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ABSTRACT

In this third paper in a series on stable magnetic equilibria in stars, I look at the stability of
axisymmetric field configurations and, in particular, the relative strengths of the toroidal and
poloidal components. Both toroidal and poloidal fields are unstable on their own, and stability
is achieved by adding the two together in some ratio. I use Tayler’s stability conditions for
toroidal fields and other analytic tools to predict the range of stable ratios and then check these
predictions by running numerical simulations. If the energy in the poloidal component as a
fraction of the total magnetic energy is written as Ep/E, it is found that the stability condition
is a(E/U) < Ep/E � 0.8 where E/U is the ratio of magnetic to gravitational energy in the
star and a is some dimensionless factor whose value is of order 10 in a main-sequence star
and of order 103 in a neutron star. In other words, whilst the poloidal component cannot be
significantly stronger than the toroidal, the toroidal field can be very much stronger than the
poloidal–given that in realistic stars we expect E/U < 10−6. The implications of this result
are discussed in various contexts such as the emission of gravitational waves by neutron stars,
free precession and a ‘hidden’ energy source for magnetars.

Key words: MHD – stars: chemically peculiar – stars: magnetic fields – stars: neutron – white
dwarfs.

1 IN T RO D U C T I O N

Magnetic fields are observed in various types of star which are con-
sidered unlikely to harbour a suitable regenerative dynamo process
because of the lack of convection. For instance, strong fields (300 G
to 30 kG) are observed via the Zeeman effect on chemically pe-
culiar main-sequence A stars (the Ap stars; see Mathys 2001, for
a review), as well as on higher mass O and B stars. These stars
do contain a small convective core and a magnetic field produced
inside it could, in principle, rise through the radiative envelope in
the form of buoyant flux tubes, but the time-scale of this process
is almost certainly too long for anything to be seen on the surface
within the star’s lifetime (MacGregor & Cassinelli 2003). The mag-
netic white dwarfs (WDs, with observed fields of 104–109 G) have
only weak surface convection, and neutron stars (NSs, with fields
108–1015 G) no convection at all. All of these stars must therefore
contain a stable ‘fossil’ magnetic field, inherited either from the
original molecular gas cloud or from the previous stage of evolu-
tion (e.g. WDs from the main sequence, see Wickramasinghe &
Ferrario 2005, or NSs from a degenerate stellar core, see Ferrario &
Wickramasinghe 2006) or left over from some kind of dynamo pro-
cess at the time of formation, either during the pre-main-sequence
phase, in the case of Ap stars, or during the convective protoneutron
star phase (Duncan & Thompson 1992). To have survived since this
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time, a field must be stable on a dynamic (Alfvén) time-scale.1 It
was suggested by Prendergast (1956) that a stellar magnetic field
in stable equilibrium must contain both poloidal (meridional) and
toroidal (azimuthal) components, since both are unstable on their
own. It was then shown more rigorously by Tayler (1973) that any
purely toroidal field configuration is unstable at least some place in
a star, and by Wright (1973) and Markey & Tayler (1973, 1974) that
any purely poloidal field is unstable. More recently, the properties
of these instabilities of toroidal and poloidal fields have been looked
at analytically and numerically (Spruit 1998; Braithwaite & Spruit
2006; Braithwaite 2006, 2007; Bonanno & Urpin 2008).

Analytic methods have proven useful in demonstrating the insta-
bility of various equilibrium configurations, but have not been as
useful in demonstrating the existence of any stable configuration.
Numerical simulations (Braithwaite & Nordlund 2006, hereafter
Paper I; see also Braithwaite & Spruit 2004) showed that an arbi-
trary initial magnetic field inside a non-convective star can evolve
on an Alfvén time-scale into a stable configuration. A roughly ax-
isymmetric configuration was found of a mixed poloidal–toroidal
twisted-torus shape as shown in Fig. 1. Once formed it continues to
evolve as a result of diffusive processes such as finite conductivity,
on a much longer time-scale. For instance, the diffusion time-scale

1 The solid crust of a NS can hold an otherwise unstable field in place,
provided that the field strength is below some threshold ∼1013 G, but it is not
clear whether the crust forms soon enough after the end of the protoneutron
star convective phase to prevent relaxation into stable equilibrium.
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764 J. Braithwaite

Figure 1. The shape of the stable twisted-torus field in a star, viewed from
different angles. The transparent surface represents the surface of the star;
strong magnetic field is shown with yellow field lines, weak with black.

is ∼1010 yr for an Ap star; in the case of a NS, this time-scale is much
less certain and is a result of Hall drift and other processes as well
as Ohmic dissipation. As the field evolves it moves outwards, pass-
ing quasi-statically through a series of stable equilibria until, upon
reaching the end of the series of axisymmetric equilibria, it changes
to a non-axisymmetric equilibrium. These non-axisymmetric equi-
libria are described in more detail in Braithwaite (2008, hereafter
Paper II), where it was also found that a non-axisymmetric equilib-
rium can be formed on an Alfvén time-scale directly, from somewhat
different initial conditions. Essentially, the important difference is
the central concentration of the initial field and the fraction of flux
connected through the stellar surface –a non-axisymmetric equilib-
rium can be formed directly from an initial field whose energy is
more ‘spread out’ rather than concentrated towards the centre of the
star, and which has significant flux connection through the stellar
surface.

We are concerned here with only the axisymmetric class of equi-
libria. Since both toroidal and poloidal fields are unstable on their
own, there is presumably some allowed range of ratios of the two
respective field strengths; it is the principal purposes of this paper
shed some light on what these stable ratios might be. The toroidal
field is always confined to the interior of a star, since a toroidal field
on or above the surface would require long-lived currents outside
the star, so that we observe on the surface only the poloidal compo-

nent. Therefore, it is either difficult or impossible to get any direct

observational constraint on the range of allowed ratios. There are,
however, some interesting ways in which a toroidal magnetic field
can manifest itself indirectly, which make the question of allowed
poloidal/toroidal ratios a useful line of study. First, in predominantly
non-convective main-sequence stars (i.e. >1.5 M⊙) it would be use-
ful to know how much flux may be hidden below the surface, since
this flux may be important during formation, eventually be visible
on the WD, be responsible for shaping the planetary nebula, affect
the supernova explosion in some way, and affect the natal rotation
periods of NSs and WDs via core-envelope coupling. In fact, this
reminds us of another question: how much of the poloidal flux can
be hidden below the surface? Certainly not all of it has to go through
the stellar surface, but may be confined to the interior. This paper
also sheds some light on this issue. In the context of the ‘magnetars’,
highly magnetized NSs (dipole field strength on surface 1014–15 G;
see Woods & Thompson 2004, for a review), it would certainly
be useful to know how much magnetic flux and energy could be
‘hidden’ in the interior of the star. These stars undergo soft-γ -ray
outbursts, releasing as much as 2 × 1046 erg of magnetic energy in
less than a second. A field of 3 × 1014 G, if it fills the interior of
the star, contains 2 × 1046 erg, and since these stars appear to have
a lifetime of ∼104 yr and to undergo large outbursts perhaps once a
century, it seems likely that the average field strength in the interior
is significantly greater than that on the surface.

