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Summary

The problem of a thin spherical linearly-elastic shell, perfectly bonded to an infinite
linearly-elastic medium is considered. A constant axisymmetric stress field is applied
at infinity in the matrix, and the displacement and stress fields in the shell and
matrix are evaluated by means of harmonic potential functions. In order to examine
the stability of this solution, the buckling problem of a shell which experiences this
deformation is considered. Using Koiter’s nonlinear shallow shell theory, restricting
buckling patterns to those which are axisymmetric, and using the Rayleigh–Ritz
method by expanding the buckling patterns in an infinite series of Legendre functions,
an eigenvalue problem for the coefficients in the infinite series is determined. This
system is truncated and solved numerically in order to analyse the behaviour of the
shell as it undergoes buckling, and to identify the critical buckling stress in two cases,
namely where the shell is hollow and the stress at infinity is either uniaxial or radial.

1. Introduction

In underwater applications, anechoic tiles are often used to minimise the acoustic reflection
coefficient of structures submerged in water. These tiles may consist of a rubber substrate
containing a significant number of microscopic (∼ 20 µm radius) hollow elastic spheres,
whose thickness is around 2 % of their radius. The pressure of the water causes the tiles to
be compressed uniaxially, eventually causing the shells to buckle, thus softening the material
(1). A first step in understanding this behaviour is an analysis of the buckling of a single
embedded spherical shell.

The theory of shell buckling has a long and distinguished history. Euler’s eighteenth-
century model for the elastic stability of a thin beam laid the groundwork for further studies
into the buckling of plates and shells, which remains to this day an area of great research
interest. Significantly for our investigation, the interaction of a shell with an elastic substrate
or matrix affects its buckling behaviour considerably. Much work has been carried out into
the buckling of cylindrical shells embedded in a linearly-elastic medium (2, 3, 4, 5). More
recently, work on composite materials containing carbon nanotubes has reignited interest
in this field (6, 7). However, away from cylindrical geometries, research is less abundant.
Modelling the effect of a surrounding medium by a nonlinearly elastic foundation, Luo and
Teng (8) considered a number of axisymmetric shells and their buckling under certain loads.
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Fok and Allwright (9) examined the buckling of embedded complete spherical shells, with
a radial stress field applied at infinity in the substrate. However this analysis, as we shall
see, involves a simplifying assumption which renders it invalid in many parameter regimes.

Our investigation will follow the spirit of Koiter’s analysis of the buckling of a complete
spherical shell under external pressure (10), which employs shallow shell theory. Following
a physical description of the problem in Section 2 we review the necessary elements of
buckling theory in Section 3. The state of stress in the shell prior to buckling is determined
in Section 4 using a method presented by Love (11). The buckling problem is then solved in
Sections 5 and 6 using the Rayleigh–Ritz method, which yields an infinite system of linear
equations for coefficients of the basis functions in the Rayleigh–Ritz expansion. This system
is solved numerically by truncation and the results are discussed in Sections 7 and 8.

Throughout we restrict ourselves to axisymmetric displacements, which greatly simplifies
the analysis. This means that we determine only when an axisymmetric solution bifurcates
from the unbuckled solution, which will give us an upper bound for the critical load. We
believe that for shells under compression (which is our primary interest) the first bifurcation
will indeed be to an axisymmetric state; however, it is likely that shells under tension may
first buckle to a nonaxisymmetric state.

A number of the investigations into the buckling of shells attached to elastic substrates
(cited above) model the substrate as a Winkler foundation, essentially replacing the matrix
by a bed of springs (either linear or nonlinear). The chief drawback of this model is that the
effect of the matrix can only be felt locally; i.e. the response of the matrix to a localised shell
deformation does not affect the matrix outside that region of deformation. Various models
have been proposed to include non-local effects in the matrix while keeping the simplicity
of the Winkler model (notably the Pasternak model (12)) but we choose to apply the more
realistic model of a matrix, infinite in extent, which satisfies the equations of linear elasticity.
This assumption is valid provided the strains in the matrix do not become too large. We
will show in Section 7 that the applied stress at infinity for which buckling occurs is low
enough that the matrix remains in the linear regime. Were this not the case, we would still
hope that the results obtained could be useful as a qualitative description of the buckling
process.

2. Physical description of the problem

The configuration of the problem is shown in Figure 1. We consider a spherical shell with
internal radius R0 and external radius R1 embedded in an isotropic linearly-elastic matrix.
By setting R0 = R̂− h/2 and R1 = R̂+ h/2, we can alternatively say that the shell has a

spherical mid-surface of radius R̂ and a constant thickness h. The matrix is characterised
by its shear modulus Gm and Poisson ratio νm, and likewise the shell is characterised by
Gs and νs.

We assume that the shell is perfectly bonded to the matrix, so that the displacement
and traction at R = R1 are continuous. In addition, we impose that the state of stress in
the shell is a superposition of two states: the response to a uniaxial stress τzz|∞ = −qz
at infinity, and the (purely radial) response to the applied stresses τRR|∞ = −qR and
τRR|R0

= −qin.
We adopt the convention that vectors and tensors indexed with numeric subscripts

and superscripts are the covariant and contravariant components respectively. Of these
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Fig. 1 Configuration of the physical problem.

indices, Greek letters vary over 1, 2 and denote surface quantities; for the spherical polar
coordinate system that we use in this article, ‘1’ corresponds to the (colatitudinal) θ-
direction and ‘2’ to the (azimuthal) φ-direction. Latin letters vary over 1, 2, 3 and denote
three-dimensional quantities. In the spherical polar case the corresponding directions are
R, θ, φ respectively. Vectors and tensors indexed with a coordinate (in our article, x, y, z for
Cartesian components and R, θ, φ for spherical polar components) such as τRR above, are
referred to unit vectors, so that these are the physical components of the relevant vector or
tensor.

