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ABSTRACT

Aims. We have performed a comprehensive parameter study of the collapse of rotating, strongly magnetized stellar cores in axisymmetry to

determine their gravitational wave signature based on the Einstein quadrupole formula.

Methods. We use a Newtonian explicit magnetohydrodynamic Eulerian code based on the relaxing-TVD method for the solution of the ideal

MHD equations, and apply the constraint-transport method to guarantee a divergence-free evolution of the magnetic field. We neglect effects

due to neutrino transport and employ a simplified equation of state. The initial models are polytropes in rotational equilibrium with a prescribed

degree of differential rotation and rotational energy. The initial magnetic fields are purely poloidal the field strength ranging from 1010 G

to 1013 G. The evolution of the core is followed until a few ten milliseconds past core bounce.

Results. The initial magnetic fields are amplified mainly by the differential rotation of the core giving rise to a strong toroidal field component

with an energy comparable to the rotational energy. The poloidal field component grows by compression during collapse, but does not change

significantly after core bounce. In large parts of the simulated cores the growth time of the magneto-rotational instability (MRI) is of the order

of a few milliseconds. The saturation field strengths that can be reached both via a pure Ω dynamo or the MRI are of the order of 1015 G

at the surface of the core. Sheet-like circulation flows which produce a strong poloidal field component transporting angular momentum

outwards develop due to MRI, provided the initial field is not too weak. Weak initial magnetic fields (<∼1011 G) have no significant effect on

the dynamics of the core and the gravitational wave signal. Strong initial fields (>∼1012 G) cause considerable angular momentum transport

whereby rotational energy is extracted from the collapsed core which loses centrifugal support and enters a phase of secular contraction. The

gravitational wave amplitude at bounce changes by up to a few ten percent compared to the corresponding non-magnetic model. If the angular

momentum losses are large, the post-bounce model. If the angular momentum losses are large the post-bounce equilibrium state of the core

changes from a centrifugally to a pressure supported one. This transition imprints in the gravitational wave signal a reduction of the amplitude

of the large-scale oscillations characteristic of cores bouncing due to centrifugal forces.

In some models the quasi-periodic large-scale oscillations are replaced by higher frequency irregular oscillations. This pattern defines a new

signal type which we call a type IV gravitational wave signal. Collimated bipolar outflows give rise to a unique feature that may allow their

detection by means of gravitational wave astronomy: a large positive quadrupole wave amplitude of similar size as that of the bounce signal.
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1. Introduction

The gravitational binding energy liberated by the collapse of

the iron core of a massive (M >∼ 8 M⊙) star to a neutron

star is the commonly accepted energy source of type Ib/c and

type II supernovae, as a few percent of this energy are suffi-

cient to unbind and rapidly eject the stellar envelope and to

create the supernova outburst. However, which physical pro-

cesses turn the central implosion into the explosion of the stel-

lar layers surrounding the forming neutron star is still debated

in spite of many efforts over more than three decades. Heating

of stellar gas just outside the proto-neutron star (PNS) by

⋆ Appendices are only available in electronic form at

http://www.edpsciences.org

neutrinos diffusing and being advected out of its interior is

thought to play a crucial role in the explosion mechanism.

However, as current neutrino-driven supernova models produce

(weak) explosions only for low mass progenitors (for a recent

review, see e.g. Janka et al. 2004), there may be a need to in-

clude additional physics in the models in order to make them

work successfully for more massive progenitors, too.

On this account magneto-rotational core collapse, which

has been studied by a few authors in the past (LeBlanc

& Wilson 1970; Bisnovatyi-Kogan et al. 1976; Meier et al.

1976; Müller & Hillebrandt 1979; Ohnishi 1983; Symbalisty

1984), has become an active research field in recent years

(Wheeler et al. 2002; Akiyama et al. 2003; Kotake et al.

2004a,b; Takiwaki et al. 2004; Wheeler & Akiyama 2004;
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Yamada & Sawai 2004; Ardeljan et al. 2005; Kotake et al.

2005; Sawai et al. 2005). Further reasons for this activity are

the availability of sufficient computational power for the neces-

sarily multi-dimensional magneto-hydrodynamic (MHD) sim-

ulations, observations indicating very asymmetric explosions

(Wang et al. 1996, 2001; Leonard et al. 2001), and the inter-

pretation of Anomalous X-Ray Pulsars and Soft Gamma-Ray

Repeaters as magnetars, i.e. very strongly magnetized neutron

stars (Duncan & Thompson 1992; Thompson & Duncan 1996;

Kouveliotou et al. 1999).

Concerning the initial conditions for magneto-rotational

core collapse the up to now most advanced evolutionary calcu-

lations of rotating massive stars (Heger et al. 2005) predict that

the initial rotation rates are more than an order of magnitude

smaller than (i) the minimum ones used in past (parameter)

studies of magneto-rotational core collapse, and (ii) those pre-

dicted by previous evolutionary calculations (see, e.g. Woosley

et al. 2002; Hirschi et al. 2003) which lead to neutron stars

rotating very rapidly (∼1 ms) at birth. The latter studies ig-

nored the torques exerted in differentially rotating regions by

the magnetic fields that thread them. Thus, the stars end up

with 30 to 50 times more angular momentum than in the mod-

els by Heger et al. (2005) in that part of their core destined to

collapse to a neutron star.

The strength (and distribution) of the initial magnetic field

in the stellar core is unknown. If weak initially, several possible

amplification mechanisms exist that may amplify the magnetic

field of the collapsing progenitor to a dynamically important

strength. Linear amplification of the field by means of differ-

ential rotation will occur (Meier et al. 1976), which transforms

rotational energy into magnetic energy by winding up any seed

polodial field into a toroidal magnetic field. This process can

be accompanied by the action of meridional (e.g. convective)

motions that transform toroidal into poloidal fields. Both pro-

cesses together lead to the so-called α-Ω dynamo. Recently,

the magneto-rotational instability (MRI) (see Balbus & Hawley

1998) has received a lot of interest in the context of super-

nova collapse and explosion (Akiyama et al. 2003; Kotake et al.

2004a; Yamada & Sawai 2004; Sawai et al. 2005). Unlike lin-

ear wrapping, the MRI will give rise to an exponential growth

of the field strength while working on the same time scale (see

however Sawai et al. 2005). The MRI saturation field is inde-

pendent of the initial field, i.e. even quite small initial fields can

be amplified to dynamically important strengths. The MRI will

occur if the radial gradient of the angular velocity is negative,

a condition arising quite naturally in core collapse situations.

A major effect of magnetic fields on the collapse dynam-

ics is the transport of angular momentum. Due to its very low

(fluid and ν shear) viscosity (see e.g. Keil et al. 1996) a col-

lapsing non-magnetized stellar core maintains its Lagrangian

angular momentum profile j(m), m being the Lagrangian

mass coordinate, on time scales of ∼1 s, but magnetic fields

can significantly redistribute the angular momentum (Meier

et al. 1976). This can slow down the forming neutron star

and thus counteract the effects of rotation. In some cases,

even retrograde rotation may result in some parts of the core

(Müller & Hillebrandt 1979). Angular momentum transfer can

also destabilize the rotational equilibrium the core resides in

after a centrifugal bounce at sub-nuclear densities, and lead

to a subsequent (second) collapse to nuclear densities and be-

yond that releases large amounts of gravitational binding en-

ergy (Symbalisty 1984). Conversely, the violent convective

flow both inside the neutrino sphere and between the neutrino

sphere and the shock will transport and amplify magnetic fields

in the collapsed core of a supernova (Thompson & Murray

2001).

Analytic considerations (Meier et al. 1976; Wheeler et al.

2002) and numerical simulations (LeBlanc & Wilson 1970;

Symbalisty 1984; Akiyama et al. 2003; Kotake et al. 2004a,b;

Yamada & Sawai 2004; Ardeljan et al. 2005; Sawai et al. 2005)

show that magneto-rotational core collapse might lead to jet-

like explosions. Though the magnetic stress will remain below

equipartition strength in most regions of the star, it might affect

the dynamics of the core through its anisotropic components.

Magnetic stresses can assist in pushing the stalled shock, or

may even drive a mildly relativistic outflow in form of a jet

along the rotation axis, which is powered by the rotational en-

ergy transfered to the jet by the magnetic stresses.

Observations of gravitational waves (GWs) will allow one

to learn more about the supernova mechanism as they pro-

vide pristine information directly from the stellar interior, in

particular about the amount and distribution of the angular

momentum, and the strength and topology of the magnetic

field. Simplified Newtonian (Müller 1982; Mönchmeyer et al.

1991; Yamada & Sato 1994; Zwerger & Müller 1997; Kotake

et al. 2003, 2004b; Fryer et al. 2004; Ott et al. 2004; Yamada

& Sawai 2004) and general-relativistic (Dimmelmeier et al.

2002a,b) calculations of rotational core collapse predict the

emission of a strong signal around core bounce, and that the

magnitude of the bounce signal as well as the post-bounce

gravitational radiation depend sensitively on the initial rota-

tion rate and rotation profile. Newtonian hydrodynamic simula-

tions using more sophisticated micro- and transport-physics, as

well as state-of-the-art rotating progenitors (Heger et al. 2005)

show that the gravitational wave signal at core bounce is small

compared to the signal produced by convective motions in the

post-bounce core and by aspheric neutrino emission (Müller

et al. 2004). Magneto-rotational effects on the gravitational

wave signature were first investigated in detail by Kotake et al.

(2004b) and Yamada & Sawai (2004) who found differences

from the signature of purely hydrodynamic models only in the

case of very strong initial fields (|B| >∼ 1012 G).

In the following we present a comprehensive parameter

study of the axisymmetric Newtonian core collapse of rotating

magnetized polytropes and of their gravitational wave signa-

ture. Our study extends the work of Zwerger & Müller (1997)

(hereafter ZM) and the complementary work of Dimmelmeier

et al. (2002a,b) (hereafter DFM), who investigated the hy-

drodynamic collapse of a large set of rotating polytropes in

Newtonian and general relativistic gravity, respectively. The

simulations have been performed with the recently developed

MHD difference scheme of Pen et al. (2003). They incorpo-

rate neither neutrino transport nor nuclear burning processes.

Due to the reduced complexity of our models we could ex-

plore many of them covering a large region in parameter

space, the focus being the gravitational wave signal emitted by
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magnetized stellar cores and their dynamic evolution. Because

of our assumptions and approximations the validity of our mod-

els is limited to the stage of core collapse and to the first few ten

milliseconds of their post-bounce evolution.

Several related but less comprehensive numerical MHD

studies have been performed in the past few years: Yamada &

Sawai (2004) used the ZEUS-2D code, employed the paramet-

ric equation of state of Yamada & Sato (1994), considered no

neutrinos, and followed the evolution of initially rapidly rotat-

ing and very strongly magnetized (|B| >∼ 1012 G) cores with

a purely homogeneous poloidal field. Contrary to LeBlanc &

Wilson (1970) and Symbalisty (1984) they find that the mag-

netic field becomes strongest behind the shock wave and not

in the inner core, and thus is the main driving factor of the

observed jet outflow along the rotation axis. Besides a field

amplification by differential rotation, they also observe the

possible action of the MRI. They calculate the gravitational

wave signal in the quadrupole approximation finding no sub-

stantial difference between the bounce signal of magnetized

and non-magnetized models. Kotake et al. (2004b) also use

the ZEUS-2D code to which they add an approximate neu-

trino cooling with a leakage scheme. They assume an initially

predominantly toroidal magnetic field in their investigated

14 models of which all but one are very strongly magnetized

|B| > 1011 G. Besides the simplified equation of state of

Yamada & Sato (1994) they also consider two realistic equa-

tions of state. Kotake et al. (2004b) focus their study on the

effect of the magnetic field on the gravitational wave signal,

and find that the gravitational wave amplitudes are lowered

by ∼10% for models with the strongest initial magnetic fields

(|B| ∼ 1014 G). Kotake et al. (2004a), Takiwaki et al. (2004),

and Kotake et al. (2005) all using the same input physics and

numerics as Kotake et al. (2004b) are concerned with the effects

of the magnetic fields on the anisotropic neutrino radiation and

convection, on the propagation of the shock wave, and on the

rotation-induced anisotropic neutrino heating through parity-

violating effects, respectively. Kotake et al. (2004a) find that

the aspherical shapes of the shock and of the neutrino sphere

(oblate or prolate depending on the initial rotation law) are

enhanced in the magnetized models, and that the MRI is ex-

pected to develop on the prompt shock propagation time scale.

Takiwaki et al. (2004) observe the formation of a tightly colli-

mated shock wave along the rotational axis for strongly magne-

tized models. Kotake et al. (2005) find an at most 0.5% change

of the neutrino heating rates even in their most strongly mag-

netized models (|B| >∼ 1013 G). Ardeljan et al. (2005) employ

a 2D implicit Lagrangian code, a simplified equation of state,

and consider energy losses by neutrinos and iron dissociation.

They add a magnetic field of quadrupole-like symmetry with

an energy of 10−6 of the core’s gravitational binding energy

to the collapsed, post-bounce differentially rotating, stationary

core. The toroidal field component of this seed field first grows

linearly due to differential rotation, but then starts to amplify

exponentially due to the action of the MRI. The resulting dras-

tic increase of the magnetic pressure eventually causes an ex-

plosion with an energy of 0.6 × 1051 erg. Finally, Sawai et al.

(2005) extend the work of Yamada & Sawai (2004) by consid-

ering inhomogeneously magnetized cores mainly in the very

strong field regime (|B| ∼ 1012 G . . . 1013 G), which may pro-

duce magnetars. They find that poloidal magnetic fields which

are initially concentrated toward the rotation axis produce more

energetic explosions and more prolate shocks than cores with

an initially uniform field. A core with an initially quadrupolar

field (Ardeljan et al. 2005) gives rise to a collimated fast jet

(v <∼ c/2), while a core with a pure toroidal fields shows no

sign of an explosion.

The paper is organized as follows: we will describe the

physics included in our models in Sect. 2, and briefly introduce

our numerical method in Sect. 3. Our results will be discussed

in Sect. 4, and a summary and conclusions of our work will

be presented in Sect. 5. In the appendices we provide a brief

discussion of the relaxing TVD scheme employed in our nu-

merical code (Appendix A), a presentation of the quadrupole

formula used for the extraction of the GW signal (Appendix C),

and a compilation of some characteristic properties of all mod-

els (Appendix D).

2. Physics of our models

2.1. Evolution equations

We evolve the density ρ, the velocity u, the total energy den-

sity e⋆ ≡ ε + ekin + emag (ε, ekin ≡ 1
2
ρu2, and emag ≡ 1

2
B2

4π

are the internal, kinetic, and magnetic energy density, respec-

tively), and the magnetic field B of our models using the equa-

tions of Newtonian ideal magnetohydrodynamics (MHD):

∂tρ + ∇m (ρvm) = 0, (1)

∂t (ρvn) + ∇m (ρvnv
m + P⋆ − bnbm) = fn, (2)

∂te⋆ + ∇m ((e⋆ + P⋆) vm − bmbnv
n) = q. (3)

Here, Latin indices run from 1 to 3, and Einstein’s sum conven-

tion applies. P⋆ ≡ Pgas+ b2/2 is the total pressure, which is the

sum of the gas pressur Pgas and the isotropic magnetic pressure

Pmag ≡ b2/2 with b = B/
√

4π.