Another way in which the poloidal/toroidal ratio may manifest
itself is through its effect on the star’s shape and moment of inertia.
It has been known for some time (e.g. Chandrasekhar & Fermi
1953; Wentzel 1961) that a poloidal field will make a star oblate
and a toroidal field prolate, and obviously with a mixed poloidal–
toroidal field it will depend on the ratio of the two. In general, such
a deformed star should undergo torque-free precession2; there is
already some observational evidence for this (Cutler, Ushomirsky
& Link 2003; Wasserman 2003; Akgün, Link & Wasserman 2006).
If this precession is damped, then kinetic energy is minimized while
conserving angular momentum and a prolate star will tend towards
the alignment of its rotation and magnetic axes; while in an oblate
star, the angle between the two axes will tend to 90◦. In an Ap star,
this damping process may or may not take on the order of a main-
sequence lifetime (Mestel et al. 1981) but in a NS it may be much
faster and a predominantly toroidal field in a fast-rotating NS could
lead to strong emission of gravitational radiation. These effects of
the magnetic field on a star’s moment of inertia will be looked at
in more detail in a forthcoming paper (Braithwaite & Nissanke, in
preparation).

In Section 2, the instability in toroidal fields is described and
some predictions are made about the stability of mixed poloidal–
toroidal fields, and the properties of instability in poloidal fields
are reviewed. In Section 3, analytic conditions are used to examine
the stability of fields produced in simulations, and simulations are
presented of the decay or otherwise of fields with various toroidal–
poloidal ratios. I conclude, and discuss the results and their appli-
cations in Section 4.

2 INSTA BILITY IN AXISYMMETRIC FIELDS:

ANALYTI C RESULTS

In this section, I review the nature and properties of instability in
purely toroidal and toroidal magnetic fields in stars, as well as look

2 Purists may prefer the term ‘nutation’, although ‘precession’ occurs more
frequently in the literature.
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Axisymmetric magnetic fields in stars 765

at stabilization of a predominantly toroidal field through the addition
of a weak poloidal component and vice versa.

2.1 The Tayler instability

The stability of purely toroidal fields in stars was examined by
Tayler (1973), who used the energy method of Bernstein et al.
(1958) to derive necessary and sufficient stability conditions. Given
a perturbation of the form

ξ ∼ f (θ )ei(nr+mφ)+σ t , (1)

in spherical polar coordinates (r, φ, θ ), he found that the stability
conditions for m ≥ 2 are less strict than for m = 1, so that if
the goal is simply to distinguish between unstable and stable field
configurations, these higher azimuthal wavenumbers need not be
considered. The unstable modes can therefore be thought of as
local in the meridional plane but global in the azimuthal direction.

2.1.1 Necessary and sufficient stability conditions

For stability against the m = 0 mode, we need the change in potential
energy, as given by the following integral, to be positive for an
arbitrary displacement field ξ . In cylindrical coordinates (̟ , φ, z):

δW ∝
∫

̟ d̟ dz
{

(......)2 + aξ 2
z + bξzξ̟ + cξ 2

̟

}

, (2)

where (......)2 is some function of ξ which is positive definite, and
where

a = gz

∂ρ

∂z
−

ρ2g2
z

B2
φ + γP

, (3)

b = g̟

∂ρ

∂z
+ gz

∂ρ

∂̟
−

2ρgz

(

ρg̟ − 2B2
φ/̟

)

B2
φ + γP

−
2Bφ

̟

∂Bφ

∂z
, (4)

c = g̟

∂ρ

∂̟
−

(

ρg̟ − 2B2
φ/̟

)2

B2
φ + γP

−
2Bφ

̟

∂Bφ

∂̟
+

2B2
φ

̟ 2
. (5)

For δ W to be positive, clearly it is sufficient (and can also be shown
to be necessary) that the quadratic form is positive everywhere in
the volume of integration. So, the stability conditions are that

a > 0 , c > 0 and b2 < 4ac (6)

everywhere in the (̟ , z) plane in the star.
For stability against the m = 1 mode, we have a similar integrand

consisting of one positive term and a quadratic where

a = g̟

∂ρ

∂̟
−

ρ2g2
̟

γP
−

B2
φ

̟ 2
−

2Bφ

̟

∂Bφ

∂̟
, (7)

b = g̟

∂ρ

∂z
+ gz

∂ρ

∂̟
−

2ρ2g̟ gz

B2
φ + γP

−
2Bφ

̟

∂Bφ

∂z
, (8)

c = gz

∂ρ

∂z
−

ρ2g2
z

γP
+

B2
φ

̟ 2
. (9)

Tayler went on to show that it is impossible to satisfy all six of
these conditions everywhere in the star, concluding that a stable
equilibrium cannot be purely toroidal.

A hand-waving explanation of the instability mechanism is as
follows. One can imagine the toroidal field as a stack of field
rings which exert pressure on one another. Magnetic tension (‘hoop

Figure 2. The form of the instability in a toroidal field near the axis of
symmetry of a star. The m = 1 mode sets in before m = 0 and m ≥ 2. (Figure
from Spruit 1999.)

stress’) and external pressure prevents the discs from simply ex-
panding outwards and thus relieving this pressure, but it is energeti-
cally favourable for the rings to slip sideways out of the equilibrium
position, rather like the way an overloaded spinal column can result
in a ‘slipped disc’. The result is an m = 1 ‘kink’ mode, as illustrated
in Fig. 2.

