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Abstract. A boundary integral method for the simulation of the time-dependent deformation of axisymmetric 

Newtonian or non-Newtonian drops suspended in a Newtonian fluid subjected to an axisymmetric flow field is 

developed. The boundary integral formulation for Stokes flow is used and the non-Newtonian stress is treated as a 

source term which yields an extra integral over the domain of the drop. By transforming the integral representation 

for the velocity to cylindrical coordinates we can reduce the dimension of the computational problem. The 

integral equation for the velocity remains of the same form as in Cartesian coordinates, and the Green's functions 

are transformed explicitly to cylindrical coordinates. Besides a numerical validation of the method we present 

simulation results for a Newtonian drop and a drop consisting of an Oldroyd-B fluid. The results for the Newtonian 

drop are consistent with results from the literature. The deformation process of the non-Newtonian drop for small 

capillary numbers appears to be governed by two relaxation times. 

1. Introduction 

The deformation of viscous drops immersed in a Newtonian fluid, due to an external linear 

shear, is a subject of considerable experimental and theoretical research (see e.g. RaUison [1] 

and Stone [2] for a survey). If the drops are sufficiently small, the dynamics of these drops 

can be analyzed through an investigation of the Stokes equations since the corresponding 

Reynolds number is small enough to justify the neglect of inertia forces. Most theoretical 

work has been directed towards the case that the drop consists of a second Newtonian fluid 

in which the interface between the drop and the surrounding fluid is considered infinitely 

thin and characterized by a constant surface tension. The velocity field can, in these cases, 

be expressed in terms of a boundary integral over the surface of the drop [3]. In this paper 

we extend this boundary integral approach to the case of an axisymmetric non-Newtonian 

drop in an axisymmetric external flow. Due to the non-Newtonian contribution to the stress 

tensor, a domain integral over the drop appears in the expression for the velocity field, next 

to a boundary integral term. Through an explicit integration over the azimuthal direction, 

an efficient and accurate numerical method results with which the temporal and steady state 

deformation of the drop can be simulated. 

The interest in the dynamics of viscous drops arises mainly from a desire to understand 

the rheology of emulsions, the mechanisms of heterogeneous mixing and the deformation of 

biological cells [1]. The mathematical basis for the theoretical work related to these different 

fields of application can be found in the pioneering work of H.A. Lorentz [4]. Lorentz was 

the first to derive, in essence, the boundary integral expression for the velocity around a 

drop at low Reynolds numbers, which is of key importance to all theoretical investigations 

in this field. The diversity of the many subsequent developments which, to some extent, can 
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be seen as originating from this work, would probably have surprised Lorentz whose interest 

in applied physics was aroused only late in his life in relation to the construction of the 

'Zuiderzeewerken' [5]. 

The deformation of neutrally buoyant Newtonian drops in viscous extensional flows at low 

Reynolds number was first studied numerically by Youngren [6], using a boundary element 

method. This method has the advantage of reducing the dimension of the computational 

problem, which significantly reduces the computational cost. The method has been used 

extensively by others as well in order to simulate the behavior of Newtonian drops in simple 

flow fields. Apart from improvements on the numerical method (Huang [7]), recent studies 

have tackled more complicated flow problems (e.g. breakup of drops, Tjahjadi [8]) and 

incorporated additional physical phenonema (e.g. the effects due to surfactants, Stone [9] and 

the elasticity of the membrane, Li [10]). 

In many applications, however, the drop consists of a non-Newtonian fluid and the devel- 

opment of the boundary integral method is much more complicated due to the domain integral 

which arises from the non-Newtonian contributions. This implies the introduction of a grid 

covering the volume of the drop, next to the definition of discrete points on the boundary, and 

adds considerably to the numerical cost of simulations of non-Newtonian drops. However, 

compared to a more direct (finite difference) discretization of the Stokes equations, which 

would even require a grid covering the much larger region exterior to the drop, the boundary 

integral method for non-Newtonian drops is more efficient. Moreover, in several applications 

the region containing a non-Newtonian fluid forms only a small portion of the flow-problem, 

e.g. a vesicle in which the drop is formed by a Newtonian fluid which is encapsulated by a 

non-Newtonian lipid bilayer [11], and the boundary integral method can be used effectively. 

Bush [12], [13] adopted the boundary element method to analyze extrusion experiments with 

non-Newtonian fluids. The extension to non-Newtonian drops immersed in a Newtonian fluid 

in axisymmetric flow is considered in the present paper. This extension is valid provided 

certain assumptions on the smoothness of the non-Newtonian stress tensor are satisfied. These 

are verified numerically for a two-dimensional drop [14] and in the present axisymmetric 

flow in case the drop contains an Oldroyd-B fluid. The method is illustrated by comparing 

simulation results for Newtonian drops with results from literature. Moreover, we consider the 

non-Newtonian behavior of the drop and investigate the dominant relaxation times associated 

with the temporal deformation. 

