
AXISYMMETRIC CREEPING FLOW PAST A POROUS
PROLATE SPHEROIDAL PARTICLE USING THE

BRINKMAN MODEL

by T. ZLATANOVSKI�

(Faculty of Mechanical Engineering, Saint Cyril and Methodius University, PO Box 464,
Skopje, Republic of Macedonia)

[Received 4 August 1997. Revise 2 March 1998]

Summary
A boundary-value solution to axisymmetric creeping #ow past and through a porous prolate
spheroidal particle is presented. The Brinkman model for the #ow inside the porous medium
and the Stokes model for the free-#ow region in their stream function formulations are
used. As boundary conditions, continuity of velocity, pressure and tangential stresses across
the interface are employed. A mainly analytical procedure for calculating the required
eigenvalues and eigenfunctions for the porous region part of the solution is proposed. The
coef"cients of the convergent series expansions of the general solutions for the stream
functions, and thus for the velocity, pressure, vorticity and stress "elds, both for the #ow
inside and outside the porous particle, can be calculated to any desired degree of accuracy
as the solution of a truncated algebraic system of linear equations, once the eigenvalues to
the Brinkman equation for a given focal distance and permeability have been computed.
The drag force experienced by the porous particle is then given as a function of only one of
these coef"cients. Streamline-pattern and drag-force dependence on permeability and focal
distance are presented and discussed.

1. Introduction

The computational prediction of the relevant hydrodynamic parameters of the #ow of a viscous
incompressible #uid past a porous particle is of considerable practical and theoretical interest in
many physical and engineering applications. The usual macroscopic continuum approach to this
complex #uid dynamical problem, as a satisfactory approximation in many real processes, is to
neglect inertial and volume forces as well as thermal in#uences, and to treat it as a multi"eld
boundary-value problem governed by the steady-state Stokes equation in the free-#ow region
and the Darcy or the Brinkman equation in the region occupied by the porous body. In reality,
the particle may be arbitrarily shaped and of a fairly odd structure, such as a solid core covered
with one or more porous layers, a void one-layer or multi-layered shell of porous material, or
only a single porous particle with uniform or varying permeability, exhibiting a uniform slow
translational motion relative to the quiescent unbounded liquid space.
Analytical solutions to the creeping-#ow problem just stated, despite the inherent as well as

practical usefulness that these would have, have not been found except for the geometrically
simplest cases of a porous sphere or spherical shell. In the past these simpler cases were
investigated by many authors in different ways.
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Ooms et al. (1) discussed, among others, the reasons which led Brinkman (2) and Debye
(3) independently to suggest a modi"ed Darcy equation which is now commonly known as the
Brinkman equation. These authors gave an analytical solution of the problem for the composite
porous spherical particle, having in mind its application to a polymer coil in a solvent as a typical
example of a porous particle of non-uniform permeability. In passing they also addressed the
problem of a porous shell with a solid or cavity core.
Another way to solve the problem under consideration is to use numerical methods, as was

done by Youngren and Acrivos (4) for creeping #ow past a solid body employing the well-known
Ladyzhenskaya (5) reduction of the Stokes problem to the solution of a system of Cartesian-
tensor integral equations for velocity and shear-stress along the boundary. This possibility was
discussed by Higdon and Kojima (6) for a single porous body of uniform permeability, in which
case Howells's (7) Green's-function formulation of the Brinkman equation for the porous region
has to be used. These authors derived asymptotic results for small and large permeability, which
simpli"es the analysis for the case of particles with arbitrary geometry. The computer code for
the full set of integral equations as well as its numerical implementation turn out to be rather
complex even for the simplest case of axisymmetric creeping #ow past a uniformly porous
sphere. Less complicated solution techniques for speci"c geometries are needed. Such solutions,
whilst being interesting in their own right, can be used as a check for more complicated numerical
schemes that solve problems for arbitrary geometries.
Qin and Kaloni (8) obtained an exact solution for the axisymmetric creeping #ow past a porous

one-layer spherical shell immersed in a uniform Newtonian incompressible viscous #uid using
Brinkman's equation for the #ow inside the porous region, the Stokes equation for the free-#ow
regions, and continuity conditions for velocity, pressure and tangential stresses across the two
permeable interfaces. These authors considered the core to be either a free-#ow cavity or a
solid region. The practical importance of such a solution is seen, for instance, in the need for
understanding the #ow past a collection of "ne particles. Such collections usually possess low
bulk density and very high porosity, so that for the porous-#ow region the use of the Brinkman
equation rather than Darcy's law is appropriate. These authors, like many others previously, also
discussed and emphasized the merits of the Brinkman equation over Darcy's equation, the latter
having the drawback of necessitating the use of empirical boundary conditions, and showed
how Darcy's solution can be approximated from the Brinkman solution. As for the solution
method itself, these authors employed their previously developed Cartesian-tensor solution of
the Brinkman equation (Qin and Kaloni (9)). Using the stream function formulation, Bahtt and
Sacheti (10) also solved the same problem of creeping #ow past a porous spherical shell in a
uniform ambient #ow.
Here we are concerned with the analytical solution to the problem of creeping axisymmetric