2.1.2 Unstable wavelengths and the stabilizing effect of an added

poloidal field

The growth rate of the instability can be shown to be (Tayler 1957)

σ ∼ ωA ≡
vA

r sin θ
=

Bφ

r sin θ
√

ρ
. (10)

In the case of an unstratified medium with infinite conductivity and
zero kinetic viscosity, all vertical wavelengths (i.e. all n) are unsta-
ble. However, finite conductivity damps the highest n modes faster
than they can grow, resulting in a maximum unstable n. Conversely,
stable stratification restricts the growth of the lowest wavenumbers.
This is because, as we see from the continuity equation, the instabil-
ity results in vertical motions of the order of ξ r ∼ ξ hlr/lh, where ξ r

and ξ h are the displacements in the vertical (radial) and horizontal
directions, respectively, and lr and lh are the length-scales in the
vertical and horizontal, so that lr = 1/n. The horizontal instability
force per unit mass pushing a fluid element away from its equilib-
rium position is Fh = σ 2ξ h, and the vertical buoyancy force pushing
the fluid element back to equilibrium is Fr = N2ξ r, where N is the
buoyancy frequency. If the instability is to grow, we need therefore
to have ξ hFh > ξ rFr. Now combining these two limits we have the
following range of unstable wavelengths (Spruit 1999):
√

σ

η
> n >

N

lhσ
, (11)

where η is the magnetic diffusivity. A toroidal field is stabilized if
the left-hand side is less than the right-hand side. These wavelength
limits were confirmed numerically by Braithwaite (2006).

Adding a radial field component Br will also help to stabilize
a toroidal field, as the horizontal displacements produced by the
instability will bend the radial field lines, producing a restoring
force. Using similar arguments to those in the previous paragraph,
we can predict what field strength will be required for stabilization.
The (horizontal) restoring force per unit mass is ξ hB2

r /(l2
r ρ) and,

equating this to the force from the instability, we have instability if

σ
√

ρ

Br
∼

Bφ

r sin θBr
> n (12)

C© 2009 The Author. Journal compilation C© 2009 RAS, MNRAS 397, 763–774

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
9
7
/2

/7
6
3
/9

7
1
8
4
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



766 J. Braithwaite

using equation (10). This corresponds to a result in the case of an
unstratified plasma from the unstable modes and dispersion-relation
method (Tayler 1957).

Taking numbers typical for a main-sequence star (in cgs units)
r sin θ ∼ 1011, ρ ∼ 1, Br ∼ Bφ ∼ 103 and η ∼ 102, the term
on the left-hand side of equation (11) turns out to be 106 times
greater than that in equation (12). Similarly high ratios are found in
WDs and NSs. This means that we can expect the stabilizing effect
of the poloidal field to dominate over that of magnetic diffusion.
Therefore, ignoring magnetic diffusion and combining the effects
of stable stratification and poloidal field, we have stability if

σ 2 −
N 2

n2l2
h

−
B2

r n2

ρ
< 0, (13)

which is true for all wavenumbers n if

B4
φ

̟ 4
<

4B2
r ρN 2

l2
h

, (14)

which can be rewritten in terms of the Alfvén frequency ωA ≡
Bφ/(̟

√
ρ) as

ωA

N

lh

2̟
<

Br

Bφ

. (15)

The second part of the left hand side will be roughly unity, so
it is clear that the critical Br/Bφ depends on the field strength in
the star. In a main-sequence star, we have ω2

A/N2 ∼ E/U, the ratio
of magnetic to thermal energies; in neutron stars the buoyancy is
weaker (Reisenegger 2008), so that ω2

A/N2 ∼ 102E/U. However, we
expect E/U < 10−6 in a real star, so a relatively weak poloidal field
should be sufficient for stabilisation in any kind of star.

2.2 Instability of poloidal fields

It is known that not only purely toroidal fields, but also purely
poloidal fields are also unstable (Markey & Tayler 1973; Braithwaite
2007). The instability begins in the region of the neutral line, the
line where the poloidal component goes to zero. This instability
is not unlike that in a toroidal field near the axis of symmetry
– the poloidal field increases in proportion to distance from the
neutral line and it is the pressure in the direction parallel to this
line, which the ‘loops’ are exerting on each other, which drives
the instability. The direction of the stratification is the important
difference between the two instabilities; displacements must be
approximately perpendicular to gravity, which in the poloidal case
means that the loops move in a direction parallel to the star’s axis
of symmetry. This is illustrated in Fig. 3. The growth rate of this
instability is calculated in the same way as in the toroidal case,
so it is given by the local Alfvén frequency around the neutral
line ωA ≡ Bp/(s

√
ρ), where s is the distance from the neutral

line. Adding a toroidal component (i.e. a component parallel to the
neutral line) can stabilize the field, since the instability increases
the length of the neutral line, thereby stretching the toroidal field
line lying on it. The higher azimuthal wavenumbers are stabilized
first, so that the m = 2 wavenumber is the first to become unstable
as the strength of the toroidal component is reduced. (Note that the
m = 0 and 1 modes are prevented by conservation of momentum
and angular momentum, respectively.) In Paper II, it was found that
as an axisymmetric configuration diffuses outwards towards the
stellar surface, the toroidal component is lost into the atmosphere,
weakening it relative to the poloidal component, and eventually the
m = 2 mode appears and the configuration evolves quasi-statically
along a non-axisymmetric sequence. The minimum-energy state

Figure 3. The form of the instability in a purely poloidal configuration. The
left-hand side shows the equilibrium and the right-hand side the growth of
a mode of particular azimuthal wavenumber.

of this non-axisymmetric equilibrium has comparable toroidal and
poloidal components, which strongly suggests that an axisymmetric
equilibrium cannot have a much stronger poloidal component than
toroidal. A poloidal component which is stronger by some factor
of order unity is possible, and the next section examines how large
that factor can be. Note that this signals an asymmetry between
the toroidal and poloidal cases, as there is no equivalent factor-of-
order-unity argument giving an upper bound to the relative strength
of the toroidal component.

The strength of toroidal field required for stabilization can be es-
timated with an analogous method to that described in Section 2.1.2,
taking the wavelength to be 2πrn/m and arriving at the following
stability condition:

Bp

sBt
<

m

rn
, (16)

where s is the distance from the neutral line and rm is the radius of the
neutral line. Note that Bp is proportional to s in the neighbourhood
of the neutral line. Although this stability condition should be taken
as rather approximate since curvature and other effects have been
ignored, it shows again that stability against the (most unstable)
m = 2 mode requires the toroidal component to be at least compa-
rable in strength to the poloidal component. Wright (1973) arrived
at a similar stability condition (his equation 39):

0.24Bp(s0) < Bt, (17)

where s0 is some distance from the neutral line whose value is
uncertain.