The organization of this paper is as follows. In section 2 we present the governing equations 

and express the velocity field in terms of a domain integral involving the non-Newtonian stress 

tensor and a boundary integral arising from the Newtonian contributions. Section 3 is devoted 

to the specification of the expression for the velocity field in axisymmetric flow. Through 

an explicit integration over the azimuthal direction, the corresponding Green's functions for 

this flow are obtained. The numerical method used to simulate the deformation of the drop is 

described in section 4 and simulation results for both Newtonian and non-Newtonian drops, 

consisting of an Oldroyd-B fluid, are presented in section 5. Finally, we summarize our findings 

in section 6. 
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2. Governing equations 

We consider an isotropic non-Newtonian drop placed in an unbounded Newtonian fluid with 

viscosity r/, subjected to a linear elongational flow. This velocity field is defined by: 

1 1 
Ul = G X l ,  u 2 = - ~ G x 2 ,  u 3 = - ~ G x 3 ,  (2.1) 

with uj the j - t h  component of the velocity field with respect to a Cartesian coordinate frame 

{el,  e2, e3} and G the magnitude of the flow. The interfacial tension acting between the two 

fluids is denoted by a and is assumed to be constant along the interface. The radius of the 

(spherical) drop in a quiescent fluid flow is denoted by a. The fluid is incompressible and 

buoyancy is considered to be absent, i.e. we assume that the densities of the two fluids are 

equal. Throughout we will work with dimensionless variables: all lengths are scaled with 

the undeformed capsule radius a, velocities by aG and viscosities by r /(Li  [10]). In order 

to characterize the degree of distortion, one commonly defines a deformation parameter D 

as: 

gmax - ~min 

D = ~max n t- rain 
g , (2.2) 

where gmax and groin denote the longest and shortest lengths in the deformed state respectively. 

From analytical studies of a spherical drop containing a Newtonian fluid (Cox [ 15]) it appeared 

that the deformation can be characterized by two parameters: 

@) 
C -  riGa and ), = , (2.3) 

a 

where C is the capillary number which, is a measure of the ratio between the viscous and 

interracial tension stresses and ), is the ratio between the interior viscosity r/(i) and exterior 

viscosity 77. 

Assuming that the Reynolds number (Re = paZG/r/, with p the density) is small we can 

describe the fluid motion by the Stokes equations: 

OjTrij = 0, Vx ~ Oft and i = 1 , . . . , 3  (2.4) 

Ojuj = o, Vx ~ 0a ,  (2.5) 

with Oj = O/Oxj and OFt the boundary between the internal domain f~(i) and the external 

domain ~(o). In (2.4,2.5), as in the remainder of this paper, the summation convention is used 

to indicate summation over repeated indices. The total stress tensor 7rij is defined as: 

- P a i j  q- A;Yij + riNN Vx  E f~(i) 
rr/j = - P S / j  + -}ij Vx E f~(o), (2.6) 

NN where 7ij = Oiuj + Ojui is the rate-of-strain tensor, P the isotropic pressure and rij the non- 

Newtonian stress tensor which satisfies a certain constitutive equation. In this paper we restrict 

ourselves to the Maxwell model which finds its origin in polymer rheology and contains two 

parameters: a relaxation time # and the polymer contribution to the zero-shear-rate viscosity 

r/(p). The constitutive equation of this model is given by: 

:DtriJ jv + 1---T.N.N _ $(P) 
De ~a -- De ;)'ij, (2.7) 
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where 79t is the upper-convected time derivative, De = G# the Deborah or Weissenberg 

number and ,~(P) = rl(P)/rl. The upper-convected time derivative is defined as (Bird [17]): 

~) t r i j  = d tT i j  -- TikOkUj -- OkUiTkj ,  (2.8) 

with dtvij the material time derivative. Since we can always incorporate a part of the Newtonian 

stress tensor in the non-Newtonian stress tensor, we can put A = 1 in (2.6) without loss of 

generality [14]. This makes it possible to study Newtonian drops in a surrounding Newtonian 

fluid with different viscosity by setting the 'non-Newtonian' stress tensor equal to: 

~-i NN = (A - 1)~ij. (2.9) 

The flow field satisfies the following matching and asymptotic conditions: 

[ui]of~ = O, C [Trijnj]of ~ = kni  (2.10) 

ui = u~ ,  as Ix[ ~ c~, (2.11) 

where [']of~ denotes the discontinuity of the quantity between the brackets across the surface 

of the drop from the outside to the inside, n is the outward unit normal and k (= Ojnj) is the 

boundary curvature. In addition, there is a kinematic constraint, which requires that a fluid 

element on the surface Oft remains on the surface for all time. This kinematic constraint may 

be expressed by an evolution equation: 

d t x i  = u i  , ~ /x  E Of~(t). (2.12) 

For both evolution Eqs. (2.7) and (2.12) initial conditions need to be specified. For the interface 

0~(0)  we start with a spherical shape, whereas for the non-Newtonian contribution to the 

stress tensor we assume an isotropic stress distribution, (i.e. riNg(O) = Q6ij, with Q an 

arbitrary constant). 

Assuming that the non-Newtonian stress tensor is known at time t we can construct a solu- 

tion for the velocity by means of boundary integral equations. Following Ladyzhenskaya [3] 

it can be derived that the integral representation for the velocity is given by (Toose [14]): 

1 
U k ( X )  = U~°(X)- /f~(i)TiNN(y)OjJik(r)dY---C fort Jik(r)]e(y)Fti(y)dsy' (2.13) 

with r = x - y. The kernel Jik(r) is called the Green's function for the Stokes problem, and 

is given by (Lorentz [16] page 32, Ladyzheskaya [3]): 

1 {6ik rirk ~ (2.14) 
J i k ( r ) = ~  ~ - [ +  i r l 3 j .  

In the derivation of (2.13) we have used the Gauss divergence theorem to rewrite the volume 

integral. However, in order to apply the divergence theorem it is necessary that the non- 

Newtonian stress tensor is continuous and has bounded derivatives. Numerical simulations 

of a two-dimensional drop in [14] have shown that the stress tensor apparently satisfies these 

conditions for all time. 

