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Abstract

It is shown that the ideal MHD equilibrium states of an axisymmetric plasma with
incompressible flows are governed by an elliptic partial differential equation for
the poloidal magnetic flux function 3 containing five surface quantities along with
a relation for the pressure. Exact equilibria are constructed including those with
non vanishing poloidal and toroidal flows and differentially varying radial electric
fields. Unlike the case in cylindrical incompressible equilibria with isothermal
magnetic surfaces which should have necessarily circular cross sections [G. N.
Throumoulopoulos and H. Tasso, Phys. Plasmas 4, 1492 (1997)], no restriction
appears on the shapes of the magnetic surfaces in the corresponding axisymmetric
equilibria. The latter equilibria satisfy a set of six ordinary differential equations
which for flows parallel to the magnetic field B can be solved semianalytically. In
addition, it is proved the non existence of incompressible axisymmetric equilibria
with (a) purely poloidal flows and (b) non-parallel flows with isothermal magnetic
surfaces and |B| = |B|(%) (omnigenous equilibria).

1Permanent address: Section of Theoretical Physics, Physics Department, University of
Ioannina GR 451 10 Ioannina, Greece




I. Introduction

Although equilibrium studies of flowing plasmas began in the mid 1950s (e.
g. Ref. [1] and references therein) since the early 1970s there has been increasing
interest in the investigation of the equilibrium properties of plasmas with mass
flow [2]-[13], which was motivated by the observation of plasma rotation in many
tokamaks heated by neutral beams [14]-[L6]. With the adoption of a specific
equation of state, e.g., isentropic magnetic surfaces [4], the symmetric equilib-
rium states in a two-dimensional geometry obey a partial differential equation for
the poloidal magnetic flux function %, containing five surface quantities, in con-
Junction with a nonlinear algebraic Bernoulli equation. Unlike the case in static
equilibria, the above-mentioned differential equation is not always elliptic: there
are three critical values of the poloidal flow at which the type of this equation
changes, i.e. it becomes alternatively elliptic and hyperbolic. The existence of
hyperbolic regimes may be dangerous for plasma confinement because they are
associated with shock waves which can cause equilibrium degradation. In this
respect incompressible flows are of particular interest because, as is well known
from gas dynamics, it is the compressibility that can give rise to shock waves;
thus for incompressible flows the equilibrium equation becomes always elliptic.

In a recent work [12] we found that the equilibrium differential equation of a
cylindrical plasma with incompressible flows and arbitrary cross sectional shape
is amenable to a variety of analytic solutions. Also, in the case of plasmas with
isothermal magnetic surfaces their cross sections are restricted to be circular.
The aim of the present report is to extend the study to the most interesting
case of axisymmetric plasmas. It should be noted that the particular class of
incompressible, axisymmetric equilibria with approximate isobaric magnetic sur-
faces was investigated by Avinash, Bhattajaryya and Green [9]. Since in flowing
plasmas the isobaric surfaces in general depart from the magnetic surfaces (see
the discussion after Eq. (19) of Sec. II), in the present work we first consider
arbitrary incompressible flows without making any assumption on the pressure.
It turns out that, as the case in cylindrical plasmas, the incompressibility condi-
tion results in a considerable simplification of the problem, i.e., the equilibrium
equations reduce to an elliptic partial differential equation (along with a relation
for the pressure) which can be solved analytically when the modulus of the Mach
number of the poloidal velocity with respect to the poloidal-magnetic-field Alfvén




velocity takes constant values. This is the subject of Sec. II. In Sec. III we con-
struct exact equilibrium solutions for (a) purely toroidal flows, (b) flows parallel
to the magnetic field, and (c) non-parallel flows with differentially varying radial
electric fields. Incompressible T = T(%) equilibria are then examined in Sec. 1V.