2.3 The effect of rotation

In the previous sections, the rotation of the star was not taken into
consideration, but we may now look at its possible effect. First of
all, we expect it to have an effect only in the ‘fast’-rotating regime,
i.e. when the rotation speed is faster than the Alfvén speed (Frieman
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Axisymmetric magnetic fields in stars 767

& Rotenberg 1960). Applying this condition to real astrophysical
objects, we see some fast and slow rotators. We find the ratio of the
magnetic and rotation time-scales to be



ωA
=

2π

P B̄

√

3M

R
, (18)

where P is the rotation period, B̄ is some average magnetic field in
the interior of the star, and M and R are the stellar mass and radius.
For 3 M⊙ MS stars, 0.8 M⊙ WDs and 1.4 M⊙ NSs, the numbers
are



ωA
≈ 3800P −1

10dB
−1
5 kG or 18P −1

1d B−1
7 or 0.05P −1

10 sB
−1
15 , (19)

where the periods are in units of 10 d, 1 d, 10 s and the field strengths
5 kG, 10 MG and 1015 G – typical values for magnetic MS stars,
WDs and NSs (magnetars), respectively. Evidently the typical Ap
star is in the fast-rotating regime; however, there are a few known
examples with comparable field strengths but rotation periods of
30–100 yr and above, just putting them into the slowly rotating
regime (Mathys 2008). There is also much variation amongst the
magnetic WDs: a group exists with P ∼ 100 yr and B ∼ 300 MG
while some others have P ∼ few hours and B ∼ 1 MG (Ferrario &
Wickramasinghe 2005), so this class of star contains both fast and
(very) slow rotators. The magnetars show much less variation and
all are slow rotators; the radio pulsars on the other hand are fast
rotators.

In the fast-rotating stars, the rotation will certainly have some
effect on the growth rate of any instability. In the rotating frame, the
Coriolis force acts perpendicularly to any unstable displacement,
giving rise to epicycles; in the absence of any diffusive mecha-
nisms, this causes the fluid elements to come back to their original
positions and stabilization results. This has been seen in simulations
of the instability in a toroidal field (Braithwaite 2006). Diffusion
though damps the epicycles and the instability returns, albeit with
the growth rate reduced by some factor /ωA (Pitts & Tayler 1986;
Spruit 1999). In the case of a strong poloidal field, a similar effect
has been seen in simulations (Braithwaite 2007). It seems likely then
that rotation does not affect the upper and lower bounds on Ep/E.

3 STA BILITY OF THE AXISYMMETRIC FI ELD

C O N F I G U R AT I O N S : N U M E R I C A L M E T H O D S

Having derived some stability criteria for a mixed poloidal–toroidal
field, it remains to see what this means for the stability of a global
magnetic field configuration. Clearly, a globally stable configuration
needs to be locally stable against the Tayler instability at each point
in the star, as well as being stable in the neighbourhood of the neutral
line. There are two obvious ways to proceed. The first is to find a
global configuration and then check that a local analysis predicts
stability at every location in the star for both types of instability.
The second way is to construct a global configuration and then
numerically follow its evolution in time.

3.1 Constructing an axisymmetric field

The basis for constructing axisymmetric field configurations whose
stability we can probe will be the result of numerical simulations
similar to those performed in Paper I, to where the reader is referred
for a fuller account of the setup of the model; a brief outline is given
here.

The code used is the STAGGER code (Nordlund & Galsgaard 1995;
Gudiksen & Nordlund 2005), a high-order finite-difference Carte-

sian magnetohydrodynamics (MHD) code which uses a ‘hyper-
diffusion’ scheme, a system whereby diffusivities are scaled with
the length-scales presents so that badly resolved structure near
the Nyquist spatial frequency is damped whilst preserving well-
resolved structure on longer length-scales. This and the high-order
spatial interpolation and derivatives (sixth order) and time-stepping
(third order) increase efficiency by giving a low-effective diffusivity
at modest resolution (1283 here). The code includes Ohmic and well
as thermal and kinetic diffusion. Using Cartesian coordinates avoids
problems with singularities and simplifies the boundary conditions:
periodic boundaries are used here.

The simulations model the star as a self-gravitating ball of ideal
gas (γ = 5/3) of radius R in hydrostatic equilibrium with radial den-
sity and pressure profiles obeying the polytrope relation P ∝ ρ1+ 1

n ,
with the index n set to 3 here, since this gives stable stratification
and is a reasonable approximation to an upper main-sequence star.
It seems unlikely that a different EOS, for instance that of a NS, will
make even much quantitative difference to the results. The important
point is the stable stratification – the issue of magnetic equilibria in
a non-stably stratified star will be explored in a forthcoming paper.

A boundary between the star and the surrounding volume is pro-
duced in the following way. In reality, we expect the field outside the
star to be not only force-free (as is the usual approximation when
looking at magnetic loops in the solar corona) but also curl-free,
since a very tenuous medium will not sustain long-lived currents.
Numerically, a potential (i.e. current-free) field is tricky to produce,
but fortunately the same effect can be produced by adding a high
magnetic diffusivity to the volume outside the star, and in practice
the diffusivity chosen is the maximum allowed without having to
reduce the time-step. This causes the field outside the star to relax
fairly rapidly to a curl-free configuration. Also, the gas outside the
star is hot, increasing the scaleheight and thus stopping the den-
sity from falling to greatly towards the edges of the computational
box, preventing high Alfvén speeds and the lower time-step they
would cause. The star is given an initially random magnetic field
containing energy at all length-scales down to a limit of a few grid
spacings, and the MHD equations are integrated in time to follow
the evolution of the field. Within a few Alfvén crossing times, a
stable equilibrium is reached. In the case where the field is less
centrally concentrated, the equilibrium is non-axisymmetric, con-
sisting of twisted flux tubes meandering at roughly constant depth
under the surface of the star. This case was examined in detail in
Paper II. In the case of more centrally concentrated (i.e. deeply
buried) initial fields, an approximately axisymmetric field forms.
Ignoring the small deviations from axisymmetry, there appear to be
two basic degrees of freedom:3 the concentration of the field into
the centre of the star, which can be parametrized as rn, the distance
between the axis of symmetry and the neutral line, and the poloidal
fraction of total energy Ep/E. In this two-dimensional parameter
space lies an area of stability through which the star slowly moves
in time, as a result of diffusive processes such as finite conductivity,
to ever increasing rn and the eventual end of its stable axisymmetric
life, as described above and in Paper II. It is the aim here to find the
boundaries of that area of stability.