With expression (2.13) we have found the solution for the velocity field in the entire flow 

domain, provided that the non-Newtonian stress tensor and the shape of the surface Of~ are 

given. By calculating u and subsequently updating 0f~ and Ti NN through Eqs. (2.7) and (2.12) 

the evolution of both 0~2 and ~'i NN can be simulated. In the next section we will transform the 
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Fig. 1. Schematic illustration of the cylindrical coordinate system (x, p=, ¢=). 
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Fig. 2. The function p= = R(x )  describing the drop surface. 
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integral equation to cylindrical coordinates in order to reduce the dimension of the problem 

through an explicit integration over the angle of revolution. 

3. Axisymmetric Stokes flow 

In this section we consider the case in which the imposed flow u °¢ is axisymmetric around 

the xl axis and has no swirling motion. The initial shape of the capsule is also assumed to 

be axisymmetric around the xl axis. By transforming the integral Eq. (2.13) to cylindrical 

coordinates and performing the integration in the azimuthal direction analytically we can 

reduce the dimension of the computational problem. In subsection 3.1 we introduce cylindrical 

coordinates and transform Eq. (2.13). In subsection 3.2 we perform the integration in the 

azimuthal direction for the boundary integral term and the volume integral term separately. 

3.1. GREEN'S FUNCTIONS FOR AXISYMMETRIC STOKES FLOW 

In this subsection the integral representation for an axisymmetric drop placed in an axisym- 

metric flow is derived. It is convenient to use cylindrical coordinates defined as: 

X ~--- X 

x2 = p= cos(¢ ) 
z3 = p=sin(¢=), 

(3.1) 
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where x, Px and Cz indicate the axial, radial and azimuthal components respectively. The 

subscript x indicates that Pz and Cz are defined with reference to the point x (see Fig. 1). 

Using these coordinates we can describe the surface 0f2 as: 

P z = R ( x )  for - ~ _ < x _ < £ ,  (3.2) 

with R ( - x )  = R(x)  and R(£) = 0, as shown in Fig. 2. In the sequel we denote components 

with respect to cylindrical coordinates with an over-bar. 

To perform the transformation, it will be convenient to use a natural base {gx, go, g¢} 

for the coordinates (x, Pz, Cz) which is related to the orthonormal base {diz, dip, die} through 

(Bird [17]): 

gx = dfz; go = dip; g¢ = Pzdi¢. (3.3) 

Similarly, we can define a set of reciprocal base vectors: 

1 
gZ = diz; gP = ~p; g¢ = -~5¢.  (3.4) 

P~ 

A vector u can be represented as: 

U = U k e .  k ----- ~ a g  a : ~tag a, (3.5) 

in which ~a and ~'~ are referred to as the covariant and contravariant components of the vector 

u.  In Eq. (3.5) summation is performed over repeated lower and higher indices. In the sequel 

we use the covariant representation for the velocity and stresses. Using (3.1) and (3.5) we find 

that the transformation of a velocity component ui and a stress component rij from cylindrical 

to Cartesian coordinates is given by: 

O~ a , ,  02 a 023 

u (x) =  j(x) = Ox ozJ 
(3.6) 

respectively. Using these transformation formulas we can write (2.13) as: 

1 

(3.7) 

with ~(i) the transformed internal domain, 0~) the corresponding boundary and IQ(0)I = py 

the Jacobian. The kernels I77~ (5~; 0) and ,f~ (5~; 0) are given by: 

(3.8) 

Oxk O0ZJ k(a, - 9), (3.9) 

where we have expressed the Green's function Jik in cylindrical coordinates by using the 

transformation formulas in (3.1). Expression (3.7) is the integral representation for the velocity 

in cylindrical coordinates and the kernels ,f~(5~; Y), and (zTZa(5:; 9) are the corresponding 

Green's functions. 
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3.2. NON-NEWTONIAN DROPS IN AXISYMMETRIC FLOW 

In this section the integral Eq. (3.7) is simplified by performing the integration over the 

azimuthal direction analytically. First, we study the integral equation of a Newtonian drop in 

an axisymmetric flow. Using the fact that for an axisymmetric drop the azimuthal component 

of the unit normal is zero and the curvature is independent of the azimuthal coordinate we can 

write the velocity as: 

/0 
where R(y)deydgy is the unit surface area with dgy --- {1 + (OyR(y))2} U2 dy and L the 

intersection of the surface described by Px = R(x) and the plane ex = 0. The integral in the 

¢ direction is given by: 

ff 217/~(5:; y) = Y~(5;;9) de v. (3.11) 

Using the expression for the Green's function (3.9) and the transformation formulas in (3.1), 

we can express hT/~ (x; y) in terms of complete elliptic integrals of the first and second kind 

[1 8] (see Appendix). These integrals can be computed with an iterative method. Since the 

constitutive equation for a Newtonian fluid obeys material frame indifference (translational 

and rotational invariance), the resulting flow is axisymmetric when the drop interface 0f2 and 

u °° are axisymmetric (Schowalter [19]). Hence, ~3(~) = 0, since the applied velocity field 

has no swirling motion. This property also follows directly from Eq. (3.10), since 37/'~ (x; y) 

obeys (see Appendix): 

= : 0 ,  

which implies that the contribution of the boundary integral to the azimuthal component of 

the velocity is zero. Using this, we can rewrite (3.10) as: 

{ l JL  fz,~(5~) = f,~(5c) - -~ k(y)~z(y)M~(5~;y)R(y)dgy, a = 1,2 (3.12) 

= o .  

which is a line integral in a two dimensional space. Hence, for the Newtonian drop the main 

problem is reduced to the evaluation of a one dimensional integral. 