#ow past a single porous prolate spheroidal particle. In many applications, porous bodies of
spheroidal rather than spherical shape may be encountered, which justi"es an investigation of
the problem under consideration. As starting equations we also use the Brinkman equation for
the #ow inside the porous region and the Stokes equation for the free-#ow region, but employ the
stream function formulation as a boundary-eigenvalue problem to obtain a series expansion of
the general solution to the Brinkman equation in modi"ed spheroidal coordinates. A simple but
effective and mainly analytical procedure for calculating the eigenvalues for the porous region
part of the solution is proposed. The coef"cients of the convergent series expansion for the
stream function, and thus for the velocity, pressure, vorticity and stress "elds, both inside and
outside the spheroidal particle, can be calculated to any desired degree of accuracy as the solution
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Fig. 1 Porous prolate spheroidal particle in uniform ambient #ow, coordinate system and #ow regions

of a truncated algebraic system of simultaneous linear equations, once the eigenvalues for a
given focal distance and permeability have been computed. The drag force experienced by the
spheroidal particle is then given as a function of only one of these coef"cients. When the focal
distance of the spheroidal particle tends to zero, we obtain the exact solution for the spherical
particle.
Concerning the basic characteristics of the spheroidal geometry, we refer to Happel and

Brenner (11) and to the work of Dassios et al. (12), from which we adopt part of the notation
needed. These latter authors derived a semiseparable general solution for the free-#ow Stokes
operator in modi"ed spheroidal coordinates, which we have used here.
For arbitrary chosen values of the focal distance, the streamline pattern and drag force, which

are dependent on the permeability of the single porous prolate spheroid, are presented and
discussed.

2. Statement of the problem and the governing equations in the primitive variables
The con"guration of a porous prolate spheroid (an `egg-shaped' ellipsoid) in an unbounded
liquid relative to a Cartesian-coordinate system (x1, x2, x3) with the origin at the centre O of the
spheroid and unit vectors (i, j,k) is shown in Fig. 1. A modi"ed orthogonal prolate spheroidal
coordinate system (τ, ζ, ϕ) with unit vectors (eτ , eζ , eϕ) is de"ned through the relations

x1 = c
{
τ 2 − 1} 12 {1− ζ 2} 12 cosϕ, x2 = c

{
τ 2 − 1} 12 {1− ζ 2} 12 sinϕ, x3 = cτζ, (1)

where 1 ≤ τ < ∞, −1 ≤ ζ ≤ 1, 0 ≤ ϕ < 2π . The positive number c > 0 is the semifocal
distance of the spheroidal system. The coordinate surfaces τ = const are a family of confocal
prolate spheroids with the centre at the origin. The equation for the surface Sa of a single prolate
spheroid in Cartesian coordinates, with the minor semiaxis a1 and the major semiaxis a3, is given
by

x23
a23
+ x21 + x22

a21
= 1, a3 = cτa, a1 = c

{
τ 2a − 1

} 1
2 . (2)
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The Lamé coef"cients in the prolate spheroidal geometry are

Ĥτ = c

{
τ 2 − ζ 2} 12{
τ 2 − 1} 12 , Ĥζ = c

{
τ 2 − ζ 2} 12{
1− ζ 2} 12 , Ĥϕ = c

{
τ 2 − 1} 12 {1− ζ 2} 12 . (3)

We assume that the porous spheroidal particle is stationary and a steady axisymmetric #ow has
been established around and through it by a uniform far-"eld #ow with velocity of magnitude
U directed in the positive orientation of the x3-axis. The viscous #uid is Newtonian and
incompressible. Thermal, inertial and volume forces are neglected. The medium of the porous
spheroidal particle has constant permeability k. As reference quantities we use the velocity U , a
given pressure p0, and, as lengthscale L , the spheroid minor semiaxis a1. The dynamic viscosity
and density of the #uid are denoted by µ and ρ respectively.
The governing differential equations for the creeping #ow around and through the porous

particle must be written for the two regions separated by the interface Sa . For the region outside
the porous spheroid, namely (1), we assume the #ow to be governed by the Stokes equation

1v(1) = ϑ1 grad p(1). (4)

For the region (2), occupied by the porous particle, we use the modi"ed Darcy equation, that is,
the Brinkman equation

1v(2) − K 2v(2) = ϑ2 grad p(2). (5)

In addition, the continuity equation must be satis"ed in both #ow regions:

div v(i) = 0, i = 1, 2. (6)

The dimensionless coef"cients appearing in (4) and (5) are de"ned as K 2 = βL2/k with β =
µ/µ̂, and ϑ1 = EuRe, ϑ2 = β EuRe with the Euler number Eu = p0/ρU2 and the Reynolds
number Re = ρLU/µ. The effective viscosity of the #uid saturating the porous medium is
denoted by µ̂ (see, for example, (2, 1, 8) for more details about the so-called effective viscosity).
The viscosity coef"cients µ and µ̂ are, in general, different. Here, we consider the ratio β to be
arbitrary, but constant. The basic assumption pertinent to the Stokes approximation is Re < 1
and ReEu > 1.
The velocity vector and pressure in the two regions are denoted by v(i) and p(i), i = 1, 2.

