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Abstract—The electric potential and field of an axially symmetric
electric system can be computed by expansion of the central and
remote zonal harmonics, using the Legendre polynomials. Garrett
showed the usefulness of the zonal harmonic expansion for magnetic
field calculations, and the similar radial series expansion has been
widely used in electron optics. In this paper, we summarize our
experience of using the zonal harmonic expansion for practically
interesting axisymmetric electric field computations. This method
provides very accurate potential and field values, and it is much
faster than calculations with elliptic integrals. We present formulas
for the central and remote expansions and for the coefficients of the
zonal harmonics (source constants) in the case of general axisymmetric
electrodes and dielectrics. We also discuss the general convergence
properties of the zonal harmonic series (proof, rate of convergence,
and connection with complex series). Practical considerations about
the computation method are given at the end. In our appendix,
one can find many useful formulas about properties of the Legendre
polynomials, various derivatives of the zonal harmonic functions, and
a simple numerical integration algorithm.

1. INTRODUCTION

Electric field calculation is important in many areas of physics: electron
and ion optics, charged particle beams, charged particle traps, electron
microscopy, electron spectroscopy, plasma and ion sources, electron
guns, etc. [1–3]. A special kind of electron and ion energy spectroscopy
is realized by the MAC-E filter spectrometers, where integral
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energy spectrum is measured by the combination of electrostatic
retardation and magnetic adiabatic collimation. Examples are the
Mainz and Troitsk electron spectrometers [4, 5], the aSPECT proton
spectrometer [6, 7], the WITCH ion spectrometer [8, 9], and the
KATRIN pre- and main electron spectrometers [10].

Various numerical methods exist for electric field computa-
tions [2, 3, 11]: the finite difference method (FDM), the finite element
method (FEM), and the boundary element method (BEM). Field com-
putation with high accuracy in FDM and FEM is rather difficult. With
BEM, however, the situation is much better. Although the calculated
charge density distribution with BEM has some numerical error (it
deviates somewhat from the real charge density), with a fixed charge
density distribution it is possible to compute the potential and field at
any arbitrary point with extremely high accuracy. This is an impor-
tant advantage of BEM against FDM and FEM. Unfortunately, the
Coulomb integration with summation over the many subelements of
the discretized electrode surface is rather slow, even with axisymmet-
ric electrodes (using elliptic integrals). It is expedient to replace the
slow Coulomb integration-summation of BEM with a faster computa-
tion method, which at the same time keeps the high accuracy of the
Coulomb integration.

It has been known for a long time [12–16] that axisymmetric
electric and magnetic fields can be calculated by zonal harmonic
expansion. Garrett showed in several papers [17–20] that in the case of
axisymmetric magnetic systems the zonal harmonic expansion method
has several practical advantages relative to the more widely known
elliptic integral method. The main advantage is the speed: the zonal
harmonic method is in some cases 100 or even 1000 times faster than
the computation with the elliptic integrals. In the case of axisymmetric
electric systems it has been widely known that the off-axis electric
field and potential within some region not far from the symmetry
axis can be expressed with the on-axis potential function (or with
the higher derivatives of the on-axis potential), and the corresponding
radial series expansion formulas can be found in many electron optics
books [1–3]. Nevertheless, to our knowledge, before 2002 the zonal
harmonic expansion method has not been used for practical electric
field calculations.

The electric potential of an arbitrary electric system in a source-
free region (vacuum) can be generally written as an expansion of the
spherical harmonics, which are proportional to the associated Legendre
polynomials Pm

n (cos θ) [12, 14–16]. In the special case of axially
symmetric electric systems the absence of the azimuthal dependence
reduces the problem to the simpler zonal harmonic expansion. Defining
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an arbitrary reference point on the symmetry axis (we shall call it a
source point), the central and remote solid zonal harmonics are the
functions ρnPn(cos θ) and ρ−(n+1)Pn(cos θ), where ρ is the distance
between the source point and the field point, θ denotes the angle
between the symmetry axis and the line connecting the source and
field points, and Pn(cos θ) is the Legendre polynomial of order n.
Within a spherical region inside the electrodes (central region), with
the source point as the center of the sphere, the electric potential
can be expanded in central zonal harmonics; the radius of the sphere
(ρcen: central convergence radius) is the minimal distance between the
source point and the electrodes (see Fig. 1 in Section 2). Defining the
remote convergence radius ρrem by the maximal distance between the
source point and the electrodes, within the remote region outside the
electrodes (at field points ρ > ρrem) the potential can be expanded in
remote zonal harmonics. The expansion formulas for the potential and
the field can be found in Section 2. These central and remote expansion
series are convergent only for ρ < ρcen and ρ > ρrem, respectively. Let
us define the convergence ratio Rc = ρ/ρcen for the central expansion
and Rc = ρrem/ρ for the remote one. The rate of convergence is fast if
the convergence ratio is small, and slow if Rc is close to 1; for Rc > 1
the series are divergent. Section 6 contains a mathematical proof of the
convergence of the zonal harmonic expansions, and examples for the
rate of convergence as function of the convergence ratio. In addition,
we show there also the connection between the convergence of zonal
harmonic expansions and complex power series.

In order to use the zonal harmonic expansion formulas (Eqs. (2)–
(4), (9)–(11) in Section 2) for the potential and field calculations,
we have to know the coefficients Φcen

n and Φrem
n in these expressions;

following the terminology of Garrett, we call these coefficients source
constants. Section 3 contains formulas of source constants for a charged
ring, and in Sections 4 and 5 one can find expressions of source
constants for general axisymmetric electrodes and dielectrics. Note
that all the field expansion and source constant formulas in our paper
have been tested by comparisons with our computer codes.

The source constants depend on the source point and on the
electric system properties: geometry of the electrodes and dielectrics,
potential of the electrodes and permittivity of the dielectrics. In order
to use our formulas for the source constant evaluations, one has to
compute first the surface and volume charge density distributions of
the electrodes and dielectrics. In the case of the boundary element
method, this is no problem at all: the charge density calculation
is a necessary step during the field computation process. With the
knowledge of the charge density, the potential and field can also be
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computed by elliptic integrals, but this needs a lot of computation time
(as we have already mentioned above); the zonal harmonic method is
much faster. In the FDM and FEM, the charge density is usually not
computed. Nevertheless, it is possible to derive it from the field: the
charge density σ on the metallic electrode surface can be calculated
by the formula σ = ε0E (in SI units), where E denotes the electric
field on the electrode surface. One could of course argue: why take
an additional step in FDM or FEM to calculate the field (far from the
electrodes) by the zonal harmonic expansion, if it is already known
from the usual FDM or FEM procedure? The answer is the following:
for a fixed charge density distribution the zonal harmonic method is
able to provide a potential or field distribution with an extremely
high accuracy (for example: close to double precision), which could be
advantageous, for example, for trajectory calculations that might need
this high accuracy. One has to emphasize the term ’for fixed charge
density’ in the above sentence: it is usually not possible to compute
very accurately the charge density distribution (even a single precision
calculation could be quite difficult). Therefore, the calculated potential
or field has an error due to the charge density error; the high accuracy
of the computed field by the zonal harmonic method is relative to the
charge density distribution.