Using the ideal MHD equations, we neglect effects due

to the viscosity and the finite conductivity of the gas. This is

normally a very good approximation for the stellar interior.

However, during core collapse interesting hydrodynamic ef-

fects might arise from the inclusion of viscosity, in particu-

lar in the case of MHD (Thompson et al. 2004). Non-ideal

terms in the induction equation might lead to reconnection of

field lines, thus possibly affecting the topology of the field, and

might prove important for several kinds of hydromagnetic in-

stabilities (Spruit 1999).

For a Newtonian self-gravitating fluid the source terms fn
and q in the MHD momentum (2) and energy (3) equations are

given by

fn = −ρ∇nΦ, (4)

q = −ρu∇Φ, (5)

where the gravitational potential Φ obeys the Poisson equation

△Φ = 4πGρ, (6)

with G being the gravitational constant. The Poisson equa-

tion is solved in every time step using the solver of
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Müller & Steinmetz (1995), which is based on the integral form

of Poisson’s equation and on an expansion of the density dis-

tribution into spherical harmonics.

We integrate the MHD equations in spherical coordi-

nates assuming axisymmetry, i.e. we cannot simulate non-

axisymmetric instabilities which can occur if the rotation rate

exceeds a critical value during core collapse due to angular mo-

mentum conservation (Tassoul 1978). Axisymmetry also in-

hibits the growth of various MHD instabilities (Spruit 1999).

We further assume equatorial symmetry in order to reduce the

computational costs of a simulation.

2.2. Microphysics

We do neither consider nuclear reactions nor neutrino trans-

port, and use a simplified equation of state (EOS). Since neu-

trinos are thought to play a major role in the revival of the

stalled prompt shock, our approach is limited to the collapse,

bounce, and shock formation phases when neutrinos are not

yet dynamically important. This limitation allows us to focus

on a specific, not yet comprehensively studied part of core col-

lapse, namely the influence of MHD effects.

We have used the approximate, analytic EOS of Janka et al.

(1993) in our parameter study. It is based on a decomposition

of the gas pressure P into the sum of a polytropic part Pp and

a thermal part Pth:

P = Pp + Pth. (7)

The polytropic part is given by

Pp = κp · ρΓp (8)

where the adiabatic index

Γp =

{

Γ1 for ρ ≤ ρnuc

Γ2 for ρ > ρnuc
(9)

describes cold matter that undergoes a phase transition at nu-

clear density ρnuc = 2 × 1014 cm s−1. Below this threshold

density, the pressure is dominated by a relativistic degener-

ate electron gas with Γp = Γ1 <∼ 4/3. At ρnuc, the EOS stiff-

ens considerably, and the adiabatic index jumps to a value

Γp = Γ2 ∼ 2.5, which mimics the phase transition to incom-

pressible nuclear matter. Continuity of the pressure at nuclear

density implies

κ2 = κ1 · ρΓ1−Γ2
nuc , (10)

where κ1 = 4.897 × 1014 cgs-units.

The polytropic pressure changes only due to adiabatic pro-

cesses, i.e. it cannot describe dissipation of kinetic into thermal

energy in shocks. This shock heating is treated by the thermal

part of the EOS which has the form of an ideal gas EOS:

Pth = (γ − 1)εth. (11)

In our simulations, we took γ = 1.5 corresponding to a gas

composed of a mixture of a relativistic and a non-relativistic

component.

Table 1. Initial models and their parametrisation: A and βrot are the

rotation law parameter (Eq. (12)) and the ratio of rotational to grav-

itational energy, respectively. Larger values of A correspond to more

rigidly rotating cores. Γ1 is the sub-nuclear adiabatic index of our hy-

brid equation of state (see Sect. 2.2).

Model A[cm] Model βrot[%] Model Γ1

A1 5 × 109 B1 ≈0.25 G1 1.325

A2 1 × 108 B2 ≈0.45 G2 1.32

A3 5 × 107 B3 ≈0.9 G3 1.31

A4 1 × 107 B4 ≈1.8 G4 1.30

B5 ≈4.0 G5 1.28

2.3. Initial models

2.3.1. Equilibrium models for rotating polytropes

Concerning rotation and magnetic field, the conditions in the

stellar core at the onset of collapse are not well constrained.

Therefore, we have investigated the evolution of a sufficiently

broad set of simplified stellar models. Except for the magnetic

field, the initial models are the same as those studied by ZM

and DFM.

The initial models are rotating polytropes in hydrostatic

equilibrium constructed with the method of Eriguchi & Müller

(1985). They rotate according to the so-called j-constant law

(Eriguchi & Müller 1985)

Ω(̟) =
Ω0

1 +
(

̟
A

)2
, (12)

where the angular velocityΩ is given as a function of the cylin-

drical radial coordinate ̟. The parameter Ω0 is the maximum

angular velocity, and the parameter A, having the dimension of

a length, determines the degree of differential rotation of the

core. Deviations from rigid body rotation are significant only

for radii ̟ ≫ A, where the rotation law approaches that of

a configuration with constant specific angular momentum j.

2.3.2. The hydrodynamic parameter space

The initial models are calculated using the hybrid EoS (7) in

the “cold” limit, i.e. Pth = 0, an adiabatic index Γ1 = 4/3,

the j-constant rotation law (12), and with a central density

ρc = 1010 cm s−1. Instead of Ω0 we use the ratio of rota-

tional to gravitational binding energy, βrot ≡ |Erot/Egrav| (ini-

tially Egrav ∼ 5.5 × 1051 erg) to parametrize the models. The

two-dimensional parameter space (A, βrot) is covered by 4 ×
5 initial models according to Table 1.

As Γ1 = 4/3 for our initial models, they are only marginally

stable against collapse, which can be triggered by either low-

ering the coefficient κ1 or the adiabatic index Γ1. The for-

mer approach mimics the energy consumption due to photo-

disintegration of nuclei, while the reduction of Γ1 models the

softening of the EOS due to deleptonisation. We apply the latter

method to initiate the collapse.

For realistic equations of state 1.28 <∼ Γ1 <∼ 1.325 and 2.4 <∼
Γ2 <∼ 3, respectively. Following ZM and DFM we constructed

models with five different values of the sub-nuclear adiabatic
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index Γ1, and set Γ2 = 2.5 (Table 1). The nomenclature of the

models also follows that of ZM and DFM; i.e. model A1B3G5

has a rotation parameter A = 5 × 109 cm (A1), a fractional

rotational energy β = 0.9% (B3), and a sub-nuclear adiabatic

index Γ1 = 1.28 (G5; see Table 1).

2.3.3. Magnetic field configuration

The magnetic fields of our initial models are calculated from

the vector potential of a circular current loop of radius rmag in

the equatorial plane (Jackson 1962). The only non-vanishing

component of the magnetic vector potential is Aφ. It is given by

Aφ(r) ∝ 1

rmag

∫ d r′3

3
d
(− cos θ′

)

dφ′

×
sin θ′ cosφ′δ (cos θ′) δ(r − rmag)

|r − r′| , (13)

which can be expanded in terms of Legendre-Polynomials Pm
n ,

yielding

Aφ ∝
∞
∑

n=0

(−1)n(2n − 1)!!r2n+1
<

2n(n + 1)!r2n+2
>

P1
2n+1(cos θ). (14)

Here, r< = min(r, rmag) and r> = max(r, rmag) and (2n − 1)!! =

1 ·3 ·5 · ... · (2n+1). The constant of proportionality in these ex-

pressions is fixed by demanding that the magnetic field strength

in the core is equal to a given value.

The magnetic field strength in the core’s center is normal-

ized by B0 =
√

4πb0. For very small radii (r ≪ rmag) the field

resembles a uniform field parallel to the rotation axis, whereas

at large radii the field lines bend towards the equatorial plane.

The field strength is largest in the interior of the current loop

(Fig. 1).

Table 2 provides an overview of the parametrisation

of the magnetic field. The models are denoted as fol-

lows: model A3B3G3-D3M12 is the hydrodynamic initial

model A3B3G3 (Sect. 2.3.2) endowed with a magnetic field

generated by a current loop located at a radius of rmag = 400 km

and a maximum field strength of b0 = 1012 G (see Table 2).

The initial magnetic energy Emag for models AaBbGg-DdM12

is given in Table 3.

Most simulations were performed using models AaBbGg-

D3Mm (m = 10, 11, 12, 13). Their magnetic field configuration

is shown in Fig. 1. Since the radius of the current loop (rmag =

400 km) that generates this field configuration is small com-

pared to the radius of the stellar core (rcore ∼ 1500...2100 km),

the magnetic energy is highly concentrated in the center of

the stellar core. This is different for models AaBbGg-D0Mm,

which posses a homogeneous field directed along the rotational

axis. The magnetic energy of these “uniform-field” models is

much larger than that of the corresponding “current-loop” mod-

els AaBbGg-DdMm (d = 1, 2, 3, 4) due to the contributions of

the outer layers of the core.

The magnetic field strengths of our initial models are – as in

most studies of magneto-rotational collapse – much higher than

those estimated to exist in realistic stellar cores. Magnetic field

strengths in iron cores probably do not exceed 109 G, and the

toroidal field component is expected to be much stronger than

  
22.47 23.93 25.39 26.86 28.32
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m
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Fig. 1. The initial magnetic field configuration of the models of se-

ries AaBbGg-D3M13. Besides the field lines the distribution of the

magnetic pressure (color coded) is displayed. Pmag is largest near

the center of the field generating current loop located at a radius of

rD3
mag = 400 km in the equatorial plane, and drops rapidly with increas-

ing radius for r > rD3
mag.

Table 2. Parametrisation of the initial magnetic fields for the mod-

els of series AaBbGg-DdMm by the radius of the field generating

current loop centered at rmag (parametrized by d = 1, 2, 3, 4, 0) and

the field strength in the core’s center B0 =
√

4πb0 (parametrized by

m = 10, 11, 12, 13). For models AaBbGg-D0Mm the field generating

current loop is located at infinity yielding a uniform magnetic field

throughout the entire core.

Model rmag [km] Model b0 [G]

D1 100 M10 1010

D2 200 M11 1011

D3 400 M12 1012

D4 800 M13 1013

D0 ∞

the poloidal one (Heger et al. 2005). However, as such “weak”

initial fields do not give rise to important dynamic effects on the

time scales under consideration here (unless MRI amplification

would take place; see Sect. 4), and as we want to investigate

the principal effects of magnetic fields on the core collapse, we

consider stronger fields in our parameter study. Weaker initial

fields may lead to similar effects after a longer amplification

phase. Our initial fields are purely toroidal, but they rapidly

(within a fraction of the collapse time scale) develop a strong

toroidal component.

2.4. Gravitational-wave emission

During collapse, bounce, and explosion the rapid infall of mat-

ter and in particular its more or less abrupt slowdown give rise

to strong variations of the matter-density quadrupole moment
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Table 3. Initial magnetic energy Emag and typical values of the ratio

of magnetic to gravitational energy βmag (the exact values depend also

on the hydrodynamic initial model and its gravitational energy) for

the models of series AaBbGg-DdM12. The magnetic energy of mod-

els with b0 � 1012 G can be obtained by a simple scaling relation,

e.g. E
AaBbGg−D2M10
mag = E

AaBbGg−D2M12
mag (1010/1012)2.

Model Emag [erg] log βmag

D0M12 1 × 1049 –2.7

D4M12 6 × 1048 –3.0

D3M12 7 × 1047 –3.9

D2M12 7 × 1046 –4.9

D1M12 1 × 1046 –5.8

of any aspheric core. This causes the emission of gravitational

radiation.

We calculate the gravitational wave amplitude of the core

using the quadrupole formula in spherical coordinates, and ap-

plying the extension of the formulation of Mönchmeyer et al.

(1991, MSMK, hereafter) to the MHD case due to Kotake

et al. (2004b). Our treatment includes the hydrodynamic, grav-

itational, and magnetic forces acting on the fluid. We calculate

the quadrupole amplitude AE2
20

according to the formula (see

Appendix C):

AE2
20 =

G

c4

32π
3
2

√
15

∫ 1

0

dz

∫ ∞

0

d
r3

3

×
[

frr

(

3z2 − 1
)

+ fθθ
(

2 − 3z2
)

− fφφ − 6 frθz
√

1 − z2

−r∂rΦ
(

3z2 − 1
)

+ 3∂θΦz
√

1 − z2

]

, (15)

where the components of fi j are given by

fi j = ρviv j − bib j. (16)

In the following, we will refer to the various parts of the to-

tal amplitude as follows: AE2
20;viv j

, AE2
20;bib j

, and AE2
20;Gi

denote

the contributions of the terms involving viv j, bib j, and ∂iΦ in

Eq. (15), respectively. Furthermore AE2
20;hyd

, AE2
20;mag

, and AE2
20;grav

are the sums over all components of AE2
20;viv j

, AE2
20;bib j

, and AE2
20;Gi

,

respectively.

The radiative quadrupole moment ME2
20

(Eq. (C.3)) is a mea-

sure of the asphericity of the core’s density distribution. It is

positive for a very prolate core, and negative in the limit of very

oblate cores. Its first time derivative NE2
20

(Eq. (C.4)) measures

the asphericity of the mass-flux and the momentum distribution

of the core, and its second time derivative, the quadrupole am-

plitude AE2
20

, is a measure of the asphericity of the forces acting

on the fluid. As a rule of thumb, a prolate mass-flux or a prolate

momentum distribution (e.g. a bipolar jet-like outflow along the

rotational axis) gives rise to a positive value of NE2
20

. Forces that

act on the core in a way to make it more oblate, such as the

centrifugal force that has its manifestation in the AE2
20;vφvφ

part

of the amplitude, will give rise to a negative contribution to the

total amplitude (negative sign of the AE2
20;vφvφ

term in Eq. (15)).

The different signs of the hydrodynamic and the magnetic

contributions to the amplitude (Eq. (16)) resulting from the dif-

ferent signs of the hydrodynamic (Reynolds) and the magnetic

(Maxwell) stresses in the MHD flux terms, will – for suited

topologies of field and flow – lead to a more or less prominent

phase shift between the hydrodynamic and the magnetic am-

plitude. If the gravitational wave amplitude AE2
20;Gi

is in phase

with the hydrodynamic amplitude AE2
20;hyd

(which holds well for

many models, in particular for those with relatively long oscil-

lation periods; see Sect. 4), the magnetic amplitude AE2
20;mag

may

be phase shifted with respect to AE2
20;hyd

+ AE2
20;Gi

. Such a phase

shift was observed by Yamada & Sawai (2004).

3. Numerical method

The MHD equations are integrated using a newly developed

Eulerian, finite volume code based on the algorithm devised by

Pen et al. (2003). This code employs the relaxing TVD method

of Jin & Xin (1995) for the solution of the advection equations

and the constraint-transport formulation of Evans & Hawley

(1988) to deal with the divergence constraint of the magnetic

field.