Our conclusions are summarized in Sec. V.
II. Equilibrium equations

The ideal MHD equilibrium states of plasma flows are governed by the fol-

lowing set of equations, written in standard notations and convenient units:

V-(pv) =0 (1)
p(v-VIv=jxB—-VP (2)
VxE=0 (3)
VxB=j (4)
V-B=0 (5)
E+vxB=0. (6)

It should be pointed out that, unlike the usual procedure followed in equilibrium
studies with flow [2]-[9], in the present work an equation of state is not included in
the above set of equations from the outset, and therefore equations (15) and (16)
below are first derived, independently of the equation of state. This alternative
procedure is convenient because the equilibrium problem can then be further
reduced for any particular equation of sate. The system under consideration is an
axially symmetric magnetically confined plasma with flow. For this configuration
the divergence-free fields, i.e. the magnetic field B, the current density j and the
mass flow pv can be expressed in terms of the stream functions ¥ (R, z), I(R, z),
F(R,z) and O(R,z) as

B=1IV¢+ Ve x Vi, (7)
j=A%pVe— Vo x VI (8)
and
pv =0Ve+ Ve x VF. (9)



Here, R, ¢, z are cylindrical coordinates with z corresponding to the axis of sym-
metry, constant v surfaces are the magnetic surfaces and A* is the elliptic oper-
ator defined by A* = R*V - (V/R?).

Egs. (1)-(6) can be reduced by means of certain integrals of the system, which
are shown to be surface quantities. To identify two of these quantities, the time
independent electric field is expressed by E = —V® and the Ohm’s law (6) is
projected along V¢ and B, respectively, yielding

Vé- (Vo x VF)x (Véx Vi) =0 (10)

and
B.V& =0. (11)
Egs. (10) and (11) imply that F = F(3)) and ® = ®(3), hence the electric

field is “radial”, i.e., perpendicular to a magnetic surface. Two additional surface

quantities are found from the component of Eq. (6) perpendicular to a magnetic

surface: 1
IFF—0)=9 12
S (IF'~0) =4, (12)
and from the component of the momentum conservation equation (2) along V¢:
F! 2
I (1 ( p) ) + R*F'®' = X (). (13)

(The prime denotes differentiation with respect to ¥). From Eq. (13) it follows
that, unlike the case in static equilibria, [ is not a surface quantity. On the basis
of Eq. (12) the velocity (Eq. (9)) can be written in the form

= _F_B R*@'Vé. (14)
P

With the aid of Egs. (10)-(14), the components of Eq. (2) along B and perpen-

dicular to a magnetic surface are put in the respective forms

B-[V(ﬁ+9¢’)+—v—£}=0 (15)
2 p P
and
{o-[(1-EL) ]+ EE S b our
p ) R P
Pl 2 V(O/p)?\ V(7 _
+ {—2- (V'v = ) i +VP] Vi =0 (16)




In order to reduce the equilibrium equations further, we employ the incom-
pressibility condition
Viwv=0 (17)

Then Eq. (1) implies that the density is a surface quantity,

p = p(). (18)

Consequently, from Egs. (12) and (13) it follows that, unlike the case in cylin-
drical plasmas [11], axisymmetric incompressible equilibria with purely poloidal
flows (© = 0) can not exist; the only possible equilibria of this kind are of cylin-
drical shape. It may be noted that, as proved in Ref. [20], this holds also for
resistive plasmas in the particular case of §, = 1 equilibria.
With the aid of Eq. (18), Eq. (15) can be integrated to yield an expression
for the pressure, i.e. , !
p=rw)-po(5+22). (19)
P
We note here that, unlike in static equilibria, in the presence of flow magnetic
surfaces in general do not coincide with isobaric surfaces because Eq. (2) implies
that B - VP in general differs from zero. In this respect, the term Py(1p) is the
static part of the pressure which does not vanish when v = 0.
Eq. (16) has a singularity when

=ef, (20)

