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Summary. Conditions for initiation of necking and bulging of elastic and elastic-

plastic cylindrical solids are derived. The possibility of bifurcation of rigid-plastic

solids and the conditions for homogeneous deformation with homogeneous stress are

also investigated.

1. Introduction. This paper deals with some problems of bifurcation in cylindrical

solids of elastic, rigid-plastic and elastic-plastic material. One particular objective of

this study is to investigate the effect of hydrostatic pressure on the necking and bulging

loads of a specimen in tension and compression tests. The constitutive laws assumed

for the different materials are those due to Hill [3],

Previous works related to the problem concerned have been confined either to the

necking of an elastic cylinder under uniaxial stress (Wesolowski [10]) or to the stability

of elastic rectangular solids subjected to pressure loads (Wu and Widera [11] and Kerr

and Tang [5], [6]). The effect of hydrostatic pressure on the necking load of plastic solids

has long been a point of controversy. However, for rigid-plastic material, Hill [2] first

proved that lateral pressure does not affect the tensile necking load. A similar conclusion

was reached by Pugh [8] and Alexander [1], but their arguments are unsatisfactory.

The results of the present investigation provide a rigorous confirmation of this result

for an incompressible elastic-plastic cylinder.

2. Formulation of the problem. Consider an incompressible cylindrical solid of

elastic-plastic material subjected to an axial load P and lateral hydrostatic pressure of

intensity q. Suppose that the body undergoes finite homogeneous deformation due to P

and q from some initial state B° to the current state B. The deformed body in the state B

is supposed to preserve a cylindrical shape with radius a and length 21; the necessary

information for complete description of B is assumed given. To investigate the bifurcation

of equilibrium for continuing deformation, the behaviour of the specimen in transition

from B to a neighbouring state B', under the infinitesimal increments of the boundary

values, is isolated for study. Only axially symmetric deformation will be considered

in this paper.

Referred to state B, a fixed cylindrical coordinate system , with axes coinciding

with axes of symmetry of the specimen, is taken as the reference frame. Whenever

convenient the coordinates , x2 , x3 will be replaced by r, 9, z respectively and the

velocity components v, , v2 , v3 by u, v, w respectively. In the current state, we have
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(1)

where gif and g" are the covariant and the contravariant components of the metric

tensor. The internal distribution of stress, assumed homogeneous, may then be supposed

given by

— q 0 0 '

tr" = s" = 0 — qr~2 0 (2)

. 0 0 —p.

where <r*', s" are respectively, the contravariant components of the true stress and the

nominal stress tensor; p = P/tto2.

The stress distribution (2) satisfies the equations of equilibrium:

= 0 (3)

where the comma denotes the covariant derivative, and the boundary conditions:

T* = (—5, 0, 0) for r — a

= (0, 0, =Fp) for z = ±1

where T' is the surface traction.

For the continuing deformation from B to B', the longitudinal ends 2 = ±1, moving

with constant velocity =Fw0 , are assumed to be frictionless (hence the shear traction

rates on these ends are zero) and the rate of hydrostatic pressure is specified as —q.

Using the nominal traction rate T' (see, e.g. Hill [3], [4]) and remembering that the

velocity field is axially symmetric, we have

w — Tw0 , T1 = n,s'1 = 0 at z = ±J, ^

t" = s"ni = —qn' — q(pk.kn' — g'kn'v,,k) for r = a

where n, and n are respectively the covariant and the contravariant components of

the unit outward normal to the boundary surface; s" is the material derivative of the

nominal stress tensor which is related to the material derivative of the true stress tensor

by (see, e.g., Hill [3])

S" = + r'V* - cr'V,t , (5)

where the operator of material derivative is defined as

<'>-«*+ A>-"

Using (5) and the incompressibility condition vk .* = 0, the boundary conditions (4)

reduce to

W = TlOo , or" = — Qv,r = 0 at z = ±Z, ^

&rr = — q, cr" = — (p — q)ut at r = a,

where u, denotes partial differentiation with respect to z.
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In view of (2), (3) and (5), the equations of continuing equilibrium s||j = 0 become

= 0 (7)

or equivalently, in terms of partial derivatives,

dfr"/dr + dor'/dz + aTT/r — r&ss = 0, (7 a)

do' /dr + d&"/dz + &T!/r = 0. (7b)

The equation for j = 2 is identically satisfied for the case of axially symmetric deforma-

tion considered here.