The zonal harmonic expansion method is very fast and accurate,
and these features make it ideal for high precision trajectory
computations. Using this method, the electric field can be computed
during the particle tracking ‘on-line’, i.e., no two-dimensional
interpolation grid has to be calculated prior to the tracking. Instead,
only the one-dimensional source point grid, containing the source
constants at the source points, has to be computed in advance. If
one insists on using the interpolation method for tracking simulations,
then the computation of the interpolation grid is much faster with the
zonal harmonic method than with the elliptic integrals.

Based on the publications of Garrett [17–20], we developed
the zonal harmonic expansion method for axisymmetric electric
field calculations. Using this method, together with the boundary
element method for charge density calculation, we have written
several FORTRAN and C codes for potential and field calculations
of axially symmetric electrodes. These codes have been used
for electromagnetic design studies and/or trajectory calculations
connected with the aSPECT proton spectrometer [6, 7], the Mainz
neutrino mass spectrometer [4, 21], the WITCH ion spectrometer [8, 9],
the Nab neutron decay spectrometer [22], and various axisymmetric
electrode systems of the KATRIN experiment [10, 23–32]. Note that
all the diploma theses and dissertations cited in our paper can be
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found either on the KATRIN homepage [33] or on the working group
homepage of Weinheimer [34]. Based upon our C codes, further
electric field simulation C and C++ codes have been written by
various students at the University of Münster [35], at MIT [36], and
at KIT [37]. The zonal harmonic method presented in this paper has
been included into the C++ simulation package KASSIOPEIA of the
KATRIN experiment [38].

2. ZONAL HARMONIC EXPANSION FOR THE
ELECTRIC POTENTIAL AND FIELD

Let us assume that we have an axially symmetric electric system, the
axis z being the symmetry axis. Fig. 1 shows a simple electrode system
with 2 electrodes (E1 and E2). Let us define an arbitrary reference
point S(z0, 0) on the symmetry axis: we shall call it a source point. An
arbitrary space point, where we want to calculate the electric potential
and field, will be called a field point; it has the Descartes coordinates
x, y, z. This field point (denoted by F in Fig. 1) can be defined by
the cylindrical coordinates z and r (where r =

√
x2 + y2), or by the

distance ρ between the source point and the field point, and by the
angle θ between the symmetry axis z and the line connecting these
2 points (due to the axial symmetry, the azimuthal angle of the field
point around the symmetry axis is not relevant). We shall use quite
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Figure 1. Electrodes E1 and E2, with field point F and source point
S, and with the central (ρ < ρcen) and remote (ρ > ρrem) convergence
regions.
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often the parameters ρ, u and s:

ρ=
√

(z−z0)2+r2, u=cos θ=(z−z0)/ρ, s=sin θ=
√

1−u2 =r/ρ. (1)

We assume that the electric system is constrained inside a
spherical shell, with the source point S(z0, 0) as its center. There are
no electrodes or dielectrics inside the sphere with center S and radius
ρcen, and outside the sphere with center S and radius ρrem. We call the
area ρ < ρcen central region and the area ρ > ρrem remote region (see
Fig. 1). The central convergence radius ρcen is the minimal distance of
the source point S from the electrodes and dielectrics. Similarly, the
remote convergence radius ρrem is the maximal distance of the source
point from the electrodes and dielectrics.

The central and remote regions are free from electric charges,
which are the sources of the electric field. Therefore, the electric
potential in these regions can be written as an expansion of the
central zonal harmonics ρnPn(u) and of the remote zonal harmonics
ρ−(n+1)Pn(u), which satisfy the Laplace equation (Pn(u) is the
Legendre polynomial of order n).

2.1. Central Region

In the central region, we get the following expansion formulas for the
electric potential Φ and the axial and radial electric field components
Ez and Er:

Φ(z, r) =
∞∑

n=0

Φcen
n

(
ρ

ρcen

)n

Pn(u), (2)

Ez(z, r) = − 1
ρcen

∞∑

n=0

Φcen
n+1 · (n + 1)

(
ρ

ρcen

)n

Pn(u), (3)

Er(z, r) =
s

ρcen

∞∑

n=0

Φcen
n+1

(
ρ

ρcen

)n

P ′
n(u). (4)

Here P ′
n(u) = dPn(u)/du denotes the first derivative of the Legendre

polynomial of order n. In order to compute the Pn(u) and P ′
n(u) values

for very high indices n, one can use the recurrence relations (A11)
and (A12) of Appendix A. Using Eqs. (A20)–(A28) and (B1)–(B8) in
Appendices A and B, we have verified that the above formulas satisfy
the fundamental static electric field equations in vacuum:

∆Φ = 0, ∇ ·E = 0, ∇×E = 0, E = −∇Φ.

We have defined the coefficients Φcen
n (n = 0, 1, . . .) so that each

of them has the dimension of the electric potential Φ, and Φcen
0 is
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equal to the potential at the source point S(z0, 0). We shall call these
coefficients central source constants: they represent the electric field
sources (electric charges and dipoles) inside the central region. They
depend on the electric sources (electric system geometry, electrode
potentials, dielectric permittivities), and on the given source point:
Φcen

n = Φcen
n (z0). In the following 3 sections, we present source constant

formulas for various kinds of electric systems. Here, we show some
general properties of the source constants. First, the central source
constants Φcen

n are proportional to the higher derivatives of the on-
axis potential function Φ0(z) at the source point S(z0, 0). In order
to understand this relation, let us take a special field point on the
symmetry axis (r = 0) with z > z0. Then θ = 0, u = cos θ = 1,
Pn(1) = 1 (see Eq. (A4) in Appendix A), ρ = z − z0, therefore from
Eq. (2) we get

Φ(z, 0) = Φ0(z) =
∞∑

n=0

Φcen
n

1
ρn

cen

(z − z0)n. (5)

Comparing this equation with the general Taylor expansion formula of
the on-axis potential Φ0(z) around the source point z0

Φ0(z) =
∞∑

n=0

1
n!

Φ(n)
0 (z0)(z − z0)n, Φ(n)

0 (z0) =
dnΦ0

dzn
(z0), (6)

we get the relation:

Φcen
n = Φcen

n (z0) =
ρn

cen

n!
Φ(n)

0 (z0). (7)

The central zonal harmonic expansions in Eqs. (2)–(4) are
convergent only for ρ < ρcen. The convergence is fast if the convergence
ratio Rc = ρ/ρcen is small, and rather slow if ρ is close to ρcen (Rc is
close to 1) (in this case a large number of terms have to be evaluated to
get a prescribed accuracy). For ρ > ρcen (Rc > 1) the above expansions
should not be used, because they provide then meaningless results,
due to their divergence. Various considerations about the convergence
properties of these formulas can be found in Section 6.

2.2. Radial Series Expansion

It is well known in electron optics that for an axially symmetric
electrode system the off-axis electric potential and field not too far from
the symmetry axis are completely determined by the on-axis potential.
The off-axis potential can be expressed by the radial series expansion
that contains the higher derivatives of the on-axis potential [1–3].
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The radial series expansion is a special case of the more general
central zonal harmonic expansion. Namely, in the case of the radial
series expansion the field point and the source point have the same axial
coordinate values: z = z0. That means: θ = 90◦ (the line connecting
the field and source points is perpendicular to the z axis), u = 0 and
ρ = r. Using Eq. (A5) in Appendix A and the connection between the
central source constants and the higher derivatives Φ(n)

0 (z) in Eq. (7),
we obtain

Φ(z, r) =
∞∑

n=0

(−1)n

(2nn!)2
Φ(2n)

0 (z)r2n. (8)

This is the radial series expansion for the electric potential, which is
presented in most electron optics books [1–3]. Similarly to the central
zonal harmonic expansion, Eq. (8) is convergent only for r < ρcen.