2
On the basis of Eq. (9) for pv and the definitions v3, = LV—;H— for The Alfvén

velocity associated with the poloidal magnetic field and the Mach number

2 AV
=l o EX (21)
Vap P

AV
Eq. (20) can be written as M? = 1. If it is now assumed that %L # 1 and
Eq. (19) is inserted into Eq. (16), the latter reduces to the elliptic differential

equation

(1 - M)A — (MY [Ty

1/ x2 Y XF'a\ Rt [ p(@)?\
() (o1 (R e



This is the equilibrium equation for an axisymmetric plasma with incompressible
flows. Once its solutions are known, the pressure can be determined from Eq.
(19). Eq. (22) contains the arbitrary surface quantities F(3), ®(¥), X(¥),
p(¥) and P;(¥) which must be found from other physical considerations. As
shown in next section for appropriate physically reasonable choices of the surfaces

functions, it can be linearized and solved analytically.
III. Analytic equilibrium solutions
With the ansatz
(£
p

= M? = const., (23)
Eq. (22) reduces to

1
(1—- M)

[XX’ + R ((1- M})P, — XF'9") + —R-;(p(@'f)'] =0. (24)

A% +
The singularity M2 = 1 is the limit at which the confinement can be assured by
the toroidal current A*i/R alone. For M2 > 1 the derivative of X?/2, related
to the derivative of (RBy)?/2 by Eq. (13), partly compensates for the pressure
gradient and inertial flow forces.

Three classes of exact equilibria of Eq. (24) can be constructed as follows.

(a) Purely toroidal flows

This kind of equilibria correspond to M2 = F’ = 0. From Egs. (9), (12) and
(13) it then follows the relation I = X (%) and that the angular frequency of the

toroidal flow becomes a surface quantity:

_v%_ 0 _ &
o) =% = 2 = —0(s). (25)
Consequently, Eq. (24) becomes
4
A+ IT'+ R*P! + i(,‘owz)" =. (26)

2
With the ansatz /I’ = const. and P! = const. Eq. (26) can be solved analytically
for (a) pw? = const. and (b) pw? o 1. In the latter case the simplest solution

corresponding to I = const. is given by

@L’ch 4 2 2 4 2p2,2
= 29! - 3RIR’ — R' — *R.Y), (27)




where %, is the value of the flux function at the position of the magnetic axis

(z =0, R = R.) and d” is a parameter related to the shape of the flux surfaces.
(b) Flows parallel to B

Equilibria with B-aligned flows correspond to ® = 0. Eq. (24) then reduces
to
A+ XX +RP =0 (28)
where X = X(¢)/(1 — M2) = I and P, = P,()/(1 — M?). Eq. (28) is identical
in form to the equation governing static equilibria; the only reminiscence of the
flow is the presence of M, in X and P,. It can be linearized and solved for (a)
XX’ = const., and P! = const., and (b) XX’ « ¥ and P! x 9. In case (a) the
simplest solution, corresponding to X = const., is given by

2
) = ¢c% (2R? - R? — ad*2?). (29)

Eq. (29) describes the Hill’s vortex configuration [17]. Also, one can derive
more general solutions by adding higher order polynomials in (R, z) which satisfy
A*p = 0 to Hill’s vortex solution. If P, = by, the general form for these solutions
is given by

_bo anl? & (=DBR2PDA
’/""ER4+"§, 2 g(m—l)!(m—l—j-l)!(ﬂ)!’ (30)

where by and a,, are constant quantities.
(c) Non-parallel flows

Equilibria of this kind are of particular interest because non-parallel flows
with non-vanishing poloidal components are associated with radial electric fields
which play a role in the transitions to improved confinement regimes [18]. They
can be derived with the ansatz @' o %/ and p  ¥*, where k is a parameter.
The electric field is then of the form E oc —%~*/?V¢ and Eq. (24) becomes