Material properties. For axially symmetric deformation, u = u(r, z), v = 0 and

w — w(r, z). Hence the rate of deformation tensor e,, = + t-',-.,■) and the spin

tensor co,, = |(y;,, — viti) can be easily obtained and are as follows:

Ur 0 |(w2 + WT)

e,, = 0 ru 0 , (8)

_%{u, + wr) 0 w,

0 0 \{u2 — wr)

co,-j = 0 0 0- (9)

L-f("x ~ Wr) 0 0

Furthermore, the condition of incompressibility reduces to

ur + u/r + w. = 0. (10)

The rate constitutive equation for the material is taken in the form proposed by

Hill [3], the objective stress rate used being the Jaumann derivative of the true stress

tensor, which vanishes under rigid body rotation. This stress rate, denoted by S)a'/£)t,

is related to the material derivative <r" by

£>o-*'7£>£ = a' - <T<ku\ - akia>\ . (11)

For linear, isotropic and incompressible material, the constitutive equations become

Elastic material:

aV'/SDi = 2fie*' - g"q' (12)

Rigid-plastic material:

ta = h~lmii(mkl(£>crkl/£>t)) when mtI(SD<7-"/SDi) > 0, ^

= 0 when mk,(£)crtl/£>t) < 0.

As will be shown in the appendix, it is immaterial whether the Jaumann derivative

or the material derivative is used in this relation.

Elastic-plastic material:

Dcr"/SDt = 2fxe" — (4ju2/(2m + h))(mklek,)m" — g" q' when mtl(S)ffkl/Dt) > 0,

= 2— g" q' when mtt(S)o-kl/S)t) < 0.

where n is Lamp's constant, q' is an unknown scalar function, h is a positive scalar measure
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of the current rate of work-hardening, and mu , m" are covariant and contra variant com-

ponents of the unit outward normal to the local yield surface in six-dimensional stress

space.

In view of the form of the current stress distribution (2), the components of m{i and

m" may be taken in the form

ma =

m =

m1 0 0

0 m2r2 0

. 0 0

mi 0 0

0 m2r~2 0

0 0 m3

(15)

where

mx + m2 + m3 = 0 (incompressibility) and m\ + ml + ml = 1. (16)

Furthermore, since au = c" = —q, we must have m1 = m2 . This together with (16)

completely determines the components of to,-,- , which is found to be that corresponding

to the von Mises criterion.

3. Bifurcations in elastic solids. The solution of the linear system represented by

(6), (7), (10), and (11) can be considered as a result of superposition of the following

deformations:

(i) Homogeneous deformation with boundary conditions given by

w = =FtD0 , y = 0 at z = ±Z, .
(6a)

<rrr = — q, &" = 0 at r — a.

(ii) Nonhomogeneous deformation with boundary conditions given by

w = 0, <j" = 0 at z = ±Z. .
(6b)

<j" = 0, aT' = — (p — q)u, at r = a.

Evidently the solution associated with (i) is also a complete solution which satisfies the

boundary conditions (6), since uz vanishes identically for homogeneous deformation.

A nontrivial solution associated with (ii), which exists only for some particular values

of <7,#, corresponds to bifurcation of equilibrium. The superposition of the two solutions

is another complete solution. The bifurcation will correspond to either necking or

bulging, depending on whether the current axial stress is tensile or compressive.

