is very near the surface, being only 6% below that value when
T = 0.4, i.e., the bubble's topmost point is \ of its radius below the surface.
Beyond that point the velocity decreases rapidly towards zero as T increases. This
theory would in practice be rather inaccurate so close to a free surface, because
the bubble would push up the surface above [1, 3,15,17,18]. The same objection
holds for the theory of Wacholder and Weihs also. The distortion of the plane
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surface is impeded by gravity, and will be small if the parameters rjU/a, i\U/pga2

are small, [3], where p is the density of the fluid and g the acceleration due to
gravity.

6. A line of equally spaced bubbles

Suppose a line of n bubbles each of radius a, initially equally spaced, is set free
to rise in a liquid. The resultant force on each is the same, but the velocities V, will
vary along the line, where 1 *s / < n. As in the previous theory, each bubble will
have a primary Stokeslet of strength Am-qaV, at its centre provided that the
motion is quasi-steady (changing significantly slower than vorticity diffuses).
Every Stokeslet will have an image in every bubble except the one which it is
inside; a computer is needed to carry the calculation of image strengths and
positions to high order, because the number of images multiplies itself by (n — 1)
at each stage. (For rigid instead of shear-free surfaces the number of images
increases faster even than this, [10], which requires methods other than image
analysis to be used [11,17].) Finally, one solves for the V, by requiring the total
sum of image Stokeslets inside each bubble to be the resultant force exerted by it
on the fluid, i.e, the gravitational upthrust F — (4/3)irpga3. Convergence is
tested by carrying the calculation up to varying orders of images; all n(n — 1)*""'
image Stokeslets of any given order k are of the same sign, and opposite to that of
the next order, and so the Vt oscillate towards their final values as the order is
increased. Gluckman et al. [11] instead assumed equal velocities (for rigid spheres
in line) and calculated forces varying along the line.

TABLE 2. Speeds of the various bubbles in a line, the unit being the speed of an isolated bubble of the
same radius in the same fluid. The unit of spacing is the bubble radius. The distribution of velocities
about the middle of an equally spaced line is symmetrical; only the top half is given.

Number of
bubbles

3

4

5

8

Position
in line

1
2
1
2
1
2
3
1
2
3
4

Spacing

2.5

4

6

10

Speed

.5861

.7296

.4580

.6164

.3474

.4708

.4988

.2593

.3449

.3782

.3916

First-order
theory for speed

1.6000
.8000
.4583
.6250
.3472
.4722
.5000
.2593
.3450
.3783
.3917
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Table 2 shows the results for several typical cases, and also the "first-order"
approximation of taking the velocity of each bubble to be F/4iri]a increased by
the Stokeslet velocity F/^TTTJ/-, of each other bubble at a distance r, away from it.
That approximation turns out to be very good, in fact better than for the lines of
rigid spheres for which it was first suggested [22], and better than the alternative
which has been used [19], of considering only nearest-neighbour interactions.
Table 2 gives also the closest bubble spacing for which our process converged
reliably in a reasonable amount of computer time. In each case investigated that
was a number of radii of the same order as the number of bubbles. For bubbles
further apart than the spacing in the table the first-order approximation was even
better.

Morrison's overall result [19] is unaffected by the roughness of his approxima-
tion. The second bubble in a line rises faster than the first, catches it up, and
henceforth the pair moves upwards together and faster still (see Section 4 above).
Then the third bubble finds itself at the top of the line, and the fourth moves up
to it in the same way, and so on.

7. Conclusions

The image system of an axisymmetric Stokes flow in a shear-stress-free sphere
with its centre on the axis of symmetry has been presented. If the original flow is
from a Stokeslet due, as usual, to a force exerted at a point in the fluid, the image
is just one additional Stokeslet. When there are two spherical boundaries, the
higher-order images can be calculated with rather less trouble than the expansions
in spherical harmonics previously used to solve such flow problems. A bubble
rising vertically in a fluid beneath either another bubble or a horizontal surface is
one case in point, for which the simpler series has permitted alternative analytical
forms to be recognized, including a closed form and an asymptotic expansion.

A second sphere theorem shows that shear-free spherical stream surfaces invert
with respect to any point on the axis into other surfaces of the same kind. This
theorem was useful in computing the streamline pattern for flow past a pair of
touching bubbles, where more direct methods converged too slowly to be useful.
It suggests finding the properties of flow past unequal bubbles by first inverting
with respect to a point which makes their inverses have the same radius. The
theorem also holds for rigid surfaces, and simplifies the calculations for the
images of point singularities in them.

One can also calculate the velocity of each of a line of rising bubbles. A good
approximation is that each bubble rises at the speed it would in an infinite fluid,
plus the speed induced by each other bubble treated as a single central Stokeslet.
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