The porous medium is assumed to be homogeneous and isotropic. It is clear that v(2) and p(2)

represent the macroscopic averaged values of velocity and pressure in the porous medium with
respect to an elementary representative volume of the porous medium. This approach is usual
for conceptual models of #ows through porous media. We assume the velocity v(2) and the
pressure p(2) to be continuous everywhere in the porous medium as though no solid matrix were
present. In that way we regard the entire space as a homogeneous isotropic #uid continuumwhich
inside the volume occupied by the porous body, where the "ctitious #uid is also assumed to be
Stokesian, obeys a different equation of motion from that in the free #ow, namely Brinkman's
equation (5).
For small permeability of the porous medium, the Brinkman equation is a good approximation

of Darcy's law:
K 2v(2) = −ϑ2 grad p(2). (7)

For very high porosity we obtain from (5), but not from (7), the Stokes equation (4) as for
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the free #ow. Darcy's equation is of lower order than the Stokes equation for the free stream,
and therefore dif"culties are encountered in trying to satisfy physically reasonable conditions of
continuity of velocity and pressure across the boundary. This had been the reason for introducing
the modi"ed Darcy equation by Brinkman and Debye. However, Darcy's equation is still widely
used by many authors to study #ow through porous media, together with modi"ed physical
boundary conditions supported by experiments (13, 14). In using the Brinkman equation, which
is especially relevant for high porosity materials, these dif"culties with the boundary conditions
are avoided. We can employ realistic dynamical conditions at the interfaces between the free-
#ow regions and the "ctitious dissimilar #ow in the porous particle. Following Lamb we can
demand that the stress vector at the interface should be continuous, and we could then expect to
obtain continuous velocity and pressure distributions across the interface; see (15, section G.I.64.
Boundary conditions, p. 240). Here we use the same boundary conditions as in (8), namely
continuity of velocity, pressure and tangential stress across the interface, and known values of
velocity and pressure at in"nity, as well as regularity of the solution in the entire space.

3. The stream function formulation and solution of the problem

Because the #ow is axisymmetric (vϕ = 0, ∂/∂ϕ = 0) we can introduce a stream function
9(i)(τ, ζ ) which has to satisfy the continuity equation (6), that is, we may write

v(i) = v(i)τ eτ + v(i)ζ eζ = curl
(
1

Ĥϕ
9(i)eϕ

)
(8)

and obtain the two velocity components of the #ow in the two regions i = 1, 2 as

v(i)τ =
1

Ĥζ Ĥϕ

∂9(i)

∂ζ
= 1

c2
{
τ 2 − ζ 2} 12 {τ 2 − 1} 12

∂9(i)

∂ζ
, (9a)

v
(i)
ζ = −

1

Ĥτ Ĥϕ

∂9(i)

∂τ
= −1
c2
{
τ 2 − ζ 2} 12 {1− ζ 2} 12

∂9(i)

∂τ
. (9b)

For the vorticity "eld we have

ωωω(i) = curl v(i) = curl curl
(
1

Ĥϕ
9(i)eϕ

)
= ω(i)ϕ eϕ = −

1

Ĥϕ
E29(i)eϕ, (10)

where the Stokes operator E2 in prolate spheroidal coordinates is given by

E2 = 1

c2
(
τ 2 − ζ 2)

[(
τ 2 − 1) ∂2

∂τ 2
+ (1− ζ 2) ∂2

∂ζ 2

]
. (11)

The pressure can be eliminated from (4) and (5) by using1v(i) = grad div v(i)−curl curl v(i), and
applying the curl operator on both sides of these equations. This gives the following differential
equations to be solved for the stream function:

E49(1) = 0, E49(2) − K 2E29(2) = 0. (12a, b)
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The normal and tangential stresses of interest are

p(i)ττ = −p(i) +
1

ϑi

2

c
{
τ 2 − ζ 2} 12

[{
τ 2 − 1} 12 ∂v(i)τ

∂τ
− ζ

{
1− ζ 2} 12
τ 2 − ζ 2 v

(i)
ζ

]
, (13a)

p(i)τζ =
1

ϑi

1

c
(
τ 2 − ζ 2){τ 2 − ζ 2} 12

{{
1− ζ 2} 12 [(τ 2 − ζ 2)∂v(i)τ

∂ζ
+ ζv(i)τ

]

+{τ 2 − 1} 12 [(τ 2 − ζ 2)∂v(i)ζ
∂τ
− τv(i)ζ

]}
, i = 1, 2. (13b)

The boundary conditions which comprise continuity of velocity, pressure and tangential stresses
across the interface Sa are

v(1)τ (τa, ζ ) = v(2)τ (τa, ζ ), v
(1)
ζ (τa, ζ ) = v(2)ζ (τa, ζ ),

p(1)τζ (τa, ζ ) = p(2)τζ (τa, ζ ), p(1)(τa, ζ ) = p(2)(τa, ζ ).
(14)

Additionally, we have the velocity conditions at in"nity:

lim
τ→∞ v

(1)
τ = ζ, lim

τ→∞ v
(1)
ζ = −

{
1− ζ 2} 12 (15)

and the condition that velocity and pressure must be non-singular everywhere in the #ow "eld.