We have rewritten the original code of Pen et al. in order

to adjust for the simulations of stellar core collapse. This in-

cluded the transformation of the equations from Cartesian to

spherical coordinates, the calculation of the gravitational po-

tential, the implementation of the gravitational source terms

in the momentum and energy equations, and the implemen-

tation of an approximate equation of state for iron core mat-

ter. The integration of the fluid equations and of the induction

equation is based on a second-order (piecewise-linear) relax-

ing TVD method. For a short summary of this method see

Appendix A. For the time evolution we use an operator-split

approach based on a method of lines (LeVeque 1992).

The simulations were performed on a grid of 380 loga-

rithmically spaced radial zones up to R⋆ km, where R⋆ ∼
1700...2000 km is the radius of the initial stellar model. The

central resolution was (∆r)c ≈ 300 m. The angular grid con-

sisted of 60 equidistant zones in the domain 0 ≤ θ ≤ π
2
. This

grid resolution has been chosen after obtaining converged re-

sults when running several models at different resolutions. The

numerical convergence of our simulations is demonstrated in

Appendix B.

The stellar models used by us (polytropes) are quite com-

pact configurations of matter characterized by a sharp transi-

tion from a high density interior to a low density surface layer.

Note that this feature is also seen in sophisticated stellar evolu-

tion calculations, which predict a steep density gradient at the

outer edge of the iron core. In rotating models the transition

layer is aspherical and must completely be contained within

the spherical boundary of the numerical grid, i.e. its numeri-

cal treatment requires special care. Grid zones outside the core

are filled with an “atmosphere” fluid of some prescribed den-

sity ρatmo at rest. During collapse the infall of matter creates

a region near the edge of the core where the density might

become so low that numerical problems arise. To overcome

these difficulties, we follow the approach of DFM1 and set

the hydrodynamic variables ρ, u, e equal to some prescribed

values ρatmo, 0, eatmo in all zones where the fluid density falls

short of a given threshold ρcut. In this way the atmosphere can
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Fig. 2. The evolution of the maximum density (top panels) and the GW amplitude (bottom panels) of three weak-field models: the standard

type-I model A1B3G3-D3M10 (left panels), the type-II model A2B4G1-D3M10 (middle panels), and the type-III model A3B3G5-D3M10

(right panels). The bottom panels show the total GW amplitude AE2
20

(solid lines) together with the partial amplitudes AE2
20;hyd

(dashed lines),

AE2
20;mag

(dash-dotted lines; here almost zero), and AE2
20;grav

(dash-dot-dot-dot line).

adjust to the (non-spherical) varying shape of the star. We used

ρcut = 105 cm s−1, and set ρatmo = 103 cm s−1. From the at-

mospheric density and velocity one can calculate the energy

density assuming zero thermal energy.

The evolution of the magnetic field is turned off for zones

marked as atmosphere, i.e. b remains constant in the atmo-

sphere consistent with the assumed zero velocity of the atmo-

sphere gas.

4. Results

The results of our simulations show that magneto-rotational

collapse can be categorized in essence into two limiting cases

depending on the strength of the initial magnetic field. If the

initial magnetic field is weak, its influence on the dynamics

and the gravitational wave emission is negligible during the

time scales of our simulations (see Sect. 4.1). The results of

the hydrodynamic simulations of ZM and DFM apply in this

case without any modification. On the other hand, and not un-

expectedly, initially strongly magnetized cores evolve quite dif-

ferently, as will be discussed in Sect. 4.2. Note that since the

MRI acts independently of the strength of the initial magnetic

field, the distinction between dynamically negligible and dy-

namically important fields may be an artificial one resulting

from our inability to simulate the MRI for magnetic fields be-

low a certain threshold (see Sect. 4.3). Hence, also initially

weak magnetic fields may cause similar dynamical effects as

strong ones. The dependence of our results on the initial mag-

netic field configuration will be discussed in Sect. 4.4, and fur-

ther information about the temporal evolution of all models is

provided in Appendix D.

4.1. Weak initial fields

4.1.1. GW signal and dynamics

The gravitational wave signals of initially weakly magnetized

cores do not differ from those obtained by MM, ZM and

DFM for the corresponding non-magnetized initial models,

because the magnetic fields never become dynamically im-

portant during the simulations. Consequently, both the mag-

netic force contribution to the GW amplitude (see Sect. 2.4)

and the back-reaction of the magnetic field on the flow are

negligible. This “weak-field” behavior holds for most mod-

els with initial fields of <∼1011 G. However, in some models

bouncing at relative low central density due to centrifugally

forces (e.g. models A4B5G5-D3M12 and A2B4G1-D3M12)

even a field of 1012 G does not affect the evolution of the core

significantly. We note that these numbers may change when the

field amplification by the MRI, which works independently of

the seed field strength, is properly simulated (see Sect. 4.3).

Three types of GW signals are distinguished by MM

and ZM which they call type-I, type-II, and type-III, respec-

tively. The evolution of three representative weak-field mod-

els that emit these different signal types is illustrated in Fig. 2.
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Although the GW signals are very similar to those of the cor-

responding non-magnetized cores of ZM, we will discuss them

and the underlying dynamics here in some detail for reason of

comparison with the GW signals of strongly magnetized cores

(see Sect. 4.2).

In the case of a type-I (or standard-type) GW signal

(model A1B3G3-D3M10; Fig. 2, left panels), the core bounces

due to the stiffening of the nuclear EOS at supra-nuclear den-

sities. Pressure waves crossing the inner core stop the infall

and lead to the formation of an outward moving shock wave.

Hence, the typical time scale is roughly given by the sound

crossing time of the inner core at bounce (∼1 ms). After bounce

the core exhibits damped oscillations on roughly the same

time scale. During collapse, the GW amplitude is increasingly

positive due to the gravity contribution AE2
20;grav

> 0 which

dominates the hydrodynamic one AE2
20;hyd

< 0. At bounce the

GW amplitude decreases strongly assuming large negative val-

ues, because the modulus of the centrifugal contribution AE2
20;vφvφ

becomes very large when the rotational energy approaches its

maximum. The oscillations of the core produce the oscillations

of AE2
20;grav

and hence of the total GW amplitude on the same

time scale. As the shock wave is almost spherical (except for

initially very rapidly rotating cores), the post-bounce GW am-

plitude is predominantly produced by the central core with only

a modest contribution of the outer layers. The hydrodynamic

contribution AE2
20;hyd

is dominated by AE2
20;vφvφ

.

A type-II signal (model A2B4G1-D3M10; Fig. 2, middle

panels) is emitted, if, for an initially sufficiently fast rotation

and a sufficiently large degree of differential rotation, the core

suffers a bounce due to centrifugal forces before nuclear den-

sity is reached. After bounce the core exhibits several large

amplitude oscillations, which are considerably less damped

than in the case of a pressure dominated bounce. The oscil-

lations are reflected in the GW signal: each time the density

reaches a maximum the GW amplitude becomes strongly neg-

ative, while being positive otherwise. The negative GW am-

plitude again results from the enhanced rotational energy dur-

ing this collapse phase when the inner core also becomes

strongly oblate. The contribution of the centrifugal-force am-

plitude AE2
20;vφvφ

to the hydrodynamic one AE2
20;hyd

is negligible.

Since much of the dynamics happens at relatively large radii,

the GW signal is produced by the whole core. The contribution

of the central core is typically negative because of its rotation-

ally flattened, oblate shape, whereas the outer layers contribute

to the overall amplitude with a positive signal due to the prolate

shape of the outward propagating shock wave.

The signals of type III (model A3B3G5-D3M10; Fig. 2,

right panels) that are emitted by cores collapsing very rapidly

due to a very soft sub-nuclear EOS are characterized by the lack

of a strongly negative GW amplitude at bounce. This results

from the only modest rise of the rotational energy at bounce im-

plying a relatively small centrifugal contribution to the GW sig-

nal AE2
20;vφvφ

, and from the relatively large positive contribution

of the still collapsing layers outside to the shock wave. Past

bounce the signal exhibits rapid (on the hydrodynamic time

scale thyd ≈ 1 ms) oscillations like the maximum density.

The contributions from the outer layers of the core are also
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Fig. 3. The evolution of the magnetic energy parameters βmag (total en-

ergy, solid line), βφ (toroidal field energy, dashed line), and βmag − βφ
(poloidal field energy, dotted line) of models A1B3G3-D3M10 (upper

left panel), A3B3G5-D3M10 (upper right panel), A2B4G1-D3M10

(lower left panel), and A4B5G5-D3M10 (lower right panel), respec-

tively. Note that in the upper left panel βmag ≈ βφ and, thus, both lines

are almost indistinguishable.

responsible that the signal then remains positive for an ex-

tended period of time (i.e. several oscillation periods) during

which the amplitude gradually decreases.

4.1.2. Field amplification

The evolution of the magnetic energy is illustrated for four se-

lected models in Fig. 3 showing the ratio of the field energy and

the gravitational energy for the total (βmag), toroidal (βφ), and

poloidal (βmag − βφ) magnetic field, respectively. Both the total

and the toroidal magnetic energies rise sharply at bounce by

a factor of 102 to 103. The magnetic energy is mostly stored

in form of the toroidal magnetic field Bφ, which is created

from the poloidal component by the action of differential ro-

tation. The amplification process extends beyond the end of

our simulations.

As our study is restricted to axisymmetric simulations, the

main field amplification mechanism is the conversion of rota-

tional into magnetic energy via the Ω-dynamo. Axisymmetry

suppresses most of the instabilities of the (toroidal) field that

are necessary to close the dynamo loop of a full α − Ω dy-

namo, where a poloidal field is converted into a toroidal one

and amplified by differential rotation, and then converted back

into a poloidal field by some instability of the toroidal field

(Spruit 1999, 2002).

Before we discuss the properties of some models in greater

detail, we summarize a few general trends:

– The larger the initial rotational energy (for a given degree

of differential rotation and a given EOS), the larger is the

rate of field amplification.



M. Obergaulinger et al.: Magneto-rotational core collapse 1115

– The higher the degree of differential rotation (for a given

βrot), the larger is the rate of field amplification.

– Among a series of models with the same initial configu-

ration, the magnetic field is amplified more efficiently for

models whose EOS has a larger sub-nuclear adiabatic in-

dex Γ1 and do not suffer a centrifugal bounce. The time

scale for the amplification of the magnetic field is set by

the rotation period of the core.

– The collapse of models with a relatively stiff sub-nuclear

EOS (AaBbG1-DdMm) leads to a very extended post-

bounce core having a rotational frequency much less than

that of a corresponding type-I model even though the rota-

tional energy and βrot may be larger in the former model.

Thus, the field is amplified more slowly in models suffer-

ing a sub-nuclear bounce due to centrifugal forces, and their

cores experience several phases of expansion during which

they slow down. This leads to a significantly less efficient

amplification or even a weakening of the magnetic field.

We thus find that type-I models are most efficient in terms

of magnetic field amplification.

– Due to the efficient field amplification most of our weak-

field models reach magnetic field strengths of the order

of 1013 G to 1015 G within a few tens of milliseconds after

core bounce. This is in the range of field strengths observed

in magnetars. From the definition of βmag follows, that

βmag ∼
4π
3

b2/2 R4

GM2
, (17)

where b is a typical value of the field within the core, and R

and M are its mass and radius, respectively. Thus, a typical

post-bounce field corresponds to a magnetic energy param-

eter of

βmag ∼ 0.05%

(

b

1015 G

)2 (
R

20 km

)4
(

M

0.5 M⊙

)−2

· (18)

The maximum energy that can go into the magnetic field is

limited by the energy that is contained in the differential rota-

tion of the core. None of our weak-field cores is evolved long

enough for the field to reach saturation strength. However, ex-

amining the field amplification process for models with strong

(>∼1012 G) initial fields, which reach dynamically important val-

ues not too early, we conclude that efficient field amplification

ceases when the magnetic energy of the collapsed core ap-

proaches a significant fraction of its rotational energy, i.e. some

ten percent. As all of our cores initially have similar rotational

energies (βrot about a few percent), we expect them to reach

(surface) field strengths of the same order if there is sufficient

time for amplification. From our models with initially stronger

fields we can estimate the saturation field strengths to be of

the order of b >∼ 1015 G. Using the estimate for βmag given

above (18), these fields correspond to βmag ∼ (0.05...5)%. Such

values we have found in our simulations. The magnetic field

in most post-bounce cores is strongly concentrated in the inner

core, reflecting the density structure. Thus, for usual standard-

type cores, the field is strongest a few kilometres from the

center, and drops rapidly towards larger radii. When a strong

shear layer is present at the surface of the inner core, the field

may also be strongest there. This is the case for many of the

weak-field cores, but does not necessarily hold for the strong-

field ones. In the latter case, the simulations tend to give values

of βmag in excess of the previous estimate.

The field amplification via the Ω-dynamo is most efficient,

if the poloidal field component is large compared to the toroidal

one. A characteristic growth time for the generation of bφ from

a radial component b̟ is given by (Meier et al. 1976)

τΩ =
bφ

b̟̟∂̟Ω
· (19)

In our models the poloidal component does not grow after

bounce (apart from the effects of compression and expansion

during the large-scale oscillations of type-II models) unless

there is an instability (Fig. 3; Sect. 4.3).

The rate of field amplification is similar for the fast collaps-

ing cores A1B3G5-D3M10, A2B4G5-D3M10 and A3B3G5-

D3M10, which have a soft sub-nuclear EOS and which do not

suffer a centrifugal bounce. A slightly more efficient amplifica-

tion is observed for the initially more differentially and faster

rotating cores A2B4G5-D3M10 and A3B3G5-D3M10 than for

the initially rigidly rotating model A1B3G5-D3M10. An even

faster amplification is observed for the slower collapsing

model A1B3G3-D3M10, where 10 ms after bounce βmag = 8 ×
10−5 compared to βmag = 8 × 10−6 for model A3B3G5-D3M10

(Fig. 3, upper two panels). This reflects the different infall pro-

files of the cores whereby the regions of strongest magnetic

field (initially around and interior to the field generating cur-

rent loop at rmag = 400 km) are swept along to different po-

sitions in the core. In case of the model A1B3G3-D3M10 this

region is much closer (r ≈ 40 km) to the center at the time of

bounce than for model A3B3G5-D3M10, where it is located at

r ≈ 120 km. Therefore, the fraction of the magnetic field that

is available in the regions where the Ω-dynamo acts most effi-

ciently is larger for the former model, i.e. the field amplification

can proceed more efficiently.

During collapse and to an even larger extent during

and after core bounce the magnetic field configuration of

model A1B3G3-D3M10 is considerably distorted. The field

lines initially surrounding the off-center current loop (Fig. 1)

are pulled towards the center. Apart from an overall compres-

sion the field geometry remains basically the same as in the ini-

tial model. A complex pattern of “filamentary” regions of high

and low magnetic fields develops as the field lines get entan-

gled by the fluid flow around and after bounce. No simple clas-

sification of the magnetic field as a dipole, quadrupole, etc., is

possible. In the subsequent evolution the tangled fields follow

the outward propagating shock front which is almost spheri-

cally symmetric in this initially rigidly rotating model (Fig. 4).