Homogeneous dejormation. A solution of (7) which satisfies the boundary conditions

(6a) and the incompressibility condition (10) may be found to be

u = (w0/2)(r/T), w = —(w„/l)z,

&" = —q, = -r~2q, (17)

<t" — —3n(w0/l) — q, crTZ = 0,

and the corresponding rate of loading on the faces z = ±1 is

f3=-(3p + p)(w0/l) - q. (18)
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This solution preserves the cylindrical shape of specimen with uniform distribution

of a-*'. Hence the previous assumption of a homogeneous current stress field is justified,

since it is attainable by a succession of incremental deformations from the state B°.

Nonhomogeneous deformation. In view of (10) and the boundary conditions (6b),

we seek a solution of the form

u = /i(r) cos vz, w - /2(r) sin vz, q' = /3(r) cos vz, (19)

where v = tit/I, n being an integer, and /,(r) are unknown functions to be determined.

Substituting (19) in (12) and then eliminating f2 and ft, using (1), (2), (7), (10), and (11),

we finally arrive at

(L4 + 2 v2bL2 + v*C)fi = 0, (20)

where

i"-sD£fc>] w
and

-rrj- c"tt> (20b)

with

<i> = (P - e)/2ju. (20c)

Similarly, using (1), (2), (11), (12) and (19), the boundary conditions (6b) reduce to

w = 0, u, = 0 at z — ±1 (6c)

| (rL2/.) + 2v(b - h)rjrU ~ = 0, (L2 + v% = 0 at r = a. (6d)

It can be seen that (6c) is identically satisfied by (19).

Eq. (20) can be written in the form

{L2 + v\\){lr + A*)/, = 0 (21)

where and k3 are functions of 4> (complex in general) and can be represented as

Kl,KX = [b± V(b2 - c)]l/2 (21a)

Two distinct cases may arise: (i) Ki ̂  k2 corresponding to b2 — c ^ 0, (ii) /ci = k2 corre-

sponding to b2 — c = 0.

(i) 5^ k2 : The general solution of (21) may be written as

/i = AlJ^vkj) + A2Ji(vK2r) + A3F1(fK1r) + A4Yi(vk2t) (22)

where A, are integration constants and J i and Yt are the Bessel functions of the first

and second kind, respectively. Since /i(r) should be finite at r = 0, A3 and At must

both vanish, and (22) reduces to

ji ~~ AXJi(vkir) A2Ji(vk2t) (22a)

The constants Ax and A2 must be determined from the boundary conditions (6d);
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thus, by substitution, we obtain

Ji(VKia) ~ wia(l + Ki + J — j70("Kiffl)J-4i

+ Jfaa) — v/cjal 1 + «2 +^1 + 4 + 1 ^ ^jj0(vK2a) A2 = 0, (23)Ll + <t> v / V 1+4,1

[(1 — Ki)J1(»'/cia)]/l1 + [(1 — kI)J1(vk20)]A2 = 0.

The condition for bifurcation is that there exist a nontrivial solution of (23); i.e., the

characteristic determinant of the coefficients is equal to zero. Since k, and k2 may be

either real or imaginary, it is convenient to deal with the problem in the following separate

cases:

(a) Ki , k2 real, b2 — c > 0, b > 0. The condition for bifurcation can be immediately

obtained from (23) as:

(1 — K|)Ji(wia) _ 2Ji(vK,a) — yK;q[(l + *?)(! + <f>) + 2]t/0(y/cia)

(1 — k%)Ji(vk2o) 2 J x{vk2o) — wc2a[(l + k?) (1 +<#>) + 2 ]J0(wc2a)

(b) Ki , k2 imaginary, b2 — c > 0, b < 0. Denoting

Xl = "l , X2 =

we have, instead of (21), (22a) and (24)

(L2 - V2£){L2 - ^)/, = 0,

/1 = -4i Ii(vxir) + AJi (vx2r),

(1 + Xi)A("Xi«) _ gjjOgog) ~ yXifl[(l ~ Xi)(l + <t>) + 2]/0(gx1a)

(1 + X2)li(vx2a) 2/^vxsa) — ^X2a[(l — X2)(l + <t>) + 2]I0(vx2a)

(24)

(25)

where 11 and I0 are modified Bessel functions of the 1st kind.