The first step is to produce a stable field in a simulation (i.e. run
with arbitrary initial conditions for a few Alfvén crossing times until
the field has settled down into an equilibrium) and axisymmetrize it,

3 There are other, more subtle degrees of freedom concerning the exact shape
of the field lines, but they appear to be less important, and are beyond the
scope of this study.
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768 J. Braithwaite

Figure 4. Projection on to the meridional plane of the stable magnetic field
configurations with rn/R = 0.33, 0.47 and 0.58. The yellow semicircle is
the surface of the star, and the black lines and blue shading represent the
poloidal and toroidal components of the field, respectively. The contours of
the toroidal part are actually contours of ̟ Bφ ; it is clear that this quantity
is roughly constant on poloidal field lines. The poloidal lines plotted are
separated by equal quantities of poloidal flux.

using an axis defined by
∫

r × B dV . Although the fields produced
in the simulations are already approximately axisymmetric, perfect
axisymmetry simplifies the stability analysis. Also, the small asym-
metry between the two hemispheres is removed so that the field
is symmetrical about the z = 0 plane. Now, this symmetrized star
can be put back into the simulation and evolved in time (the ‘fidu-
cial simulation’), where it slowly diffuses outwards, the value of rn

rising as it does so. Its stability can then be examined at various
points along this diffusive evolution track, both analytically, using
the methods described in Section 2, and numerically, by changing
the relative strengths of the poloidal and toroidal parts and using that
as the initial conditions for a new simulation. In this way, the bound-
aries of the stable area in rn–Ep/E parameter space can be found. In
Fig. 4, we see the axisymmetric field at the times t/τA = 5.2, 69.7
and 97.0 when rn/R = 0.33, 0.47 and 0.58. Time is measured in
units of the Alfvén crossing time, defined here as τA ≡ R

√
M/2E

where E is the total magnetic energy and M is the mass of the star.
Note that it can be seen in the figure that the contours of ̟Bφ are
parallel to the poloidal field lines. This result can be derived ana-
lytically (Mestel 1961; Roxburgh 1966) from ∇ · B = 0 and from
the recognition that the azimuthal component of the Lorentz force
must be zero everywhere because in an axisymmetric equilibrium
it cannot be balanced by gravity ρg or the pressure gradient −∇P.

In Fig. 5, are plotted various quantities from the fiducial run
which change in time as the magnetic field evolves diffusively: the
neutral line radius rn, the poloidal energy fraction Ep/E and the
fraction of the poloidal flux which breaches the surface of the star
�surf/�p.

First, the case where the toroidal field dominates will be exam-
ined, and then in Section 3.3 the poloidal-dominated case is looked
at, in order to find both boundaries of stability, i.e. both upper and
lower bounds to Ep/E.

3.2 Stability of a predominantly toroidal field

In this section, I examine the stability of fields with low Ep/E,
firstly with a combination of Tayler’s stability conditions and equa-
tion (14), and secondly with simulations using different values of
Ep/E as initial conditions.

3.2.1 Analytic stability conditions

The m ≥ 2 modes always set in after the m = 1 mode and need
not be considered here. Taking the output of the fiducial simulation,

Figure 5. The neutral line radius rn, the poloidal energy fraction Ep/E

and the fraction of poloidal flux which breaches the surface of the star
�surf/�p against time (in units of the Alfvén crossing time). Transition to
non-axisymmetric equilibrium occurs at around t/τA = 120.

described in the previous section, I apply Tayler’s six conditions
(equation 6) for both m = 0 and 1 modes to the toroidal component
of the field, at the three points in time shown in Fig. 4. Looking at
where in the star the conditions are met, the first result is that the
first two conditions, a > 0 and c > 0, for both the m = 0 and 1
modes are satisfied everywhere in the star at all points in time. In

Figure 6. Half of the meridional plane (the other half being identical) with
rn/R = 0.47 value. The thick black line is the surface of the star and the
thin black lines are two selected poloidal field lines, showing the locations
of the ‘closed’ poloidal region (where the toroidal field resides) and neutral
line. The regions stable against the m = 0 and 1 even in the absence of a
poloidal field are illustrated by the green and blue lines; the ticks point into
the region of instability. The thick pink line shows which area is stabilized
by the radial component of the field Br. Dotted and dashed purple lines are
contours of minimum and maximum unstable wavelengths, in units of the
grid spacing dx ≈ 0.03R, as calculated by solving for n in equation (13) and
taking λ = 2π/n.
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Axisymmetric magnetic fields in stars 769

Figure 7. Stability lines for various values of Ep/E = 0.01 at three points in the fiducial simulation with E/U = 1/400. Top row: rn = 0.33R and Ep/E =
0.01, 0.018, 0.032 and 0.056; middle row: rn = 0.47R and Ep/E = 0.0056, 0.01, 0.018 and 0.032; bottom row: rn = 0.58R and Ep/E = 0.01, 0.018, 0.032 and
0.056. See Fig. 6 for an explanation of the various lines plotted.

contrast, the two b2 < 4ac conditions are not met everywhere; the
regions in the meridional plane where they are and are not satisfied
this are plotted in Fig. 6, for the case where rn = 0.47R. Of course,
this is the conclusion that Tayler arrived at – that a purely toroidal
field is always unstable in at least some part of the star. The field
which forms in the simulations is stable against the Tayler instability
only because of the presence of the poloidal component. However,
it is possible that the toroidal component can be stabilized with a
weaker poloidal component than is actually present in the fiducial
simulation. We can use equation (14) to estimate what strength the
poloidal field needs to be at any particular point, so an estimate for
the minimum overall strength of the poloidal component is that at
which this condition is just satisfied at every point where Tayler’s
criteria are not satisfied. It should be stressed, however, that this
approach is only approximate, since we have ignored curvature
effects, and also because lh is undetermined – we will simply assume
here that lh ∼ R. The area stabilized according to equation (14) is
also plotted in Fig. 6. It is clear from the figure that the entire region
unstable to m = 1 is stabilized by the poloidal field, as well as almost
the entire region otherwise unstable to m = 0, but that two small
regions are apparently still m = 0 unstable. However, looking at the
minimum unstable wavelength given by equation (13), we see that

both of these areas, there is barely space to fit one wavelength as
λmin ∼ 2 dx ≈ 0.06R. This explains the stability in the simulations
at this poloidal/toroidal ratio. Note that the reason for expressing
the minimum and maximum unstable wavelengths in terms of the
grid spacing is that we can easily check if the simulation is running
at sufficiently high resolution – clearly, the wavelength needs to be
at least a few grid spacings to be properly resolved.

If the relative strengths of the toroidal and poloidal components
are now changed (while keeping the total energy E constant), the
position of the Br stabilization line changes.4 Fig. 7 shows the
positions of the stability lines at various ratios Ep/E of poloidal/total
energy at the three different values of rn.

