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�e problem of the axisymmetric laminar �ow of a two-phase 

(liquid-gas) �ow inside the in�nite system of coaxial tubes 

with a circular cross-section located vertically is considered. 

Analysis of the analytical solution showed that increase in ve-

locity of the gas �ow leads to the appearance of the hold-up 

regime (then the velocity of media at the interface is zero) 

and �ooding regime (when volume �ow of liquid is zero). It 

is discovered that these regimes occur at lower values of the 

velocity of the gas �ow for the heated medium in comparison 

with the cold medium.
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ABBREVIATIONS

dp/dz, Pa/m – pressure gradient in the pipe, 

g, m/s2 – acceleration of gravity,

h, m – thickness of the water layer,

Q
1
, m3 /s – volumetric flow of gas,

Q
2
, m3 /s – volumetric flow of liquid in the layer 

placed near the internal surface of the channel,

Q
3
, m3 /s – volumetric flow of liquid in the layer 

placed near the external surface of the channel,

r, m – radial coordinate,

R
0
, m/s – characteristic channel radius,

R
1
, m – internal channel radius,

R
2
, m – external channel radius,

Re = (U
0
 R

0
)/ ν

1 
– Reynolds number,

Re
cr1

 – critical Reynolds number in the hold-up 

regime,

Re
cr2

 – critical Reynolds number in the flooding 

regime,

U
0
, m/s – maximum gas velocity in the middle 

part of the channel,

U
1
(r), m/s – velocity pro�le of gas,

U
2
(r), m/s – velocity profile of the liquid layer 

placed near the internal surface of the chan-

nel,

U
3
(r), m/s – velocity profile of the liquid layer 

placed near the external surface of the channel,
–
U

1
, m/s – average velocity of gas,

–
U

2
, m/s – average velocity of liquid in the layer 

placed near the internal surface of the channel,
–
U

3
, m/s – average velocity of liquid in the layer 

placed near the external surface of the channel,

z, m – longitudinal coordinate,

μ
1
, Pa∙s – dynamical viscosity coefficient of gas,

μ
2
, Pa∙s – dynamical viscosity coefficient of liq-

uid,

ν
1
, m2/s – kinematical viscosity coefficient of 

gas,

ρ
1
, kg/m3 – density of gas,

ρ
2
, kg/m3 – density of liquid.
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INTRODUCTION

�eoretical description of hydrodynamics in 

a contact apparatus without a separating wall, 

for example, cooling towers or contact econom-

izers, presents a complex scienti�c problem. A 

de�nition of the �ooding regime on the regular 

packing of a contact apparatus that indicates the 

transition to the bubble counter�ow regime of 

liquid �lm and gas is important and relevant 

during operation of such devices. �ere are 

many theories to determine the �ooding regime 

on the regular packing of a contact apparatus in 

scienti�c literature. �ese theories describe the 

hydrodynamics of the interface of the interact-

ing phases at the regular packing of a contact ap-

paratus, taking into account unsteady forces on 

this surface. In particular, many investigations 

apply the theory of stability.

�e stability theory of travelling �lm, which 

can describe the interface evolution between 

two parallel �ows, is o�en used for the qualita-

tive analysis of physical regularities on the in-

terface between two media. �e restoring force 

(capillary force) can restore the broken interface 

to the original form. However, the surface does 

not recover immediately, inertial e�ects lead to 

the appearance of surface waves [1, 2]. �e am-

plitude of the waves can grow rapidly under cer-

tain conditions, the surface becomes unstable. 

As a result, the channel can go into a �ooding 

regime [8].

Many researchers [4] apply the statistical 

equilibrium approach based on the equilibrium 

analysis between gravity force, shear stress and 

aerodynamic pressure on the interface. If the av-

erage �uid velocity in the thin liquid �lm tends 

to zero for channels oriented vertically, then the 

hold-up regime appears. It means that liquid 

does not move down.