With the knowledge of the higher derivatives or of the central
source constants at the axial point z0, the radial series expansion makes
possible the calculation of the potential and field at points of the 2-
dimensional plane z = z0 (which is perpendicular to the axis z). On the
other hand, using the zonal harmonic expansion, the field calculation is
possible within a 3-dimensional region (the sphere ρ < ρcen). Changing
the coordinate z of the field point, one needs different source constants
for the radial series expansion, since for this calculation method the
field and source points should have the same axial coordinate values.
In the case of the zonal harmonic expansion, this complication is not
present: one can use the same central source constants for all field
points which are inside the convergence sphere with radius ρcen and
center (z0, 0).

To use the radial series method for charged particle tracking,
one has to compute the source constants for a rather dense source
point distribution, and one has to interpolate the field between two
neighboring source points. The zonal harmonic expansion method is
free from these complications; the distance between two neighboring
source points can be rather large (but a few times smaller than ρcen),
and no field interpolation is necessary.

2.3. Remote Region

In the case of field points with ρ > ρrem (remote region) the electric
potential can be expressed as an expansion of the remote zonal
harmonic functions ρ−(n+1)Pn(u). We get the following remote zonal
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harmonic expansion formulas:

Φ(z, r) =
∞∑

n=0

Φrem
n

(
ρrem

ρ

)n+1

Pn(u), (9)

Ez(z, r) =
1

ρrem

∞∑

n=1

Φrem
n−1 · n

(
ρrem

ρ

)n+1

Pn(u), (10)

Er(z, r) =
s

ρrem

∞∑

n=1

Φrem
n−1

(
ρrem

ρ

)n+1

P ′
n(u). (11)

Using Eqs. (A20)–(A28) and (B1)–(B8) in Appendices A and B, we
have verified that the above formulas satisfy the fundamental static
electric field equations in vacuum: ∆Φ = 0, ∇ · E = 0, ∇ × E = 0,
E = −∇Φ.

The coefficients Φrem
n (n = 0, 1, . . .) are the remote source

constants: they represent the electric field sources (charges) in the
remote region. They have the dimension of the electric potential, and
they depend on the electric sources and on the given source point:
Φrem

n = Φrem
n (z0). In the following 3 sections, we present remote

source constant formulas for various kinds of electric systems (with
derivations).

The remote zonal harmonic expansions correspond to the
multipole expansion of the electric potential and field, for axisymmetric
systems. The first term in each expansion corresponds to the
charge, the second to dipole, the third to quadrupole, etc. (see
Refs. [13, 14, 39, 40]). The remote source constants Φrem

n are
proportional to the axisymmetric multipole electric moments. For
example

Φrem
0 =

1
4πε0

Q

ρrem
, Φrem

1 =
1

4πε0

pz

ρ2
rem

, (12)

where Q is the electric charge, and pz denotes the electric dipole
moment of the system (in case of axial symmetry only the axial
component is non-zero). Substituting these expressions into Eqs. (9)–
(11), we obtain the point charge and dipole formulas for the electric
potential and field. Note that we use SI units throughout our paper.

The above remote zonal harmonic expansion formulas are
convergent only for ρ > ρrem. The convergence is fast if the
convergence ratio Rc = ρrem/ρ is small, and rather slow if ρ is close to
ρrem (Rc is close to 1); in this case a large number of terms have to be
evaluated, in order to get a prescribed accuracy. For ρ < ρrem (Rc > 1)
the above expansions should not be used, because they provide then
meaningless results (due to their divergence). Various considerations
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about the convergence properties of these formulas can be found in
Section 6.

Within the spherical shell ρcen ≤ ρ ≤ ρrem neither the central nor
the remote zonal harmonic series are convergent. Nevertheless, the
source point can be arbitrarily chosen on the symmetry axis, and for
the various source points we get several central and remote regions.
Calculating the source constants for many source points, we can find
a large spatial region where either the central or the remote zonal
harmonic expansion formulas, for some source point, can be used
to calculate the electric potential and field. Of course, close to the
electrodes and dielectrics the zonal harmonic expansion method is not
applicable (due to its divergence or very slow convergence); in these
regions the electric potential and field of the axisymmetric system
should be computed by elliptic integrals.

3. SOURCE CONSTANTS FOR A CHARGED RING

In order to calculate the electric field with the zonal harmonic
expansion method, we need the source constant values. For a fixed
source point, these numbers contain the whole information about the
sources of the electric field (as far as the zonal harmonic expansion is
concerned). We present in this section the calculation of the central
and remote source constants for the simplest axisymmetric electric
system: the circular charged ring.

We use the notations Z, R and Q for the axial coordinate, radius
and charge of the ring, respectively, and we call the point (Z, R) on
the cylindrical meridian plane a charged ring point C. Let us fix on

ρ

θ

ρ

S

z Zzz

F

d zs

s

0

Z

C
R

r

Figure 2. The charged ring point C, source point S, axial field point
F triangle.
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the symmetry axis z a source point S with axial coordinate z0, and let
us denote the distance between the source point S and the ring point
C by ρs, and the angle between the symmetry axis z and the S-C line
by θs (see Fig. 2). ρs and cos θs can be expressed as

ρs =
√

(Z − z0)2 + R2, us = cos θs = (Z − z0)/ρs. (13)

Note that here the ring point C and the source variables Z, R, ρs and
us are analogous to the field point F and to the field variables z, r, ρ
and u of Section 2.

Both the central and the remote convergence radii of the ring are
equal to ρs. Nevertheless, we want to write here the source constant
expressions in a general form, so that the charged ring could be later
considered as part of a more complex electric system. Therefore, we
assume below that ρcen ≤ ρs ≤ ρrem, i.e., the ring is located between
the sphere surfaces limiting the central and remote regions.

Let us now consider a special field point F on the symmetry axis
with axial coordinate z (z > z0). The electric potential at this point
due to the charged ring is simply

Φ0(z) =
Q

4πε0dz
, (14)

where dz denotes the distance of the axial field point F and the ring
point C. The source point S, the axial field point F and the ring point
C constitute a triangle with side lengths dz, ρs and ρz = z − z0 (see
Fig. 2). We can express the dz distance with the other parameters of
this triangle:

dz =
√

ρ2
s + ρ2

z − 2ρsρzus. (15)

Let us first assume that the axial field point F is inside the central
convergence region (ρz < ρcen); since ρcen ≤ ρs, ρz < ρs is then also
valid. Introducing hcen = ρz/ρs, and using the generating function
Formula (A1) of Appendix A, the 1/dz factor of Eq. (14) can be written
in terms of a Legendre polynomial expansion as follows:

1
dz

=
1
ρs

∞∑

n=0

hn
cenPn(us). (16)

Next, let us consider an axial field point F inside the remote
convergence region (ρz > ρrem); since ρrem ≥ ρs, ρz > ρs is then also
valid. In this case we define hrem = ρs/ρz. Recalling again Eq. (A1),
we get now the following expansion:

1
dz

=
1
ρz

∞∑

n=0

hn
remPn(us). (17)
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Inserting Eqs. (16) and (17) into Eq. (14), and comparing to
Eqs. (2) and (9), where u = Pn(u) = 1, we get the central and remote
source constants of the charged ring:

Φcen
n =

Q

4πε0ρs

(
ρcen

ρs

)n

Pn(us), (18)

Φrem
n =

Q

4πε0ρs

(
ρs

ρrem

)n+1

Pn(us). (19)

If the electric system contains many charged rings, the source
constants of the whole system can be obtained by summing these
expressions over all rings.