In the case of a non-Newtonian drop, the contribution of the non-Newtonian stress tensor 

to the velocity is given by: 

f/7~ ( Ye; 9 ) ~ N  ( 9 )pv dev dpy dy.(3.13) 

To perform the integration over the azimuthal direction analytically, we assume that the 

non-Newtonian stress tensor satisfies the following conditions: 

1. ~ff7 N (9) = ~ N  (9) (symmetric) 
2. ~gN(9 ) = =NN - 

r~3 (Y)=  (3.14) o 

3. ~ N ( 9 )  is independent of Cu. 

The physical interpretation of these conditions is as follows. The first condition implies that 

no electric or magnetic dipoles are present. The second condition states that the constitutive 
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equation for the non-Newtonian stress tensor obeys material frame invariance. The last condi- 

tion follows directly from the first two and the fact that the non-Newtonian fluid is isotropic. 

These conditions also imply that the non-Newtonian stress tensor has no contribution to the 

azimuthal velocity component. Analyzing the Maxwell model (2.7) we find that this model 

satisfies all these conditions. Hence, we can rewrite (3.13) as: 

Y, Py)pudpudy, (3.15) 

where S(¢) is part of the plane ez = 0 which is contained in ~(i), (see Fig. 2). The kernel 

ff'7~(ff~; y, pu) is given by: 

1~7¢a(5~, Y, Py) = (r7~(5~; 9) dey, (3.16) 

which can be expressed in terms of complete elliptic integrals of the first and second kind 

with use of the expression for the Green's function (3.8) and the transformation formulas in 

(3.1) (see Appendix). Using the expressions for (3.16) given in the Appendix we find that 

17V7~ (~, y, py) obeys: 

-NN,~rT~ 
T ~  VV 3 = O, (3.17) 

which implies that/3 = 0. This confirms that the non-Newtonian stress tensor gives no 

contribution to the velocity in the azimuthal direction. Combining (3.12) and (3.17), we 

obtain the following expression for the velocity field: 

{ ~2a(5e) = ft~(5~) -- fS(yL-NN "rh. r (y, pu)I'V'Y~(5~; y, py)Pu dpu dy 
1 

--~ k(y)h#(y)_~l~(~;y)Pudgy , a =  1,2 (3.18) 

=0, 

which is a surface integral in two dimensions. With expression (3.18) we have reduced the 

three-dimensional problem to a two-dimensional one. The presence of the non-Newtonian 

stress, however, makes it impossible to reduce the problem to one dimension, as was pos- 

sible for the Newtonian drop. This implies that the computational effort required to solve 

non-Newtonian problems is considerably greater than for the corresponding Newtonian prob- 

lems. 

With expression (3.18) we have found the solution for the velocity field in the entire flow 

domain, provided that the non-Newtonian stress tensor and the shape of the interface are given. 

In the next section we will discuss a method for solving the full time-dependent problem and 

provide an algorithm to calculate ~VTN. 

4. Numerical procedure 

In this section the numerical procedure used to evaluate the boundary and domain integrals, 

the non-Newtonian stress tensor and the shape of the surface 0f~ are given in detail. In 

subsection 4.1 algorithms are presented to simulate the evolution of a non-Newtonian and 

Newtonian axisymmetric drop, respectively. The numerical method to calculate the velocity 

field is described in subsection 4.2. In subsection 4.3 the time integration of the evolution Eqs. 

(2.7) and (2.12) is presented. 
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4.1. NUMERICAL ALGORITHMS 

The complete procedure used to simulate the evolution of the non-Newtonian axisymmetric 
- N N  drop can be sketched as follows. Suppose the stress tensor, 737 , the velocity field and the 

shape of 0f~, and hence L, are given at time t. Then we can use (2.7) to calculate the non- 

Newtonian stress tensor at t + At, whereas the new shape of the drop at t + At can be 

obtained using (2.12). With this new stress tensor and shape, a new velocity field at time level 

t + At can be calculated using (3.18). Repeating this explicit time integration procedure gives 

the evolution of the stress tensor, the velocity field and the boundary shape L. After some 

initializations (i.e. - NN ~-~7 = 0, the initialization of the shape of the boundary and the calculation 

of the initial velocity field using (3.18) with ~ N  (0) and L(0)), several steps have to be taken 

at every time step. These are summarized in the following algorithm: 

ALGORITHM 4.1 .: non-Newtonianfluids 

1. update the shape of the boundary by solving (2.12) to yield L(t + At), 

2. calculate the stress tensor at t ÷ At by solving (2.7) given ~ at time t, 

3. calculate the velocity field at t + At using (3.18) given ~ N  and L from step 1 and 2. 

The procedure to simulate the evolution of the Newtonian drop differs slightly from 

algorithm 4.1 since use of the explicit algorithm 4.1 leads to impractically small time steps 

in the earlier stages of the evolution. Hence, we solve (3.18) iteratively at each time step by 

assuming a trial velocity field. The trial velocity field is used to calculate the stress tensor 

(2.9) and application of (3.18) yields the new velocity field, which serves as trial velocity field 

in the next iteration step. The iteration procedure is applied, until a self-consistent solution 

is obtained. To reduce the required number of iterations, we set the initial guess for the new 

velocity equal to the converged velocity at the previous time step. 