Multiple-bounce models that experience several phases of

collapse and expansion exhibit a similar evolution of the mag-

netic field. During a contraction phase angular momentum con-

servation yields a more efficient amplification of the magnetic

field energy, whereas βmag grows much slower in an expan-

sion phase. This is the case for model A2B4G1-D3M10 (Fig. 3,

lower left panel). The magnetic energy parameter βmag rises by

a factor ≈3 during 10 ms around core bounce (tb ≈ 100 ms),

but then requires 40 ms to amplify the field by another factor

of ≈1.6. The amplification rate increases again strongly during
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Fig. 4. Magnetic pressure (color shaded), velocity field (arrows), and

magnetic field lines of model A1B3G3-D3M10 at t = 51.44 ms.

the subsequent contraction phase. For model A4B5G5-D3M10,

the amplification factor during core bounce is about 20, but

later the field energy gets greatly reduced (βmag drops by a fac-

tor ≈3.5) during the extremely violent expansion that follows

the bounce in this model (Fig. 3, lower right panel; the evolu-

tion of the maximum density is shown in Fig. 19). Afterwards,

differential rotation again starts to increase the magnetic field,

but on a longer time scale.

Model A4B5G5-D3M10 possesses a torus shaped initial

density distribution, and maintains it throughout the entire

evolution. The field structure of this model tends to become

very complex during the evolution. In the final model, at t =

36.13 ms, the field exhibits both sheet-like regions of strong

fields (≈100 km off the axis), and also toroidal (at r ≈ 120 km,

z ≈ 60 km) and cylindrical (e.g.≈50 km off the axis) weak-field

regions (Fig. 5).

4.2. The strong field case

For initially strong magnetic fields the collapse shows signifi-

cant deviations from the purely hydrodynamic case. The most

striking new feature is the braking of the rotation of the core

by magnetic stresses. The initially strongest fields are ampli-

fied by differential rotation during collapse to such a level that

they can cause considerable braking, whereas initial fields of

the order of 1012 G or less require the action of an MRI-like

instability to reach a level sufficient for significant angular mo-

mentum transport on the collapse time scale. In the following

we will first discuss the former class of models divided into

models bouncing due to pressure forces (Sect. 4.2.1) or cen-

trifugal forces (Sect. 4.2.2), and later address the issue of the

MRI in Sect. 4.3.
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Fig. 5. Same as Fig. 5, but for model A4B5G5-D3M10 at t =

36.13 ms.

4.2.1. Models bouncing due to pressure forces

As in the case of weak-field models, the poloidal field energy

of a single bounce models such as A1B3G3-D3M12 is approx-

imately constant during the early post-bounce evolution, but

it is strongly amplified afterwards by MRI-like modes in the

core which efficiently remove angular momentum from the in-

ner core and decrease its rotational energy. The evolution of

the rotational energy hence shows a clear deviation from that

of a weak-field model (Fig. 6), which however should not be

the case, as the MRI does not depend on the seed field. We will

explain in Sect. 4.3 why this different behavior arises.

The loss of rotational support also affects the density struc-

ture. The core of model A1B3G3-D3M12 is slightly less rota-

tionally flattened than the core of a non-magnetized model such

as A1B3G3-D3M10. The shock that forms at bounce, when

the models hardly differ, is unaffected by the different evolu-

tion of the central region, whereas matter in the central region

experiences an additional acceleration due to the presence of

the strong magnetic field. The decrease of the rotation rate,

and also of the degree of differential rotation in the strong-

field case limits the amplification of the toroidal field com-

ponent by wrapping of field lines (Fig. 6, upper right panel),

and the total magnetic energy has a significant poloidal con-

tribution. At t ≈ 70 ms, the ratio of toroidal and total mag-

netic energy has dropped to a value of about 80%. The poloidal

component grows a little during the post-bounce evolution by

the action of meridional motions in the core. When the mag-

netic field becomes dynamically important, magnetic energy

is used to accelerate the fluid, which puts an end to the phase

of efficient field amplification. During the late stages of evo-

lution, the total field energy remains approximately constant.

Its final value corresponds to βmag ≈ 1%. The field structure

of model A1B3G3-D3M12 differs from that of the weak-field

core A1B3G3-D3M10 in the central parts of the core at late
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Fig. 6. The dynamics and the GW signal of model A1B3G3-D3M12. The upper left and middle panels provide a comparison of the evolution of

the rotational energy parameter βrot and the maximum density of this model (solid lines) with those of model A1B3G3-D3M10 (dashed lines).

The upper right panel displays the evolution of βmag (solid line), βφ (dashed line), and βmag − βφ (dotted line), respectively. The GW signal is

shown in the lower panels: total amplitude (solid line, left; the dashed line gives the total amplitude of model A1B3G3-D3M10), −AE2
20;hyd

(solid

line, middle), AE2
20;grav

(dashed line, middle), and AE2
20;mag

(right). The corresponding variables of model A1B3G3-D3M10 are shown in Fig. 2.
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Fig. 7. Snapshot of the inner regions of model A1B3G3-D3M12 at t =

76.94 ms showing the magnetic pressure (color shaded), the bipolar

flow field (vectors), and the magnetic field lines, respectively.

times due to the MRI modes (that could not be resolved for the

weaker field; see Sect. 4.3), but farther away from the center

the fields have a similar topology.

Around the time of bounce the GW signal of

model A1B3G3-D3M12 is very similar to the one of the

less magnetized core A1B3G3-D3M10, and also the contribu-

tions of the individual parts of the total signal are comparable

(Fig. 6, lower panels). In the post-bounce evolution, both

the hydrodynamic and the gravitational part of the amplitude

start to decrease in magnitude, as the rotationally induced

asphericity of the core decreases along with the extraction of

rotational energy. The magnetic amplitude increases strongly

as magnetic forces act on the core decreasing its rotation. The

oscillations of the core are still imprinted on the post-bounce

GW amplitude, but their impact on the signal decreases

with time. In the long run, the amplitude assumes positive

values and varies relatively little. Dynamically, this phase is

characterized by the emergence of a weak outflow along the

polar axis far behind the shock wave created at core bounce.

This outflow is predominantly driven by magnetic forces

(Fig. 7). The positive long-term GW amplitude is mainly

due to the AE2
20;vrvr

term which is large inside the outflow,

whereas the inner parts of the model and the almost spherical

shock wave contribute little to the total signal. Despite the

differences in the post-bounce GW amplitude contributions

of the two models A1B3G3-D3M10 and A1B3G3-D3M12

their total signals are quite similar, i.e. distinguishing the

two models observationally would be very difficult.
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Fig. 8. The dynamical evolution and the GW signal of model A1B3G3-D3M13. The upper panels display the temporal evolution of the

rotational energy parameter βrot (left), the maximum density ρmax (middle), and the magnetic energy parameters (right; βmag (solid line), βφ
(dashed line), and βmag − βφ (dotted line)), respectively. The GW signal of the model is shown in the lower panels: total amplitude (solid line,

left; the dashed line gives the contribution of the layers with r ≤ 59.4 km), −AE2
20;hyd

(solid line, middle), AE2
20;grav

(dashed line, middle), and AE2
20;mag

(right).

Similar features as those observed in the case of

model A1B3G3-D3M12 (Fig. 6) are present in the evo-

lution of the stronger magnetized model A1B3G3-D3M13

(Fig. 8), but they are much more prominent. Unlike all previ-

ously discussed models, this core shows significant deviations

from the purely hydrodynamic case already during collapse.

For model A1B3G3-D3M13 the core bounce is delayed by

≈1 ms compared to the weaker magnetized models A1B3G3-

D3M10...12. The rotational energy reaches a maximum value

of βmax
rot ≈ 7% near bounce, which is lower than in the less

magnetized models (βmax
rot ≈ 8%). Within the next ≈6 ms the

core looses ≈80% of the rotational energy it had acquired at

bounce. Subsequently, the rate of energy loss decreases, and

the core contracts (Fig. 8). Its maximum density rises from

ρmax = 2.7 × 1014 cm s−1 in the first post-bounce density min-

imum to ρmax = 3.2 × 1014 cm s−1 at t = 58 ms before it starts

to decreases by a small amount again. The process of mag-

netic braking prevents a further amplification of the field, and

it prevents the transformation of poloidal into toroidal magnetic

field. The ratio βφ/βmag does not approach unity, as in case

of the models with weaker initial fields, but it remains be-

low ≈60% decreasing slowly later. At t ≈ 71 ms, when we

stopped the computations, the value of βmag had dropped to

βmag ≈ 2.05%, and we expect it to eventually decrease to

a value of ∼1%.

In model A1B3G3-D3M12 the immediate post-bounce

core is very similar to the corresponding non-magnetic one as

the magnetic field is not sufficiently strong to change the dy-

namics unless an MRI-like instability sets in. This is different

from the more strongly magnetized model A1B3G3-D3M13,

where without the MRI the combined amplification due to con-

traction and differential rotation is sufficient to cause the brak-

ing effect. This is generally true for all of our models: very

strong initial fields (>1012 G) do not need amplification by an

instability to brake the core, whereas weaker ones heavily de-

pend on it.

After bounce, the shock wave develops a non-spherical,

bulb-like shape, and the twisted field lines give rise to a highly

magnetized post-shock fluid that pushes the shock near the

equatorial plane around θ ≈ 70◦ (Fig. 9). Near the axis, the im-

mediate post-shock matter is only weakly magnetized, the ratio

of gas pressure and magnetic pressure being largest at a signifi-

cantly smaller radius (rmax,mag ≈ 27 km) than the shock position

(rshock ≈ 40 km). The shock maintains its bulb-like shape also

during the secondary contraction phase that goes along with the

extraction of rotational energy, and fast outflow both at high

and low latitudes. At later times (t = 60.40 ms, Fig. 10), the

fluid pattern has changed. The formerly important outflow near

the equator stalls, and the shock surface becomes more elon-

gated. The near-axis outflow velocity has further increased, its
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Fig. 9. Snapshot of model A1B3G3-D3M13 at t = 50.19 ms, when the maximum density reaches the first post-bounce minimum. In the left

panel the flow field (vectors) and the magnetic field (field lines) are displayed together with the magnetic pressure (color-coded). The right

panel shows the color-coded velocities of in-flowing (i.e. vr > 0) and out-flowing matter (i.e. vr < 0), respectively.
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Fig. 10. Same as Fig. 9, but at t = 60.40 ms. Note that the length scales are changed compared to Fig. 9.

maximum value being vmax
r = 0.19c in the strongly magnetized

region well behind the shock (rmaxmag = 270 km < rshock =

330 km). In the outflow along the rotational axis, a cylindrical

shell of very low pressure gas can be identified (at θ ≈ 10◦ in

Fig. 10). The structure of the magnetic field is dominated by

two extended highly magnetized regions, one located near the

equator at (r <∼ 200 km, θ ≈ 80◦), and a cylindrical one oriented

along the rotational axis having a width of ≈100 km (left panel

of Fig. 10). At an even later epoch, t = 68.51 ms (Fig. 11),

only little has changed near the equatorial plane, however at

the axis the highly magnetic gas is about to catch up with the

shock wave, which is now significantly prolate with an axis ra-

tio of about 3:2. The outflow has accelerated further (vr = 8 ×
109 cm s−1 ∼ c/4), the maximum velocity corresponding to

the highly magnetized regions behind the shock at r = 870 km.

Hence, we see the formation of a jet-like outflow from the core.

In its very interior the core is rotating slower than its non-

magnetic variant at late times. Furthermore, it has developed

a roughly toroidal region of relatively slow and highly rigid

counter-rotation. This region grows from a layer at r ≈ 10 km,

i.e. near the edge of the inner core, which experiences suffi-

ciently strong magnetic stresses to reverse its direction of ro-

tation. Interior to the retrograde rotating region the angular ve-

locity decreases with time.

Assuming that the total energy density of a fluid element,

etot = ε +
1
2
ρu2 + 1

2
b2 − ρ · Φ, is converted entirely into ki-

netic energy 1
2
ρv2∞, terminal outflow velocities v∞ of up to
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Fig. 11. Same as Fig. 9, but at t = 68.51 ms. Note that the length scales of the plot are changed compared to Figs. 9 and 10.

1.85 × 1010 cm s−1 are observed for model A1B3G3-D3M13 at

late times, particularly in the bipolar outflow along the rotation

axis (Fig. 11). The large velocities stretch our non-relativistic

MHD approach, and imply that a realistic simulation of the late

evolution of the outflow will require relativistic MHD.

The GW amplitude of model A1B3G3-D3M13 (Fig. 8,

lower panels) is enhanced by about 10% at core bounce. After

bounce, ringing on the dynamical time scale of the core the av-

erage amplitude shifts to positive values. The amplitudes and

frequencies of the oscillations are hardly affected by the overall

shift of the average amplitude to positive values implying a dif-

ferent origin of the oscillations and the overall shift. A few mil-

liseconds after bounce AE2
20

grows to ∼400 cm, and the rapid

variations of the signal cease. The hydrodynamic and gravita-

tional contributions to the total amplitude are greatly reduced

in magnitude. The inner core has lost a large amount of its rota-

tional energy and is of almost spherical shape. Its contribution

to the total signal amplitude is hence relatively small for epochs

well after bounce.

While the hydrodynamic amplitude produced by the inner-

most layers of the core is very small, the gravitational and mag-

netic contributions reach quite large values of several 102 cm.

However, as both contributions are of opposite sign they cancel

each other almost completely (Fig. 8), i.e. only a small net am-

plitude results. The relative smallness of the hydrodynamic am-

plitude of the central core indicates that – once most of the rota-

tional energy is extracted – magnetic forces may become more

important for the core’s structure than the centrifugal ones.

The very non-spherical shape of the shock wave, and in par-

ticular the appearance of the jet-like outflow that carries a large

(radial) kinetic energy, causes a long-lasting positive GW am-

plitude the major contribution being the AE2
20;vrvr

amplitude of

the outflow (Fig. 12). Growing larger with time this contribu-

tion eventually makes the hydrodynamic amplitude to become

positive at t = 61.5 ms. Thus, a bipolar motion can be identified

in the GW signature through the appearance of a long-lasting

positive signal.
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Fig. 12. The hydrodynamic plus gravitational parts of the GW ampli-

tude of model A1B3G3-D3M13 at t = 68.5 ms. Positive contributions

to the integrand in the formula for the hydrodynamic plus gravitational

amplitude are displayed by colors. The bipolar outflow shows up in the

large positive parts near the axis.

The behavior just described holds for models A1B3G3/5-

D3Mm, A2B4G5-D3Mm, and A3B3G5-D3Mm, too. They dif-

fer, however, concerning the time scales and the vigorous-

ness of the phenomena. Most dramatic is the evolution of

model A3B3G5-D3M13 (Fig. 8), where the loss of rotational

energy allows the core to contract to densities (ρmax = 4.4 ×
1014 cm s−1) that exceed the bounce density ρb = 3.46 ×
1014 cm s−1 by up to 30%. The shock wave is already strongly

prolate when it forms, and the magnetic field is highly concen-

trated both towards the equator and – like in model A1B3G3-

D3M13 – in a cylindrical region oriented along the rotation

axis. The rapidly moving, highly magnetized outflow deforms
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Fig. 13. Snapshot of model A3B3G5-D3M13 at t = 49.46 ms showing

the velocities of inflows (blue colors) and outflows (red colors).

the shock wave giving rise to a shock surface with an axis ratio

of about 3:1. At t = 49.46 ms, magnetic (hoop) stresses in the

pinched toroidal field have accelerated the gas further yielding

a so-called “nose cone” (well known from simulations of mag-

netized jets) that is visible in the outermost part of the jet-like

outflow (Fig. 13).