�is approach exists in some variations, but 

all of them require parameters of the wave mo-

tion, which can be determined experimentally.

Today the theory of soliton [5] is actively used 

in this problem. Water soliton can be observed 

on the interface at the �ooding process even for 

moderate gas velocity in the channel. However, 

these models of soliton formation are developed 

mainly for �ow-through horizontal �ow and can 

be extended to an inclined counter-current �ow.

�e theory of separated motion [6] is based 

on the assumption that the �ooding regime is 

the limit case for operating conditions when 

liquid or gas velocities have increased. In this 

case, strati�ed �ows of liquid and gas are con-

sidered separate cylinders with the friction force 

describing their interaction. �ere are many 

models in modern scienti�c literature because 

of di�erent boundary conditions and di�erent 

approaches of the friction force.

Many researchers use a separate-�ow mod-

el for analyzing physical processes within two-

phase channels [7]. �ey consider the water-gas 

interface based on a static equilibrium between 

the gravity force tangential stress and the pres-

sure distribution that controls gas �ow. If the 

average �uid velocity is zero, then it is assumed 

that the �lm has a hold-up regime, downward 

motion is absent. A separate cylinders model 

of the interaction of two-phase �ows exists in 

various variations, but all of them require ex-

perimental determination of the parameters of 

motion [8, 9].

Recently, the theory of separated motion has 

fast developed [10, 11], which is based on the as-

sumption that the �ooding process occurs at the 

moment when the velocity of liquid or gas in-

creases sharply. Strati�ed �uid and gas �ows are 

considered in individual cylinders, the frictional 

force between which describes their interaction. 

Such a model has a number of varieties because 

of di�erent boundary conditions and values of 

the coe�cient of friction.

However, the use of the friction coe�cient 

reduces the use of such models. In particular, in 

[7] a model for a friction in a laminar and tur-

bulent motion is described separately. In addi-

tion, in [12] the �ooding regime is described, if 

the friction between water-gas �ows is neglected 

and the channel diameter is greater than 0.43 m 

at normal conditions.

In many cases, the dynamic range of the 

steady motion of the gas �ow in contact devices 

is determined from the results of experimental 

studies for �xed pipe geometric dimensions [9]. 

�ese studies made it possible to reveal the main 

regularities and general trends in the interaction 

of two-phase �ows in vertical segments of con-

tact devices, the conditions for the appearance 

and development of various regimes of motion 
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and interaction of liquid and gas in the interior 

space of contact devices for various purposes. 

Nevertheless, the quantitative data in these cases 

are of empirical nature for the speci�c geometric 

parameters of a contact apparatus and values of 

the volume �ow of liquid and gas [10].

Also, one of the main tasks is the in�uence 

of the temperature regimes on the �ooding re-

gime at the laminar �ow motion. Consideration 

of such in�uence in determining the regime of 

�ooding allows to more accurately calculate the 

operating mode of a contact apparatus without a 

separating wall.

�e main goal of this study is to construct a 

model of the regime of �ooding without the val-

ue of the coe�cient of friction on the water �lm-

air boundary within the theory of separated mo-

tion. Using the constructed model, quantitative 

dependences of the volume �ow rate of liquid 

on the �ow rate of gas inside the vertical system 

of coaxial pipes (that correspond to the regular 

packing in cooling towers or contact economiz-

ers) were obtained. �e results are obtained in 

the approximation of an axisymmetric, laminar 

�ow of the water �lm-air at the �ooding regime 

and close to them.