In the next two subsections we will discuss the calculation of the velocity field and the 

time integration of both the non-Newtonian stress tensor and the boundary. 

4.2. EVALUATION OF THE INTEGRALS 

The numerical implementation of (3.18) requires the representation of the boundary L into 

N 'boundary elements' and a subdivision of the inner domain into M 'internal cells'. The 

boundary elements used are circular arcs passing through three successive boundary points 

(Pozrikidis [20]). For the discretization of the inner domain we use triangles as shown in 

Fig. 3. The triangles in this figure result from a structured triangulation, in which the vertices 

have a polar distribution. Using this discretisation, we can write (3.18) as: 

M 

u~(x) =-- 'u~(x)-  ~ ~S T~N(y'PY)I2VT~(x;y'PY)pydPudY 
g=l }¢) 

g=l t 

(4.1) 

The next step is the actual numerical calculation of the integrals in Eq. (4.1). We distinguish 

two cases; (a) the boundary element or internal cell does not contain the point 5: and (b) the 

boundary element or internal cell does contain the point 5~. In case (a) the distance between a 

point 9 in the element and the point 5~ is always greater than zero, so that the singularities of 
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. / . 2  °undary element 

a 
Fig. 3. The discretisation of the inner domain. 

the kernels lie outside the integration domain. In this case we use a 16 point Gauss-Legendre 

quadrature for the boundary elements and a product rule based on a 4 point Gauss-Legendre 

quadrature for the domain elements (Patridge [21] and Evans [22]). In case (b) the distance 

between • and f /can  become zero and a special treatment of the singularities in the kernels 

is required. Analyzing the transformed Green's functions .Q~ and ff-'r~ we find that both 

kernels are integrable. The first kernel has a logarithmic singularity, whereas the latter has 

a polar (1/1 1) singularity. To compute the boundary integral, we subtract the logarithmic 

singularity, and integrate analytically over the arc containing 5~. The 1/l t singularity in the 

domain integral can be treated with the introduction of barycentrical coordinates (1, ~2, ~3 

over an internal cell with vertices ff~l, ~2 and if:3 (Toose [14]). Next the Green's function 

VV'r~ is written as the product of the polar singularity and a regular function f ' r~.  Performing 

the integration over the internal cell and replacing ~2 by ~2 = (l(~ we find that the domain 

integral yields: 

fall 2ASe ~ N  (y, p ~11_ fT~ rff~; y, py)py d(~d~l, (4.2) 

with ASe the area of the internal cell and ~ = (~l - :~2) - (x2 - ff~3)~. It is observed that 

the integral in (4.2) is regular, since the length of the vector ~ is always greater than zero; 

hence a four-point Gauss-Legendre quadrature can be used to perform the integration over ~1 

and ~ .  

4.3. TIME INTEGRATION 

In this subsection we describe a method to find the non-Newtonian stress tensor and the shape 

of the boundary L at a new time level. 

Updating the shape of the drop requires the calculation of the positions of all the boundary 

points on L at the new time level. This calculation can be performed by time integration of 
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(2.12) with an Euler forward scheme. When the grid points are moved in this way, both internal 

and boundary grid points will cluster and hence, gradually, a highly deformed grid results. 

The clustering arises directly from the fact that there are no restrictions on the stress tensor 

in a tangential direction, which implies that the points will move freely along the boundary 

in the direction of the external velocity field. We can reduce this clustering by moving the 

boundary nodes only in the direction normal to the boundary: 

.~iN~(tn+l) = Y:iN~(tn) + A t  (~iN~ . hi)na-i , i = 1, . . .  ,Nb, (4.3) 

where Nb is the number of points along the boundary and Nr the number of points in the 

{x~ } are found by interpolation radial direction, as shown in Fig. 3. The interior grid points -ij 

between the center of the drop and the boundary points. 

The new non-Newtonian stress tensor in algorithm 4.1 is obtained by integration of the 

constitutive equation. Using a partial or material time derivative we can evaluate the upper- 

convected time derivative in (2.7). The use of the partial time derivative, however, leads to a 

convective term which is somewhat difficult to calculate, since, owing to the deformation of 

the drop, a certain, fixed, point ~, located inside the drop at a certain time t, may be outside 

the drop at the next time level. For this problem it is more convenient to use the material time 

derivative which does not require an explicit calculation of the convective term. This implies 

that the new non-Newtonian stress tensor  T~VTN is defined on the grid, with nodes -ij {x,~ }, which 

is convected within the flow, i.e. on 

~ij "" xa (tn+l) -~- ~7~ ( tn )  q- A t  ua-ij , i = 1. .Nb and j  = 1 , . . .  ,N~.  (4.4) 

Integration of (2.7) with an Euler forward scheme leads to: 

(4.5) 

with tn the discretized time defined as tn = n A t  with At a constant time interval, f ' ~  the 

metric tensor a n d / ~ 7  given by: 

A(P) 
= 5 - 7 e  + - 1 - N N  ~ee r~.y (tn) (4.6) 

The covariant differentiation 0~ in (4.5) and (4.6) is defined as (Bird [17]): 

0~u'r = 0Yc~ u~, (4.7) 

where the coefficients { ~ }  are the Christoffel symbols. As an alternative a second- or higher- 

order Runge-Kutta scheme can be used. The partial derivatives in (4.5) and (4.6) are calculated 

with a finite-volume method (Van der Burg [23]). 