3. Buckling criterion

In a stable equilibrium configuration the potential energy W is a local minimum, so is
stationary with respect to arbitrary infinitesimal virtual displacements v. At a bifurcation
point, corresponding to the emergence of a buckled solution, the equilibrium switches from
being a minimum to a saddle point, and the quadratic (in v) terms in W are also stationary
with respect to a particular virtual displacement vc (the buckling displacement). This
condition is sometimes known as the Trefftz criterion.

We now consider how this theory applies to the shell embedded in a matrix. Firstly,
in our analysis the virtual displacement v will refer to the virtual shell displacement; the
virtual displacement in the matrix will be found as a linear function of v, as the matrix
obeys linear elasticity. The total potential energy of the system will be given by the sum
of the potential energy in the shell and the potential energy in the matrix. We will first
consider the shell. The derivation of these equations can be found, for instance, in Niordson
(13); the notation, however, is that of Koiter (10).

The potential energy density of a thin shell can be written

V =
1

2
hEαβλµγαβγλµ +

1

24
h3Eαβλµραβρλµ, (3.1)

where γαβ is the middle-surface strain tensor, ραβ is the tensor of changes of curvature, and

Eαβλµ = Gs

(
aαλaβµ + aαµaβλ +

2νs
1 − νs

aαβaλµ

)

is the elasticity tensor for shells, where aαβ is the contravariant metric tensor of the shell’s
middle-surface.
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Denoting the pre-buckled state by the superscript (0), we suppose that the displacement
in the shell is given by v(0) + v, where v is the virtual displacement. Using the expression
(3.1) for the potential energy density in the shell, the change in potential energy density,
denoted ∆V , is given by

∆V =
h

2
Eαβλµ

(
γ

(0)
αβ + γαβ

)(
γ

(0)
λµ + γλµ

)
+
h3

24
Eαβλµ

(
ρ
(0)
αβ + ραβ

)(
ρ
(0)
λµ + ρλµ

)

−
h

2
Eαβλµγ

(0)
αβγ

(0)
λµ −

h3

24
Eαβλµρ

(0)
αβρ

(0)
λµ

=
h

2
Eαβλµ

(
γ

(0)
αβγλµ + γαβγ

(0)
λµ + γαβγλµ

)
+
h3

24
Eαβλµ

(
ρ
(0)
αβρλµ + ραβρ

(0)
λµ + ραβρλµ

)
.

Henceforth we suppose that the in-surface displacement components vα of the shell
are referred to the base vectors of the shell middle-surface, and that w is the normal
displacement, so that v = vαaα + wa3.

We will determine the pre-buckled state using the hypothesis of linear shell theory, so
that terms which are of quadratic order or higher in the strain tensor are negligible. Thus

we replace the pre-buckling middle-surface strain tensor, denoted γ
(0)
αβ , by its linearised

counterpart θ
(0)
αβ , which is defined by

θαβ =
1

2
(vα|β + vβ |α) − bαβw,

where the notation vα|β denotes covariant differentiation and bαβ is the second fundamental

tensor of the surface. Furthermore, we replace the tensor of changes of curvature ρ
(0)
αβ by the

linear term ρ̄αβ = w|αβ . Additionally, by the principle of virtual work, we can relate the
middle-surface strain tensor and the tensor of changes of curvature to the stress resultants
nαβ and stress couples mαβ of the shell in the prebuckled state by

(0)nαβ = hEαβλµθ
(0)
λµ ,

(0)mαβ =
h3

12
Eαβλµρ̄

(0)
λµ .

Thus

∆V = (0)nαβγαβ + (0)mαβραβ +
h

2
Eαβλµγαβγλµ +

h3

24
Eαβλµραβρλµ.

We now assume that the response of the shell to the virtual displacement satisfies the
nonlinear shallow shell theory as employed by Koiter (10). In this theory, the strain
measures are given by

γαβ = θαβ +
1

2
w,αw,β , ραβ = ρ̄αβ = w|αβ .

A nonlinear shell theory for the virtual displacements is essential for buckling problems,
and the shallow shell approximation is the simplest nonlinear theory, containing just one
nonlinear term. Thus we find the linear terms in ∆V are

∆V1 = (0)nαβθαβ + (0)mαβραβ
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while the quadratic terms are

∆V2 =
1

2
(0)nαβw,αw,β +

h

2
Eαβλµθαβθλµ +

h3

24
Eαβλµραβρλµ.

The reason for choosing the nonlinear theory for the virtual displacement is now apparent,
since if we had not included the nonlinear term 1

2w,αw,β in γαβ , then ∆V2 would be
independent of the pre-buckled state.

The change in potential energy of the shell due to the virtual displacement is therefore

∆Ws =

∫∫

mid-shell
surface

(
(0)nαβθαβ + (0)mαβραβ

)
dS

+

∫∫

mid-shell
surface

(
1

2
(0)nαβw,αw,β +

h

2
Eαβλµθαβθλµ +

h3

24
Eαβλµραβρλµ

)
dS

+ higher order terms. (3.2)

We now consider the matrix, in which the displacement is a sum of the prebuckled
displacement u(0) and a virtual displacement u arising due to the virtual displacement v

of the shell. The potential energy density in the matrix is given by

V =
1

2
Aijkleijekl, (3.3)

where Aijkl is the elasticity tensor and eij is the strain tensor, given by eij = 1
2 (ui|j +uj |i).