3.1 The spherical particle as a limiting case of the spheroidal particle

Before considering the solution of the problem for arbitrary semifocal distance 0 < c < ∞ we
brie#y recall the solution for the limiting case of the same problem when the semifocal distance

c tends to zero. For this limiting process we have limc→0 cτ = R = {x21 + x22 + x23} 12 , whereas
the other two coordinates remain unchanged, that is, the spheroidal coordinate system reduces to
the spherical one (R, ζ, ϕ), ζ = cos θ . Thus the relations (1) change to

x1 = R
{
1− ζ 2} 12 cosϕ, x2 = R

{
1− ζ 2} 12 sinϕ, x3 = Rζ (16)

and consequently all the equations (8) to (15) transform into the corresponding equations of the
spherical geometry. In particular, the Stokes operator E2 reduces to the known Stokes operator
D2 in spherical coordinates:

D2 = ∂2

∂R2
+ 1− ζ

2

R2
∂2

∂ζ 2
(17)

and the equation system (12a, b) becomes

D49(1) = 0, D49(2) − K 2D29(2) = 0. (18a, b)

Of course, we would have obtained the same result if we had started with spherical coordinates
from the beginning.
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As is known, both equations (18a, b) are completely separable. Their complete general
solutions are easily obtained and can be written as

9(1) =
∞∑
m=0

{[
A(1)m R1−m + B(1)m Rm + C (1)m R3−m + D(1)m R2+m

]
Gm(ζ )

+[ Ã(1)m R1−m + B̃(1)m Rm + C̃ (1)m R3−m + D̃(1)m R2+m
]
Hm(ζ )

}
, (19a)

9(2) =
∞∑
m=0

{[
A(2)m R1−m + B(2)m Rm + C (2)m

√
RI−ν(KR)+ D(2)m

√
RIν(KR)

]
Gm(ζ )

+[ Ã(2)m R1−m + B̃(2)m Rm + C̃ (2)m
√
RI−ν(KR)+ D̃(2)m

√
RIν(KR)

]
Hm(ζ )

}
, (19b)

where I±ν(KR) denote the modi"ed Bessel functions of the "rst kind and of non-integer index
v = {m(m− 1)+ 1

4

} 1
2 ; Gm(ζ ), Hm(ζ ) are the Gegenbauer functions of the "rst and second kind

respectively, of order m, and of degree − 12 .
The nice feature of the general solutions (19a, b) in spherical coordinates, apart from

separability and closed-form eigenfunctions, is that the ζ -dependent functions in (19a, b) are
the same for both #ow regions, that is, they do not contain K as a parameter. This allows us
to equate only the R-dependent factors of every order m by satisfying the spherical boundary
conditions at the interface corresponding to (14), whatever the value of the factor K . In that way
we obtain a set of linear algebraic systems for determining the unknown constants in (19a, b).
Before doing this we note that here we seek solutions which are regular on the x3-axis. If we
retain the terms of the general solutions (19a, b) which are multiplied by G0(ζ ) and G1(ζ ), the
velocities will be rendered irregular at the x3-axis, whereas Hm(ζ ) are irregular on the x3-axis for
every m. In order to satisfy the spherical far-"eld conditions for the free #ow corresponding to
(15), we are forced to retain only the term of orderm = 2 of the general solution for the free-#ow
stream function and to additionally take D(1)2 = 0. Furthermore, the modi"ed Bessel functions
I−ν(KR) are irregular at R = 0 for m ≥ 2, hence we have to take C (2)m = 0 for m ≥ 2. The
same is true for the terms multiplied by A(2)m , m ≥ 2. Thus (19a) and (19b) reduce only to terms
multiplying G2(ζ ). Using relations between the modi"ed Bessel functions and the hyperbolic
functions, we "nally obtain

9(1)(R, ζ ) =
[
A(1)2

1

R
+ B(1)2 R2 + C (1)2 R

]
G2(ζ ), (20a)

9(2)(R, ζ ) =
{
B(2)2 R2 + D(2)2

[
K cosh(KR)− 1

R
sinh(KR)

]}
G2(ζ ). (20b)

Thus, we have obtained closed-form expressions for the stream functions 9(i)(R, ζ ), i = 1, 2,
and can also easily derive the closed-form expressions for velocity, pressure, viscous stresses,
vorticity and the drag force exerted on the porous spherical particle in terms of the constants
A(1)2 , B

(1)
2 ,C (1)2 , B(2)2 , D(2)2 . These constants are obtained as solutions of the linear algebraic

system which results from using the spherical boundary conditions corresponding to (14) and
(15). For the drag force exerted on a porous spherical particle we obtain

FD = −4πC (1)2 . (21)
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More explicit expressions for the drag force are known for the solid sphere (Stokes formula), for
the porous sphere and for the porous one-layer spherical shell with cavity or solid core.

3.2 The generalized eigenfunctions of E2 in spheroidal coordinates

The equations (12a, b) in spheroidal coordinates do not permit such nice separable general
solutions as in the limiting case when the focal distance c → 0, where the spheroidal
coordinate system becomes spherical. For the equation (12a), Dassios et al. (12) gave a complete
semiseparable general solution in the form

9(1)(τ, ζ ) = g0(τ )G0(ζ )+ g1(τ )G1(ζ )+
∞∑
m=2

[gm(τ )Gm(ζ )+ hm(τ ) Hm(ζ )], (22)

where the functions gm(τ ) and hm(τ ) are given in (12) as linear "nite combinations of the
Gegenbauer functions Gm(τ ) and Hm(τ ). In contrast to the usual form of separable general
solutions of partial differential equations, two examples of which are the solutions (19a, b) to the
equations (18a, b), the individual terms of (22) are not solutions of the equation (12a). However,
the full expansion is a solution and this kind of general solution is therefore referred to as a
semiseparable general solution by Dassios et al. (12).
In our case, we will use the restricted form of the complete semiseparable general solution of

(12a), given in (12, equation (30)). This takes into account that the solution of the #ow problem
has to be regular on the axis and at in"nity, and is, additionally, even in the ζ -coordinate, because
of the symmetry of the 9-"eld with respect to the equatorial plane (ζ = 0), as in the case of the
porous spherical particle. We give here this part of the general solution to (12a) in the following
form:

9(1)(τ, ζ ) = 2c2G2(τ )G2(ζ )+
∞∑

m=2,4,...
A(1)m Hm(τ )Gm(ζ )+

∞∑
m=2,4,...