MATHEMATICAL MODEL OF THE FLOW

Let us consider a laminar stationary axisym-

metric motion of a two-phase (gas-liquid) �ow 

inside two coaxial in�nite tubes with a circular 

cross-section (Fig. 1) located vertically. Let R
1
 be 

the radius of the inner tube and R
2
 the radius of 

the outer tube. A gas with a density ρ
1
 and a dy-

namical viscosity coe�cient μ
1
 �lls the middle 

part of the annular space (R
1
 + h ≤ r ≤ R

2
 – h), 

and a liquid with a density ρ
2
 (ρ

1
 << ρ

2
) and 

dynamical viscosity coe�cient μ
2
 adjoins hard 

surfaces (R
1
 ≤ r ≤ R

1
 + h, R

2
 – h ≤ r ≤ R

2
), where 

h is the thickness of the liquid layer. A pressure 

gradient dp/dz = const is formed in the pipe, 

which drives the gas in the upward direction. It 

is necessary to determine the distribution of the 

longitudinal velocity components of the media 

U
1 

(r), U
2
  (r) and U

3 
(r) in the cross-section of 

the tubes.

�e governing equations describing the mo-

tion of media are the Navier-Stokes equations 

[11], which for an axisymmetric case in a cylin-

drical coordinate system (r, z) reduce to a system 

of ordinary di�erential equations:

    (1)

where g is acceleration of gravity.

�e mathematical formulation of the problem 

must be supplemented by the following boundary 

conditions:

. (2)

�e �rst and last conditions (2) are no-slip 

conditions for a viscous liquid to solid walls, the 

second and fourth equations express conjugation 

conditions for media with respect to velocity, and 

the third and ��h equations are conjugation con-

ditions of media with respect to shear stress.

To perform a comparative analysis of �ow 

parameters within coaxial tubes, it is necessary 

to dimension the equations of motion (1) and 

Fig. 1. Geometry of the problem



56 Igor Kuzmenko, Alexandre Gourjii

boundary conditions (2). We apply for normal-

izing the following values: R
0 

= R
2
, U

0
, ρ

1 
and μ

1
. 

In this case, the dimensionless quantities (marked 

with an asterisk) have the following values:

       (3)

Here, Q
1
, Q

2
 and Q

3
 are the volumetric �ow of 

media with a corresponding index. Here and be-

low, the asterisks in dimensionless quantities are 

omitted.

Substitution of eqs. (3) into di�erential eqs. (1) 

leads to a normalized system of equations:

   (4)

�e normalized boundary conditions take the 

following form:

 (5)

Note that the normalized value of gravity ac-

celeration can be expressed in terms of the Reyn-

olds number in the notation de�ned before:

. (6)

�e �rst integration of eqs. (4) with respect 

to the variable r leads to the following system of 

equations:

     
(7)

where A, B and C are integration constants. Eqs. 

(4) use the notation: R
1H

 = R
1
 + h, R

2H
 = R

2
 – h.

�e second integration of eq. (7) with respect 

to the variable r allows us to recover unknown 

functions:

(8)

where D, E and F are integration constants. All 

integration constants have to be determined from 

the boundary conditions (5).

�e �rst boundary condition (5) for the sec-

ond eq. (8) allows to express the integration con-

stant E in terms of the constant B. We obtain

. (9)

By analogy, the last boundary condition (5) in 

the third eq. (8) gives equation for the constant F 

in terms of the constant C. In this case,

. (10)

�erefore, the solution of the problem (8) can 

be represented now in the following form:

 (11)

�e substitution of the third boundary condi-

tion (5) into the system of eqs. (11) leads to the 

equality
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. (12)

Similarly, substituting the ��h boundary con-

dition (5) into the system of eqs. (11) allows us 

to express the integration constant C through the 

constant B. We obtain

. (13)

At this stage of the construction of the solu-

tion, the system of eqs. (11) already contains only 

two constants of integration:

 (14)

with notation R
12

 = (R
1
 + h)2 – (R

2 
– h)2.

�e second boundary condition (5) allows us 

to express the integration constant D in terms 

of the value of the constant B. Substitution of 

eq.  (14) into this boundary condition gives the 

following equality:

(15)

Finally, the fourth boundary condition (5) al-

lows us to determine the value of the integration 

constant:

 (16)

�us, the solution of problem (4) with bound-

ary conditions (5) can be represented in the fol-

lowing form:

taking into account eq.  (16) and the notations 

adopted earlier.