From (3.3), we can see that the change in potential energy density is

∆V =
1

2
Aijkl

(
e
(0)
ij ekl + eije

(0)
kl + eijekl

)
,

where e
(0)
ij , eij are the strain tensors formed from u(0), u respectively. The linear and

quadratic terms in the change of potential energy of the matrix are thus

∆Wm =

∫∫∫

R>R1

1

2
Aijkl

(
e
(0)
ij ekl + eije

(0)
kl

)
dV +

∫∫∫

R>R1

1

2
Aijkleijekl dV. (3.4)

Finally, we note that if a hydrostatic pressure qin is applied to the inner surface of the shell,
the potential energy of this loading will be given by

∆Win = −

∫∫

R=R0

qinw dS, (3.5)

which is linear in the virtual displacement.
The total change in potential energy is given by the sum of (3.2), (3.4) and (3.5). We

write this as the sum of terms which are linear and quadratic in the virtual displacement,
denoted ∆W1 and ∆W2 respectively. Thus

∆W1 =

∫∫

mid-shell
surface

(
(0)nαβθαβ + (0)mαβραβ

)
dS

+

∫∫∫

R>R1

1

2
Aijkl

(
e
(0)
ij ekl + eije

(0)
kl

)
dV −

∫∫

R=R0

qinw dS, (3.6)
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and

∆W2 = I1 + I2 + I3, (3.7)

where

I1 =

∫∫

mid-shell
surface

1

2
(0)nαβw,αw,β dS, (3.8)

I2 =

∫∫

mid-shell
surface

(
h

2
Eαβλµθαβθλµ +

h3

24
Eαβλµραβρλµ

)
dS, (3.9)

I3 =

∫∫∫

R>R1

1

2
Aijkleijekl dV. (3.10)

It will be convenient to consider these three contributions to the energy separately. The
critical buckling stress is found at a stationary point of ∆W2.

4. Pre-buckled state of stress

In this section we will obtain the state of stress in the shell before buckling, which we denoted
by (0). As stated in the previous section, this can be found by taking the functional (3.6)
and solving the variational problem ∆W1 = 0 for each possible variation v. Ideally we
would like a closed-form solution to this problem. However, ∆W1 is a combination of shell
strain measures and three-dimensional strains in the matrix, rendering this a difficult task.

It turns out to be easier to solve for the pre-buckled state using linear elasticity and a
finite thickness shell, following the method of Love (11). Having found this solution we

can then take the limit h/R̂ → 0 and extract the stress resultant (0)nαβ, which is the only
appearance of the pre-buckling solution in the integral ∆W2.

4.1 Love’s method

Love’s method was used by Goodier (14) to solve the problem of a spherical elastic inclusion
embedded in a dissimilar elastic matrix. This work was repeated by Liu and Nauman (15)
and Bilgen and Insana (16). Mazzullo (17) has built on previous work in the case of a
multi-layered inclusion, which is solved numerically due to the large system of equations
that results from the analysis. In particular that work looked at the solution of a thick
spherical shell surrounding a dissimilar material, all embedded in a matrix of a third
material, undergoing uniaxial stress at infinity. On setting the stiffness of the innermost
material to zero, we recover the solution to the uniaxial problem outlined in Section 2.

The theory behind Love’s method is reviewed in a recent paper by Rahman and
Michelitsch (18). It involves constructing displacement fields as a sum of elementary
solutions, which take one of three forms — namely the φ, ω, and χ solutions. Let φn,
ωn, and χn be solid spherical harmonics of order n. Then the displacement fields arising
from each solution are given by

u = ∇φn,

u = R2∇ωn + αnRωneR,

u = ∇∧ (RχneR),
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respectively, where eR is the radial unit vector and

αn =
−2
(
3n+ 1 − 2(2n+ 1)ν

)

n+ 5 − 4ν
. (4.1)

The method involves writing the displacement in each material as a linear combination
of these elementary solutions. By considering the displacement and traction boundary
conditions a linear system for the coefficients is found, which can be solved (in principle)
analytically.

4.2 Application to the embedded spherical shell

As stated in Section 2, the state of stress in the pre-buckled shell will be found by
superimposing the results of an applied uniaxial compression at infinity and an applied
radial compression at infinity. We will not write down the derivation of the solution to
these problems; the interested reader may refer to (1).

Applying Love’s method to the uniaxial problem with τzz|∞ = −qz, we prescribe the
deformation in the matrix to be a superposition of the states arising from the following
elementary solutions:

φ−1 =
c1
R
P0(µ), φ−3 =

c2
R3

P2(µ), ω−3 =
c3
R3

P2(µ)

(where ci are undetermined constants, µ = cos θ and Pn(µ) are Legendre polynomials),
together with a homogeneous field u

∞ which is the displacement given by a constant stress
field with only one component, τzz = −qz. In the shell, we suppose that the deformation is
given by the superposition of the states arising from the following elementary solutions:

φ−1 =
c4
R
P0(µ), φ−3 =

c5
R3

P2(µ), ω−3 =
c6
R3

P2(µ),

φ2 = c7R
2P2(µ), ω2 = c8R

2P2(µ), ω0 = c9P0(µ),

where again ci are undetermined constants. One can thus obtain the displacement and stress
in both materials, and solve for the constants by matching displacements and tractions at
R = R1, and setting the traction at R = R0 to zero. The resulting expressions for the
constants ci are somewhat unwieldy so we do not record them here. However, for future
reference we note that the component τθθ of stress in the shell is given by

τθθ = 2Gs

(
−
c4
R3

+ α
(s)
0 c9 +

c5
R5

+
c6
R3

+ c7 + c8R
2 +

3νsα
(s)
0 c9

1 − 2νs

)
P0(µ)