C (1)m Ä(3)m (τ, ζ ), (23)

where Ä(3)m (τ, ζ ) (note that here the upper index (3) has nothing to do with the upper index for
designating the #ow regions) is the third of the four (12) generalized eigenfunctions of (12a):

Ä
(3)
2 (τ, ζ ) = 2

25H2(τ )G4(ζ )+ 2
25H4(τ )G2(ζ )+ 1

6G1(τ )G2(ζ ), (24a)

Ä(3)m (τ, ζ ) = − αm

2(2m − 3) [Hm−2(τ )Gm(ζ )+ Hm(τ )Gm−2(ζ )]

+ βm

2(2m + 1) [Hm+2(τ )Gm(ζ )+ Hm(τ )Gm+2(ζ )], m = 4, 6, . . . , (24b)

where the coef"cients αm , βm and γm (the last of these will be used later) are given by

αm = (m − 3)(m − 2)
(2m − 3)(2m − 1) ,

βm = (m + 1)(m + 2)
(2m − 1)(2m + 1) ,

γm = 2m2 − 2m − 3
(2m + 1)(2m − 3) .

(25)
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3.2.1 Axisymmetric Stokes #ow around a solid spheroid in uniform ambient #ow. Nevertheless,
some boundary-value problems in spheroidal coordinates associated with equation (12a) can
still be solved by the method of separation of variables without resorting to the above general
semiseparable solution. This is the case, for example, for the Stokes #ow problem for a solid
spheroid immersed in a homogenous #ow parallel to its main axis. As is known and more closely
elaborated in (12), this problem was treated and solved by several authors in the past. We brie#y
give here two possible ways of investigating the solution to this problem. Making an ad hoc
ansatz 9(1)(τ, ζ ) = F(τ )G2(ζ ), equation (12a) gives[

τ 2
(
1− τ 2)F ′′′′ − 4τ F ′′′ + 4(1+ τ 2)F ′′ − 8τ F ′ + 8F]

−[(1− τ 2)F ′′′′ − 4τ F ′′′]ζ 2 = 0. (26)

Equating the expressions in brackets to zero and eliminating F ′′′′(τ ) gives a homogenous third-
order linear differential equation

τ
(
τ 2 − 1)F ′′′ + (τ 2 + 1)F ′′ − 2τ F ′ + 2F = 0, (27)

the solution of which is easily found to be

9(1)(τ, ζ ) = [A(1)2 H2(τ )+ B(1)2 G2(τ )+ C (1)2 G1(τ )
]
G2(ζ ). (28)

Using the far-"eld velocity condition (15) and the no-slip boundary condition at the surface of
the solid prolate spheroid (τ = τa = const) we "nd the values for the constants A(1)2 , B(1)2 = 2c2,
and C (1)2 , and thus the complete solution of the problem.
We must arrive at the same result by using the semiseparable general solution of Dassios et al.

(12) as given by equation (23). This solution meets all the above requirements for regularity,
evenness and satisfaction of the far-"eld condition. We also necessarily have to take A(1)m = 0,
m = 4, 6, . . . . However, we still have in"nitely many unknown constants C (1)m , m = 2, 4, . . .,
and only two boundary conditions for the velocity on the surface of the spheroid. It is also easily
seen that the no-slip boundary condition on the spheroidal particle surface cannot be satis"ed by
taking any "nite combination of the generalized eigenfunctions Ä(3)m (τ, ζ ), m = 2, 4, . . .. The
problem can only be solved by taking the following additional relations between the constants
C (1)m :

αmC
(1)
m − βm−2C (1)m−2 = 0, m = 4, 6, . . . . (29)

In this way we arrive at the solution (28) which we have obtained by the method of an ad hoc
variable separation ansatz.

3.3 Axisymmetric creeping #ow past a porous prolate spheroidal particle

In order to solve the problem of axisymmetric creeping #ow past a single porous prolate
spheroidal particle using the stream function formulation of the Brinkman equation, we must
"nd a general solution of equation (12b). For this purpose, we write the equation (12b) in the
following two equivalent forms:(

E2 − K 2
)
E29(2) = 0, E2

(
E29(2) − K 29(2)

) = 0, (30a, b)
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and seek the solution in the form of a linear sum of two functions, 9(2) = 9
(2)
1 + 9(2)2 .

The functions 9(2)1 and 9(2)2 are obtained by solving the following two second-order partial
differential equations:

E29(2)1 = 0, E29(2)2 − K 29(2)2 = 0. (31a, b)

We use the method of separation of variables to "nd general solutions of (31a, b). The complete
separable general solution to (31a) is obtained as

9
(2)
1 =

∞∑
m=0

{[
A(2)m H2(τ )+ B(2)m Gm(τ )

]
Gm(ζ )+

[
Ã(2)m H2(τ )+ B̃(2)m Gm(τ )

]
Hm(ζ )

}
. (32)

Again, because of reasons to do with regularity and symmetry, as for the spherical geometry, we
retain, in this case also, only the following part of the above general solution:

9
(2)
1 =

∞∑
m=2,4,...