To determine volumetric �ow of media, it is 

necessary to calculate the integrals

 (18)

�e substitution of the solution (17) into the in-

tegrals (18) and the subsequent integration within 

these limits leads to the following expressions:

(17)

(19)
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       (19)

To determine the mean velocity values over 

the cross-section, one can use the following equa-

tions:

. (20)

�ese equations will be used for performing 

a numerical analysis of physical parameters of a 

two-phase �ow inside two coaxial tubes.

NUMERICAL ANALYSIS 

Let us consider the features of a stationary two-

phase �ow (air-water) inside an in�nite channel 

formed by two coaxial tubes. �e air �ow moves 

in a vertical direction; the liquid is located near 

the hard surfaces. To carry out the dimension-

less quantitative analysis, let us consider the case 

with the following characteristic parameters: 

R
0
 = R

2
 = 0.005 m, ρ

1
 = μp

0
/RT is the gas densi-

ty for isothermal �ow in the temperature range 

0…100°C (excluding limit values at atmospheric 

pressure), where R = 8.34 J/(mol∙deg) is the uni-

versal gas constant, μ = 0.029 kg/mol is molar air 

weight, p
0
 = 105 Pa is an atmospheric pressure.

�e dynamical viscosity coe�cient of air and 

water in this range of temperatures varies within 

fairly wide limits [12, 13]. �e �lled circles in the 

�gure show the tabulated values. It is shown that 

the viscosity of the gas μ
1
 increases in a �rst ap-

proximation linearly with respect to the temper-

ature T, and the water viscosity μ
2
 decreases with 

increasing temperature. �at is why the ratio of 

the dynamical viscosity coe�cients μ = μ
1
/μ

2
 

varies widely. Consequently, it can be assumed 

that the quantitative dependences of the gas and 

liquid �ows rates should di�er in the tempera-

ture range under consideration. �erefore, when 

carrying out further analysis, we select three 

characteristic cases: regime A (T = 1°C), μ = 

103.5; regime B (T = 50°C), μ = 28.0; and regime 

C (T = 99°C), μ = 13.0.

�e negative pressure gradient dp/dz = const, 

applied to the coaxial channel system, drives the 

gas motion in the middle part of the section in 

the direction from the bottom to the top. It is 

known [13] that the parabolic velocity pro�le of 

the gas is formed inside the channel for small 

Reynolds numbers. At the media interface, the 

equality of shear viscous stresses entrains a part 

of the liquid on the surface in a vertical motion, 

forming on the surface a �ow with a velocity 

di�erent from zero. �e direction motion of the 

liquid at the media interface is determined by 

the ratio of the shear viscous stress force upward 

and the gravity of the liquid directed downward. 

Examples of gas and liquid velocity pro�les with-

in coaxial tubes are shown in Fig. 2 for di�erent 

values of Reynolds numbers for the case μ = 28.0 

(regime B), h = 0.02. R
1
 = 0.8. Here, U(r) = U

2
(r) 

for R
1
 ≤ r ≤ R

1H
, U(r) = U

1
(r) for R

1H
 ≤ r ≤ R

2H
, 

and U(r) = U
3
(r) for R

1H
 ≤ r ≤ R

2
. �e features of 

the velocity distribution near the inner surface 

of the channel are shown in the �gure with the 

index “b”.

�e dependencies presented in Fig. 2 were ob-

tained as a result of the solution of the transcen-

dental equation, in which the right-hand side 

of the �rst equation (17) is zero for r = R
1
 + h. 

Following the second boundary condition (5), 

analogous results can be obtained by equating 

the second equation (17) to zero for r = R
1
 + h. 