If there are no other electrodes in addition to the ring, then
ρcen = ρrem = ρs, so the central and remote source constants
are equal, and their n-dependence follows the behavior of the
Legendre polynomials, i.e., they decrease rather slowly with n (see
the asymptotic Formula (A7) in Appendix A). On the other hand,
if the ring is considered as part of a larger electrode system, so
that ρcen < ρs < ρrem, then the source constant contributions of
the ring decrease exponentially with n. These considerations are
important to understand the convergence properties of the zonal
harmonic expansions for a general axisymmetric electric system (for
more details see Section 6).

4. SOURCE CONSTANTS FOR AN AXISYMMETRIC
ELECTRODE

We present now results for the central and remote source constants for
a general axially symmetric electrode. This could be, in principle,
approximated by many charged rings, and in this case we could
use the formulas of the previous section. Nevertheless, for practical
problems we have usually electrodes with continuous charge density
distributions, and then higher precision can be attained by integrations
instead of summations.

In the case of a metallic electrode, the electric charge is present
only on the electrode surface. The cross-section of the axisymmetric
electrode with the (z, r) meridian plane is a curve; let us assume
that this curve is parametrized by the Z(p), R(p) functions, where
the parameter p is the path length on the electrode curve. The
charge density on the electrode surface is assumed to be σ(p). The
infinitesimal charge dQ on the electrode surface part defined by the
parameter interval (p, p + dp) is

dQ = 2πR(p)σ(p)dp. (20)
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Replacing Q in Eqs. (18) and (19) by dQ, and integrating over p, we
get the central and remote source constants of the electrode:

Φcen
n =

1
2ε0

∫
dp · σ R

ρs

(
ρcen

ρs

)n

Pn(us), (21)

Φrem
n =

1
2ε0

∫
dp · σ R

ρs

(
ρs

ρrem

)n+1

Pn(us). (22)

In these formulas σ, ρs and us depend on the curve parameter p (due
to the p-dependence of Z and R in Eq. (13)). The central and remote
convergence radii are:

ρcen = min
p

ρs, ρrem = max
p

ρs. (23)

The integrations can be performed by weighted sums of the
integrand values at some number of discretization points (see
Appendix C). Since the integrands in Eqs. (21) and (22) are computed
by recurrence relations, one can save a lot of computation time by
summing over the discretization points in an outer loop, and evaluating
the integrands at fixed discretization points for all Legendre polynomial
indices n in an inner loop.

Usually, an electrode system contains many electrodes. The source
constants of the whole system can be obtained by summing the source
constant contributions from all electrodes. The central and remote
convergence radii of the whole system are the minimal and maximal
ρcen and ρrem values of Eq. (23), respectively, taken over all electrodes.

5. SOURCE CONSTANTS FOR AN AXISYMMETRIC
DIELECTRIC

Let us denote the axial and radial coordinates of an arbitrary point
of the dielectric by Z and R. The axisymmetric dielectric has axial
and radial polarization components: Pz = Pz(Z, R), Pr = Pr(Z,R).
In order to derive the source constants of the dielectric, we first
calculate its on-axis scalar potential. Let us consider a small rectangle
on the (z, r) meridian plane with axial coordinates Z and Z + dZ
and with radial coordinates R and R + dR, where dZ and dR are
infinitesimally small. This rectangle defines an electric dipole ring, with
axial and radial dipole moments pz = PzdV and pr = PrdV , where
dV = 2πRdZdR is the volume of the ring. Using the dipole potential
formula, we obtain the following on-axis scalar potential corresponding
to this polarized ring:

Φ0(z) =
dV

4πε0

[
Pz

z − Z

d3
z

−Pr
R

d3
z

]
, (24)
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where dz denotes the distance of the on-axis point (z, 0) from the ring.
To derive the central source constants corresponding to an

arbitrary source point z0, we assume first that ρz = z − z0 < ρs,
where ρs is the distance of the source point z0 from the polarized ring
(see Eq. (13)). Defining h = ρz/ρs, and writing dz = ρs

√
1 + h2 − 2hus

(see Eq. (15)), we can write the expression ∂zd
−1
z = −(z − Z)/d3

z as
a Legendre polynomial expansion, using Eq. (A1). Similarly, d−3

z can
be expanded with the help of Eq. (A9). Comparing these expansions
with the on-axis (u = Pn(u) = 1, ρ = ρz) version of Eq. (2), we get
the central source constants for the polarized ring.

To get the remote source constants, we choose ρz = z − z0 > ρs,
and we define h = ρs/ρz. Taking the above Legendre polynomial
expansions and comparing with the on-axis version of Eq. (9), we get
the remote source constants for the polarized ring.

Another (somewhat simpler) derivation is the following: first,
the polarized ring with the above axial dipole moment pz can be
substituted by 2 charged rings with axial coordinates Z and Z + dZ,
radii R, and charges Q = pz/dZ and −Q. Similarly, the radially
polarized ring can be replaced by 2 charged rings with charges Q =
pr/dR and −Q, with the same axial coordinate Z, and with different
radii R and R + dR. Hence, the source constants of the axially and
radially polarized rings can be expressed as axial and radial derivatives
of the charged ring source constants:

Φn(polarized ring, pz) = pz∂ZΦn(charged ring, Q = 1), (25)

Φn(polarized ring, pr) = pr∂RΦn(charged ring, Q = 1). (26)

Using the charged ring source constants of Eqs. (18) and (19), and the
derivative expressions of (B4), (B3), (B1) and (B2), we get the central
and remote source constants of the polarized ring.

For a general axisymmetric dielectric, the central and remote
source constants can be expressed by the following two-dimensional
integrals:

Φcen
n =− 1

2ε0

∫
dR

∫
dZ · R

ρ2
s

(
ρcen

ρs

)n

{
(n + 1)PzPn+1(us) + Pr

R

ρs
P ′

n+1(us)
}

, (27)

Φrem
n =

1
2ε0

∫
dR

∫
dZ·R

ρ2
s

(
ρs

ρrem

)n+1{
nPzPn−1(us)−Pr

R

ρs
P ′

n−1(us)
}

(28)

(using the convention of Eq. (A3) for the n = −1 index).
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If the polarization functions Pz(Z,R) and Pr(Z, R) are indepen-
dent of the axial variable Z, the integration over Z can be carried out
analytically:

Φcen
n =

1
2ε0ρcen

∫
dR·R

[(
ρcen

ρs

)n+1{
PzPn(us)+Pr

R

nρs
P ′

n(us)
}]Zmax(R)

Zmin(R)

, (29)

Φrem
n =

1
2ε0ρrem

∫
dR ·R

[(
ρs

ρrem

)n {
PzPn(us)

−Pr
R

(n + 1)ρs
P ′

n(us)
}]Zmax(R)

Zmin(R)

, (30)

where we use the general notation [f ]ba = f(b)− f(a).
Equation (29) is singular for n = 0. In this case we should use the

integrated formula

Φcen
0 =

1
2ε0

∫
dR ·

[
Pz

R

ρs
− Prus

]Zmax(R)

Zmin(R)

. (31)

Note that in the case of the integrated formula (29) the effective
central convergence radius is the minimal distance of the source point
from the axial boundary points (Zmin(R), R) and (Zmax(R), R). This
is usually larger than the minimal distance of the source point from
the dielectric. Detailed discussion about this convergence issue can be
found in Section 6.