B(2)m Gm(τ )Gm(ζ ). (33)

To "nd general solutions to (31b) we make the ansatz9(2)2 = T (τ ) Z(ζ ) and obtain the following
system of two second-order ordinary differential equations for Z(ζ ) and T (τ ):(

1− ζ 2)Z ′′ + (q2ζ 2 + λ)Z = 0, (
1− τ 2)T ′′ + (q2τ 2 + λ)T = 0, (34a, b)

where q = cK has been introduced. We note that the equations (34a, b) are identical. They are
therefore both satis"ed by the same general solutions. The difference is that in satisfying the
ζ -dependent equation (34a) we need here only a general solution that is regular at least in the
domain −1 ≤ ζ ≤ 1. In satisfying the τ -dependent equation (34b), however, we need a general
solution which is regular at least for 1 ≤ τ ≤ τa .
The eigenvalue problem (34a) cannot be solved in closed form in terms of known functions.

We therefore solve the problem by means of appropriate series expansions of the unknown
functions, taking into account that the solution to (34a) has to be regular on the axis and even
because of the symmetry of the9-"eld on either side of the equatorial plane (ζ = 0). Because of
the rotational symmetry about the x3-axis we can declare the x3-axis to be the zero-streamline,
that is, Z(±1) = 0. As the #ow rate through the porous region must be "nite, the stream
function 9(2)(τ, ζ ) must be bounded in the domain −1 ≤ ζ ≤ 1, 1 ≤ τ ≤ τa < ∞. The
eigenvalue problem can now be stated as follows: "nd the set of eigenvalues {λ} for which
(34a) has eigensolutions bounded in the interval 0 ≤ ζ ≤ 1 and, additionally, Z(±1) = 0.
The Dassios et al. (12) general solutions to (12a) are given in terms of Gegenbauer functions.
To achieve compatibility when satisfying the boundary conditions at the interface we must
also seek eigenfunctions of (34a) represented as convergent series expansions in terms of
Gegenbauer functions. Therefore, for Z(ζ ) we make a series ansatz in terms of even Gegenbauer
polynomials:

Z(ζ ) =
∞∑

m=2,4,...
amGm(ζ ), (35)

where am = am
(
λ, q2

)
are unknown coef"cients to be determined. The coef"cient a2 6= 0 can
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be taken as arbitrary. Substituting the series (35) into the differential equation (34a) and using
the relation stemming from the differential equation of the Gegenbauer functions

G ′′m(ζ ) = −
m(m − 1)
1− ζ 2 Gm(ζ ), (36)

we arrive at the relation

∞∑
m=2,4,...

[
m(m − 1)− λ− q2ζ 2]amGm(ζ ) = 0, (37)

which is just another expression for the differential equation (34a) and has to be satis"ed for
every complex ζ and 0 < q <∞. Using further the relations

ζ 2Gm(ζ ) = αmGm−2(ζ )+ γmGm(ζ )+ βmGm+2(ζ ), m = 2, 4, . . . , (38)

where the coef"cients αm , βm and γm are given by (25), and considering the fact that the system
Gm(ζ ), m = 2, 4, . . ., is complete and its functions are linearly independent, we obtain the
following recursive formula for determining the coef"cients am :

a2 = 1, a4 =
2− λ− 1

5q
2

q2α4
,

am =
[
(m − 2)(m − 3)− λ− q2γm−2

]
am−2 − q2βm−4am−4

q2αm
, m = 6, 8, . . . .

(39)

From the requirement that the relation (37) also has to be satis"ed at the point ζ = 0 we "nd a
relation which can be used for determining the set of eigenvalues {λ}. Putting ζ = 0 in (37) we
obtain a characteristic equation for the eigenvalue problem (34a):

P(λ) =
∞∑

m=2,4,...
[m(m − 1)− λ]amGm(0) = 0. (40)

The function P(λ) can be rearranged into an in"nite power series in terms of λ, whose
coef"cients depend only on the parameter q2. The in"nitely many zeros of the entire function
P(λ) are all real and distinct and provide the exact eigenvalues to the eigenvalue problem (34a).
Approximate values of the "rst N/2 eigenvalues λn , n = 2, 4, . . . , N (N is an arbitrary even
positive integer) are obtained by truncating the in"nite power series P(λ) at m = N and
solving (factoring) the resulting polynomial equation PN/2(λ) = 0 of degree N/2 numerically.
As N becomes larger, this numerical calculation renders the N/2 approximate eigenvalues
closer to their exact values. For q = 0 we obtain in this way the N/2 exact eigenvalues
λn = n(n − 1), n = 2, 4, . . . , N . For the same purpose, instead of (37) we can also use the
equation am

(
λ, q2

) = 0. We have found recurrent formulae for determining the coef"cients
of the characteristic polynomial PN/2(λ) = 0 although these are not presented here. For
determining the eigenvalues, instead of (35) we can also use other series expansions as well
as pure numerical methods, which, however, are more cumbersome and less accurate.
With the sequence of eigenvalues λn

(
q2
)
, n = 2, 4, . . ., the coef"cients in (39) become a

corresponding sequence of coef"cients an,m , and thus the expression (35) gives a corresponding
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sequence of eigenfunctions Zn(ζ ), which satisfy the differential equation (34a) and converge
in the entire complex plane. The accuracy of the eigenvalues in#uences signi"cantly the
convergence rate of the eigenfunction series solution (35). Also, for q large, more terms in
the series expansion (35) should be taken, and λn

(
q2
)
should be calculated more accurately.