+ 2Gs

[
−

7c5
R5

− 2c7 +
(−7 + α

(s)
−3)c6

R3
+ (−2 + α

(s)
2 )R2c8

+
νs

1 − 2νs

(
−

6c6
R3

+ (4 + 5α
(s)
2 )c8R

2

)]
P2(µ), (4.2)

where α
(s)
n is given by substituting the Poisson ratio of the shell, νs, into (4.1).
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For the radial compression at infinity, τRR|∞ = −qR and τRR|R0
= −qin. The pre-

buckling displacement will be purely radial, with

u =

(
AsR +

Bs

R2

)
eR, u =

(
AmR+

Bm

R2

)
eR

in the shell and the matrix respectively (11). Again we can find the stresses in both
materials, and match displacements and tractions at the interface. We merely note here
that

τθθ =
2Gs(1 + νs)

1 − 2νs
As

(
1 +

R3
0

2R3

)
+
qinR

3
0

2R3
, (4.3)

where

As =

qinR
3
0

4R3
1

(
1

Gm
−

1

Gs

)
−

3qR(1 − νm)

4Gm(1 + νm){
1 +

(1 + νs)

2(1 − 2νs)

[
R3

0

R3
1

+
Gs

Gm

(
1 −

R3
0

R3
1

)]} .

4.3 Finding the stress resultant

We now use the solution to the pre-buckled state in the shell to find the stress resultant
(0)nαβ required in (3.8). In fact, for axisymmetric buckling patterns, we have w,2 =
∂w/∂φ = 0, so the only stress resultant we need is (0)n11. This term is related to the
stress component τθθ in the shell, which is given by the sum of (4.2) and (4.3).

From the results in Niordson (13) applied to a spherical shell,

n11 ∼

∫ h/2

−h/2

1

R̂2

(
1 +

ρ

R̂

)
τθθ dρ ∼

h

R̂2
lim

h/ bR→0
τθθ|R= bR as

h

R̂
→ 0,

where R = R̂ + ρ. To determine limh/ bR→0 τθθ we evaluate the sum of (4.2) and (4.3) at

R = R̂, with the constants ci and As replaced by their values in the limit h/R̂→ 0. Having
found these quantities, we obtain

(0)n11 = p0P0(µ) + p2P2(µ), (4.4)

where

p0 =
qzhGs

2R̂2Gm

(1 − νm)(−5νm + 15νmνs − 17 + 3νs)

(1 − νs)(7 − 5νm)(1 + νm)

+
h(1 + νs)

2R̂2(1 − νs)

[
qin

(
Gs

Gm
− 1

)
− 3qR

Gs

Gm

(1 − νm)

(1 + νm)

]
+
qinh

2R̂2
,

p2 =
10qzhGs(1 − νm)

R̂2Gm(1 − νs)(7 − 5νm)
.

4.4 Interpretation

Given the stress resultant calculated in the previous section, it is instructive to find which
regions of the shell are in compression and tension. We have

(I)n11 = p0 +
p2

4
+

3p2

4
cos 2θ.
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Fig. 2 Areas of the spherical shell in compression (thick) and tension (thin), for a uniaxial
compression in the z-direction at infinity, with νs = 0.35 and νm = 0.45.

At the transition point between tension and compression, we have n11 = 0, giving

θ =

{
1

2
cos−1

[
−

4

3p2

(
p0 +

p2

4

)]
, π −

1

2
cos−1

[
−

4

3p2

(
p0 +

p2

4

)]}
, (4.5)

assuming that ∣∣∣∣
4

3p2

(
p0 +

p2

4

)∣∣∣∣ < 1. (4.6)

In the case that qz > 0 (compression at infinity), we have that (I)n11 < 0 in between the
values in (4.5), assuming condition (4.6) still holds. (The converse is true if qz < 0.)

Note in particular that if qR = qin = 0, the values in (4.5) depend only on the Poisson
ratios νm and νs. For example, taking the values νs = 0.35, νm = 0.45 and setting qR =
qin = 0, we find that we are in compression for θ ∈ (0.582, 2.559), independently of the shear
moduli of the materials and the magnitude of the applied stress at infinity. The region of
compression is shown as the thick curve in Figure 2 (the thin curve representing areas in
tension).

5. Stationarity of the quadratic variation ∆W2

5.1 The Rayleigh–Ritz method

We now consider the problem of finding the critical load through the stationarity point of
(3.7). Since we are limiting our analysis to axisymmetric buckling patterns, we can write
v = vReR + vθeθ, where vR, vθ are functions of R and θ only. Note that these are the
physical components of the shell displacement, which can be related to the components
referred to base vectors by v1 = R̂vθ and w = vR.

To find the stationary value of (3.7), we will use the Rayleigh–Ritz approach (19) which
involves writing the virtual displacement as an infinite series,

vR =

∞∑

n=0

UnPn(µ) vθ =

∞∑

n=1

VnP
1
n(µ), (5.1)

or equivalently

w =

∞∑

n=0

UnPn(µ), v1 =

∞∑

n=1

R̂VnP
1
n(µ), (5.2)
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where P 1
n(µ) is an associated Legendre function; these are defined by the formula

Pm
n (µ) = (−1)m(1 − µ2)m/2 dmPn

dµm
.

The coefficients are then found by solving

∂

∂Un
∆W2 = 0,

∂

∂Vn
∆W2 = 0. (5.3)

We will get an infinite system of linear equations whose determinant must be set to zero
for a nonzero buckling deformation. The critical value for the applied stress at infinity will
be found from this condition.