We have tested the above formulas by computing the potential and
field of various axisymmetric dielectrics with 3-dimensional numerical
integration of the dipole formulas, and comparing the results with the
zonal harmonic expansions presented in Section 2, where the above
expressions for the source constants have been used.

The polarization distribution P is equivalent to the sum of
volume charge density distribution ρvol = −∇ · P and surface charge
density distribution σsurf = P · n, where n is the outwardly directed
normal vector of the dielectric surface (see Refs. [41, 42]). Using
Eqs. (18), (19), (B3), (B4), (B1), (B2), the axisymmetric divergence
formula ∇ · P = ∂ZPz + 1/R · ∂R(RPr), and integration by parts, we
have checked that our source constant formulas indeed satisfy these
equivalence relations.

We mention that the electric field of a dielectric can also be
calculated by fictitious, equivalent magnetic currents [43].
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6. CONVERGENCE OF THE ZONAL HARMONIC
EXPANSION

6.1. Convergence Radius and the Cauchy-Hadamard
Theorem

According to the Cauchy-Hadamard theorem [44, 45], the radius of
convergence of the power series

f(x) =
∞∑

n=0

cnxn (32)

is

rc =
(

lim sup
n→∞

(|cn|)1/n

)−1

=
(

lim
n→∞

[
max
m≤n

(|cm|)1/m

])−1

. (33)

The power series is convergent for |x| < rc and divergent for |x| > rc.
The Cauchy-Hadamard theorem is very useful to get the

convergence radii of the zonal harmonic expansion formulas. Let us
start with the simplest electrode system consisting only of 1 charged
ring. Eqs. (A7) and (A8) of Appendix A show that for |u| < 1 the
asymptotic n-dependence of the Legendre polynomial of order-n and
its first derivative is Pn ∼ 1/

√
n and P ′

n ∼
√

n, respectively (for |u| = 1
it is |Pn| = 1 and P ′

n ∼ n2). Let us now write the zonal harmonic
expansion Formulas (2)–(4), (9)–(11) into the form of Eq. (32), with
x = Rc = ρ/ρcen (central expansions) or x = Rc = ρrem/ρ (remote
expansions), respectively. Using the above asymptotic n-dependence
formulas of the Legendre polynomials, and Eqs. (18) and (19), one
can see that in the case of a charged ring the coefficients cn have a
polynomial n-dependence of cn ∼ np, where p is some small (positive
or negative) number. Since limn→∞ np/n = 1, it follows from Eq. (33)
that for all zonal harmonic potential and field formulas rc = 1, i.e., the
radius of convergence of the zonal harmonic expansions for the charged
ring is the distance of the ring and the source point (this is true for
both the central and the remote expansions).

In the case of many charged rings, ρcen and ρrem are defined
as the minimal and maximal distance of the source point from the
rings, respectively. From Eq. (18) it is obvious that for the central
expansion the ring closest to the source point is dominant for large
n, the source constant contributions of the rings farther away from
the source point decrease rapidly with n. In the case of the remote
expansion the ring that is farthest from the source point is dominant. A
general axisymmetric electric system could be imagined as a collection
of infinitely many charged rings. Therefore, it seems that we have
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generally proven: the radius of convergence of the central expansions
of Eqs. (2)–(4) is the minimal distance of the source point from the
electrodes and dielectrics (ρcen), and the radius of convergence of the
remote expansions of Eqs. (9)–(11) is the maximal distance of the
source point from the electrodes and dielectrics (ρrem).

6.2. Minimal and Effective Convergence Radii

In the case of the central expansions the situation is, however, not
so simple. Let us consider a charged cylinder with constant charge
density, and let us approximate it with many charged rings. We
compute then the source constants of the cylinder for a source point
in the middle of the cylinder. From Eq. (18), we would naively think
that the central source coefficients are in this case slowly decreasing
functions of n. In reality, they decrease rapidly with n, like

cn ∼ λn (λ < 1). (34)

For large n the Legendre polynomials have a sinusoidal behavior
(see Eq. (A7)), and it turns out that for the charged rings close to
the minimal ring (which is closest to the source point) there occur
large cancellations among the various ring contributions. The rapid
(exponential) decrease of the central source constants with n is the
consequence of these cancellations. Analytical calculations for the
charged cylinder with constant charge density show that the central
source constant coefficients decrease exponentially with n, like in
Eq. (34). One should emphasize here that numerical calculations of
the central source constants (either with summation over the rings,
or with numerical integration) are for large n rather sensitive to
numerical inaccuracies: loss of digits due to the cancellations (the
‘small difference of large numbers’ problem) stop the exponential
decrease of the numerically computed source constants above some
large n.

If the central source coefficients cn have the exponential decrease
behavior of Eq. (34), the radius of convergence of Eq. (32) is not 1,
but rc = 1/λ, and the effective radius of convergence of the central
zonal harmonic expansions of Eqs. (2)–(4) is not ρmin

cen , i.e., the minimal
distance of the source point from the electric system, but larger:

ρeff
cen = ρmin

cen /λ. (35)

In the case of a cylinder with constant charge density, the effective
convergence radius for a source point inside the cylinder is the minimal
distance of the source point from the cylinder end corners (the
(Zmin, R) and (Zmax, R) points; ρmin

cen = R; see Fig. 3). In the case
of a disc with constant charge density, with axial coordinate Z, and
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Figure 3. Minimal and effective central convergence radii for cylinder
and disc electrodes with constant charge density.

with outer radius Rout = R and inner radius Rin = 0, the effective
convergence radius is the distance between the source point and the
outer disc point (Z, R)(ρeff

cen =
√

R2 + (z0 − Z)2, while ρmin
cen = |z0−Z|;

see Fig. 3).
One can easily understand the above effective convergence radius

of the finite cylinder electrode by replacing it as a superposition of an
infinitely long cylinder electrode having constant charge density σ in
the whole axial region (−∞, +∞) (this electrode has zero field inside,
by symmetry argument), and of 2 infinitely long cylinder electrodes
with charge density −σ and with axial regions (−∞, Zmin) and
(Zmax,+∞), respectively. The central convergence radii of the latter 2
cylinders are obviously the minimal distances of the source point from
the end points (Zmin, R) and (Zmax, R), respectively. Similarly, the
charged disc can be replaced by a superposition of an infinitely large
charged plane with constant charge density σ (the electric field of this
plane is simply Ez = ±σ/(2ε0) at the two sides), and of a hollow plane
with constant charge density −σ and with a disc hole of radius R.
The central convergence radius of the hollow plane is the same as the
effective convergence radius of the disc.