Due to the Lagrangian approach, the new stress tensor ~ U ( t n + l  ) resulting from (4.5) is 

defined on the grid whose nodes { : ~ }  are given by (4.4). In order to find it on the new grid 

nodes {2~}, the stress tensor is interpolated by: 

.- 1 "r~VTX (~iJ) 
~-~ N(ye'~) ~ E1/(diJ)2  E (dij)2 , (4.8) 
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Fig. 4. The deformation of a drop at C - 0.05 for five subsequent refinement levels. The dotted, dash-dotted, 
dashed and solid curves denote the deformation of a drop on a 12x3, 16x5, 24x7 and 32x9 grid respectively. 
The finest 48x 13 grid is given by the asterisks. 

with d ij = I~ ij - ~iJ I and the summation involves points up to the nearest neighbor. To 

ensure that this interpolation is sufficiently accurate, we introduce a time step restriction: 

At  = ~n~in eft) J '  (4.9) 

where A~ (e) is the shortest side of the/-th triangle, ~(t) the mean velocity over this triangle 

and e is of the order of 0.1. 

5. Results and discussion 

In this section we present the results of numerical calculations of the deformation of both 

Newtonian and non-Newtonian drops. In subsection 5.1 we verify numerically that the method 

used is mathematically correct and is second-order accurate in space. The order of accuracy 

in time corresponds to the time integration method applied. In subsection 5.2 the results for 

the Newtonian drop are compared with analytical results from literature. In subsection 5.3 we 

study the deformation of a drop filled with an Oldroyd-B fluid. 

5.1. VALIDATION OF THE NUMERICAL METHOD 

In the derivation of the integral representation for the velocity (2.13) we have assumed that the 

non-Newtonian stress tensor is continuous and has bounded derivatives. To show that the non- 

Newtonian stress tensor satisfies these conditions for all time, we performed a mathematical 

validation for an actual simulation of a two-dimensional drop (Toose [14]). The mathematical 

validation is based on the substitution of the numerical solution into the original equations 

(Toose [14]). The residual due to discretization errors should converge asymptotically to zero 

at a specific rate, as the numerically calculated quantities converge to the analytical solution 

in case the grid is refined. For the validation of the three-dimensional situation, we consider 

a drop subjected to an elongational flow at a capillary number of 0.05. The Deborah number 
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Fig. 5. Steady state deformation of a Newtonian drop for three values of A. The solid, dashed and dash-dotted 
curves represent (5.2) at )~ = 0, A = 1, and A = 2 respectively. The asterisks, circles and crosses denote the numerical 
results at )~ = 0, 1 and 2 respectively. 

De and A(p) are 0.25 and 0.1 respectively. Both the time step and the grid are refined with a 

Bulirsch-row. The computations were carried out with the first order-accurate Euler forward 

time-integration method. The residual, which was calculated at t = 0.096 and t = 0.192, 

converges to zero as a second-order process. Moreover, the deformation of the drop as a 

function of time must also converge as the grid is refined. In Fig. 4 we have plotted the 

deformation of a drop at a capillary number of 0.05 for five subsequent refinement levels. The 

time step is constant (At  = 0.008) whereas the Deborah number De and A (p) are the same 

as above. From this figure it can be seen that the deformation is converged sufficiently at the 

32 x 9 grid. Hence, this grid and the 48 x 13 grid are used to perform the computations for 

the subsequent sections. 

From these results we can conclude that the numerical solution satisfies the original 

equations and hence the smoothness assumptions made on the stress tensor are satisfied. The 

method has a second-order spatial accuracy when the mesh-size is decreased. The accuracy in 

time is first-order for the Euler and second-order for the compact storage four-stage Runge- 

Kutta scheme (Jameson [24]). In the next subsection it is shown that the method gives 

physically correct results for a Newtonian drop. 

5.2. DEFORMATION OF A NEWTONIAN DROP 

In this subsection we study the response of an axisymmetric Newtonian drop to an axisym- 

metric elongational flow and compare this with results from the literature. If the capillary 

number is sufficiently low, a drop placed in an elongational flow is known to deform, until 

a steady state is reached (Stone [2]). For small capillary numbers, Taylor [25] derived an 

expression relating the steady state deformation/)  to the corresponding capillary number. 

This expression is given by: 

3 (1  + I~A~ 
i-¥-X jc,, (5.1) 
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Fig. 6. The normalized relaxation time of a Newtonian drop at C - 0.05 as a function of the viscosity ratio A. The 
dashed line represents Eq. (5.4). 

and is first-order accurate in C. Using the same technique as Taylor, Barth~s-Biesel [26] 

derived an expression for / )  valid up to O(C 3) which may be written in the form: 

D = co(,X, C) C + 0(C3), (5.2) 
1 - C )  

in which c0(A, C) and Cl (A, C) are complicated expressions which will not be given explicitly 

here. In Fig. 5 we have plotted expression (5.2) and some numerical results generated with 

algorithm 4.1 for three values of A. We used a grid with 48 points along the boundary and 13 

points in the radial direction. For small and moderate capillary numbers, the analytical and 

the numerical results are in very good agreement for all three values of  A. 

For the time-dependent behavior of the Newtonian drop, analytical results valid to first- 

order in the capillary number C are known. For small capillary numbers the deformation of a 

drop in a general linear flow field can described by (Oldroyd [27] and Rallison [1]): 

D(t)  = / ) ( 1  - e-t/t°),  (5.3) 

where the dimensionless relaxation time to is given by: 

16 + 19,k 
to = 40(1 + A)(3 + 2A)C. (5.4) 

This behavior closely approximates actual simulations at sufficiently low capillary numbers. 