The identities involving Legendre polynomials and associated Legendre functions that
are necessary for this analysis can be found, for example, in Lebedev’s treatise (20). Chief
among these identities is the orthogonality condition,

∫ 1

−1

Pm
k (µ)Pm

l (µ) dµ =
2

2k + 1

(k +m)!

(k −m)!
δkl. (5.4)

5.2 Application of the Rayleigh–Ritz method to ∆W2

Consider first I1. Given that w is independent of the coordinate φ, from (3.8) we have that

I1 =

∫∫

shell

(0)n11

2

(
dw

dθ

)2

dS;

‘shell’ means the mid-shell surface. The stress resultant is given in general by (4.4), but for
simplicity we will consider two cases only: firstly qz = q∞, qR = 0 and qin = 0; and secondly
qz = 0, qR = q∞ and qin = 0. Thus (0)n11 = q∞ (p0P0(µ) + p2P2(µ)), where for the first
case we redefine

p0 =
hGs

2R̂2Gm

(1 − νm)(−5νm + 15νmνs − 17 + 3νs)

(1 − νs)(7 − 5νm)(1 + νm)
, (5.5)

p2 =
10hGs(1 − νm)

R̂2Gm(1 − νs)(7 − 5νm)
, (5.6)

and for the second case

p0 = −
3hGs(1 + νs)(1 − νm)

2R̂2Gm(1 + νm)(1 − νs)
, p2 = 0. (5.7)

Then

I1 =

∫∫

shell

q∞
2

(
p0 + p2P2(µ)

)(dw

dθ

)2

dS.

Now consider I2 from (3.9). Koiter (10) employed the van der Neut substitution,

vα = ψ,α + εαλa
λµχ,µ, (5.8)
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where εαλ is the surface alternating tensor and ψ, χ are functions to be determined. Under
our assumption of axisymmetry, this simplifies to vα = ψ,α, where from (5.2)2 we have

ψ =

∞∑

n=0

(
R̂Vn

)
Pn(µ),

with V0 arbitrary (we will set it to zero without loss of generality). This substitution
eventually allows us, following Koiter, to write

I2 =
hGs

1 − νs

∫∫

shell

[(
∇2ψ − (1 + νs)

w

R̂

)2

+ (1 − ν2
s )
w2

R̂2
+
h2

12

(
∇2w

)2
]

dS.

Finally, consider the integral I3, from (3.10). The stress tensor is given by τ ij = Aijklekl,
so that

I3 =
1

2

∫∫∫

R>R1

τ ijui|j dV

on using the symmetry of the stress tensor and the definition of the strain tensor. Then,
by the divergence theorem and the equilibrium equation for the stress tensor, we have

I3 = −
1

2

∫∫

∂V

(
τ11u1 + τ12u2

)
dS,

where ∂V is the internal boundary of the region, R = R1, and we have used the fact that
the only nonzero component of the normal is n1 = 1. The displacement components u1

and u2 here correspond to the displacement of the outer surface of the shell, which can be
replaced by the middle-surface displacement components to leading order. Thus, writing
the stresses in physical components, we obtain

I3 = −
1

2

∫∫

R=R1

(τRRw + τRθvθ) dS.

Combining the integrals I1, I2 and I3, we have

∆W2 =

∫∫

shell

{
q∞
2

(
p0 + p2P2(µ)

)(dw

dθ

)2

+
hGs

1 − νs

[(
∇2ψ − (1 + νs)

w

R̂

)2

+(1 − ν2
s )
w2

R̂2
+
h2

12

(
∇2w

)2
]}

dS −
1

2

∫∫

R=R1

(τRRw + τRθvθ) dS.

5.3 The functional in terms of the Legendre coefficients

Substituting (5.2)1 into I1, recalling that P2(µ) = (3µ2 − 1)/2, and simplifying using (5.4)
and other standard identities (the reader may refer to (1) for the details) we find

I1 = πq∞R̂
2

∞∑

n=1

[{
3p2

(
n2(n+ 1)(n+ 2)

(2n+ 1)2(2n+ 3)
+

(n− 1)n(n+ 1)2

(2n− 1)(2n+ 1)2

)

+(2p0 − p2)
n(n+ 1)

2n+ 1

}
U

2
n +

6p2n(n+ 1)(n+ 2)(n+ 3)

(2n+ 1)(2n+ 3)(2n+ 5)
UnUn+2

]
.
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Since

∇2ψ =
1

R̂2
(ψ,11 + cot θψ,1), ∇2w =

1

R̂2
(w,11 + cot θw,1),

we have

∇2ψ = −

∞∑

n=0

n(n+ 1)Vn

R̂
Pn(µ), ∇2w = −

∞∑

n=0

n(n+ 1)Un

R̂2
Pn(µ),

which gives, after using (5.4),

I2 =
4πhGs

R̂2(1 − νs)

∞∑

n=0

1

2n+ 1

[
(n(n+ 1)Vn + (1 + νs)Un)2 R̂2

+(1 − ν2
s )R̂2

U
2

n +
h2n2(n+ 1)2U 2

n

12

]
.

In order to calculate I3, we need to determine the displacement field u that is induced
in the elastic matrix from the virtual deformation v of the shell. This is found by solving
the elasticity equations for u with a displacement boundary condition u|R=R1

= v (since
the displacement on the outer shell surface is approximately equal to the mid-surface
displacement v) and zero stress at infinity. This problem has been solved by Lur’e (21).
Firstly the boundary displacement is decomposed into a series of homogeneous surface
vector spherical harmonics,

v =

∞∑

n=0

Y n(θ, φ). (5.9)

Then the vector

U−n−1 =

(
R1

R

)n+1

Y n(θ, φ) (5.10)

is formed, which gives us the final solution

u =
∞∑

n=0

[
U−n−1 −

1

2
(R2

1 −R2)
∇(∇ · U−n−1)

(3 − 4νm)(n+ 1) + 2(1 − νm)

]
. (5.11)

The problem we now have is to translate between the series (5.9) in spherical harmonics
and the series (5.1) in Legendre functions. Now

Y n = αnP
1
n(µ)(cosφ ex + sinφ ey) + βnPn(µ)ez

=
(
αn

√
1 − µ2P 1

n(µ) + βnµPn(µ)
)

eR +
(
αnµP

1
n(µ) − βn

√
1 − µ2Pn(µ)

)
eθ.