The GW amplitude of model A3B3G5-D3M13 (Fig. 14),

whose weak-field counterpart A3B3G5-D3M10 emits

a GW signal of type III (Fig. 2), is modified by the strong

initial field. Relative to the weak-field model, the pre-bounce

maximum is enhanced, and the size of the (negative) peak

at bounce is reduced by the same amount, whereas the

amplitude of the first (positive) post-bounce peak remains

nearly unchanged. As the core loses angular momentum, the

size of the hydrodynamic and gravitational contributions to

the GW amplitude decreases. The post-bounce oscillations

of the signal, which are mainly due to the central core, are

superimposed on a nearly constant positive amplitude of half

the size of the bounce amplitude indicating the presence

of the collimated bipolar outflow (Fig. 13). The evolution

of the magnetic contributions of models A1B3G3-D3M13

and A3B3G5-D3M13 are similar. In both models, a phase of

positive amplitude concurrent with the most efficient braking

of the core’s rotation is followed by a decrease to large

negative values (Fig. 14, lower right panel). In the latter phase

the magnetic amplitude, which is mostly produced in the

central core, provides the main contribution to the total signal.

Increasing the initial magnetic field strength to ∼1012 G in

models which exhibit a type-I GW signal in the non-magnetic

case, the size of the large (negative) bounce amplitude de-

creases slightly. This also holds for even stronger magnetic

fields in case of models that are influenced by rotation to a

higher degree such as A3B2G4-D3Mm and A3B3G4-D3Mm,

respectively. However, for rigidly and moderately fast rotating

models (A1B1G3-D3Mm and A1B3G3-D3Mm) the size of

the bounce signal grows again strongly when the initial field

strength reaches 1013 G.

The ratio of the GW amplitudes of the positive peaks

immediately prior to and immediately after the signal min-

imum at bounce can both increase and decrease by the ef-

fects of a strong magnetic field. In type-I models with a small

influence of the rotation on the dynamics, a stronger ini-

tial field increases the ratio, and for sufficiently fast rotat-

ing models (A3B2G4-D3Mm) it decreases. Two models with

a type-I GW signal are close to the transition from a bounce

caused by pressure or centrifugal forces (A2B4G4-DdMm

and A3B3G4-DdMm), i.e. their cores are only partially stabi-

lized by the stiffening of the EOS at nuclear matter density. For

both models the amplitude ratio of the pre- and post-bounce

peaks increases with increasing magnetic field strength, while

it decreases for most type-III models.

4.2.2. Models bouncing due to centrifugal forces

The weak-field models of series A3B3G3-D3Mm belong to the

transition class between standard-type and centrifugally bounc-

ing cores. They bounce mostly due to centrifugal forces and

exhibit large-scale pulsations after bounce, but their maximum

density exceeds nuclear matter density during bounce. Both

the period and the damping of the pulsations are significantly

larger than for purely centrifugally bouncing type-II models

(Fig. 15). Their GW signal consists of a pronounced peak of

negative amplitude at bounce, and subsequent relatively long-

period oscillations.

For the strong-field variants of this model series,

e.g. model A3B3G3-D3M12 (Fig. 15), the main evolutionary

effect of the magnetic field is the extraction of rotational energy

after bounce that proceeds on time scales much longer than the

dynamic time scale of the inner core. Model A3B3G3-D3M12

reaches a maximum rotation parameter βmax
rot = 0.16 at bounce,

which is nearly the same value as in the non-magnetic case. At

the time of the second density maximum βrot is only slightly

smaller than in the weak-field model A3B3G3-D3M10, but at

the next (3rd) maximum the rotational energy has decreased by

about 15%. Unlike in the weak-field model no fourth density

maximum occurs. Instead, βrot decreases monotonically. The

rotation rate of model A3B3G3-D3M12 is sufficiently large

for a sufficiently long time to allow the core to exhibit sev-

eral centrifugal pulsations before it settles down in a pressure

supported final equilibrium state. During these pulsations the

time-averaged value of ρmax increases, and densities signifi-

cantly larger than the bounce density ρb = 2.41 × 1014 cm s−1

are reached.

The GW signal of the strong-field model A3B3G3-D3M12

is similar to that of the weak-field model A3B3G3-D3M10

during the first ≈10 ms after bounce when the cores of both

models still undergo large-scale pulsations. Later when the ro-

tational energy has decreased sufficiently and the pulsations

begin to fade away, the signals begin to differ slightly. The

maximum density now increases monotonically. Rotation is no

longer important for the core’s stabilization, as it is supported
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Fig. 14. The dynamical evolution and the GW signal of model A3B3G5-D3M13. The upper panels display the temporal evolution of the

rotational energy parameter βrot (left), the maximum density ρmax (middle), and the magnetic energy parameters (right; βmag (solid line), βφ
(dashed line), and βmag − βφ (dotted line)), respectively. The GW signal of the model is shown in the lower panels: total amplitude (solid line,

left), −AE2
20;hyd

(solid line, middle), AE2
20;grav

(dashed line, middle), and AE2
20;mag

(right).

by pressure forces. Thus, like in the case of a standard-type core

(e.g. A1B3G3-DdMm), the rapid oscillations of the GW am-

plitude for t >∼ 60 ms occur on the core’s dynamic time scale.

Superimposed to the oscillations is a positive mean amplitude

AE2
20
≈ 100 cm, which results from the enhanced asphericity of

the shock wave as compared to that of the weak-field model.

The most strongly magnetized model of series A3B3G3-

D3Mm, namely model A3B3G3-D3M13, behaves very dif-

ferently from its weak-field variants as e.g. model A3B3G3-

D3M10 (Fig. 15). Unlike the latter model it suffers a single

bounce at ρb = 2.69 × 1014 cm s−1 (a value about 10% larger

than for the weak-field models) with a subsequent contrac-

tion phase caused by the decrease of the core’s rotational en-

ergy. After bounce the maximum density reaches a value of

ρmax = 3.3 × 1014 cm s−1. Unlike model A3B3G3-D3M12, it

does not exhibit any large-scale pulsations. Instead, it rapidly

approaches a high density state without an intermediate phase

where the density in the entire core is less that nuclear mat-

ter density, as it is the case for model A3B3G3-D3M12. The

rotational energy (βmax = 0.135) is less than for models with

weaker initial fields (e.g. βmax = 0.16 for model A3B3G3-

D3M10), and decreases by 90% within 15 ms (Fig. 16).

The collapse and post-bounce dynamics of

model A3B3G3-D3M13 is similar to that of strong-field

single-bounce models, as e.g. model A1B3G3-D3M13.

Many features of the latter model are also present in

model A3B3G3-D3M13: the bulb-like shock surface, the

two highly magnetized post-shock regions (one near the

equator and the other one along the polar axis), and a region of

retrograde rotation near the equatorial plane at the edge of the

inner core. The ratio of magnetic and gas pressure is largest

at the axis at r = 175 km well behind the shock located at

rshock ≈ 200 km.

The GW signal of model A3B3G3-D3M13 is qualita-

tively similar to that of its less strongly magnetized vari-

ant A3B3G3-D3M12, but the features caused by the magnetic

field are more pronounced (Fig. 16). The peak amplitude at

bounce AE2
20
= −1128 cm is, contrary to model A3B3G3-

D3M12, considerably less negative than in the weak-field

model A3B3G3-D3M10 (AE2
20
= −1401 cm). Immediately after

bounce the GW signal shows certain similarities with that of

model A1B3G3-D3M13 (Fig. 8): a large positive peak is fol-

lowed by a series of oscillations occurring on the local dynamic

time scale superimposed on an increase of the mean amplitude

to a value of AE2
20
≈ 600 cm within t ≈ 5 ms, which is the time

it takes to turn the initially roughly spherical shock into a rela-

tively wide bipolar outflow directed along the rotation axis.

Similar to cores bouncing due to pressure forces, the extrac-

tion of rotational energy from cores bouncing due to centrifu-

gal forces proceeds qualitatively differently for models with
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Fig. 15. The evolution of the rotational energy parameter βrot (left panels), of the maximum density (middle panels) and the GW signal (right

panels) of models A3B3G3-D3M10 (top panels), and A3B3G3-D3M12 (bottom panels), respectively.

an initial magnetic field strength of 1012 G and 1013 G, re-

spectively. For the weaker field the extraction process relies on

an instability-driven angular momentum transport, which is not

required for the stronger field models.

Unlike the other models, which collapse to higher den-

sities when angular momentum transport by the magnetic

field becomes dynamically important, model A2B4G1-D3M13

bounces at a lower density (ρb = 6.84 × 1012 cm s−1 com-

pared to ρb = 1.14 × 1013 cm s−1 in the weak-field case). At

bounce its rotational energy (βmax = 0.093) is less than that of

model A2B4G1-D3M11 (βmax = 0.118), which has an initially

100 times weaker magnetic field. After bounce the rotational

energy continues to decrease, and the core eventually suffers

a second collapse that is stopped at ρmax = 2.5 × 1014 cm s−1

(Fig. 17). During the second collapse βrot rises temporarily

slightly again, but angular momentum redistribution prevents

the shock formed by centrifugal forces (at a similar density as

the one resulting from the first bounce) from stopping the in-

fall. Thus, a large fraction of the inner core continues to fall

towards the center, until the collapse is halted by the stiffen-

ing of the equation of state, i.e. by a bounce due to pressure

forces. A shock forms at the edge of the still very extended in-

ner core (rshock = 70 km compared to rshock ≈ 10 km in the

previously discussed models) at t = 108 ms at the beginning of

the “plateau” in the evolution of ρmax (see upper middle panel

of Fig. 17), and it becomes slightly prolate. About 15 ms later

(t = 123 ms) this shock has reached a radius of rshock ≈ 200 km

(Fig. 18). The magnetic field of model A2B4G1-D3M13 is

less amplified and deformed than in the deeper collapsing

single-bounce models such as e.g. model A1B3G3-D3M13.

The largest magnetic to gas pressure ratios are reached well

behind the shock at about 0.75 rshock ≈ 400 km.

The GW signal does not resemble any of the types used

to classify non-magnetic models. Hence, we suggest to intro-

duce a new type-IV GW signal (Fig. 17) which it is weaker

at bounce (AE2
20
= −440 cm) than in the non-magnetic case

(AE2
20
= −610 cm), but the amplitude remains large for a longer

time period due to the longer phase of maximum contrac-

tion. Until the second collapse the signal varies on time scales

(∆t ≈ 5 ms) that are short compared to the pulsation periods of

the non-magnetic case, but comparable to the sound crossing

time of the relatively extended inner core. After t ≈ 140 ms

the oscillation frequency and the amplitude of the GW signal

strongly increases as the second collapse begins. During the en-

tire post-bounce evolution the large negative gravitational and

hydrodynamic (dominated by the centrifugal amplitude) contri-

butions to the GW signal, and the large positive magnetic con-

tribution add up to a total GW amplitude which is very small

compared to the individual contributions.

Model A4B5G5-D3M13 bounces at a slightly higher max-

imum density (ρb = 2.1 × 1014 cm s−1) than its weak-field

variant A4B5G5-D3M10 (ρb = 1.97 × 1014 cm s−1; Fig. 19).

The maximum rotational energy at bounce is barely affected

by the presence of the strong magnetic field, but it changes the
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Fig. 16. The dynamical evolution and the GW signal of model A3B3G3-D3M13. The upper panels display the temporal evolution of the

rotational energy parameter βrot (left), the maximum density ρmax (middle), and the magnetic energy parameters (right; βmag (solid line), βφ
(dashed line), and βmag − βφ (dotted line)), respectively. The GW signal of the model is shown in the lower panels: total amplitude (solid line,

left; the dashed line gives the contribution of the layers with r ≤ 55.6 km), −AE2
20;hyd

(solid line, middle), AE2
20;grav

(dashed line, middle), and AE2
20;mag

(right).

density structure of the core completely in the subsequent evo-

lution. Models A4B5G5-D3Mm (m ≤ 12) maintain a toroidal

density structure (rtor ≈ 40 km) during their entire evolution

(Sect. 4.1), but in model A4B5G5-D3M13 the density struc-

ture is changed by magnetic forces. Up to a few milliseconds

after bounce (t <∼ 32 ms), the core of model A4B5G5-D3M13

evolves only marginally differently than its weak-field variants.

Later, however, magnetic stresses transfer angular momentum

from the still toroidal density distribution into the surrounding

gas, whereby the torus transforms into a flattened configura-

tion, which has its density maximum only slightly off-center

(Fig. 20). During this phase, the core develops a retrograde ro-

tating region near the equatorial plane. The core’s transforma-

tion process is associated with a large increase of its maximum

density comparable with that occurring during the first collapse

(Fig. 19).

During the second collapse, both the magnetic and the rota-

tional energy of the core increase. The magnetic energy (βmag =

0.11) exceeds that of the primary collapse (βmag = 0.078),

and the rotational energy exceeds slightly the limit for the dy-

namic instability of MacLaurin ellipsoids (βrot ≈ 0.275), but

only for about 1 ms. We note that the rotational energy reaches

its maximum value well before the density does, which is dif-

ferent from all other models. Later on, the rotation parameter

rapidly decreases well below the corresponding value of the

non-magnetic case.

The shock has a very prolate shape at core bounce, its axis

ratio being >∼2:1. At large latitudes, the ratio of magnetic and

gas pressure is largest well behind the shock (r < 0.75 rshock ≈
110 km; Fig. 21). Due to the rather extreme rotation of the

model, the high latitudes of the core are strongly rarefied, and

the shock propagates into a very thin medium near the axis, its

structure remaining unchanged.

The GW amplitude of the weakly magnetized (≈non-

magnetic) models A4B5G5-D3Mm (m ≤ 12) is characterized

by a very large negative amplitude at bounce (AE2
20
≈ −4100 cm;

Fig. 19 and Table D.1). The signal is positive for several mil-

liseconds after bounce due to the aspherical shock wave, and

approaches zero rapidly after the violent re-expansion of the

core. The bounce amplitude is significantly lowered (AE2
20
≈

−3470 cm) in the strongly magnetized model A4B5G5-D3M13

(Fig. 19 and Table D.1), immediately after bounce the GW am-

plitude is strongly positive and eventually becomes even more

positive due to the growing asphericity of the shock wave. The

secondary collapse of this models shows up in the GW ampli-

tude in the form of a local minimum. Afterwards the ampli-

tude rises to values AE2
20
> 2000 cm and shows superimposed

very weak oscillations with a period of slightly less than 1 ms.
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Fig. 17. The dynamical evolution and the GW signal of model A2B4G1-D3M13. The upper panels display the temporal evolution of the rota-

tional energy parameter βrot (left), the maximum density ρmax (middle), and the magnetic energy parameters (right; βmag (solid line), βφ (dashed

line), and βmag − βφ (dotted line)), respectively. The GW signal of the model is shown in the lower panels: total amplitude (solid line, left),

−AE2
20;hyd

(solid line, middle), AE2
20;grav (dashed line, middle), and AE2

20;mag (right).