6.3. Rate of Convergence

Table 1 illustrates the rate of convergence with a few simple examples.
One can find there the number of central zonal harmonic expansion
terms that are necessary to obtain single (10−7) and double (10−14)
precision for the potential of a charged ring, disc and cylinder (with
constant charge densities), for various convergence ratios Rc = ρ/ρcen

and source point coordinates z0. In order to assess the accuracy of the
potential obtained from zonal harmonic series with some finite number
of terms, we have compared the zonal harmonic potential result with
the potential value computed by elliptic integrals, which have double
precision accuracy in our codes. In the case of the charged ring, the
convergence rate is similar to that of the simple geometric series. We
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Table 1. Number of central zonal harmonic terms Nsingle and Ndouble

that are necessary to obtain single (10−7) and double (10−14) precision
for the potential of a charged ring, disc and cylinder (the latter
two having constant charge density), for various convergence ratios
Rc = ρ/ρcen and source point coordinates z0. Ring: Z = 0, R = 1.
Cylinder: Zmin = −2, Zmax = 2, R = 1. Disc1: Z = 0, Rin = 0,
Rout = 1. Disc2: Z = 0, Rin = 0.5, Rout = 1. Field point direction in
all cases: u = cos θ = 0.

Rc 0.1 0.5 0.7 0.9 0.95 0.98 0.99

Ring, z0 = 0.5: N single 6 18 32 106 202 478 898

Ring, z0 = 0.5: N double 12 40 74 248 500 1238 2402

Cylinder, z0 = 5: N single 4 14 24 64 122 240 394

Cylinder, z0 = 5: N double 12 34 64 202 394 932 1722

Cylinder, z0 = 0: N single 4 6 8 10 10 10 10

Cylinder, z0 = 0: N double 8 16 20 24 28 28 28

Disc1, z0 = 1: N single 4 10 16 20 24 24 28

Disc1, z0 = 1: N double 10 24 36 52 60 64 68

Disc2, z0 = 1: N single 4 14 26 68 122 250 406

Disc2, z0 = 1: N double 10 34 66 202 400 928 1774

can understand this fact from Eq. (18): the central source constants are
then equal to some values of the Legendre polynomials, so they decrease
rather slowly with n. In the case of the disc and cylinder electrodes
with constant charge density, the convergence is faster than for the
ring. This is due to the more rapid decrease of the source constants
with n. If the source point is far from the cylinder (z0 = 5), the central
source constants near n = 1000 are about 103–104 times smaller than
at small n. This decrease of the source constants can be understood by
the following consideration. Let us approximate the cylinder by many
charged rings; then, it is obvious from Eq. (18) that for large n the rings
far from the source point contribute negligibly to the source constants,
so only a small part of the cylinder electrode provides an essential
contribution to the source constants. The size of this part decreases
with n, therefore also the source constants themselves decrease with n.
If the source point is inside the cylinder, the central source constants
decrease extremely rapidly with n; in the case of the cylinder and z = 0
source point of Table 1 the central source constants near n = 45 are
18 orders of magnitude smaller than at small n. Theoretically, they
would further decrease with n, but due to numerical inaccuracies of
the double precision computation the decrease of the source constants
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stops at this level. As we have mentioned above, the fast decrease of
the source constants in this case is due to cancellation effects among
the sinusoidally oscillating Legendre polynomial terms. Similarly fast
decrease of the central source constants happens in the case of disc1
(with Rin = 0), therefore the zonal harmonic expansion convergence
is very fast. However, in the case of disc2 (with Rin = 0.5) the above
mentioned cancellation does not take place, so the source constants
decrease only slowly, and the convergence is also much slower, as one
can see from the much larger Nsingle and Ndouble numbers.

Cylinders and disks with constant charge density can be applied
for electric field calculations of some special dielectrics (for example,
a dielectric cylinder with constant axial polarization). One can use
them also for practically interesting magnetic field calculations, if one
changes the electric charges to equivalent (fictitious) magnetic charges.
In addition, it turns out that the central source constants for source
points inside cylindrical or conical electrodes with constant potential
(i.e., not with constant charge density) decrease also rapidly with
increasing n; this decrease is also a consequence of cancellation effects
of Legendre polynomial terms with sinusoidal behavior.

6.4. Connection with Complex Functions

The zonal harmonic expansion of the electric potential (field) is
convergent within a sphere which does not contain any charges, i.e.,
singular sources of the potential. This seems to be similar to the
convergence and analyticity properties of complex power series. In
fact, there exists indeed a close connection between the convergence
properties of 3-dimensional axisymmetric real harmonic functions and
complex functions, as it was first shown by G. Szegö in Ref. [46]. If

U(ρ, θ) =
∞∑

n=0

anρnPn(cos θ) (36)

is an axially symmetric potential function defined by a central zonal
harmonic expansion, with ρcen = (lim supn→∞ |an|1/n)−1, and

f(v) =
∞∑

n=0

anvn (37)

is the Taylor expansion of a corresponding complex function of v =
ρeiθ, then both series converge for ρ = |v| < ρcen and diverge for
ρ = |v| > ρcen. The first series defines a regular axially symmetric
potential in the sphere ρ < ρcen in three dimensions, and the second
series defines a regular analytic function in the circle |v| < ρcen of the
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complex plane. Furthermore, the 3-dimensional real boundary ring
ρ = ρcen, θ = θ0 is a regular (singular) ring of the potential function
U if and only if the complex boundary point v0 = ρceneiθ0 is a regular
(singular) point of the complex function f .

This theorem shows us an interesting connection between sources
of axisymmetric electric potentials and singularities of complex
functions: a central zonal harmonic expansion of the potential is
convergent within a sphere that does not contain any charges (sources
of the potential), and the corresponding power series of the complex
function is convergent within a circle that does not contain any
singularities of the function. We mention that the remote zonal
harmonic expansion is analogous to the

∑−1
n=−∞ anvn part of the

Laurent series in complex analysis.

7. THE ZONAL HARMONIC EXPANSION IN
PRACTICE

In order to use the zonal harmonic expansion for practical electric
potential and field calculations, the first step is to compute the charge
density distribution on the surface of the electrodes and dielectrics,
and the volume charge density in the dielectrics. The most natural
method for this purpose is BEM, but in principle one could also use
FDM or FEM (as we have discussed in Section 1).

The second step is the definition of the source points. They should
be chosen in such a way that the central zonal harmonic expansion
is convergent within a large region inside the electric system. The
optimal distance between two neighboring central source points should
be a few times smaller than the central convergence radius at these
points; otherwise, it could happen that the central zonal method
is not convergent at some points near the axis. For many electric
field computation applications it is not necessary to define remote
source points, as the central source points are sufficient for the field
calculations inside the electric system.

The next step is the calculation of the source constants for all
source points. In the beginning, the user (or the code) has to
decide on the maximal source constant index nmax for each source
point. The optimal choice of nmax depends on the maximal value
of the convergence ratio that is expected to be used during the field
calculation; typically, this is dependent on whether one intends to
calculate the field close to the electrodes (dielectrics) or not. If the
maximal convergence ratio is expected to be not too close to 1 (for
example: 0.9), a relatively small value for nmax can be chosen (like 250;
compare with Table 1). On the other hand, in regions where accurate



340 Glück

field computations close to electrodes or dielectrics are necessary or,
more generally, where the convergence ratio is expected to be very
close to 1 (e.g., 0.98 or 0.99), a large nmax value has to be defined (like
1000). The typical computation time of the central source constants,
with a few hundred source points and with nmax = 500, is an order
of minute (with our notebook, which has about 0.5 ns multiplication
time). In addition to the source constants, also the convergence radii
for all source points have to be computed. At the end, the source
points, convergence radii and source constants should be saved to the
hard disk, so that they could be used for a field computation later.