Looking first at the top row of Fig. 7 (rn/R = 0.33, Ep/E = 0.139
in the fiducial simulation), it can be seen that the Ep/E = 0.01
should be unstable, as there is an m = 1 unstable region on the left
where the minimum unstable wavelength is only a few grid spacings,
small enough to fit into the space available (but large enough to be
resolved numerically in the simulations described below). However,

4 In principle, the m = 0 and 1 stability lines also move, but in the case
of strong toroidal field and constant total energy, the toroidal field strength
changes only by a small factor and the lines move very little.
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770 J. Braithwaite

Figure 8. Stability lines for rn = 0.47 R and Ep/E = 0.001 in the weak-field
case (E/U = 1/4000). The resemblance with the Ep/E = 0.01, E/U = 1/400
plot in Fig. 7 is obvious. The only significant difference is that the unstable
wavelengths are a factor

√
10 shorter in the weaker field case. See Fig. 6 for

an explanation of the various lines plotted.

the minimum wavelength looks too high in the m = 0 unstable zone.
The 0.018 case is more marginal but there may still be space to fit an
unstable wavelength of five grid spacings (0.15R∗) into the m = 1
unstable space. The 0.032 case looks also marginal, but 0.056 does
look stable. Therefore, the critical value of Ep/E is perhaps around
0.018 or 0.032. Repeating this analysis on the middle row of Fig. 7
(rn/R = 0.47, Ep/E = 0.046 in the fiducial simulation), we get a
stable Ep/E minimum at around Ep/E = 0.0056 to 0.01. Finally on
the bottom row of Fig. 7 (rn/R = 0.58, Ep/E = 0.066 in the fiducial
simulation), we see that practically the entire region of interest is
m = 0 unstable, which is stabilized by the poloidal field at around
Ep/E = 0.056, but that the m = 1 mode should be stabilized at a
somewhat lower poloidal energy ratio, perhaps at roughly 0.01.

These lower limits on Ep/E are, as discussed in Section 2.1.2,
dependent on the absolute field strength which I parametrize as E/U,
the ratio of magnetic to thermal energies. Changing the magnetic
field energy in the fiducial simulation by a factor of 10 so that
E/U = 4000 and repeating the exercise above results in stability at a
value of Ep/E a factor of 10 lower, as can be seen in Fig. 8, where the
ratios Ep/E and E/U are both a factor of 10 lower than in the second
plot of the second row of Fig. 7, but the result is near-identical
stability lines. The only significant difference between the two is
that the unstable wavelengths are a factor

√
10 lower in the weaker

field case.

3.2.2 Simulations with different Ep/E

To verify this assessment above, it is possible to use these altered
Ep/E configurations as the initial conditions for simulations. I use
here simulations with E/U = 1/400. First, the star is allowed to relax
to equilibrium by keeping the magnetic field constant and letting
the pressure field adjust until it balances the Lorentz force. After 10
or so sound crossing times, this relaxation has taken place. A small
white-noise perturbation is then added to the density field, and the
magnetic field is allowed to change, i.e. the induction equation is

Figure 9. Log amplitudes of modes 0 ≤ m ≤ 4 (solid, dotted, dashed,
dot–dashed and dot–dot–dot–dashed, respectively) in simulations with
rn/R = 0.33 and Ep/E = 0.01, 0.018, 0.032 and 0.056. The stability thresh-
old appears to be around 0.032, below which the m = 1 mode is the dominant
mode.

switched on (this defines t = 0 in the following plots). In Fig. 9, the
amplitudes of the azimuthal modes m = 0 to 4 (an rms integration
over the meridional plane of velocity component vθ ) are plotted
against time for simulations with the following values of Ep/E:
0.01, 0.018, 0.032 and 0.056, the initial conditions having been
taken from the fiducial run at rn/R = 0.33 before having the poloidal
energy ratios changed by hand. It can be seen in the figure that the
threshold is at Ep/E ≈ 0.032.

This exercise was then repeated with the equilibria of different
values of rn/R: 0.47 and 0.58 (see Figs 10 and 11). The former is
easy enough to interpret: the threshold is around Ep/E = 0.01. The
small contamination we see in m = 4 from the geometry of the
computational box is visible here but much greater in the rn/R =
0.58 simulations, presumably because at higher rn the field has a
stronger interaction with the sides of the computational box. Here,

Figure 10. Log amplitudes of modes 0 ≤ m ≤ 4 in simulations with
rn/R = 0.47 and Ep/E = 0.0056, 0.01, 0.018 and 0.032. The stability
threshold appears to be around 0.01 or 0.018.
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Axisymmetric magnetic fields in stars 771

Figure 11. Log amplitudes of modes 0 ≤ m ≤ 4 in simulations with
rn/R = 0.58 and Ep/E = 0.0032, 0.0056, 0.01, 0.018, 0.032 and 0.056.
The m = 0 mode appears to be stable at all ratios considered here, whilst
the m = 1 mode appears to stabilize at around Ep/E = 0.056 (see the text).

the ratio 0.056 simulation, which we know to be stable or almost
so because the fiducial run has a ratio 0.066, has significant m =
4 contamination but we can see that the m = 1 mode is stable at
least for the first few Alfvén crossing times, so it looks like the
critical ratio is somewhere between 0.032 and 0.056. Surprisingly,
the m = 0 mode seems stable at all ratios presented in the figure.
This is at odds to the conclusions of Section 3.2.1, where we found
that whilst m = 1 is stable above 0.01, the m = 0 mode should be
unstable up to Ep/E = 0.056 or thereabouts. The reason for this
discrepancy is not immediately clear, but may have something to
do with effects ignored in this study such as curvature effects – the
unstable region at this value of rn is near the equator where these
could be important.

At this juncture, it is necessary to look at the minimum and
maximum wavelengths plotted in Fig. 7 to check that the simulations
have sufficient resolution, as it is conceivable that a Ep/E ratio
which is in reality unstable could appear to be stable in a simulation
simply because the unstable wavelengths are too low to be resolved.
Looking at the top row, where the Ep/E = 0.032 simulation is the
first which appears stable, we see that the unstable region near the
axis of symmetry has a maximum unstable wavelength of more than
10 grid spacings (10 dx ≈ 0.3R, about the size of the unstable region)
and a minimum wavelength of greater than 5 dx. Now, in previous
simulations (e.g. Braithwaite 2006), it was found that this high-
order code can resolve modes of wavelength 8 dx almost perfectly,
so it seems unlikely that a λ ≈ 5 dx mode is entirely suppressed.
Looking at the middle and bottom rows, where the Ep/E = 0.01 and
0.032 simulations, respectively, are the first which appear stable in
the simulations, the minimum wavelengths in the m = 1 unstable
regions are also around 5 dx in both the cases.

Ideally one would now perform simulations with different field
strengths, i.e. different values of E/U from the value 1/400 used
above, in order to check the analytic prediction that the critical
poloidal energy fraction (Ep/E)crit ∝ E/U. However, we see from
Fig. 8 that the unstable wavelengths will be badly resolved or not
resolved at all, and therefore that significantly higher numerical res-
olution would be required. At higher field strengths we are no longer
in the physically interesting weak-field regime, as the structure of
the star becomes significantly non-spherical. Checking this result
numerically at the higher resolution required will be left for the fu-
ture. It is not inconceivable of course that some other instability not
considered here could become relevant at lower field strengths.