A+ X X'+ R*P, — doX]' =0, (31)

where dy = const. As the case in equilibria with parallel flows, the simplest
solution of Eq. (31) (X = Xo = const.) is given by Eq. (29) and, e.g., for a



plasma with constant density (k = 0) the |E|-profile at the midplane = = 0 is
hollow. Also, according to Eq. (13), the toroidal magnetic field, in addition to

the usual 1/R component, contains a flow term linear in R:

-
By= 5 =7 —dR. (32)

Thus, the modification of By may affect the shape of the safety factor profile.
This indicates that the flow along with the associated radial electric field may
contribute to the creation of improved confinement regimes related to appropriate

shaping of the safety factor profiles, e.g. inverse-magnetic-shear profiles [18].
III. Equilibria with isothermal magnetic surfaces

For fusion plasmas the thermal conduction along B is fast compared to the
heat transport perpendicular to a magnetic surface and therefore equilibria with
isothermal magnetic surfaces are of particular interest. It is noted that for cylin-
drical plasmas the relation 7 = T'(¢)) imposes a limitation on the possible incom-
pressible equilibria, i.e., the cross sections of the magnetic surfaces must be cir-
cular [12]. In the following we show that axisymmetric incompressible T' = T'(3)
equilibria are free of such a restriction except near to the magnetic axis.

Under the assumption that the plasma obeys to the ideal gas low P = RpT,

gs. (19), (12) and (14) lead to the following expression for the magnetic field
modulus: -

IBI* = =(y) + R*H(¢), (33)

where Z(%) = 2(P,—P)p/(F')? and H(¢) = (p®'/F')?. Consequently, apart from
the case of field aligned flows (H = 0), omnigenous equilibria, viz. equilibria with
|B| being a surface quantity, are not possible.

Solving the set of equations (16) and (33) for |V |* and A*Y one obtains

op\* | (ow\® .. : \
(ﬁ;) + (5;) = 2(i(¥) + R%j(¥) + R*k(x)) (34)
and - ; a¢, ¢
J2 R2 - R@R + = 9222 == —f('l,b) R29(¢) - R4h(¢)1 (35)
where

Hi) = '%(1-XM2)2’




_PB-P XOF
W)= =3 - (1 - M2)?’

K) =3 [P(‘I”)z B (I(%} ’
1fr X VY
2 [(1 —~ M2) ] ’
_ M (RN [ Xx¥F ) (MY
) =13 (Mz) [(1 - M?)Z] M1 - M?)P’

1 p(@)2\ [ F'e \ p(®)?
h(v) = — .
W)= a =) {(1—M2 T\ M
With the introduction of the quantities = = R*, p = 0v¢/0z, ¢ = ¢ /dz, r =
8% /0z? and t = 0%p/dz* Eqgs. (34) and (35) are written in the respective forms

o
=
i

and

4zp® + ¢ = 2(i + zj + 2%k) (36)

and

dzr +t = —f — xg— z°h. (37)

To integrate Eqs. (36) and (37) we apply a procedure suggested by Palumbo [19].
Accordingly, employing R and v as independent coordinates instead of R and z
(then z = z(z,)), we have '

_dp| _Op dp
"= 92, 8a|, TP 99, 188)
and P "
q q ”
o o e . ;
52|, = 159, (39)
With the aid of Eqgs. (36), (38), (39) and f +1¢ =0 Eq. (37) reduces to
dp v 2 '
46—$¢——$(9+J)—$ (h+K')
and consequently
_ _1_ ! ]- mn_2 dhb)
p=—4lg+7)e - glh+K)z"+ =~ (40)



Since z is a function of & and ¥, solutions of equation

1
dz = —dz + ~dy (41)
g g

L()-40)

Eq. (42) leads to the solvability condition

exist provided

= 0. (43)

Substituting ¢* and p from Egs. (36) and (40) in Eq. (43) yields a relation of
the form E;=0 a;j(¥)z? = 0; hence, since z and ¥ are independent variables, the
equations a; = 0 should be satisfied for all j. They are explicitly given by