In the beginning of a field calculation, the source points,
convergence radii and source constants have to be read from the hard
disk into the main memory. In order to compute the electric potential
and field at an arbitrary field point, the computer program first has to
search for the best central source point, i.e. that source point for which
the convergence ratio Rc = ρ/ρcen is minimal. In the beginning of a
trajectory calculation, the program should search among all the source
points, in order to find the best one. Later, however, it is enough
to search for source points only close to the best source point of the
last trajectory step, because the particle usually travels only a small
distance during one step. If the central zonal harmonic expansion is not
convergent for the best source point (ρ/ρcen > 1), or the convergence
is too slow (e.g., ρ/ρcen > 0.98), the elliptic integral or some other
method has to be used for the field calculation.

An important practical question is the truncation criterion for the
zonal harmonic series: at which index n should one stop the expansion
of Eqs. (2)–(4) and (9)–(11), in order to get some prescribed accuracy?
In our codes, to get double precision accuracy for the potential and the
2 field components, we use the following procedure: the potential and
field components are computed together with the same expansion, and
the expansion is stopped if the absolute values of the last two terms for
the potential and both field components are 1015 times smaller than
the sum of the corresponding series. A similar (but slightly different)
truncation criterion was suggested by Garrett in [18, 19].

The region where the fast zonal harmonic expansion cannot be
used is usually small, therefore it might happen that the slow elliptic
integral computation close to the electrodes is acceptable for the
user. If this is not the case, the user has several possibilities to
increase the computation speed. First, close to the electrodes one
could compute a field map (field values at many grid points), and to
use some kind of interpolation method to calculate the field values
in between the grid points. The field map calculation is in this case
rather slow; nevertheless, the field calculation with interpolation is
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fast, and this could then be sufficient to perform a fast trajectory
calculation. Another possibility is to divide the electric system into
several smaller groups, so that one could use the central or remote
zonal harmonic expansion and the elliptic integral calculation for each
group separately. With an optimal grouping, one could reduce the
field computation time, by decreasing the size of the elliptic integral
regions (where the zonal harmonic expansion is not convergent), or by
decreasing the number of electrodes, dielectrics or electric subelements
that have to be computed with the elliptic integral method.

At the end of this section, we compare the computational speed
of the zonal harmonic method with the elliptic integral calculation
in the case of a practically interesting problem. With our notebook
(multiplication time: 0.5 ns) we have made a computation for the
electric potential of the KATRIN main spectrometer [10]. The
charge density calculation with BEM and with a discretization of
1800 subelements took about 20 seconds, the central source constant
computation time with 600 source points and with nmax = 500 was
40 seconds. Then, using the elliptic integrals (summing over all
subelements), the computation time for the potential at a point near
the middle of the spectrometer was 7 ms. With the zonal harmonic
expansion method, the computation time values for the potential and
field components at points with convergence ratios of 0.5, 0.8 and
0.9 were 2µs, 6 µs and 14µs, respectively. This example illustrates
that for electric field and potential calculations the zonal harmonic
expansion method is by several orders of magnitude faster than the
elliptic integral method.

8. CONCLUSIONS

We have presented the central and remote zonal harmonic expansion
method for electric field calculations of axially symmetric electrodes
and dielectrics. The zonal harmonic field series formulas are convergent
at field points within the central and remote regions, which have
spherical boundaries, and their center, the source point, can be
arbitrarily chosen on the symmetry axis. The rate of convergence of
the field series depends on the distance of the field and the source
point; smaller distance for central field points and larger distance
for remote field points correspond to higher convergence rate. For
a given field point, one can improve the convergence properties of
the zonal harmonic method by optimal choice of the field expansion
method (central or remote) and of the source point. In order to
use the zonal harmonic formulas for field calculations, one needs
the source constants, which depend on the source point and on the
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geometrical and source strength properties of the electric system. We
have presented source constant computation formulas for charged rings
and for general axisymmetric electrodes and dielectrics.

The zonal harmonic electric field calculation method has several
important advantages. First, the field and source equations are
separated: during the source constant computations, one has to use
only the source point and source parameters (geometry, potentials,
permittivity), but not the field point parameters, and during the
field computation, the source constants contain already the whole
information about the electric sources. As an important consequence,
electric field calculation with the zonal harmonic method is much
faster (in some cases even 1000 times) than the widely known elliptic
integral method. Second, the zonal harmonic method has not only
high speed, but also high accuracy, which makes the method especially
appropriate for trajectory calculations of charged particles. Due to
these properties, no interpolation is necessary when the electric field
during particle trajectories is computed with the aid of the zonal
harmonic method. Third, the zonal harmonic method is more general
and for practical applications more advantageous than the radial series
expansion method, which is more widely known in the electron optics
literature than the zonal harmonic method. In addition, the zonal
harmonic field series formulas are relatively easy to differentiate and
integrate, in contrast to the elliptic integral formulas.

The axisymmetric zonal harmonic method could be generalized to
the spherical harmonic method, for electric field calculation of general
three-dimensional systems. In that case, we have two-dimensional
spherical harmonic expansions, instead of the one dimensional zonal
harmonic expansions. The source point can then be an arbitrary point
in space (not restricted to any symmetry axis), and the central and
remote convergence radii are, similarly to the zonal harmonic method,
the minimal and maximal distances between the source point and
the electric sources (electrodes and dielectrics), respectively. Due to
the two-dimensionality of the series, this three-dimensional method is
probably fast enough only for convergence ratios that are much smaller
than 1.
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APPENDIX A. LEGENDRE POLYNOMIALS

The Legendre polynomials Pn(u) of order n can be defined by the
following generating function:

1√
1 + h2 − 2hu

=
∞∑

n=0

hnPn(u), (A1)

where |h| < 1, |u| ≤ 1 (see Refs. [16, 47–51]). These are the first 5
Legendre polynomials:

P0(u) = 1, P1(u) = u, P2(u) =
(
3u2 − 1

)
/2,

P3(u) =
(
5u3 − 3u

)
/2, P4(u) =

(
35u4 − 30u2 + 3

)
/8. (A2)

In some Legendre polynomial formulas also the n = −1 index can
occur. In order that the formulas are valid for this index, one has to
use the convention

P−1(u) = P ′
−1(u) = P ′′

−1(u) = 0, (A3)

where P ′
n = P ′

n(u) and P ′′
n = P ′′

n (u) denote the first and second
derivatives of the Legendre polynomial Pn = Pn(u).