Using standard identities we find, after some manipulation,

Y n = (n(γn − αn)Pn−1(µ) + (n+ 1)γnPn+1(µ))eR +
(
(αn − γn)P 1

n−1(µ) + γnP
1
n+1(µ)

)
eθ,

(5.12)
where γn = (nαn + βn)/(2n+ 1). Thus

v =

∞∑

n=0

[n(γn − αn)Pn−1 + (n+ 1)γnPn+1] eR +

∞∑

n=0

[
(αn − γn)P 1

n−1 + γnP
1
n+1

]
eθ
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=

∞∑

m=0

[(m+ 1)(γm+1 − αm+1) +mγm−1]Pm(µ)eR

+

∞∑

m=1

[αm+1 − γm+1 + γm−1]P
1
m(µ)eθ.

Comparing with (5.1) we obtain

Un = (n+ 1)(γn+1 − αn+1) + nγn−1, Vn = αn+1 − γn+1 + γn−1,

or

γn − αn =
Un−1 − (n− 1)Vn−1

2n− 1
, γn =

Un+1 + (n+ 2)Vn+1

2n+ 3
.

Now, using (5.12), (5.10), (5.11) and various identities involving Legendre functions we
find, after some manipulation,

u =
∞∑

m=0

[
Am

(
R1

R

)m+2

+Bm

(
R1

R

)m
]
Pm(µ)eR

+

∞∑

m=1

[
Cm

(
R1

R

)m+2

+Dm

(
R1

R

)m
]
P 1

m(µ)eθ, (5.13)

where An + Bn = Un, Cn +Dn = Vn, An = −(n+ 1)Cn, and

Cn =
1

2n+ 1

{
nVn − Un +

n(2n− 1)

2

[
Un + (n+ 1)Vn

(3 − 4νm)n+ 2(1 − νm)

]}
. (5.14)

Now we use the stress–strain relations in spherical polar coordinates to obtain the stress
components from the displacement (5.13). On substituting these into I3, we finally deduce
that

I3 = 4πGmR1

∞∑

n=0

{
Un

2n+ 1

[
νm

1 − 2νm

(
(n− 2)Un − 2(n+ 1)Cn + n(n+ 1)Vn

)

+nUn − 2(n+ 1)Cn

]
+
n(n+ 1)Vn

2(2n+ 1)
[(n+ 1)Vn + 2Cn − Un]

}
,

where Cn is given by (5.14).

6. The eigenvalue problem

Having found I1, I2 and I3 in terms of Un and Vn we can now apply the buckling criteria
(5.3). Firstly, we note that (5.3)2 gives

Vn = µnUn, (6.1)

where

µn = −

{
2hn(n+ 1)Gs

R1(1 − νs)Gm
+ (n+ 1) + 2En

}−1{
2h(1 + νs)Gs

R1(1 − νs)Gm
−

2En(1 − νm)

n(1 − 2νm)

+
1

2n+ 1

(
n(2n− 1)

2
(
(3 − 4νm)n+ 2(1 − νm)

) − 1

)
−

1

2
+

νm
1 − 2νm

}
(6.2)
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with µ0 = 0. In this expression, En is the quantity

En =
∂Cn

∂Vn
=

1

2n+ 1

[
n+

n(n+ 1)(2n− 1)

2
(
(3 − 4νm)n+ 2(1 − νm)

)
]
.

Substituting (6.1) into the expressions for I1 to I3 gives

∆W2 =
∞∑

n=0

[
(anq∞ + bn)U 2

n + cnq∞UnUn+2

]
;

the coefficients are given by

an = πR̂2

{
(2p0 − p2)

n(n+ 1)

2n+ 1
+ 3p2

[
n2(n+ 1)(n+ 2)

(2n+ 1)2(2n+ 3)
+

(n− 1)n(n+ 1)2

(2n− 1)(2n+ 1)2

]}
,

bn =
4πhGs

R̂2(1 − νs)(2n+ 1)

[(
n(n+ 1)µn + 1 + νs

)2
R̂2 + (1 − ν2

s )R̂2 + h2n2(n+ 1)2/12
]

+
4πGmR1

2n+ 1

[
n− 2(n+ 1)Fn +

νm
1 − 2νm

(n− 2 − 2(n+ 1)Fn + n(n+ 1)µn)

+
n(n+ 1)µn

2
((n+ 1)µn + 2Fn − 1)

]
, (6.3)

cn =
6πR̂2p2n(n+ 1)(n+ 2)(n+ 3)

(2n+ 1)(2n+ 3)(2n+ 5)
,

where

Fn =
Cn

Un
=

1

2n+ 1

{
nµn − 1 +

n(2n− 1)

2

[
1 + (n+ 1)µn

(3 − 4νm)n+ 2(1 − νm)

]}
.