3.3 Stability of a predominantly poloidal field

We have seen that an axisymmetric configuration with much
stronger a toroidal component than poloidal can be stable. How-
ever, we have a reason to believe that the opposite is not true; we
expect that a field with a much stronger poloidal component will
make a transition to non-axisymmetric equilibrium.

We can now apply the stability conditions (equations 16 and 17)
to the fiducial simulation at the three points in time used in the
previous section, i.e. when rn/R = 0.33, 0.47 and 0.58. We find that
the thresholds in Ep/E are 0.71, 0.48 and 0.69 using equation (16).
How to calculate Wright’s (1973) threshold is not obvious; one way
is to look at the conditions near the neutral line and use s0 Bp/s

for Bp(s0) and set s0 to rn, and use the value of Bt on the neutral
line. This gives thresholds of 0.91, 0.80 and 0.91. Wright points
out that his stability condition is a necessary condition, and should
be interpreted as a lower bound on the toroidal field required for
stabilization.

To test the strength of toroidal field required for stabilization,
simulations analogous to those presented in Section 3.2.2 were
performed, this time with high values of Ep/E. The perturbation
added in this case differs from the white noise used in the previous
section: a large-scale perturbation was added to azimuthal modes
m = 2 to 8. In Figs 12–14, the amplitudes of modes m = 0 to 4 are
plotted against time for different poloidal energy ratios at different
values of rn.

Figure 12. Log amplitudes of azimuthal modes 0 ≤ m ≤ 4 (solid, dotted,
dashed, dot–dashed and dot–dot–dot–dashed, respectively) in simulations
with rn = 0.33R. The stability threshold appears to be between 0.8 and 0.9.
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772 J. Braithwaite

Figure 13. Log amplitudes of azimuthal modes 0 ≤ m ≤ 4 in simulations
with rn = 0.47R. The stability boundary is around 0.8.

Figure 14. Log amplitudes of azimuthal modes 0 ≤ m ≤ 4 in simulations
with rn = 0.58R.

The thresholds in all the cases seem to be at Ep/E ≈ 0.8. In the
rn = 0.33R simulations (Fig. 12), at 0.8 (and at 0.7), an oscillatory
behaviour can be seen in the m = 2 mode, indicating stability. At
0.9, the m = 2 mode is dominant; at 0.944, both m = 2 and 3 grow
(the m = 4 mode is probably just numerical contamination at these
ratios, but will become properly unstable above some threshold in
Ep/E). Looking at Fig. 11, where rn = 0.47R, we see that Ep/E =
0.7 is clearly stable; at 0.8, the m = 2 appears stable and then un-
stable – this is probably because the magnetic field is just below
the threshold and is taken over it by continuing secular evolution,
which weakens the toroidal component faster than the poloidal. It
is visible in the plots that at higher poloidal energy ratios the higher
azimuthal modes become unstable. Similarly, we see in Fig. 12
(rn = 0.58R) that the stability threshold is very close to 0.8. Very
clear here is the stability (hence oscillations) of m = 3 at 0.9 but
unstable growth at Ep/E = 0.944. Of course, oscillations follow
unstable growth when saturation, i.e. a new non-axisymmetric equi-
librium, is reached.

A perhaps more elegant way to present the output from simula-
tions is to plot a map of the field on the surface of the star. Figs 15
and 16 are such maps of Br; all are taken from the rn/R = 0.47
simulations. Fig. 14 follows the evolution in time of three simula-
tions with different Ep/E ratios; by the end of the simulations, new
equilibria have been reached in the unstable cases. These maps con-
firm that Ep/E = 0.7 is stable (apart from a small m = 4 numerical
contamination), that 0.8 is stable at first and then succumbs to the
m = 2 mode and that the 0.9 field is unstable mainly to the m = 2
mode and eventually finds its way into a new equilibrium. Fig. 16
shows the equilibria reached in simulations with even higher Ep/E

ratios; evidently, the higher the ratio, the more complex the resulting
equilibrium.

It seems then that a magnetic field becomes unstable as the
poloidal energy fraction exceeds about 80 per cent, and this thresh-
old depends only weakly on the central concentration of the field
(i.e. on rn). Just above this threshold, the only unstable mode is
m = 2, which is reassuringly well resolved by simulations at this
resolution. At higher values of Ep/E, higher modes become un-
stable, which is exactly what we expect because higher azimuthal
modes have to do more work against the toroidal field, in proportion
to the value of m. Therefore, the m = 3 mode becomes unstable with
a toroidal field two-third the strength of that at the m = 2 stability
threshold, so that if the m = 2 threshold is Ep/E ≈ 0.8, then the m =
3 threshold will be at Ep/E ≈ 1 − (1–0.8)(2/3)2 = 0.911 (ignoring
the small change in poloidal field strength resulting from the change
in Ep/E at constant E). This can be seen for instance in Fig. 14 and
confirms the m dependence of in equation (16).

The stability thresholds found from these simulations agree only
qualitatively with the predictions (equations 16 and 17). This prob-
ably has to do with effects not included in the analysis, such as the
toroidal geometry of the flux tube, the fact that the poloidal field
lines are not circular in the neighbourhood of the neutral line – in
fact they are decidedly elliptical, and the toroidal field falls off away
from the neutral line.

It is informative to think about this evolution into a new equi-
librium in terms of the magnetic helicity, defined as

∫

B · A dV ,
where A is the vector potential. As the field evolves on a dynamical
time-scale, helicity is conserved and the field can be thought of
as evolving into the lowest energy state for that value of helicity.
Essentially, helicity can be thought of as the product of toroidal and
poloidal fluxes, so that as we go to higher Ep/E ratios, the helicity
falls, and below some threshold the lowest energy state is non-
axisymmetric. The initial equilibrium is essentially a twisted flux
tube lying in a circle around the equator of the star, and the transition
to non-axisymmetric equilibrium is a matter simply of stretching
this flux tube into a more complex arrangement. In the process of
stretching the tube, the toroidal component (i.e. the component par-
allel to the axis of the tube, the neutral line) is amplified (since
the tube becomes narrower) and the poloidal component becomes
weaker, eventually bringing the two components to roughly equal
strengths, because the energy minimum for a given helicity, i.e. for
a given product of toroidal and poloidal field strengths, will have the
two components roughly equal to each other. At higher Ep/E ratios
therefore, more stretching is required to make the two components
equal. This can be clearly seen in Fig. 16. Now in the case where
Ep/E = 1, the field has zero magnetic helicity and no amount of
flux tube stretching can result in an equilibrium. However, there are
diffusive processes at work which can either create helicity or split
the one original flux tube into two or more tubes which can have
helicity of different signs and which add up to zero, although it is
likely that a lot of time will pass before any equilibrium is reached
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Axisymmetric magnetic fields in stars 773