(c) /cx real, k2 imaginary, b2 — c > 0, c < 0. In this case, the condition for bifurcation

becomes

(1 — Kp./t^a) _ 2Ji(vK1a) — wc,q[(l + k,)(1 + <f>) + 2]Ja{vKXa)

(1 + X2)/i(w2a) 2 I^vxtd) — %a[(l — X2) (1 + <t>) + 2]I0(yx2a)

(ii) Ki = k2 = i, corresponding to p = q. The general solution of (21), nonsingular

at r = 0, now becomes

/, = AJiivr) + A2rl0(vr)

A similar calculation leads to the following condition for bifurcation:

v2a2I\(va) + [val0(va) — I^va))2 = 0. (27)

This implies that the characteristic determinant of the coefficients in (23) does not

vanish unless va vanishes. In other words, no bifurcation can occur for p — q.

For any material for which n is given, the critical stress for bifurcation can be deter-

mined from (24)-(26).

For a material for which \(p — q)/2u\ < 1 (for instance, most of metals and brittle

materials), we have b < 0, c > 0 and b2 — c = (<£/(! + <W)2 > 0. The condition for
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bifurcation (25) leads to

sw - (i + <t>ysi - <t>
L'\l + 4>.r-]+ 4> = 0 (28)

where

S(x) = xl0(x)/h(x).

For constant p. and a finite value of a/l, (29) is satisfied only when <f> > 0. In other words,

the specimen can bulge if p > q. However, no necking is possible for specimen under

tension, with or without lateral hydrostatic pressure.

For a/l « 1, (24) reduces to

(p-q)c = -3M(l + (29)

Since the effective tangent modulus is 3/*, it can be seen that the first term gives the

usual engineering solution while the second term represents the correction due to shear

stiffening.

It should be pointed out that for elastic materials with constant p.. bifurcation occurs

when the difference between p and q, p — q, reaches some critical value. Hence in tension

and compression tests with the specimen subjected to an all-round hydrostatic pressure,

the critical load (the load applied by the machine head) is independent of the hydrostatic

pressure. If p. varies with stress, it would be expected to be a function of the current

stress deviator. For the case considered here, all the nonvanishing components of current

stress deviator are in terms of (p — q); hence the aforementioned conclusion would still

hold.
4. Bifurcations in rigid-plastic solids. Assuming that the material loads everywhere,

we rewrite (13), in view of (8) and (15), in the form

ur = \ml , u/r — \m2 , wx - Xm3 , ut + wr = 0 (30)

where X = is a scalar function depending on the position. For von Mises

material = m2 = 1/V6, m3 = — 2/V6.

By a procedure similar to that of Sec. 3, we seek solutions of (30) and (7) which

separately satisfy the boundary conditions (6a) and (6b).

Homogeneous deformation. A solution corresponding to homogeneous deformation

is found to be

1 Wa Wou ~ 2 T r' w=~T«,

= -<?, = ~r~2q, (31)

a" = -§ h f - q, = 0,

and the corresponding rate of loading on the faces z = ±Z is

Tz = -((3/2)A + V) ~ q (31a)

Hence the assumption of homogeneous current stress field is again justified.

Nonhomogeneous deformation. In view of the components of mu for von Mises
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material, (30) can be written as

ur = u/r = — wt/2 = X/V6, u, + wT — 0. (30')

Similar to the result obtained by Prager [7], the general solution of (30') is found to be

u = C{rz + c2r,

w = —^ r2 — CjZ2 - 2c2z + c3 , (32)

X = \/6 (c^ + c2)

where c, are arbitrary constants. It is worth noting that this solution involves no arbitrary

function. By symmetry and from the boundary conditions, w = 0, for z = ±Z, we have

Ci = c2 = c3 = 0; hence u = w = 0.

This implies that in the case of rigid-plastic materials the possibility of necking or

bulging deformations is ruled out by the equations of compatibility alone.