For the Newtonian drop, the relaxation time to can be obtained by fitting the numerical results 

with the function given in (5.3). In Fig. 6 we plotted expression (5.4) and the numerically 

calculated relaxation times. The computations were performed on a 48 x 13 grid and a 

sufficiently small time step. The results indicate that the numerical computations are in good 

agreement with the analytical predictions. 

From this we can conclude that the method gives correct results when the stress tensor is 

given by a Newtonian constitutive equation. In the next subsection we will concentrate on a 

drop which contains a non-Newtonian fluid. 
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Fig. 7. Deformation of non-Newtonian drop at C = 0.025 for a fixed Deborah number De = 0.33. The dash-dotted, 

dashed and solid lines are the responses of  a non-Newtonian drop with ,~(P) = 6.7, 0.89 and 0.12 respectively. The 

circles show the response of the Newtonian drop at ,~ = 1. 
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Fig. 8. Deformation of  a non-Newtonian drop at O = 0.025 for a fixed viscosity ratio ),(P) = 0.33. The dash-dotted, 

dashed and solid lines represent the response of a non-Newtonian drop with De = 6.7, 0.89 and 0.12 respectively. 

The circles show the response of  the Newtonian drop at )~ = 1 + ,~(P). 

5.3. DEFORMATION OF A DROP CONTAINING AN OLDROYD-B FLUID 

In this subsection we study the response of an axisymmetric drop containing an Oldroyd-B 

fluid in an elongational flow. For this non-Newtonian drop, no analytical or numerical results 

are known in the literature. To provide a way to verify our results, we investigate several 

limiting cases of the non-Newtonian stress tensor. Moreover, it is found that the response to a 

suddenly started elongational flow is governed by two characteristic relaxation times. In order 

to remove the effects of the deformation history of the cylinder, we use the relaxed state of 

the non-Newtonian stress tensor at t = 0 (i.e. Q = 0). 

The Oldroyd-B model contains three independent parameters, the viscosity ratios )~ and 

)~(P) and the Deborah number De. If either )~(P) or De approach zero, an essentially Newtonian 
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Fig. 9. Semi-logarithmic plot of the normalized deformation of a non-Newtonian drop at C = 0.025. The Deborah 

number and viscosity ratio are given by 0.30 and 8.9 respectively. 
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Fig. 10. The relaxation time T1 of a non-Newtonian drop versus A (p) at U = 0.025 for a set of constant De. The 

plusses, crosses and circles correspond to De = 0.67, De = 0.30 and De = 0.13 respectively. The  asterisk at A (p) = 

0 g ives  the corresponding Newtonian limit. 

behavior results. This will be used in the sequel to establish the correctness of  the boundary 

integral method for the simulation of  non-Newtonian drops. In the first case considered here 

A(p) approaches zero, and the equation for the non-Newtonian stress tensor (2.7) reduces 

to: 

DeIDtTi NN + 7-i N N  -= O. 

This equation implies that -ri~ Ar remains zero in time since Ti~ N = 0 at t = 0. Hence the defor- 

mation should approach the Newtonian results as AGv) tends to zero, which is demonstrated in 

Fig. 7. Here, the deformation of  a drop for several values of  ),(P) and constant De = 0.33 is 

plotted. The numerical results were obtained on a 32 x 9 grid with a time step of 0.001. 
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In the second case we let De approach zero, so that (2.7) reduces to: 

N = a ( p ) % ,  

i.e. a Newtonian stress tensor. This implies that for De = 0 the non-Newtonian drop reduces 

to a Newtonian drop with a viscosity ratio A = 1 + A (v). In Fig. 8 the deformation of a drop 

for several values of De and constant O(P) = 0.33 is plotted. The numerical results were 

obtained with the same grid and time step as above. It is observed that for small De the 
deformation of the non-Newtonian drop approaches the deformation of the Newtonian drop 

with A = 1 + A (p). From this we can conclude that the limiting behavior of the Newtonian 

drop is recovered correctly. The behavior of the non-Newtonian drop for moderate values of 

A (p) and De is surveyed next. 

The results in Figs. 7 and 8 and further computations indicate that the main effect of 

variations in A (p) and De for small capillary numbers is in the time- dependent behavior of 

the drop. From a semi-logarithmic plot of the normalized deformation (D* = 1 - D/ f ) )  

versus time it is observed that there are two dominant relaxation times (Fig. 9). So, in analogy 

with the Newtonian drop, we assume that for small capillary numbers the deformation can be 

described by: 

D = D { 1 -  Dle-t/t~ - D2e-t/t2} , (5.5) 

i.e. we introduced an extra relaxation time accounting for the non-Newtonian behavior. The 

relaxation times tl and tz can be found by fitting the deformation to the expression given in 

(5.5). We obtain a close agreement between the simulation results and expression (5.5) for all 

values of De and A (p). In Fig. 10 we have plotted the relaxation time tl showing the effects of 

variations in A (v) at constant De. It is seen that tl approaches the Newtonian limit (to = 0.055) 

as A (p) ---, 0. The corresponding time t2 tends to zero in this limit, indicating that the behaviour 

of the drop is dominated by only one relaxation time, i.e. the Newtonian response. We also 

studied the effect of variations in the Deborah number on the relaxation times tl and t2. In 

this case the limiting behavior described before is also clearly displayed. In order to find the 

relaxation times for large De or small A (v) we have to simulate the deformation of the drop 

for long periods of time using small time steps, since in this regime t2 >> tl and we have to 

use At << tl in order to accurately capture the smallest relaxation time. The results and the 

physical interpretation of these computations will be published elsewhere. 