The odd eigenvalues and the corresponding odd eigenfunctions to (34a) can be found in a
similar way, but we do not use them in this paper. The second-kind solutions of (34b), uniformly
convergent when τ lies in any closed domain of the complex τ -plane supposed cut along the
real axis from −1 to +1, can be presented in an integral form. However, no use is made of that
solution in this paper either.
Having found the way of calculating the required eigenvalue spectrum and the in"nite

sequence of everywhere-convergent eigenfunctions to the eigenvalue problem (34a), we could
take the same sequence of functions as the one required solution of the τ -dependent differential
equation (34b) for the domain 1 ≤ τ ≤ τa . However, we found it more convenient to derive
the required solution of (34b), which we designate here as f (2)n (τ ), for every eigenvalue λn ,
n = 2, 4, . . . in the form of a convergent (in the domain 1 ≤ τ ≤ τa) power series expansion in
terms of (τ − τM ), where τM = 1

2 (1+ τa):

f (2)n (τ ) =
∞∑
l=0

ân,l(τ − τM )l . (41)

The series coef"cients appearing in (41) are obtained recursively as follows:

ân,0 = 1, ân,1 = 0, ân,2 =
q2τ 2M + λn
2(τ 2M − 1)

, ân,3 =
τM
(
q2 − 2ân,2

)
3(τ 2M − 1)

,

ân,4 =
q2 − (2− λn − q2τ 2M)ân,2 − 12τMân,3

12
(
τ 2M − 1

) ,

ân,5 =
2τMq2ân,2 −

(
6− λn − q2τ 2M

)
ân,3 − 24τMân,4

20
(
τ 2M − 1

) , (42)

ân,6 =
q2ân,2 + 2τMq2ân,3 −

(
12− λn − q2τ 2M

)
ân,4 − 40τMân,5

30
(
τ 2M − 1

) ,

ân,l =
{
q2ân,l−4 + 2τMq2ân,l−3 −

[
(l − 2)(l − 3)− λn − q2τ 2M

]
ân,l−2

−2(l − 2)(l − 1)τMân,l−1
}{
l(l − 1)(τ 2M − 1)}−1,

where l = 7, 8, . . ., n = 2, 4, . . ..
Thus, "nally, the required general solution representation of 9(2)(τ, ζ ) is

9(2)(τ, ζ ) =
∞∑

m=2,4,...

{
B(2)m Gm(τ )+

∞∑
n=2,4,...

D(2)n f (2)n (τ ) an,m

}
Gm(ζ ). (43)

For the free-#ow region (1) we use the Dassios et al. (12) general solution (23). The
corresponding series expansion of (23) in terms of ζ -dependent Gegenbauer polynomials is

9(1)(τ, ζ ) =
∞∑

m=2,4,...
f (1)m (τ )Gm(ζ ), (44)
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where the τ -dependent coef"cients are given by

f (1)2 (τ ) = 2c2G2(τ )+ A(1)2 H2(τ )+ 1
6C

(1)
2 G1(τ )+

( 2
25C

(1)
2 + α∗4C (1)4

)
H4(τ ),

f (1)m (τ ) = A(1)m Hm(τ )+
(
β∗m−2C

(1)
m−2 + α∗mC (1)m

)
Hm−2(τ )

+ (β∗mC (1)m + α∗m+2C (1)m+2
)
Hm+2(τ ), m = 4, 6, . . . .

(45)

In (45) we have used

α∗m = −
αm

2(2m − 3) , β∗m =
βm

2(2m + 1) . (46)

If we truncate the series expansion (44) at an arbitrary m = N , then, as can be seen from (24b),
only the term β∗NC

(1)
N HN (τ )GN+2(ζ ) will be missing for these truncated series to be exact

solutions of (12a). We can use this fact for checking the accuracy of the numerical solution of
the problem.
We further need general expressions for the pressure for both #ow regions. We can obtain

these expressions by either using the easily veri"able fact that

1p(i) = 0, i = 1, 2 (47)

and then "nding the general solutions of (47) by the method of separation of variables, or by
using the Navier�Stokes equations (4) and (5), in which the velocities are expressed using the
general solutions for the respective stream functions. We suppress here the full presentation of
these procedures and give only the "nal expressions for the pressure as follows:

p(1)(τ, ζ ) = 1

c3ϑ1

∞∑
m=2,4,...

C (1)m
1

m(m − 1)Qm−1(τ )Pm−1(ζ ), (48)

p(2)(τ, ζ ) = − q2

c3ϑ2

∞∑
m=2,4,...