In this model, the magnetic and the combined hydrodynamic

plus gravitational amplitude contributions show a clear phase

shift resulting from the opposing actions of hydrodynamic

(mainly centrifugal) and magnetic forces.

In all our models bouncing due to centrifugal forces the

peak value of the GW signal at bounce decreases with increas-

ing magnetic field strength, and for most models the ratio of the

amplitudes of the post-bounce to the pre-bounce signal peaks

decreases. Note that the latter statement must be considered

carefully since – as discussed above – the GW signal may

be subject to large modifications for models with very strong

fields.

4.3. Magneto-rotational instability

The magneto-rotational instability (MRI) is a shear instability

occurring in differentially rotating magnetized plasma, which

generates turbulence that amplifies the magnetic field and

transfers angular momentum (Balbus & Hawley 1991, 1992,

1998). If effects due to buoyancy are neglected, a linear sta-

bility analysis shows that the condition for the instability of

a mode with wavenumber k is

dΩ2

d ln̟
+ (cA k)2 < 0, (20)

where Ω is the angular velocity, ̟ the distance from the ro-

tation axis, and cA ≡ b/
√
ρ the Alfvén velocity. When the
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Fig. 18. Model A2B4G1-D3M13 at t = 123.39 ms when the expan-

sion of the core is maximum just prior to its second collapse. Besides

the magnetic pressure (color shaded), the flow field (vectors), and the

magnetic field lines are shown.

magnetic field is very small (i.e. the Alfvén velocity is very

small compared to both the local sound speed as well as the lo-

cal rotation velocity) and/or the wavelength is very long, (cA k)
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Fig. 19. Evolution of the rotational energy parameter βrot (left) and the maximum density (middle) of models A4B5G5-D3M10 (upper row)

and A4B5G5-D3M13 (middle row), respectively. The total GW amplitude of model A4B5G5-D3M10 is shown in the upper right panel, and

the evolution of the magnetic energy parameters, βmag (solid), βφ (dashed), and βmag − βφ in the middle right panel, respectively. The panels

in the bottom row show different contributions to the GW amplitude of model A4B5G5-D3M13: total amplitude (left), −AE2
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(dashed line, middle), and AE2
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(right).

is negligible, i.e. the MRI occurs simply when the angular ve-

locity gradient is negative (Balbus & Hawley 1991, 1998):

dΩ2

d ln̟
< 0. (21)

The time scale of the fastest growing unstable mode is

τmax = 4π

∣

∣

∣

∣

∣

dΩ

d ln̟

∣

∣

∣

∣

∣

−1

, (22)

which depends neither on the strength nor on the geometry of

the magnetic field.

General theoretical considerations and non-linear simu-

lations show that the magnetic energy achievable by the

MRI field amplification process is of the order of the rota-

tional energy, which is comparable to the saturation field ex-

pected from the process of winding-up field lines by differen-

tial rotation (Akiyama et al. 2003). However, in axisymmetric

(non-linear) hydrodynamic simulations of accretion disks the

field built up by the MRI was found to decay with a rate de-

pending on the dissipation properties of the numerical scheme,

and particularly on the grid resolution (Balbus & Hawley 1991,

1998). This is due to Cowling’s anti-dynamo theorem (Shercliff

1965) according to which an axisymmetric dynamo cannot

work in a dissipative system, i.e. three-dimensional simulations

are required.

In a star a convectively stable stratification will tend to sta-

bilize the MRI, while convective instability will strengthen the
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Fig. 21. Model A4B5G5-D3M13 at t = 30.98 ms (core bounce). The flow field (vectors) and the magnetic field lines are displayed together

with the gas pressure (color-coded, left) and the magnetic pressure (color-coded, right), respectively.

MRI. Including the effects of buoyancy a mode with wave vec-

tor k is unstable with respect to the MRI in a weakly magne-

tized rotating system, if the instability criterion

(cA k)2 < (cA k)2
crit ≡ −N2 − dΩ2

d ln̟
(23)

is fulfilled (Balbus & Hawley 1991; Balbus 1995), where N is

the Brunt-Väisälä or buoyancy frequency. The wave number of

the fastest growing mode is given by

(cA k)2
max = Ω

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −

(

−N2 − κ2
)2

16Ω4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (24)

where κ2 = 4Ω2 + dΩ2/d ln̟ is the epicyclic frequency. This

mode grows exponentially with the time scale

τmax = 4π

∣

∣

∣

∣

∣

∣

N2

2Ω
+

dΩ

d ln̟

∣

∣

∣

∣

∣

∣

−1

, (25)

which is a generalization of Eq. (22).

For decreasing wavenumber k (provided that kcA <

(kcA)max) the maximum growth rate (=2π/τmax) decreases ap-

proaching the value

ω2
long = −N2 − κ2 (26)
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in the limit of very long wavelengths (k → 0) independently

of the Alfvén velocity. If the MRI occurs in a buoyantly sta-

ble stratification (where N2 > 0), long modes will grow very

slowly compared to the maximum growth rate. In the oppo-

site case modes with a very small wave number grow very fast,

and the growth rate of long modes will be of the order of the

maximum growth rate. In the following discussion we use the

names “magneto-shear” and “magneto-convective” limit to dis-

criminate the two limiting cases without implying any deeper

physical significance, because it is a matter of ongoing de-

bate whether there exists a fundamental physical distinction

between the two cases in the context of angular momentum

transport in accretion disks (see, e.g. Balbus & Hawley 2002;

Narayan et al. 2002).

For a rotating magnetized configuration with axial symme-

try the growth time scale of the maximum growing MRI mode

in the presence of entropy gradients is given in spherical coor-

dinates (r, θ) by Akiyama et al. (2003)

τMRI,en = 2 π

∣

∣

∣

∣

∣

∣

(

η2 − 2η + 1
)

Ω2 +
η − 1

2

(

ξN2 + η
dΩ2

d ln r

)

+
1

16Ω2

(

ξN2 + η
dΩ2

d ln r

)2
∣

∣

∣

∣

∣

∣

∣

−1/2

, (27)

where

η2 = (1 − sin 2θ)2 , (28)

ξ2 = sin2 θ (1 − sin 2θ) . (29)

The additional subscript “en” refers to the entropy gradient in-

cluded into Eq. (27) via the Brunt-Väisälä frequency. In the

equatorial plane, where the polar angle θ = π/2, the time scale

given by Eq. (27) is equivalent to that obtained from Eq. (25).

In order to see the MRI in our simulations, we must have

sufficient spatial resolution to resolve at least the modes with

the longest wavelengths which grow fastest. However, as these

modes have the smallest wavenumbers, the Alfvén velocity and

thus the magnetic field (parallel to the direction of k) must be

sufficiently large for the product cA ·k to be in the range of max-

imum growth. This is unproblematic in the magneto-convective

case due to the large growth rate in the limit cA k → 0. In the

magneto-shear limit only modes near (cAk)max grow fast, which

are, however, difficult to resolve. Further numerical complica-

tions arise from the fact that we have to identify the MRI in

a very inhomogeneous and highly dynamical background flow.

Apart from the direct solution of the MHD equations, there

are alternative ways to investigate the MRI and the turbulence

driven by the instability, such as the inclusion of well-suited

models for turbulent transport coefficients into the momentum

and energy equations. Various closure models for magnetoro-

tational turbulence exist. The ones by Ogilvie (2001, 2003) and

Williams (2005, 2004) which make use of the analogy of MHD

turbulence with viscoelastic flows as observed, e.g. in poly-

mer fluids in the laboratory, seem particularly interesting. Such

methods provide a way for including turbulence effects into

a numerical simulation that cannot treat these effects due to,

e.g. resolution or symmetry constraints. However, in the simu-

lations we report here, we did not consider any of these models.

Instead, we focussed on the possibility of directly simulating

the development of the instabilities.

In most of our models we find extended MRI unstable re-

gions at various epochs. During collapse the cores are unsta-

ble in the magneto-shear limit. However, the growth times are

significantly larger than the collapse time scale: even for the

fastest growing mode they are of the order of a second (in the

initial models). As the rotational energy and the degree of dif-

ferential rotation increase during collapse, the growth times be-

come smaller, but remains larger than the time until bounce,

i.e. the dynamical background evolves faster than any unstable

mode. Hence, we do not observe the growth of the MRI even

for models where the initial magnetic field is sufficiently strong

for magneto-shear modes to be numerically resolved.

During and shortly after bounce the cores possess a con-

vectively stable stratification, i.e. the MRI is of magneto-shear

character. In model A1B3G3-D3M10 the immediate post-

shock region is unstable shortly after shock formation due to

a large negative angular velocity gradient (in̟-direction). The

growth times are in the sub-millisecond to millisecond range,

i.e. comparable to the dynamic time scales. The fastest grow-

ing modes correspond to spatial scales of less than 100 m,

which are significantly smaller than the (local) grid resolu-

tion of ∼300 m. For models with a stronger magnetic field

(e.g. A1B3G3-D3M12) the spatial scales of the fastest grow-

ing modes are larger due to the larger Alfvén velocity, and they

can be resolved. However, they cannot be discriminated from

the dynamic background flow at the time of bounce which is

dominated by numerous pressure waves propagating through

the inner core and launching the shock wave. Moreover, ob-

scuring the action of the MRI, the strong shear flow surround-

ing the “surface” of the inner core produces a strong toroidal

magnetic field component. The positive entropy gradient be-

hind the shock wave does not allow the MRI to grow in most

of the post-shock region, while large parts of the inner core are

MRI unstable throughout the entire post-bounce evolution due

to the very flat entropy profile of the core. However, as the in-

stability is of magneto-shear nature, one encounters the previ-

ously discussed spatial resolution problem unless the magnetic

field is already quite strong. The maximum growth rates are

moderate (tgrow <∼ 10 ms).

Well after bounce when the shock wave begins to weaken

and thus (locally) negative entropy gradients develop, the

MRI growth rates become large even for long wavelengths

(magneto-convective limit). Thus, we observe the emergence

of the corresponding modes, and a growth of the vorticity ω =

∇ × u of the flow. However, this occurs late after bounce, when

our assumptions concerning the microphysics do no longer

hold. For model A1B3G3-D3M10, we can study the onset of

magneto-convective modes. In regions where the growth times

of the MRI modes (in the limit k → 0) are less than 10 ms

(Fig. 22), we find a rapid increase of the magnetic energy, the

magnetic energy density, and of the specific magnetic energy.

Their temporal variation can be described by exponential laws

in the interval 57 ms ≤ t ≤ 96 ms. In phases when the field

is amplified by differential rotation only, the toroidal field in-

creases but the poloidal field and the corresponding magnetic

field energy stay approximately constant (Fig. 22). However,
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Fig. 22. Comparison of the evolution of models A1B3G3-D3M12 (up-

per panels) and A1B3G3-D3M10 (lower panels). The left panels dis-

play the total magnetic energy (solid lines) of the core, and the to-

tal (dashed lines) and poloidal field energy (dash-dotted lines) of the

MRI-unstable regions, which are defined according to two different

criteria: For the strong-field model A1B3G3-D3M12 all zones are

considered where the growth time of the fastest growing mode is

less than 10 ms, while for the weak-field model A1B3G3-D3M10 the

corresponding magneto-convective limit is used. The energy density

emag = Emag/V of the poloidal field in the MRI-unstable regions is

shown in the right panels. The poloidal field increases rapidly when

the MRI grows, which happens in the strong-field model (top right)

shortly after bounce, and in the weak-field model (bottom right) by

magneto-convective modes at later epochs.

when the MRI sets in, the poloidal component grows too due to

the stretching of the poloidal field lines by meridional motions.

Because of this behavior the two field amplification mecha-

nisms can be distinguished.

For initially very strong magnetic fields (>∼1012 G), the spa-

tial scales of interest for the MRI can easily be resolved even

in the magneto-shear limit, and the MRI criterion is fulfilled

the growth rates being similar to those of the weak-field case.

The proto-typical model A1B3G3-D3M12 shows the creation

of a large amount of vorticity both in the post-shock gas and in

the MRI unstable regions of the inner core (Fig. 7). Its vortic-

ity is considerably larger than in the corresponding weak field

model A1B3G3-D3M10, where we cannot resolve the growth

of the unstable modes due to their very small spatial scales.

The flow is organized in sheet-like structures which are typi-

cally a few kilometers wide in ̟-direction and ∼10 km long

in z-direction. Another prominent flow structure forms near the

equatorial plane in the outer layers of the inner core, where a

violent meridional flow leads to the largest amplification of the

poloidal field and to angular momentum transport out of the in-

ner core. The latter, which implies that the loss of the rotational

support of the inner core is caused by the MRI, holds for all

models where we can resolve the unstable modes, and where

the field is not too strong initially. For the extreme models

AaBbGg-D3M13 the stress tensor is initially already large

enough for significant angular momentum transport to occur,

i.e. only a very small amount of field amplification is required.

Initially weak magnetic fields should lead to a similar dy-

namical behavior, as the MRI does not depend on the initial

field strength. The modes should grow on similar time scales,

but smaller spatial scales. In practice, however, structures re-

solvable on our grid are much larger than the wavelengths

of the fastest growing modes, i.e. they have relatively small

growth rates. Hence, the development of the MRI is artificially

delayed. In addition, the smaller scales of the more unstable

modes may affect the global dynamics. Indeed, if we simulate

the evolution of model A1B3G3-D3M11 for a longer time, the

poloidal field energy starts to rise after t ≈ 65 ms. This rise is

accompanied by the formation of a flow pattern consisting of

sheets of large vorticity, and the extraction of rotational energy

from the core, quite similar to our findings for model A1B3G3-

D3M12, though less pronounced. Thus, the distinction between

weak- and strong-field models may be irrelevant, because even

small initial fields give rise to the same kind of instability and

can become “strong” according to our criterion very rapidly.

The poloidal field strength oscillates similarly as the den-

sity or the rotational energy during the post-bounce phase for

the models bouncing due to centrifugal forces. The field is sub-

ject to compression and expansion, but apart from the oscilla-

tions it does not grow unless an MRI-like mechanism sets in.

The magneto-convective motions found during the later

stages of weak field models are much less pronounced in the

cores of strong field ones. There are two reasons for this behav-

ior: Firstly, due to the extraction of angular momentum from

the core one of the driving forces of the instability is reduced,

and secondly a strong magnetic field is known to suppress con-

vection. The latter also holds for the MRI which is hampered by

too strong fields, as the seed field cannot be amplified beyond

the MRI saturation value. This can be seen from Eq. (23): for

large Alfvén velocities only modes with very long wavelengths

(or small wavenumbers) are unstable. If the critical wavelength

exceeds the intrinsic scales of the problem, e.g. the size of the

inner core or the size of potentially unstable regions, the un-

stable longer modes cannot develop, and the modes of smaller

wavelengths are stable.