From this we conclude that the limiting behavior of an Oldroyd-B drop is successfully 

recovered and that the deformation of the drop in time is governed by two relaxation times. 

6. Conclusions 

In this paper a boundary integral method for axisymmetric Newtonian and non-Newtonian 

drops immersed in a viscous fluid subjected to an axisymmetric flow has been presented. 

The non-Newtonian contribution was treated as a source term, leading to a domain integral 

in the boundary integral representation of the solution. To obtain a better connection with 

the matching conditions at the interface this domain integral was reformulated by applying 

Gauss' divergence theorem. In order to apply the divergence theorem it was necessary that 

the stress tensor be continuous and should have bounded derivatives for all times. These 

conditions were verified numerically in actual simulations and, hence, the reformulation of 

the domain integral was established. These simulations also show that the numerical method 
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used is second order accurate in space. By transforming the integral representation for the 

velocity to cylindrical coordinates we were able reduce the dimension of the computational 

problem. The integral equation for the velocity kept the same form and the Green's functions 

were transformed explicitly to cylindrical coordinates. 

The numerical results for the drop containing a Newtonian fluid have been compared with 

analytical results. The steady state deformation of a Newtonian drop was shown to be in 

agreement with analytical results (Taylor [25] and Barth~s-Biesel [26]). The time-dependent 

behavior was compared with analytical results derived by Oldroyd [27]. For small capillary 

numbers the numerical and the analytical relaxation times were found to be in good agreement. 

For the drop containing an Oldroyd-B fluid, we examined the response to a suddenly started 

elongational flow. It was found that the behavior of the drop for small De and A (p) approached 

the behavior of a Newtonian drop. The behavior of the drop for moderate values of De and 

A(p) could be described by two relaxation times. 

The Boundary Integral method developed in this paper is well suited for non-Newtonian 

drops, although computational times are much longer than in the Newtonian case, owing to 

the domain integral that appears in the formulation. The advantage of the method over a more 

direct (finite difference) discretization of the Stokes equations lies in the fact that only the 

drop has to be discretized and that relatively few points are needed to give accurate results. 

In the near future this method will be extended to so called vesicles in which the drop is 

formed by a Newtonian fluid which is encapsulated by a non-Newtonian lipid bilayer [11]. 

In this case, the advantages of the method can be fully exploited, since only a thin layer of 

non-Newtonian material is present and a correspondingly small part of the total flow domain 

has to be discretized. Moreover, in order to reduce the computational time, the possibility 

of evaluating the domain integral with an approximating boundary integral will be studied 

(Zheng [28]). 
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8. Appendix 

In this appendix we give the components of the transformed Green's functions in the expression 

for the integral representation of the velocity (3.18). 

The non-zero components of the function ~/~  (4; y) are given by: 

/~fll = ElO + :~2E30 

I"VI12 = :~pxE30 -- ~cpyE31 

IV121 = -:cpyE3o + YcpzE31 

2 )f/[2 = E11 - PzruE30 + (p2 + pz)E31 _ pxpyE32 

1~ 3 = p y E l l  "5 pxfl2 E30 - pxP2yE32 

Pz 

where ~: = x - y and Emn given by: 

4k m f /2 (2COS 2 ¢ _  1)n 

E m n ( X , , p z , p y ) -  (4pxpy)m/2 ao (1---_-~oos~¢-~-/2 de, 

with 

k 2 = 4 p x P y / (  ~c2 + (Px + py)2).  

The non-zero components of ff"Y~ (5~; y, py) are given by: 

w l l  I ~_. 

WI21 = 

W211 = 

W 22 = 

W331 = 

w l l  2 = 

W122 = 

W212 = 

W 22 _ 

-:2E30 + 3:23E5o 

-pxE31 + 3X2pzE51 - 3x,2pyE5o + pyE3o 

pxE31 + 3~cZPxEs1 -- 3x,2pyEso -- pyE3o 

^ 2 --63:pzpyEs1 + 3:~p2E52 + 3xpyEso - :~E30 

+ .g 

pyE31 - pxE3o - 3:~2pyEs1 + 3yc2pxEso 

2 
:~E31 + 3:~(p 2 + py)Es1 - 3:~pxpyE5o - 3YcpxpyEs2 

2 
--xE31 + 3x(p 2 + py)Es1 - 3YcpxpyEso - 3YcpzpyE52 

2 2 
pyE31 -- pxE3o - (3p 3 + 6pypx)Es1 + 3pxpyEso + 

(3p3 2 2 
+ 6pxPy)E52 - 3p:~pyE53 

2 3 _ 3p3E52 + 3pxpyEs3) /02  PxE30 -- 3PxpyEsl + 3pxEso 2 

(~TpxE31 - 2  3Ycp2pyEso) /py -- 3xpzpyE52 + 

2 2 3 2 2 __ 3 p 3 p y E 5 3 ) / p y  -PxpyE31 + 3pzpyEs2 + p2 E3o q- 3pzpyEs1 -- 3PxPyEso 

(- pxE31- + 3 p p Eso)/Py 
2 2 2 3 2 2 3 p x p y E 5 3 ) / p y  pxpyE3l + 3pxpyEs2 - pzE3o + 3pxpyEs1 - 3pxpyEso - 3 

W332 = ( p y E 3 1 -  

W 13 = 

W233 = 

W323 = 

W 33 _ 
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