5. Bifurcations in elastic-plastic solids. As in the case of elastic solids, a similar

calculation for elastic-plastic material, again assumed to load everywhere, leads to the

following results:

Homogeneous deformation. A solution corresponding to homogeneous deformation

is found to be

1 w0 w0
u 2 I r, w { z,

• tt . • 86   -2 • /o<~» \
c = — q, o- = —r q, (33a)

• zz 3m Wo -rz ri

- = -r+iT- q' =0

where 5 — 2/i/h, and the corresponding rate of loading on the faces z = ±1 is

-(r+i + f,)?-« <33b)

This solution also preserves the cylindrical shape of the specimen, and the assumption

of homogeneous current stress field is again justified.

Eqs. (33a) and (33b) reduce to (17) and (18) respectively when h approaches infinity,

i.e. when the material is elastic.

Nonhomogeneous deformation. The quantities k1 , *2 in (21a) now become

KljK2 = [b ± V(b2 - c)],/2

where

b = ~ 2(1 +<£)( 1 + 6) ' ° = 1 + t ' (34)

and, the conditions for bifurcation for the case of elastic-plastic material obeying von

Mises criterion are obtained as

(i) Ki 7^ k2 •'

(a) Ki , k2 real,

(1 — tftJiivKja) _ 2J1(vK1a) — »,ic1q[(1 + <f>)(l + /c2) + (2 — 5)/(1 + 8)]J0(vk,a) . .

(1 — kI)J i(vK2a) 2J1(vK2a) — w2a[(l + <£)(1 + k2) + (2 — 5)/(l + 5)] J0(vK2a)
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(36)

(b) kj , <2 imaginary, x. = >

(1 + xf)/i(tQCia) _ 2Ii(yxiO) ~ yxifl[(l + <ft)( 1 — x?) + (2 — 8)/(l + 5)]Z0(pxia)

(1 + xl)li(vx2a) 27i (yx2a) — ?x2a[(l + <£)(1 — x*) + (2 — S)/(l + 5)]70(^2a)

(c) icl real, <c2 imaginary,

(1 — _ 2Jl(vKla) — w^aKl + </>)(! + *i) + (2 — 5)/(l + 5)]«70(yic1a) . .

(1 + xl)Ii(yx2d) 2/,0x2a) — t%>a[(l + 4>)(1 — x2) + (2 — S)/(l + 5)]/0(ia2a)

(d) k1 , k2 conjugate complex, b2 — c < 0. In view of the conjugate complex

property, we denote

kx , k2 — a ± i/3 = pe*'*,

3, = 1 — n\ = (1 — a + /32) - i(2a$),

2, = I - = (1 - a2 + |32) + i(2afi),

z2 = z2 = 2/(1 +<!>) = —2b,

z3 = fK]a(l + k2 + 2/(1 + 0),

z3 = vK2a( 1 + k2 + 2/(1 + <£),

U0\ ™" Jj(vKiCl), — J^(j>k2CL) ,

w2 = JoM, w2 = J0{vK2a),

and

4 2 , -Ai = -Si ± ,

where a, /S, p and are real variables, -B, real constants and an overbar denotes the

conjugate. Hence the characteristic equation similar to (23) reduces to

[(z2u>i + z2wi) — (z3w2 + z3w2)]B1 + i[(z2wx — ZiWi) — (z3w2 — z3w2)]B2 = 0, (23a)

(z1w1 + ziw1)Bl + ifaw i — ZiWi)B2 = 0,

noting that the coefficients of B, and B2 are now all real, and the characteristic equation

becomes

Im [2,ioI(22iP1 — z3Wt)] = 0 (a)

where Im [ ] stands for the imaginary part of [ ].