1 : I L = ,

—gdz + q= §2d’ + Zdl’ = 0, (44)

1 1., 1., 1,3 y Ly 1--::_
2dg+2k 23d—i—§zg - 79 +4d3 ) +§z] —0, (45)
—§g +- dh——kd’+ 7g +1zh —lhz —gj' — 5( ')2+Edk’ iK'+ ;,-3 "+- zk" =1,

8 T g g gt el g
5 3 7 1 1 (46)
——gh + 21:9 + "Jh' —ghd' — 9K — oIk + Ski" + k=0, (47)
and . 9 {

—ﬁhz + 4kh’ = Tohk = (k) + kR = 0. (48)

Equations (44)-(48) contain the surface functions P(1), Ps(), F (%), ®(v), X (¥),
p(¥) and d(3) two of which remain free. If the free functions are assigned along
with boundary conditions the set of Eqs. (44)-(48) can be solved numerically.
Furthermore, to completely solve the equilibrium problem, one should determine
the function z(z,%) which by Eq. (41) satisfies the equation

_ P g+ + 4k +#)2? — ] (49)
=T - = o 1/2°

g {2(3 +2j +a2k) - 2[(g+ )2 + Lk + k)a? — d] }

0z
8$¢

Once the set of equations (44)-(48) is solved, the v dependence on the rhs of
Eq. (49) is known and the function z(z,%) can be expressed in terms of hyper-
elliptic integrals [21]. For the particular case of field aligned flows (h=k=0) the
hyperelliptic integrals reduce to elliptic ones, as suggested by Ref. [22].




IV. Conclusions

For an axisymmetric plasma with incompressible flows we found that the ideal
MHD equilibrium equations are reduced to a second-order elliptic partial differ-
ential equation for the poloidal magnetic flux function ¢ (Eq. (22) containing
the density p(w), the electrostatic potential ®(1)), the static equilibrium pres-
sure Py(1), the function F(¥) associated with the poloidal flow and the function
X (1) related to the toroidal magnetic field) in conjunction with a relation for
the pressure (Eq. (19)). When the Mach number of the poloidal velocity with
respect to the poloidal-magnetic-field Alfvén velocity takes constant values, the
equilibrium differential equation can be solved analytically. Exact equilibria were
obtained for (a) purely toroidal flows, (b) flows parallel to the magnetic field, and
(¢) non-parallel flows with differentially varying electric fields.

Unlike the case of cylindrical incompressible equilibria with isothermal mag-
netic surfaces, which should have necessarily circular cross section, no restriction
appears on the shape of magnetic surfaces of the corresponding axisymmetric
equilibria, though in analogy with the cylindrical case it can be conjectured that
only the near magnetic axis surfaces have to be circular. In fact, the equilibrium
problem reduces to a set a five nonlinear ordinary differential equations with
respect to 1, containing the above mentioned surface quantities and the pres-
sure P (1), along with an ordinary differential equation for the function z(R, %),
where z pertains to the axis of symmetry and R to the direction perpendicular
to the axis of symmetry. Once the solution of the former set of five equations is
numerically found, the function z(R,) can be expressed in terms of hyperellip-
tic integrals which for field aligned flows reduce to elliptic ones. In addition, it
was proved the non existence of axisymmetric incompressible equilibria with (a)
purely poloidal flows and (b) non-parallel flows with isothermal magnetic surfaces
and |B| = |B|(¢) (omnigenous equilibria).

The equilibrium equations for incompressible axisymmetric flows and the an-
alytic solutions derived in the present work can be employed for stability and
transport investigations, which would be of relevance to magnetic confinement
systems. In particular, they may help in understanding the physics of the transi-
tions to the improved confinement regimes, which are related to differential flows
and radial electric fields. In addition, they can be used in benchmarking relevant
equilibrium codes. Finally, let us note that it is interesting to extend the study

10



to the more general case of helically symmetric equilibria.
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