B(2)m
1

m(m − 1) Pm−1(τ )Pm−1(ζ ), (49)

where Pm(x), Qm(x) are the Legendre functions of the "rst and second kinds respectively, of
order m.
It can be shown that the boundary conditions (14), which comprise continuity of velocity,

pressure and tangential stress across the interface Sa , can also be written as

9(1)(τa, ζ ) = 9(2)(τa, ζ ), 9(1)τ (τa, ζ ) = 9(2)τ (τa, ζ ), (50a, b)

9(1)ττ (τa, ζ ) = 9(2)ττ (τa, ζ ), p(1)(τa, ζ ) = p(2)(τa, ζ ). (51a, b)

As the sets of functions Gm(ζ ) and Pm−1(ζ ), m = 2, 4, . . ., are complete and linearly
independent, in (50), (51) we can equate the corresponding coef"cients. We truncate the series
expansions belonging to equations (50), (51) at an appropriate order N = 2, 4, . . ., depending on
the accuracy we wish to achieve, so that the indices m and n run over the values m = 2, 4, . . . , N
and n = 2, 4, . . . , N . Thereby

f (1)N (τ ) = A(1)N HN (τ )+
(
β∗N−2C

(1)
N−2 + α∗NC (1)N

)
HN−2(τ )+ β∗NC (1)N HN+2(τ ) (52)
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is to be taken, that is, we reject the term α∗N+2C
(1)
N+2HN+2(τ )GN (ζ ) from (45). In this way, we

obtain a system of 2N linear algebraic equations in as many unknowns:

A(1)m ,C (1)m , B(2)m , D(2)m , m = 2, 4, . . . , N , (53)

that can be uniquely solved. When performing numerical calculations, the power series
expansions (41) must also be truncated at an order L depending on the accuracy we wish to
achieve.

3.4 Drag force acting on the porous spheroidal particle

Once the coef"cients appearing in the general solutions of the problem have been computed, we
can then compute all the important physical quantities: the stream function, velocity components,
pressure, vorticity and stress "elds. It remains to derive the expression for the main integral
quantity of the problem, the drag force acting on the porous particle. Due to the symmetry of our
problem there is only a net force per unit area in the x3-direction:

dFD = p(1)ττ (τa, ζ )eτk+ p(1)τζ (τa, ζ )eζk. (54)

With

eτk =
{
τ 2a − 1

} 1
2{

τ 2a − ζ 2
} 1
2

ζ, eζk = −τa
{
1− ζ 2} 12{
τ 2a − ζ 2

} 1
2

, d Aτ = Ĥϕ Ĥζ dϕ dζ, (55)

the total drag force is given by

FD = 2πc2
∫ 1

−1

[
ζ
{
τ 2a − 1

} 1
2 p(1)ττ (τa, ζ )+

{
1− ζ 2} 12 τa p(1)τζ (τa, ζ )]{τ 2a − 1} 12 dζ. (56)

Upon substituting the expressions (13a, b) for the stresses p(1)ττ and p
(1)
τζ into (56), wherein the

velocity and its partial derivatives are expressed via the corresponding derivatives of the stream
function 9(1)(τ, ζ ), and then carrying out the integration making use of symmetry properties,
we obtain the "nal expression for the total drag force as

FD = −2π
3c
C (1)2 . (57)

In the limiting case c → 0 we obtain from (57) the drag force formula (21) for the porous
spherical particle.

4. Presentation of some of the computed results and discussion

To obtain numerical results for given input parameter values, the computer code for the solution
of the problem was written in MATHEMATICA and successfully tested. As illustration we present
here only some of the computed results, showing the dependence of the streamline pattern and
drag force on the permeability and focal distance. These are the two #uid-#ow properties that
are usually needed in practice. The streamline pattern is needed to "nd the #ow-rate through the
internal part of the porous particle, and the drag force is needed for calculating, for instance, the
settling time of the porous particle in a #uid.
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Fig. 2 Streamline patterns for a set of arbitrary chosen values of permeability and focal distance
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Fig. 3 Drag force FD against permeability k; varying parameter is the semifocal distance c; β = 1

In Fig. 2 the streamline patterns for arbitrary chosen values of permeability, effective viscosity
and focal distance (k = 0·25, β = 1, c = 1) for the porous and (comparatively) solid prolate
spheroid are presented. Due to the #ow symmetry it suf"ces to show the streamlines only in
one quadrant of the plane. As can be seen from the "gure, and as is to be expected, increasing
permeability generally #attens the streamlines.
The dependence of the drag force FD on permeability k for the porous prolate spheroid is

shown in Fig. 3. The semifocal distance c is varied as a parameter. It is seen that the drag force
decreases with increasing permeability k, and increases with increasing semifocal distance c.
The values of the drag force for the case of a porous sphere (curve c = 0 in the "gure) have been
computed by using the known exact drag force formula for that case.
The accuracy of the computed results generally depends on the chosen eigenvalue order N

and on the series truncation index L of the τ -dependent series expansion (41) and its derivatives.
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A measure of the overall accuracy of the computed "eld quantities is provided by the accuracy
of the computed drag force. The presented results were calculated to at least 5-digit accuracy in
the drag force. The corresponding eigenvalues have been calculated to an accuracy of at least
5 digits, too. The choice of N for achieving a given accuracy depends in the "rst place on the
value of the semifocal distance c. For large values of c, N should be chosen larger too. The
left-hand starting points of the drag force curves (k = 0) in Fig. 3 have been computed by using
the known exact drag-force formula for the solid spheroid. It is also seen from Fig. 3 that for
k → ∞ all the drag force curves tend, as is to be expected, asymptotically to zero. We "nally
remark that for approximately c ≤ 0·005, when using normal computer precision, the solution
for the spherical geometry should be used.
The solutions of the problem for a multi-layered porous prolate spheroidal shell with porous,

cavity or solid core and for the corresponding problems in the oblate spheroidal geometry will
be presented in a forthcoming paper.

Acknowledgements

Part of this work was completed during a stay at the Bundeswehr University in Hamburg under
the auspices of Deutscher Akademischer Austausch Dienst. With pleasure I would like to thank
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