The Bessel function of a complex argument may be separated into the real and the

imaginary part. We have the relations

wt = Jk(vKia) = Bert(vpa, <p) + i Beik{vpa, <p). (b)

Substituting (b) in (a), we finally obtain the condition for bifurcation:

<ii Ber^ypa, <p) + d2 Beii(vpa, <c)

di Bei^vpa, <p) — d2 Beii(cpa, <p)

= d[ Ber0(f pa, <p) - d'2 Bei0{vpa, <p) + 2b Bel (vpa, <p) ,

d[ Bei0(vpa, <p) — d2'~Ber0(vpa, <p) + 2b Ber1(^pa, <p)
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where

and

eh = 1 - a2 + d2 = 2a/3,

d[ - ,Jl + «" - 3D' + „ ± - f ~ ®) ,

(ii) Ki = k2 = k:

(a) k real,

 yg(l — k)J ] (vko) 

va(l — k)J q{vko) — 2k J x (wca)

2 JiivKa) — wa|^(l + </>)(l + k) + Y~Zp~5 J Ja(yKa)

^2(1 + 2k) (1 + <f>) + 1+ J JoiyKa) — waj^(l + $)(1 + k) + •

(39)

(b) k imaginary,

va( 1 + x2)/i(yxa) 

va(l + x)I«(yxa) — 2xli(yx°)

2Ii(yxa) ~ >ocaj^(l + <£)(1 — x2) + ^ + ^jfoOao)

^2(1 — 2x2)(l + <t>) + ^ -j_4g5]^o(yxa) — vxa (1 + 4>)(l — x2) +

(40)

Again (35)-(40) reduce to (24)-(27), respectively, when h —* co.

Since h does not depend on the hydrostatic stress, as observed before, p and q appear

only in the form of their difference (p — q) in (35)-(40). Hence the hydrostatic pressure

will have no effect on the necking or the bulging load (the load applied by the machine

head) in tension or compression tests with the specimen subjected to an all-round hydro-

static pressure. This is in agreement with the conclusion reached by Hill [2], Pugh [8]

and Alexander [1].

For a slender bar, a/l « 1, the critical value of (p — q) is found from (35) to be

. x . • 3rh (. . lnW\

For h—* 00, (40) reduces to (29). For ^ —» », we have

(P- q)c = ~\h(l +|^) (41a)

This case is not in general identical to the case of rigid-plastic material defined by (13).

With the current coordinates chosen coinciding with the principal axes of the current

stress tensor, (14) does not generally approach (13) with ^ in view of the fact

that in (14) when n —► co, (lj ^ 0, for i ^ j. Furthermore, the inversion of (13) is non-

unique (Sewell [9]).
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6. Conclusion. Axisymmetric bifurcations in an elastic-plastic cylindrical bar have

been investigated as problems of existence of a nonunique solution for continuing

incremental deformation from a state of finite deformation. It has been shown that

necking and bulging deformations for a rigid-plastic solid are ruled out by the equations

of compatibility alone, and, in all cases, bifurcation occurs only when the difference

between p and q, p — q, reaches some critical value. Hence in tension and compression

tests with the specimen subjected to an all-round hydrostatic pressure, the critical load

(the load applied by the machine head) is independent of the hydrostatic pressure. This

is in agreement with the conclusion reached by Hill [2], Pugh [8], and Alexander [1].

Appendix. The constitutive equation for rigid-plastic material. In the constitutive

equation for an isotropic rigid plastic material, it can be shown that it is immaterial

whether the Jaumann derivative or the material derivative is used in the definition of

the rate of stress. Taking a Cartesian coordinate system coinciding with the principal

axes of the current stress tensor, we have

mu(T><T;i/£>t) = ntiii&n ~ vafik — ^ (Al)

where

^ = mtitrik oiik + m,jOjkuik (A2)

Since the principal axes of au coincide with those of m,-, , both <xti and wi,-, are diagonal

tensors and so is their tensor product. Besides, since co,; is skew symmetric, the term

m, ,(7<*<»;* in (A2) vanishes, and by the same reasoning, m^cikuiik also vanishes. Therefore

we have ^ = 0 and consequently m,,(SD<r4j/2W) = . Certainly this is also true

for any general coordinate system, so that

m,-,-(2VVDf) = m.jO-" (A3)

remembering that mu are now the components referred to the general coordinate frame.
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