Figure 15. Behaviour of the magnetic field when the poloidal component is stronger than the toroidal, near the maximum poloidal/toroidal ratio. Maps of
the radial magnetic field Br on the stellar surface at three points in time (t/τA = 2.9, 5.8 and 10.5; plates on the left-hand panel, middle panel and right-hand
panel, respectively) of the simulations with rn/R = 0.47 and Ep/E = 0.7, 0.8 and 0.9 (top, middle and bottom rows, respectively). White and black represent
the strongest positive and negative Br, and the black line shows the position of Br = 0, which is initially at the equator. The simulation on the top row shows
stability; on the middle row we see initial stability followed by an m = 2 mode and the simulation with Ep/E = 0.9 shows a strong growth of the m = 2 mode
which then saturates after a few Alfvén crossing times as the field settles into a new equilibrium.

Figure 16. As Fig. 15 but all three Br maps are at one point in time (t/τA = 10.5) in three different simulations with Ep/E = 0.968, 0.99 and 1.0. Evidently,
at higher initial Ep/E ratios, the non-axisymmetric equilibria reached are more complex.

and the energy of the equilibrium will be very much lower than the
original energy.

4 C O N C L U S I O N S A N D D I S C U S S I O N

In this paper, I have looked at the lower and upper limits on the
fraction of energy in the poloidal component of an axisymmet-
ric magnetic field. To find these limits, I took the output from a
simulation where a ‘turbulent’ initial magnetic field evolves into
an axisymmetric equilibrium, changed the relative strengths of the
poloidal and toroidal components by hand, and used that as the
initial conditions for new simulations. This was supplemented with
more analytic methods including the necessary and sufficient sta-
bility conditions found by Tayler (1973) (it is incidentally found
that four of his six conditions are always met at every point in the
star). The two methods are in broad agreement.

The result of this investigation is that while the upper limit on the
poloidal energy fraction Ep/E is around 80 per cent, the lower limit
depends on factors such as the radius of the neutral line rn and can be

between 1 per cent and roughly 5 per cent for a star constructed from
a polytrope of index n = 3 (which approximates to an upper-main-
sequence star) and where the ratio of magnetic to thermal energies
E/U = 1/400. This lower limit is expected to be proportional to the
ratio E/U, so that (Ep/E)crit ∼ 10 E/U. These limits will also depend
on other factors not explored here, such as the equation of state and
density profile of the star (that used in the simulations approximates
an upper main-sequence star), but these should not affect the results
in more than a modest quantitative manner; however in a NS we
might expect a lower limit of (Ep/E)crit ∼ 103E/U. The upper limit
found here broadly confirms what was expected from the analysis
in Paper II and from the analyses of Wright (1973) and Markey
& Tayler (1974), who found that the toroidal field must be at least
about a quarter of the strength of the poloidal field. The lower limit
on Ep/E had not been looked at before.

The question of what ratios we actually expect to find in nature
has not yet been answered. It will depend on the state of the mag-
netic field left over from the convective protostellar phase (whether
we are looking at main-sequence stars, WDs or NSs) and on the
subsequent secular evolution. In the fiducial simulation described,
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Ep/E does fall to around 0.046 and is below 0.1 for most of the
period of diffusive evolution. Given that a star is generally strongly
differentially rotating when it is formed, and that any seed field will
be wound up and predominantly toroidal, it seems plausible that the
eventual equilibrium could have rather low Ep/E. A proper study
of the effect of initial conditions on the resulting equilibrium will
be left for the future.

It remains to look at some of the implications of these results.
The magnetic field of a star can have various effects on its ap-
pearance and behaviour. In upper main-sequence stars and WDs,
we can directly observe the field on the surface via the Zeeman
effect, and it turns out that many, if not most, do have roughly
axisymmetric configurations. In NSs, we measure the spin-down
and infer from that the dipole component on the surface. Below the
surface of the star, there could be a deeply buried field (with low
rn and very low �surf/�p) and/or a very strong toroidal component,
both of which could in effect ‘hide’ magnetic energy from view.
This is of obvious interest in the study of magnetars, NSs with ob-
served dipole fields of 1014–15 G whose emission in X rays and γ

rays is powered by the decay of the magnetic field. The possibil-
ity that these stars could contain a large quantity of energy hidden
from view could explain the large energy output of these objects.
A field of 1015 G contains around 2 × 1047 erg in magnetic energy,
and flare has been observed which emitted a tenth of that quan-
tity in less than a second. According to the standard flare model,
some slow evolution of the magnetic field in the core results in
stress build-up in the crust, which eventually results in the crust
cracking and a release of energy, but it is difficult to imagine this
mechanism releasing a large fraction of the magnetic energy dur-
ing any one event. A field which is stronger in the core of the
star than the poloidal component we see on the surface is one so-
lution to this problem. Another possible solution is that the field
is very non-axisymmetric, and that the dipole measured is an un-
derestimate of the average field strength on the surface. Any of
these are also potential solutions to the phenomenon of NSs with
very different observational properties which occupy the same re-
gion on the P –Ṗ diagram and have therefore the same dipole field
strength.

Another effect that the magnetic field has is to deform the star’s
mass distribution. In the light of results presented above, it seems
likely that a star has a predominantly toroidal field, deforming the
star into a prolate shape. This causes the star to undergo torque-free
precession and the damping of this precession will cause the star’s
magnetic axis to tend towards orthogonality with the rotation axis.
In NSs, this could potentially happen fairly quickly, faster than
the orientation of the axes can be changed by spin-down torque,
which acts on the spin-down time-scale. In the millisecond magne-
tar models, the protoneutron star rotates at some significant fraction
of break up and this results in a powerful dynamo which creates
a strong magnetic field during the first hundred seconds. Since it
seems very likely that the equilibrium formed after this dynamo
switches off is predominantly toroidal, the star should flip over
and emit gravitational waves observable with the next generation
of detectors at least as far away as the Virgo cluster. However, the
spin-down time-scale of a NS rotating with P = 1 ms and B = 1015 G
is only an hour, so the flipping over mechanism has to work fairly
fast. Since the free precession period of such a star would be

P/ǫ = 1000 s, where ǫ ∼ 10−6 is the ellipticity induced by the
magnetic field of this magnitude, the damping of the precession
would have to be very efficient indeed unless the magnetic equi-
librium could be produced already at an angle to the rotation axis.
More work is required to address these issues.
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