Now (5.3)1 gives the system of equations

(
−
an

bn
− λ

)
Un −

cn−2

2bn
Un−2 −

cn
2bn

Un+2 = 0 (6.4)

for Un, where c−2 and c−1 are both zero, and λ = 1/q∞. We see that the even and odd
coefficients decouple, so that we may write

(
−
a2n−1

b2n−1
− λ

)
U

odd
n −

c2n−3

2b2n−1
U

odd
n−1 −

c2n−1

2b2n−1
U

odd
n+1 = 0 (6.5)

(
−
a2n−2

b2n−2
− λ

)
U

even
n −

c2n−4

2b2n−2
U

even
n−1 −

c2n−2

2b2n−2
U

even
n+1 = 0 (6.6)

for n = 1, 2, . . . , where U odd
n = U2n−1 and U even

n = U2n−2. The expressions (6.5)–(6.6)
comprise two eigenvalue problems for infinite tridiagonal matrices:

(
A

odd − λI

)
UUU

odd = 0, (Aeven − λI)UUU
even = 0,

which can be solved numerically.
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7. Results

We present results for two modes of deformation, namely uniaxial compression at infinity,
where the stress field at infinity has only the component τzz = −q∞, and a hydrostatic
compression at infinity, for which τRR = −q∞. We will consider each case in turn.

7.1 Uniaxial compression

The infinite systems of the previous section are truncated and solved numerically using
(5.5) and (5.6) for p0 and p2. Without loss of generality we can set Gm = 1, R̂ = 1 by

rescaling. We assume that Gs = 100Gm and h = 0.02 R̂, and that the Poisson ratios of
the two materials are νm = 0.45, νs = 0.35. The truncation point of the infinite system
must be chosen carefully so as not to ‘lose’ any information from the system; we choose
the point such that if the number of terms is doubled the solution remains the same to
within a certain tolerance. We will be searching for the lowest positive value of q∞, in order
to find the first point at which a buckled solution bifurcates from the equilibrium solution
(considering a gradual quasisteady loading of the material). This corresponds to finding
the largest eigenvalue λ. Considering even and odd buckling modes separately, the largest
positive eigenvalue in both cases is λ = 18.18, giving a lowest critical compressive stress at
infinity of q∞ = 0.0550. The corresponding eigenvectors in each case give us the constants
Un, and hence from (6.1) the constants Vn. We substitute these values of the coefficients
into (5.1) to determine the displacement components of the characteristic buckling pattern
which would occur at the critical buckling stress. These buckling patterns are shown in
Figure 3.
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Fig. 3 Buckling patterns for the largest positive eigenvalue: (a) even, (b) odd.

It may seem surprising that the spheres buckle around the equator. After all, by common
experience if a spherical shell is placed between two flat plates and compressed, which is a
superficially similar mode of deformation, the spheres tend to buckle at the poles. However,
compressing spherical shells between flat plates induces a different pattern of stresses in
the shell from embedding them in an elastic material. An embedded spherical shell, under
uniaxial compression at infinity, is in compression (in the τθθ component) around the equator
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while in tension around the poles (see Figure 2); this is why buckling occurs around the
equator. Conversely, placing a shell between two flat plates and compressing it results in
the region of highest compressive stress — and hence buckling — being around the poles.

One should therefore be wary of modelling the buckling of embedded shells by sandwiching
them between flat plates. This approach does have its uses, however: if the shells are not

bonded to the elastic matrix, and the matrix is much more compliant than the shell (as is
the case here, since Gs = 100Gm), then the shells will only be in contact with the matrix at
the poles, mimicking the sandwiching approach. The likely true configuration of the spheres
is partial bonding, which would require us to solve a coupled delamination problem for the
shells.

We note that since the critical buckling stress q∞ remains considerably smaller than the
matrix shear modulus Gm, it can reasonably be assumed that the strains in the matrix
remain in the linear regime.

It is interesting to note the behaviour of the solution to the eigenvalue problem as we
vary the parameters. In particular, consider the thickness ratio h/R̂. On keeping the other
parameters fixed, the effect that changing this ratio has on the critical stress q∞ can be
seen in Figure 4(a). We notice that as the ratio tends to zero the critical stress tends to a
fixed value. We can also determine what effect this has on the buckling pattern. As shown
in Figure 5, as h/R̂→ 0 the number of oscillations in the pattern increases while the region
over which buckling occurs becomes ever smaller.

The second parameter that we consider is the ratio of shear moduli, Gs/Gm. In the limit
as this quantity tends to zero, holding the other constants at the values chosen previously,
we see from Figure 4(b) that the critical stress q∞ blows up. The effect on the buckling
pattern in this limit is similar to that seen in Figure 5.
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Fig. 4 Dependence of critical stress q∞ on parameters: (a) h/ bR, (b) Gs/Gm.

This buckling behaviour is reminiscent of that seen for beams on a nonlinear Winkler
foundation (22) or, more significantly perhaps, for beams on an inhomogeneous foundation
(23). In the latter case, buckling is localised at the point where the foundation is weakest;
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Fig. 5 Buckling patterns for h/ bR = 0.01, 0.005, 0.002, 0.001.

analogously, in the shell the localised buckling occurs where the pre-buckling compressive
stress is greatest.

Finally, we note that by solving the eigenvalue problem above, we are also able to find the
largest negative eigenvalue. This identifies the lowest critical tensile stress at infinity for
which a buckled solution bifurcates from the equilibrium configuration (restricting buckling
patterns to axisymmetric deformations). In both odd and even cases we find the critical
stress to be −q∞ = 0.1328 for the material constants given previously. The corresponding
buckling patterns are displayed in Figure 6.
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Fig. 6 Buckling patterns for the largest negative eigenvalue: (a) even, (b) odd.
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7.2 Hydrostatic stress at infinity

We will now calculate the lowest critical stress in the case where a hydrostatic stress is
applied at infinity. Substituting (5.7) into the system (6.4), we deduce that cn = 0 for each
n since p2 = 0. This means that (6.4) becomes (anq∞ + bn)Un = 0. Therefore each of the
buckling modes are given from (5.1) by

vR = UnPn(µ), vθ = VnP
1
n(µ) = µnUnP

1
n(µ)

for each n, with corresponding critical stress

q∞ = −
bn
an
. (7.1)

The constants bn in this expression are unchanged from (6.3), and substituting the relevant
value of p0 gives

an = −
3πh(1 − νm)(1 + νs)Gs

(1 − νs)(1 + νm)Gm

n(n+ 1)

(2n+ 1)
.