Studies show that the parameters of the hold-up 

regime for the inner layer of the liquid practical-

ly coincide with the parameters of the hold-up 

regime for the outer layer of the liquid. Note that 

in the second case it is necessary to equate the 

second or third eq. (17) to zero for r = R
2
 – h. �e 

di�erence in these parameters for the inner and 

outer layers depends on the values of the inner 

radius R
1
. An increase in the value of R

1
 leads 

to a decrease in the di�erence in the values of 

the corresponding parameters. In the range of 

values R
1
 = 0.1 ... 0.9, this di�erence does not ex-

ceed ≈0.1% and does not actually appear in the 

graphs presented in this research.

At low gas velocities, the gravity force for liq-

uid is predominant, and the �ow velocity of the 

liquid takes on negative values at all radii values 
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in the cross-section of the channel. An increase 

in the velocity of the gas leads to an increase in 

the gradient of the component of the axial veloc-

ity of the gas and, as a result, to an increase in 

the shear viscous stress on the media interface. 

�e velocity of the liquid downward increas-

es by module (see the case Re = 200 in Fig. 2); 

however, in the whole range of radial values the 

liquid velocity assumes negative values. In this 

case, the maximum value of the velocity of the 

liquid is in the layer adjacent to the media in-

terface.

At Re = 1000, the liquid velocity pro�le 

changes. �e maximum value of the liquid ve-

locity is shi�ed to the inner region of the liquid 

layer. At the interface between the media, the liq-

uid velocity asymptotically tends to zero. Subse-

quently, the hydrodynamic regime, in which the 

value of the velocity of the liquid (or gas) on the 

media interface has a zero value, is conditionally 

called the hold-up regime. Note that in this case 

the volumetric �ow rate of the liquid takes on 

negative values, because the liquid �ows down 

the entire section of the liquid layer.

A further increase in the rate of gas veloci-

ty leads to the case which is characterized by a 

change in the sign of the velocity of the near-sur-

face liquid layer. Under the action of viscous 

shear stress, the liquid can move upward (for 

example, the case Re = 2000). At the same time, 

part of the liquid adjacent to the interface of the 

media moves upward, while part of the �uid ad-

jacent to the solid surface moves downward un-

der the action of gravity. �erefore, a case can 

appear in which positive and negative �uid �ows 

through the cross-section of the channel com-

pensate each other. Subsequently, the hydrody-

namic regimes, in which the volumetric �ow 

rate of the liquid in the channel cross-section 

achieves a zero value is conditionally called the 

�ooding regime.

�e value of the gas velocity at which the 

hold-up regime arises depends not only on the 

ratio of the dynamical viscosity coe�cients of 

the �uid and gas, but also on the geometry of 

the channel and the thickness of the liquid lay-

er. Figure 3 illustrates the dependence of critical 

values of Reynolds number Re
cr1 

(or correspond-

ed gas velocity) in the hold-up regime on the 

thickness h of the liquid layer for certain values 

of the radii R
1
 of the inner tube and the temper-

ature of the media. It is shown that an increase 

in the thickness of the liquid layer �rst leads 

to an increase in the gas velocity at which the 

hold-up regime arises. For large values of h, the 

corresponding Reynolds numbers decrease. �e 

critical value of Reynolds numbers Re
cr1 

for large 

values of μ (cold media) becomes larger in com-

parison with the cases in which μ takes smaller 

values (hot media).

Fig. 2. The �ow velocity pro�le in the cross-section of the channel (a) and near the inner surface of the channel (b) for h = 0.02, R
1
 = 0.8

(a) (b)
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It is interesting to note that the critical val-

ues of the Reynolds numbers Re
cr1 

for the hold-

up regime decrease gradually for large values of 

the thickness h of the liquid layer. �is e�ect is 

explained by the mutual in�uence of the liquid 

layer on the inner surface and the liquid layer on 

the outer surface. As the values of h increase, the 

thickness of the gas layer in the cross-section of 

the channel decreases. In this case, the gradient 

of the longitudinal component of the gas veloc-

ity near the interface increases. �is leads to an 

increase in the viscous shear stress. For this rea-

son, the hold-up regime occurs at lower Reynolds 

numbers Re.