Special values of the Legendre polynomials are the following:

Pn(1) = 1, Pn(−1) = (−1)n, (A4)

P2n+1(0) = 0, P2n(0) = (−1)n (2n)!
(2nn!)2

, (A5)

P ′
n(±1) = (±1)n+1n(n + 1)/2. (A6)

Asymptotic formulas for large n:

Pn(u) ≈
√

2
πn sin θ

sin [(n + 1/2)θ + π/4] , (A7)

P ′
n(u) ≈ −

√
2n

π sin3 θ
sin [(n + 1/2)θ + 3π/4] , (A8)

with u = cos θ.
Differentiating both sides of Eq. (A1) over u we obtain

1
(1 + h2 − 2hu)3/2

=
∞∑

n=0

hnP ′
n+1(u). (A9)



344 Glück

As one can easily see from Eqs. (A1) and (A9), the Legendre
polynomials and their first derivatives have the following symmetry
properties:

Pn(−u) = (−1)nPn(u), P ′
n(−u) = (−1)n+1P ′

n(u). (A10)

Recurrence relations are extremely useful for the analytical and
numerical investigations connected with Legendre polynomials (as it
was emphasized by Garrett in Ref. [17]). The following 2 recurrence
relations are recommended for the fast computation of the Legendre
polynomials and their first derivatives (for n > 1):

Pn = 2uPn−1 − Pn−2 − (uPn−1 − Pn−2)/n, (A11)
P ′

n = 2uP ′
n−1 − P ′

n−2 + (uP ′
n−1 − P ′

n−2)/(n− 1), (A12)

with P ′
0(u) = 0, P ′

1(u) = 1.
The following recurrence relation is valid for arbitrary higher

derivatives P
(m)
n = dmPn/dum (for n > m):

P (m)
n = 2uP

(m)
n−1 − P

(m)
n−2 +

2m− 1
n−m

(
uP

(m)
n−1 − P

(m)
n−2

)
. (A13)

The starting derivatives for small m can be calculated by Eq. (A2); for
m = 2: P ′′

1 = P
(2)
1 = 0, P ′′

2 = P
(2)
2 = 3.

In some special cases, one needs the Legendre polynomials with
only even or only odd indices. Then it is expedient to use the following
recurrence relations (taken from Ref. [17]):

Pn =
[
(Au2 −B)Pn−2 − CPn−4

]
/M, (A14)

P ′
n =

[
(A′u2 −B′)P ′

n−2 − C ′P ′
n−4

]
/M ′, (A15)

M = (n− 1)n(2n− 5), M ′ = (n− 2)(n− 1)(2n− 5), (A16)
A = (2n− 5)(2n− 3)(2n− 1), A′ = A, (A17)
B = 2(n− 2)2(2n− 1)− 1, B′ = 2(n− 2)n(2n− 5)− 3, (A18)
C = (n− 2)(n− 3)(2n− 1), C ′ = (n− 2)(n− 1)(2n− 1). (A19)

There are several other mixed recurrence relations that contain
both Pn and P ′

n (see Ref. [17]):

nPn = uP ′
n − P ′

n−1, (A20)
(n + 1)Pn = P ′

n+1 − uP ′
n, (A21)

(2n + 1)Pn = P ′
n+1 − P ′

n−1, (A22)(
1− u2

)
P ′

n = n(Pn−1 − uPn), (A23)(
1− u2

)
P ′

n = (n + 1)(uPn − Pn+1). (A24)
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By differentiating the above equations over u, we obtain useful
relations containing the second derivatives P ′′

n :
(
1− u2

)
P ′′

n = (n + 2)uP ′
n − nP ′

n+1, (A25)(
1− u2

)
P ′′

n = (n + 1)P ′
n−1 − (n− 1)uP ′

n, (A26)(
1− u2

)
P ′′

n = 2P ′
n−1 − n(n− 1)Pn, (A27)(

1− u2
)
P ′′

n = 2P ′
n+1 − (n + 1)(n + 2)Pn. (A28)

Further details about the Legendre polynomials can be found in
Refs. [16, 17, 47–51].

APPENDIX B. CYLINDRICAL DERIVATIVES OF
SOLID ZONAL HARMONICS

The central and remote solid zonal harmonic functions are defined by
the expressions ρnPn(u) and ρ−(n+1)Pn(u), respectively (n = 0, 1, . . .).
Here ρ =

√
(z − z0)2 + r2 denotes the distance between the source

point (z0, 0) and the field point (z, r), and u = cos θ = (z − z0)/ρ
(cosine of the angle between the z axis and the line going through
the source and field points; see Fig. 1). We use also the notation
s = sin θ =

√
1− u2 = r/ρ.

As stated in Section 2, the electric potential of an axially
symmetric electric system in the source-free central convergence region
(ρ < ρcen) can be generally expressed as an expansion of the central
zonal harmonic functions ρnPn(u). Similarly, in the source-free remote
convergence region (ρ > ρrem) the potential can be written as an
expansion of the remote zonal harmonic functions ρ−(n+1)Pn(u) (since
both kinds of functions satisfy Laplace’s equation).

In order to calculate the cylindrical components of the electric
field, we need the derivatives of the zonal harmonic functions over
the cylindrical coordinates z and r. The derivative expressions of the
central zonal harmonics are the following (see Refs. [17–20]):

∂z (ρnPn) = nρn−1Pn−1, (B1)
∂r (ρnPn) = −sρn−1P ′

n−1. (B2)

The derivatives of the remote zonal harmonics can be written as
(see Ref. [52]):

∂z

(
ρ−(n+1)Pn

)
= −(n + 1)ρ−(n+2)Pn+1, (B3)

∂r

(
ρ−(n+1)Pn

)
= −sρ−(n+2)P ′

n+1. (B4)
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Further useful derivatives of functions similar to the zonal
harmonics are the following:

∂z

(
ρn−1P ′

n

)
= (n + 1)ρn−2P ′

n−1, (B5)

∂r

(
ρn−1P ′

n

)
= −sρn−2P ′′

n−1, (B6)

∂z

(
ρ−(n+2)P ′

n

)
= −nρ−(n+3)P ′

n+1, (B7)

∂r

(
ρ−(n+2)P ′

n

)
= −sρ−(n+3)P ′′

n+1. (B8)

Using these relations and writing the ∆ operator in cylindrical
coordinates, we can check that the zonal harmonics really satisfy the
Laplace’s equation: ∆(ρnPn) = 0, ∆(ρ−(n+1)Pn) = 0.

The above derivative formulas can be proven by using the
cylindrical derivative equations ∂zρ = u, ∂zu = (1 − u2)/ρ = s2/ρ,
∂rρ = s = r/ρ, ∂ru = −su/ρ, and the recurrence relations of the
Legendre polynomials, presented in Appendix A. For example,

∂z(ρnPn)=nρn−1uPn+ρnP ′
n(1−u2)/ρ=ρn−1[nuPn+(1−u2)P ′

n], (B9)

and using the recurrence relation of Eq. (A23) we get Eq. (B1).

APPENDIX C. NUMERICAL INTEGRATION

We present here a simple one-dimensional numerical integration
formula, based on 10th order equidistant Lagrange interpolation. The
definite integral of the function f(x) over the interval [a, b] can be

Table C1. The numerical integration weight factors w0 through w9.

i wi

0 0.2803440531305107
1 1.648702325837748
2 −0.2027449845679092
3 2.797927414021179
4 −0.9761199294532843
5 2.556499393738999
6 0.1451083002645404
7 1.311227127425048
8 0.9324249063051143
9 1.006631393298060
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approximated by the following weighted sum of the function values:
∫ b

a
dx · f(x) ≈ δ

N∑

i=0

wi · f(a + iδ), (C1)

where the number of discretization points is N + 1 (with N ≥ 20),
δ = (b − a)/N is the distance between neighboring points, and the
weight factors w0, . . . , w9 are given in Table C1. The other weight
factors w10, . . . , wN are the following:

wi =
{

1 : for 10 ≤ i ≤ N − 10
wN−i : for i > N − 10.

(C2)

In many cases (if the function has no sharp peaks or large higher
derivatives in the integration interval), the above formula with N = 20
provides close to double precision value for the integral. Otherwise,
the integration error decreases with a high power of 1/N .

References [53, 54] contain many other numerical integration
algorithms.
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