We require the lowest critical stress at infinity, which involves finding the minimum value
of (7.1) over n = 0, 1, 2, . . . . For the parameter values given previously, we obtain the
lowest critical stress q∞ = 0.08072, for which n = 18.

This result is to be compared with that of Fok and Allwright (9), who considered
the buckling of an embedded shell with a hydrostatic stress field at infinity, but having
introduced a simplifying assumption that the shell was inextensible, or that R̂∇2ψ + 2w = 0.
This assumption gives µn = 2

n(n+1) , which is perhaps an oversimplification when compared

to our result (6.2).
In our notation, Fok and Allwright found that the critical stress at infinity for each mode

n satisfied

q∞ =
4Gs(1 + νs)(1 + νm)

3(1 − νm)

[
1 +

Gm(1 − νs)R̂

Gs(1 + νs)h

]{
2h

R̂(n− 1)(n+ 2)(1 + νs)

+
[n(n+ 1) − (1 − νs)]

12(1 − ν2
s )

h3

R̂3
+
Gm[(2n3 − n2 + 3n+ 2) − νm(2n3 − 3n2 + 5n+ 2)]

Gs(1 + νs)(n− 1)2(n+ 2)[3n+ 2 − 2νm(2n+ 1)]

}
(7.2)

which, on minimising using our parameter values, gives the lowest critical stress as
q∞ = 0.4215 when n = 18. The value of q∞ compares quite badly with our result, indicating
that the simplifying inextensibility assumption of the authors is not valid in our parameter
regime (despite the fact that the order n = 18 of the buckling pattern as calculated by
Fok and Allwright agrees with the value arising from our theory). The results on letting

the parameters h/R̂ and Gs/Gm tend to zero are displayed in Figure 7, and show a similar
behaviour to the uniaxial case. The unbroken line corresponds to the results of our theory
while the dashed line is the result of Fok and Allwright. Note that in the limit as either
parameter tends to zero, the minimum q∞ according to (7.2) becomes asymptotically closer
to the value given by our theory.
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Fig. 7 Dependence of critical stress q∞ in the radial problem on parameters: (a) h/ bR, (b) Gs/Gm.

8. Conclusions and discussion

In analysing the buckling behaviour of an embedded shell, we have obtained a number of
new results. The first is the observation that in uniaxial compression the shell buckles in a
region around its equator, as opposed to near its poles. The reason for this is that buckling
only occurs where the shell is in compression, which is the case in this equatorial region.
The second result is an improved expression for the critical buckling stress when the stress
field at infinity is purely hydrostatic, with confirmation that the result of Fok and Allwright
are inaccurate when the thickness ratio h/R̂ is not exceedingly small. In addition we have
analysed the behaviour of the shell undergoing uniaxial compression as two ratios tend to
zero: the thickness ratio and the ratio of shear moduli Gs/Gm. In both limits, the buckling
pattern becomes more oscillatory, which leads us to consider an analysis in these limits by
WKB theory. Those results will appear elsewhere.

A few words should be said regarding the assumptions made during the analysis. The
model chosen for the shell in order to analyse buckling was Koiter’s shallow shell theory. This
is the simplest nonlinear shell theory and the underlying assumption is that the wavelength
of the buckling patterns is small compared to the radius of curvature of the shell. While
this assumption seems to be confirmed a posteriori by the buckling patterns obtained, it
may be worthwhile investigating more comprehensive nonlinear shell theories to verify that
the observed buckling pattern justifies the use of the shallow shell assumption.

Secondly, we note that the results obtained are conditional on the buckling pattern being
axisymmetric. While a verification of this conjecture depends on the calculation of the full
nonaxisymmetric buckling problem, we believe that — at least for uniaxial compressive
stress at infinity — the axisymmetric buckling pattern is likely to be the first to bifurcate
from the equilibrium solution. One may justify this claim empirically by noting that the pre-
buckling stresses τθθ and τφφ are at their most negative at the equator, but the magnitude of
τφφ is considerably smaller than τθθ for the chosen values of the Poisson ratios: specifically,

in the limit h/R̂ → 0, τφφ|µ=0 = 0.07 τθθ|µ=0. Thus it is plausible that any stretching
energy relieved by buckling in the φ-direction would not compensate for the additional
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bending energy induced. However, a full nonaxisymmetric description of the buckling is
required to prove or disprove this claim.

The main difficulty in implementing the nonaxisymmetric buckling problem is that
the energy functional would become much more complicated; the quantities w, ψ and
χ would be linear combinations of surface spherical harmonics Y m

n (θ, φ) rather than
Legendre polynomials. The relatively simple nature of our energy functional would thus
not necessarily be reflected by one which includes variation in the φ-direction. This will
also be the case if we consider additional terms in the shell energy functional due to the use
of a different shell theory.

Finally, we note that imperfections in the shell cause it to buckle at a lower critical stress
than a pristine shell would. Koiter analysed this effect for a shell undergoing hydrostatic
pressure by including an additional term in the energy functional, but to follow this approach
for the embedded shell would be more difficult for the reasons outlined above.
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