Analysis of scienti�c literature [1, 7] shows that 

the gas �ow in a narrow channel (R
2 
– R

1 
– 2 h) ac-

quires a dynamic instability, which is accompa-

nied by a violation of the symmetry of the �ow, 

the formation of a wave surface at the media in-

terface. In some cases, this can lead to the rup-

ture of the surface of the liquid, the formation 

of droplets of di�erent diameters. Note that the 

surface tension forces play an important role in 

this process. Similar e�ects can be observed with 

an increase in the gas velocity to values charac-

teristic of the transition and turbulent gas �ow 

regimes. Some details of the physical e�ects that 

arise in the turbulent �ow of a two-phase medium 

inside an in�nite tube can be found in the mon-

ograph [1]. For this reason, the increasing theo-

retical branches of the dependencies in Fig. 3 can 

be considered physically unstable solutions; their 

observation in real currents is problematic.

�e dependence of the critical values of the 

Reynolds numbers Re
cr1

 under which the �ooding 

regime on the radius R
1 
of the inner tube at �xed 

values of the thickness of the liquid layer is shown 

in Fig. 4. �ere is a general tendency associated 

with a decrease in the velocity of the gas �ow with 

increasing radius R
1
. Note that the critical value of 

Re decreases with decreasing value of μ. In other 

words, the process of hold up in a heated system 

occurs at lower values of the gas velocity inside 

the pipe system under consideration.

Fig. 4. Dependence of Reynolds numbers Re
cr1

 in the hold-up re-

gime on the radii R
1
 of the inner tube for di�erent values h of the 

liquid layer

Fig. 3. Dependence of the critical Reynolds number Re
cr1

 in the 

hold-up regime on the thickness h of the liquid layer for di�erent 

values of the radii R
1
 of the inner tube

Figure 5 illustrates the dependence of the vol-

umetric �ow of the gas and the liquid on the gas 

velocity inside the coaxial tubes for the various 

regimes mentioned earlier. �e �gure shows the 

case: R
1 
= 0.8, h = 0.02. It can be seen that this de-

pendence is nonlinear. An increase in the values 

of Reynolds numbers leads to an increase in the 

values of the dimensionless volumetric �ow of the 

gas (3). At Re ≈ 1000 ... 2000, the curves gradually 

reach a constant value. Hence, starting with these 
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Reynolds numbers Re, the volumetric �ow of the 

gas becomes directly proportional to the gas ve-

locity inside the coaxial tubes. Note that increase 

in the temperature of a two-phase medium leads 

to a displacement of this e�ect in the region of 

large values of the gas velocity.

values of the gas velocity gradually begin to de-

crease. �is trend takes place for di�erent tem-

peratures of the two-phase mixture. Neverthe-

less, the �ooding regime occurs at lower critical 

Reynolds numbers over the entire range of val-

ues of h for a heated two-phase medium.

�e dependence of the critical Reynolds 

number Re
cr2

 values, at which the �ooding re-

gime occurs, of the normalized radius R
1
 of 

Fig. 7. Dependence of the critical Reynolds number Re
cr2

 for the 

�ooding regime on the thickness h of the liquid layer for di�erent 

values of the radii R
1
 of the inner tube

Fig. 6. Dependence of Reynolds numbers Re for regimes A, B and C 

on volumetric liquid �ows Q
1
, Q

2
 and Q

F

Fig. 5. Dependence of Reynolds numbers Re for regimes A, B and C 

on volumetric �ow of gas Q
1

�e dependence of values of Reynold num-

bers on the normalized volumetric �ow of liq-

uids for di�erent regimes is shown in Fig.  6 

(R
1 
= 0.8, h = 0.02). �e dashed line in the �gure 

shows the Re(Q
2
) dependence, and the dotted 

line shows the Re(Q
3
) dependence. �e solid line 

shows the total volumetric �ow Q
F
 = Q

2
 + Q

3
. It 

is shown that increase in the gas velocity leads 

to a change in the direction of liquid motion. 