4.4. Influence of the magnetic-field configuration

The dynamics and gravitational wave signature of the mod-

els A3B3G5-DdM12 differing only in the location of the

field-generating current loop (i.e. in their Dd parameter;

see Sect. 2.3.3) are qualitatively quite similar, except for

model A3B3G5-D0M12 whose current loop is located at in-

finity (see the discussion below). The time scale for the slow-

down of the core exhibits some variation, but otherwise the

evolution and the GW signal agree qualitatively quite well with

those of the corresponding reference models A3B3G5-D3Mm

(see above). This may be surprising because the initial total

magnetic energies of models having uniform fields may be

more than 100 times greater than that of current-loop models

(Table 2). However, the outer parts of the very extended field
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structure of the more strongly magnetized models, where most

of the additional magnetic energy is stored, are dynamically

less important than the central regions, and in particular the

region around the field-generating current loop where the mag-

netic field is strongest.

For the initially homogeneously magnetized model

A3B3G5-D0M12 a less efficient braking of the core’s ro-

tation is observed than for the corresponding current-loop

models. Instead of a contracting secularly, the core ex-

pands to sub-nuclear densities on a comparable time scale.

The rotation energy of the immediate post-bounce core of

model A3B3G5-D0M12 is slightly smaller (βrot ≈ 0.076 at

t ≈ 32 ms) than for the corresponding non-magnetic core

(βrot ≈ 0.084 at t ≈ 32 ms), and it decreases sightly dur-

ing the subsequent evolution. Although the magnetic field gets

amplified a little during collapse, βmag decreases until bounce

because most efficient amplification takes place in the cen-

tral regions of the core whereas the total magnetic energy is

dominated by the outer regions where the field stays roughly

constant during collapse. Afterwards, both Emag and βmag show

a comparable growth to the current-loop models, and the ratio

of toroidal field energy and total field energy grows steadily,

but slowly. The magnetic field of the uniformly magnetized

core has a simpler structure at late times, while the current-

loop fields become more and more twisted. The gravitational

wave amplitude of model A3B3G5-D0M12 is strongly domi-

nated by the fluid contribution in spite of its large initial mag-

netic energy, and resembles that of the corresponding current-

loop cores in many respects. The small magnetic contribution

to the signal never exceeds that of model A3B3G5-D3M12, al-

though this model has a 15 times smaller magnetic energy (but

the same central field strength).

Model A3B3G5-D2M12 has an initial magnetic field

energy which is a factor of 150 greater than that of

model A3B3G5-D0M12 (Table 2). Nevertheless, at t ≈ 39 ms,

its magnetic field is almost three times as energetic as that of

model A3B3G5-D0M12 (βmag = 0.0075 compared to βmag =

0.0028) due to the different amount of field amplification occur-

ring in both cases. At bounce both models have developed a re-

gion of high magnetization near the edge of the inner core close

to the rotation axis. In model A3B3G5-D2M12 this region also

extends towards larger radii along the equatorial plane form-

ing a highly magnetized “sheet” which is a relic of the initially

highly magnetized region around the field generating current-

loop. The shape of the shock waves is similar in both models,

but the regions of large magnetic pressure are more extended

in the current-loop model filling the whole post-shock region,

whereas they are more concentrated towards the very center of

the core for the uniform field model (Fig. 23).

Similar trends as for model series A3B3G5-DdM12 can

be observed in the case of model series A3B3G3-DdM13

(Fig. 24). The dynamics of the current-loop model A3B3G3-

D1M13 is qualitatively comparable to that of a A3B3G3-

D3Mm model with a much weaker magnetic field. Hence, its

GW signal does not differ much from the non-magnetic case

in spite of its strong initial magnetic field. However, we find

large differences between the uniform field model A3B3G3-

D0M13 (Fig. 24, left panels) and the current-loop models, as

e.g. A3B3G3-D3M13 (Fig. 24, middle panels). The maximum

density of the former model exhibits large-scale pulsations dur-

ing which the bounce density is exceeded by 9%, and ρmax is

smaller than ρnuc for most of the time. The core has a very

high magnetic energy initially, βmag ≈ 20%, which decreases

during the collapse until it levels off at ≈7%. This value is

still much larger than the largest one reached by the current-

loop models during their whole evolution. The GW signature

of model A3B3G3-D0M13 reflects the density oscillations of

the core, and like in the case of model A3B3G3-D3M13, it is

considerably shifted towards positive amplitudes (Fig. 24) due

to the very aspherical shape of the shock wave.

5. Summary and conclusions

Past and present realistic studies of core collapse supernovae

neglect magnetic fields. Instead, they focus on an elaborate and

accurate description of the microphysics and (neutrino) trans-

port physics. Since this is a formidable task requiring extensive

computational resources, these studies are necessarily limited

to a very small number of different initial models. Bearing in

mind our lack of knowledge of the exact conditions in the pre-

collapse star, we pursued a complimentary approach. Instead of

simulating the evolution of a few stars in great detail, we per-

formed a comprehensive parameter study covering the space of

possible progenitors with a large number of initial models and

exploring a relatively unknown territory, namely the influence

of magnetic fields. Consequently, we are restricted to some

simplified and approximate treatment of the core’s physics, and

employ only simplified progenitor models (i.e. polytropes).

Our parameter study focuses on the investigation of

two main questions:

– How do magnetic fields affect the dynamics of the collapse

and bounce, and how is their presence reflected in the grav-

itational wave signal emitted by the core?

– Which pre-collapse magnetic fields (strength and geome-

try) and angular momentum (amount and distribution) will

cause important dynamic effects for core collapse?

To address these questions we have performed the most com-

prehensive parameter study of magneto-rotational core col-

lapse up to now. We simulated the gravitational collapse and

the immediate post-bounce evolution of a series of differen-

tially rotating, magnetized, axisymmetric stellar core models

using a newly developed 2D Newtonian MHD code based on

the algorithm of Pen et al. (2003) that employs the relaxing

TVD scheme of Jin & Xin (1995) and the constraint-transport

method (Evans & Hawley 1988) to keep the magnetic field

divergence-free. Our code, which has been comprehensively

tested, incorporates an analytic equation of state describing in

an approximate way the thermodynamic properties of core mat-

ter (Janka et al. 1993). We also computed the gravitational wave

signal produced by the core with the Einstein quadrupole for-

mula taking into account both the contributions of the hydro-

dynamic and gravitational forces (Mönchmeyer et al. 1991),

and of the Lorentz forces (Kotake et al. 2004b). The ini-

tial models used in our study are identical to those used by
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Fig. 23. The post-shock region of models A3B3G5-D0M12 (left quadrants) and A3B3G5-D2M12 (right quadrants) at t ≈ 33.6 ms about 3 ms

after core bounce. Density and magnetic pressure (color-coded) are displayed in the top and bottom quadrants, respectively. Additionally, the

flow field (vectors) and the poloidal field lines of the magnetic field are displayed.

Zwerger & Müller (1997) and Dimmelmeier et al. (2002a,b).

The initial magnetic field is purely poloidal.

Our simulations show significant modifications of the dy-

namics and the GW signal of strongly magnetized cores com-

pared to non-magnetic ones. Magnetic fields are amplified in

some of our models to very large field strengths which are in the

magnetar range (|B| ∼ 1015 G). Such strong magnetic fields ef-

ficiently extract rotational energy from the central core, thereby

triggering a secular post-bounce contraction phase. They also

cause the formation of collimated outflows, which give rise to

distinctive features in the GW signal. Hence, it is in principle

possible to extract information about the degree to which an ex-

plosion has a jet-like character from the GW signal. Further

specific results are:

1. From the initially purely poloidal magnetic field, large

toroidal field components are created by the action of

the differentially rotating core in a so-called Ω dynamo,

the energy of the saturation field being of the order of the

rotational energy of the core. The efficiency of this field

winding process depends on the angular momentum dis-

tribution of the progenitor and the amount of differential

rotation arising during collapse. The latter is determined by

the degree of non-homologous collapse which is sensitively

influenced by the equation of state and the rotation rate. The

saturation fields estimated from the rotational energy of our

collapsed cores are of the order of 1015 G, which are field

strengths expected for magnetars, but not for typical neu-

tron stars. The field amplification process is found to be

less efficient if some magnetic energy is consumed for the

acceleration of matter by dynamically important fields.

2. As MHD instabilities acting on the toroidal field compo-

nent are suppressed due to the assumed axisymmetry, we

are unable to simulate the corresponding field amplifica-

tion processes, and thus may underestimate the saturation

value and the growth rate of the magnetic field. However,

if the entire dynamo process of transforming poloidal and

toroidal fields into one another and their amplification is

mainly driven by differential rotation, the saturation fields

and the growth rates are expected not to exceed those found

in our simulations. We point out that (i) without any sym-

metry restriction fields of similar strengths may arise when

one evolves initially less magnetized cores, and (ii) that the
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Fig. 24. The evolution of the maximum density (top panels) and the GW amplitude (bottom panels) of models A3B3G3-D0M13 (left pan-

els), A3B3G3-D3M13 (middle panels), and A3B3G3-D1M13 (right panels), respectively. The GW signal of model A3B3G3-D0M13 shows

a constant offset from zero, which is subtracted here.

strong initial fields of our progenitors (which are stronger

than those expected in actual cores) may compensate for

a possible additional dynamo action unconsidered in our

models. The field amplification is fastest for rapidly and

very differentially rotating models. In models producing

a type-I GW signal the magnetic field is amplified more

efficiently than both in the faster collapsing models of

type-III and the centrifugally bouncing type-II models.

3. The influence of a magnetic field on the dynamics and the

GW signature of the core depends mainly on the initial

magnetic field strength, and to a lesser extent on the field

topology. For the weakest of our initial fields (B ∼ 1010 G)

we do not find any significant impact either on the dynam-

ics or on the GW signal on the time scales covered by our

simulations (<∼100 ms after core bounce). However, suffi-

ciently strong fields have a large impact on the dynamics of

the core and on the gravitational wave signal. Compared to

the corresponding non-magnetized models, the core bounce

is somewhat delayed for the majority of our very strongly

magnetized models (B >∼ 1012 G), and the bounce density is

slightly enhanced. Extremely strong initial magnetic fields

(B >∼ 1013 G) efficiently slow down the rotation rate of

the central core already during collapse, and thus reduce

its. centrifugal support by a considerable amount. Due to

the loss of angular momentum from its central regions the

core eventually begins to contract or even enters a second

collapse phase after bounce. Hence, an initially extremely

magnetized and rapidly rotating core, which bounces due

to centrifugal forces at low densities, evolves into a very

compact configuration that is almost entirely pressure sup-

ported, its initially toroidal density stratification changing

into a flattened centrally concentrated one.

4. The magnetic stresses of the toroidal field component (cre-

ated by the differential rotation) can cause a strong pinch

effect, which gives rise to a mildly relativistic, jet-like out-

flow along the rotation axis, and consequently to a very pro-

late shock wave. The aspherical outflow is mainly driven by

the very high magnetic pressure in the post-shock plasma,

as first pointed out by Yamada & Sawai (2004), and it is

observed both in cores that bounce due to the stiffening of

the EOS and (mainly) due to centrifugal forces. In purely

hydrodynamic calculations highly aspherical outflows are

only encountered for very extreme rotators, whereas they

are quite common for models with an initial magnetic field

strength of B >∼ 1013 G. On somewhat longer time scales,

similar but weaker outflows are observed for models having

only a tenth of this field strength. This finding might be of

relevance for the study of Gamma-Ray Bursts. According

to our results extreme initial conditions are required for

the formation of jet-like outflows on the time scale of

a few ten milliseconds. However, our results may also ap-

ply on longer time scales to the smaller rotation rates and
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the weaker magnetic field strengths of more realistic stellar

progenitors.

5. All simulated cores develop MRI unstable regions.

However, in most cases, a fast growth of the MRI is lim-

ited to short-wavelength modes which we cannot resolve

due to insufficient numerical resolution. For initial fields
>∼1012 G, the fastest growing modes have sufficiently long

wavelengths to be resolved numerically. A meridional flow

pattern characterized by large vorticity arises the circula-

tion pattern being organized in sheet-like structures which

is also the topology of the poloidal field. In contrast to the

weak-field case, where we cannot resolve possibly unsta-

ble modes and where the poloidal field stays roughly con-

stant after bounce, the poloidal field energy of strongly

magnetized cores grows approximately exponentially. The

field strengths found in our simulations are of the or-

der of the saturation field estimates derived for the MRI,

i.e. ∼1015 G at the surface of the inner core. The growth

of the field comes along with the transport of angular mo-

mentum out of the inner core, and thus a loss of rotational

support. Consequently, the maximum density of the core

rises steadily during the post-bounce evolution.

6. The gravitational wave signature of the core is altered

significantly in the presence of initially strong (B >∼
1012 G) magnetic fields compared to the corresponding

non-magnetic case. Since pressure-bouncing type-I and

type-III models are affected only quantitatively by strong

magnetic fields (in contrast to the centrifugally bouncing

models where magnetic fields change the collapse dynam-

ics considerably), the GW amplitude of a strongly mag-

netized type-I or type-III model does not deviate strongly

from the purely hydrodynamic case. Depending on the ac-

tual rotational profile and the EOS, the GW bounce ampli-

tude may be enhanced or weakened by a few 10%. This

confirms the findings of Yamada & Sawai (2004) obtained

for a much smaller set of models.

7. For most strongly magnetized models we observe a shift

of the bounce signal towards more positive amplitudes. A

major part of this shift is due to magnetic forces: around

the time of core bounce the magnetic part of the GW am-

plitude is positive and large indicating that the magnetic

stresses act to diminish the core’s oblateness. This reduces

the absolute value of the pronounced (negative) bounce am-

plitude for most type-I and type-II models, and enhances

the (positive) maximum GW amplitude of the type-III mod-

els reached shortly before or after bounce. In the latter

models strong magnetic fields also decrease the size of the

much less pronounced (negative) bounce minimum of the

GW amplitude. Rigidly and modestly fast rotating type-I

models behave differently, as for these models the size of

the (negative) bounce peak is enhanced significantly for

initially extremely strong magnetic fields (∼1013 G). After

bounce, both the gravitational and the hydrodynamic parts

of the GW amplitude decrease as the rotational flattening

of the central core diminishes due to the extraction of an-

gular momentum. Later in the evolution the magnetic part

of the GW amplitude, now becoming increasingly nega-

tive, dominates the hydrodynamic one for cores which are

slowed down very strongly. As in the case of purely hydro-

dynamic models, the GW signal of a strongly magnetized

core bouncing due to pressure forces exhibits oscillations

with periods that are comparable to the local dynamic time

scale.

8. The dynamics of type-II models bouncing due to centrifu-

gal forces is changed completely by the presence of strong

magnetic fields. This is reflected in a rather drastic change

of the GW signal emitted by these cores. As the large-

scale pulsations of the core fade away during the secular

contraction phase, the long-period modes of the GW sig-

nal become less important. Instead high frequency oscilla-

tions, similar to the ones emitted by type-I models, domi-

nate the GW signal. The corresponding periods are given

by the local dynamic time scales of the core which is no

longer supported by rotation, but – at much higher den-

sities – by pressure forces. This shift in the frequency of

the GW amplitude provides observational evidence of the

change of the core’s dynamics and structure by a strong

magnetic field. We introduce the new GW signal type IV to

refer to this phenomenon.

9. Aspherical outflows and shock waves get imprinted on the

GW signal the signature being a large, slowly varying pos-

itive GW amplitude. A few (∼5) milliseconds after bounce,

we find amplitudes of the order of AE2
20
∼ 102 cm which re-

main at roughly this level until the end of our calculations.