When Q = 0, a �ooding regime of liquid occurs 

inside the coaxial tube system. We note that the 

�ooding regime for a cold two-phase medium 

occurs at large values of the gas velocities in 

comparison with the analogous case for a heat-

ed medium.

Figure 7 illustrates the dependence of the 

critical Reynolds number Re
cr2

 values, at which 

the �ooding regime occurs, on the thickness of 

the liquid layer for di�erent values of the radius 

R
1 
of the inner tube. Increasing the thickness of 

the liquid layer requires large values of the gas 

velocity. However, at some value of h, the op-

posite solid surface begins to in�uence, and the 
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the inner tube for di�erent thicknesses h of the 

liquid layer is shown in Fig. 8. It is shown that 

the �ooding regime occurs at lower gas veloc-

ities for large values of R
1
. Simultaneously, the 

general tendency is preserved: the �ooding re-

gime for a heated two-phase medium occurs at 

lower Reynolds numbers Re.

At the interface between media, this force en-

trains a part of the liquid on the surface in a 

vertical motion, forming a �ow on the surface 

with non-zero velocity. �e direction of the liq-

uid motion at the media interface is determined 

by the ratio of the viscous shear stress force di-

rected upward and the gravity force of the liquid 

directed downward.

For certain values of the gas velocity, a hold-

up regime may occur, which is characterized 

by vanishing of the velocity of the liquid (or 

the gas) at the media interface. Increase in the 

thickness of the liquid layer leads to increase in 

the gas velocity, at which the hold-up regime oc-

curs. Further increasing the values of h, the cor-

responding values of the gas velocity decrease. 

In this case, the gradient of the longitudinal 

component of the gas velocity near the inter-

face increases as shown on Fig.  3 for h  >  0.04 

at R
1 

= 0.7. �is leads to increase in the viscous 

shear stress force and, as a result, the hold-up 

regime occurs at lower Reynolds numbers Re. 

If radius R
1
 of the inner tube increases and the 

dimensionless value of h is a constant, then gas 

velocity in the channel for the hold-up regime 

decreases. �is regime occurs in the system at 

lower values of gas velocity inside the channel 

under consideration.

�e �ooding regime, which follows the hold-

up regime, has similar properties. �is regime 

is determined by the condition of equality to 

zero of the volumetric �ow of the liquid in the 

cross-section of the channel.
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Igor Kuzmenko, Alexandre Gourjii

AKSISIMETRINIS LAMINARINIS TEKĖJIMAS 

DVIFAZINIAME SRAUTE DVIEJŲ 

KOAKSIALINIŲ VAMZDŽIŲ SISTEMOJE 

Santrauka

Aptariama aksisimetrinio laminarinio tekėjimo dvie-

jų fazių (skystis–dujos) srauto begalinėje koaksialių 

apvalaus skerspjūvio vertikalių vamzdžių sistemoje 

problema. Analitinio sprendinio analizė parodė, kad 

dujų srauto greičio padidėjimas veda prie stabdymo 

režimo (tada terpės srauto greitis sąsajoje yra lygus 

nuliui) ir užliejimo režimo (kai skysčio srautas yra 

lygus nuliui). Nustatyta, kad šie režimai pasireiškia 

esant mažesniems dujų srauto greičiams šildomoje 

terpėje, palyginti su šalta terpe.

Raktažodžiai: koaksialiniai vamzdžiai, dvifazis 

srautas, laminarinis tekėjimas, pasipriešinimo reži-

mas, užliejimo režimas