As bipolar outflows occur preferentially in strongly mag-

netized cores, the GW signal may be used to distinguish

strongly magnetized cores from non-magnetic or weakly

magnetized ones.

The applicability of our findings to the supernova problem

is limited by our simplified treatment of the microphysics

(approximate equation of state), by the neglect of neutrino

transport, and by our simplified and probably too extremely

rotating and magnetized initial models. Nevertheless, after

having shown that our code is suited for multi-dimensional

MHD simulations of core collapse, and after having high-

lighted some general trends of magneto-rotational core col-

lapse, we are ready for a more sophisticated investigation of

the phenomenon. In particular, the evolution of our (more real-

istic) weak-field models on longer time scales will be the topic

of further studies, as on longer time scales even initially weak

magnetic fields can be amplified, e.g. by means of the magneto-

rotational instability, to a strength relevant both for the dynam-

ics and the GW signature of the core. Furthermore, the inter-

play of magnetic fields and various hydrodynamic instabilities

occurring in a supernova explosion is a challenging topic to

be addressed. In particular, the convective region between the

proto-neutron star and the stalled hydrodynamic shock wave

might be an arena where generic MHD effects such as the

magneto-rotational instability do operate.

Imposing axial (and equatorial) symmetry is a serious re-

striction when simulating MHD flows. It prevents us from in-

vestigating the fate of cores whose magnetic field and rotational

axis are misaligned as in pulsars, and from simulating the in-

trinsically 3D magneto-rotational instability to the full extent.

We think that the first shortcoming will influence our results
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only slightly, as the initial magnetic field is soon completely

dominated in our models by the field generated by differential

rotation. Thus, provided there is a poloidal seed field of similar

strength no significant changes are to be expected. The second

restriction is probably uncritical for the relatively short time

scales covered by our simulations, as the dominant amplifica-

tion process for the magnetic field during these early stages

is the rapid winding-up of the initial poloidal field by means

of differential rotation. Additional field growth by the MRI or

other MHD instabilities is probably less important. In any case,

limited by the present computational resources, a 3D MHD pa-

rameter study of core collapse is still some years ahead.

A further limitation arises from our Newtonian approach,

as we observe outflow velocities in some of our models that

exceed ∼30% of the speed of light and that are still increas-

ing when we had to stop our simulations. Although being

only mildly relativistic in our models, a study of the further

evolution of these outflows may require a special relativistic

MHD code, if the jets continue to accelerate. The effects of

general relativistic corrections of the gravitational potential on

magneto-rotational core collapse arising due to the high com-

pactness of the collapsed cores have been investigated by us in

some detail. The results of this complementary study will be

presented in a separate publication.
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Appendix A: Relaxing TVD

In this section we summarize the basics of the relaxing

TVD method. For further information the reader is referred to

Pen et al. (2003), Jin & Xin (1995), Trac & Pen (2003).

A major drawback of MUSCL–type and Riemann solver

schemes for systems of non-linear conservation laws is the

need for calculating the eigenvalues am, and the eigenvectors of

the Jacobian of the flux vector (Hebrew indices (ℵ = 1, . . . ,m)

enumerate the components of the system of m equations)

Jℵ� =
∂Fℵ

∂U�
, (A.1)

which usually is a computationally quite demanding step. This

difficulty can be overcome by employing a relaxing TVD

scheme (Jin & Xin 1995; Trac & Pen 2003) that does not re-

quire the explicit calculation of the eigenvectors of the system,

and in some cases of most of the eigenvalues. The numeri-

cal method we have applied turns out to be both robust and

accurate, and is well suited for simulations of core collapse.

This is good news, as the method involves several considerable

simplifications compared to more elaborate methods based on

Riemann solvers, which make it computationally very cheap,

and hence attractive. One replaces the one-dimensional system

of conservation laws

∂tU
ℵ + ∇Fℵ = 0 (A.2)

with the initial condition Uℵ(ξ, 0) = Uℵ
0

(ξ) by the relaxation

system

∂tU
ℵ + ∇Vℵ = 0, (A.3)

∂tV
ℵ + A2∇Uℵ = −1

τ

(

Vℵ − Fℵ
)

, (A.4)

with the initial conditions Uℵ(ξ, 0) = Uℵ
0

(ξ) and Vℵ(ξ, 0) =

Fℵ(U�
0

(ξ)). The constant τ is called the relaxation rate.

The constant matrix A = diag(a1, ..., am) satisfies the sub-

characteristic condition

A2 − J2 ≥ 0. (A.5)

Thereby, the non-linear system (A.2) gets replaced by a sys-

tem of linear equations that can be solved without the need of

Riemann solvers. In the zero relaxation limit τ → ∞, one ar-

rives at the relaxed system

∂tU
ℵ + ∇Vℵ = 0, (A.6)

∂tV
ℵ + A2∇Uℵ = 0, (A.7)

where Vℵ = Fℵ(U�). Introducing right (R) and left (L) moving

variables,

Uℵ;R,L =
1

2
·
(

Uℵ ± A−1Fℵ
)

(A.8)

the system decouples yielding

∂tU
ℵ;R,L ± ∇

(

AUℵ;R,L
)

= 0. (A.9)

These two systems (R, L) of equations have the structure of lin-

ear advection equations for rightward and leftward directed ad-

vection, respectively. The constant advection velocities in both

systems of equations are given by

c
R,L

ℵ = ±aℵ. (A.10)

Being of a quite simple structure and having quite simple char-

acteristics with constant speeds c
R,L

ℵ , the system (A.9) can eas-

ily be solved using a first- or second-order accurate upwind

scheme. The upwind fluxes at the zone interface Si+1/2 will be

computed from variables of zoneZi for the right-moving vari-

able Uℵ;R, and from zoneZi+1 for Uℵ;L, respectively. The value

of Uℵ can then be recovered from Uℵ;R,L by

Uℵ =
1

2

(

Uℵ;R + Uℵ;L
)

. (A.11)

As Jin & Xin (1995) showed, the resulting scheme will

be TVD, if the sub-characteristic condition (A.5), and the

CFL condition arising form the advection terms are fulfilled.

Appendix B: Convergence tests

To ensure the numerical convergence of our results, we per-

formed a number of simulations of the same model using dif-

ferent grid spacings. Based on these simulations, we selected

a grid of 380 zones in radial and 60 zones in angular direction

as our standard grid. The grid is logarithmically spaced in ra-

dius, with a central resolution of (∆r)c ≈ 300 m and a relative

increase of the cell size from zone to the zone of ≈1.1%. The

angular grid is uniform.

Results from a sample of the convergence runs are dis-

played in Fig. B.1. We show the temporal evolution of the max-

imum density, the GW amplitude, and βrot for model A1B3G3-

D3M13, computed with grids of

– 280 zones in radius and (∆r)c ≈ 600 m, and 30 zones in

angle (dotted lines),

– standard resolution as described above (solid lines), and

– 580 zones in radius and (∆r)c ≈ 150 m, and 90 zones in

angle (dashed lines).

We compare both local properties of the models such as the

maximum density of the core, and global ones such as the

GW signal and the evolution of βrot. The results of these simula-

tions indicate that our standard resolution is adequate to follow

the evolution of our models.

Appendix C: Gravitational-wave extraction

Since we do not evolve the consistent set of general-relativistic

MHD equations, we are not able to extract the GW signal from

the metric. But, in the post-Newtonian limit, it is still possi-

ble to extract the lowest-order terms of the GW signal from

the hydrodynamic variables. For this purpose we have used

the reformulation of the quadrupole formula by Mönchmeyer

et al. (1991), where temporal derivatives are replaced by spa-

tial ones using the continuity and the Euler equations. Thus, the
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Fig. B.1. The temporal evolution of the maximum density, the GW signal and the rotational energy parameter βrot of model A1B3G3-D3M13

comparing simulations with grids of different resolution. Results from a run with the standard grid of 380 logarithmically spaced zones in

radius (central resolution of 300 m) and 60 zones uniformly distributed over 0 ≤ θ ≤ π/2 are shown by the solid lines, and runs using a coarser

grid of 280 zones in radius (central resolution of 600 m) and 30 zones in angle and a finer grid of 580 zones (central resolution of 150 m) and

90 zones in angle are plotted with dotted and dashed lines, respectively.

hydrodynamic fluxes and source terms are introduced into the

quadrupole formula.

As we use spherical coordinates (r, θ, φ) in our simulations,

the metric perturbation associated with a gravitational wave is

most conveniently expanded in terms of pure spin tensor har-

monics T E2,lm

ab
and T B2,lm

ab
with the corresponding “electric” and

“magnetic” amplitudes AE2
20

and AB2
20

, respectively:

hab =
1

R

∞
∑

l=2

+l
∑

m=−l

[

AE2
lm

(

t − R

c

)

T
E2,lm

ab
(θ, φ)

+AB2
lm

(

t − R

c

)

T
B2,lm

ab
(θ, φ)

]

· (C.1)

Under the assumption of axisymmetry, the only non-vanishing

amplitude is AE2
20

, which is given by (Mönchmeyer et al. 1991):

AE2
20 =

d2

dt2
ME2

20 =
d

dt
NE2

20 , (C.2)

where the radiative quadrupole moment ME2
20

is (z = cos θ) de-

fined as

ME2
20 =

G

c4

32π3/2

√
15

∫ 1

0

dz

∫ ∞

0

d
r3

3
ρ(r, z, t)r2

(

3

2
z2 − 1

2

)

· (C.3)

Using the continuity equation, the first time derivative of ME2
20

is given by

NE2
20 =

G

c4

32π3/2

√
15

∫ 1

0

dz

×
∫ ∞

0

d
r3

3
ρr

[

vr

(

3

2
z2 − 1

)

− 3vθz
√

1 − z2

]

· (C.4)

The time derivative of NE2
20

is computed using the MHD mo-

mentum equation which allows ones to eliminate d
dt

(ρvr, ρvθ)

with the help of the hydro-magnetic and gravitational force

terms given by

Fr
MHD = −

∂r2Frr

∂r3/3
− 1

r

∂ sin θFrθ

∂(− cos θ)

+
1

r

(

2P⋆ + ρv
2
θ − b2

θ + ρv
2
φ − b2

φ

)

, (C.5)

FθMHD = −
∂r2Fθr

∂
(

r3/3
) − 1

r

∂ sin θFθθ

∂(− cos θ)

+
cot θ

r

(

P⋆ + ρv
2
φ − b2

φ

)

− (ρvrvθ − brbθ)

r
, (C.6)

Fr
grav = −ρ∂rΦ, (C.7)

Fθgrav = −
1

r
ρ∂θΦ. (C.8)

The components of the flux tensor in the above expressions are

given by

Fab = ρvavb + P⋆δab − babb. (C.9)

Following the derivation of the quadrupole formula by

(Mönchmeyer et al. 1991), one then finds

AE2
20 =

G

c4

32π
3
2

√
15

∫ 1

0

dz

∫ ∞

0

d
r3

3

×
[

frr

(

3z2 − 1
)

+ fθθ
(

2 − 3z2
)

− fφφ − 6 frθz
√

1 − z2

−r∂rΦ
(

3z2 − 1
)

+ 3∂θΦz
√

1 − z2

]

, (C.10)

where the components of fi j are given by

fi j = ρviv j − bib j. (C.11)

The total isotropic pressure P⋆ (sum of the gas pressure and

the magnetic pressure) cancels out, i.e. only the velocities and

the magnetic stresses appear in the hydro-magnetic part of the

amplitude.

Equation (C.10) corresponds to the hydrodynamic and

the Lorentz force parts of the quadrupole formula given by



M. Obergaulinger et al.: Magneto-rotational core collapse, Online Material p 4

Kotake et al. (2004b), who derived the following expression

for the GW amplitude AE2
20
= AE2

20;hyd
+ AE2

20;Lorentz
+ AE2

20;mag
:

AE2
20;hyd(t) =

G

c4

16π
3
2

√
15

∫ 1

−1

dz

∫ ∞

0

r2drρ(r, z; t)

×
[

vrvr
(

3z2 − 1
)

+ vθvθ
(

2 − 3z2
)

−vφvφ − 6vrvθz
√

1 − z2

−r∂rΦ
(

3z2 − 1
)

+ 3∂θΦz
√

1 − z2

]

, (C.12)

AE2
20;Lorentz(t) =

G

c4

16π
3
2

√
15

∫ 1

−1

dz

∫ ∞

0

r3dr
1

c

[(

3z2 − 1
)

( j × B)r

−3z
√

1 − z2( j × B)θ

]

, (C.13)

AE2
20;mag(t) =

G

c4

16π
3
2

√
15

∫ 1

−1

dz

∫ ∞

0

dr
1

8πc

d

dt

×
[

∂θ
(

Brr
3
(

3z2 − 1
))

Eφ

−∂r

(

Bθr
3
(

3z2 − 1
))

rEφ

+∂r

(

Bφr
3
(

3z2 − 1
))

rEθ

− 1

sin θ
∂θ
(

Bφ sin θr3
(

3z2 − 1
))

Er

]

· (C.14)

To evaluate these expressions, the current density j and the

electric field E have to be calculated from the magnetic field

and the velocity. The last term (Eq. (C.14)) describes the contri-

bution resulting from the energy density of the magnetic field.

Kotake et al. (2004b) found that the hydrodynamic and the

Lorentz force contributions are at least two orders of magni-

tude larger than the magnetic energy one. Therefore, and due to

the time derivatives still involved in its calculation, we neglect

this contribution and consider only the GW amplitude resulting

from the quadrupole moment of the matter.

Appendix D: Synopsis of our results

Tables D.1 through D.2 provide an overview of the dynamic

evolution of the flow and the magnetic field, and about the re-

sulting gravitational wave signal of all our models.
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Table D.1. Some characteristic model quantities: the first two columns give the model name and the classification of the GW signal (for the

corresponding non-magnetized model). Columns 3 and 4 give the time of bounce tb (in milliseconds) and the maximum density at bounce ρb

(in units of 1014 cm s−1). An exclamation mark behind the density value signifies that the maximum density of the model exceeds the bounce

density during the later evolution. AE2
20

(Col. 5) and AE2
20;mag

(Col. 6) are the maximum GW amplitude (in cm) and the corresponding magnetic

contribution. AE2
20;∞ (Col. 7) is a rough mean value of the wave amplitude (in cm) at some late epoch; no value is provided when the GW ampli-

tude does not approach a quasi-constant asymptotic value. If the absolute value of this amplitude is large, the presence of an aspheric outflow

at late epochs can be inferred. The following columns give the maximum value of the rotational (Col. 8) and the magnetic beta parameter

(Col. 9), the time when βmag reaches its maximum (Col. 10), and the corresponding beta of the toroidal field (Col. 11). If the magnetic field is

still amplifying at the end of the simulation, an exclamation mark is added behind the table entry, and if the magnetic field is decreasing at this

time, we give its final value βfin
mag in parentheses.

Model type tb ρb AE2
20

AE2
20;mag

AE2
20;∞ βmax

rot βmax
mag (βfin

mag) tm βmax
mag,φ

[ms] [1014 g

cm3 ] [cm] [cm] [cm] % % [ms] %

A1B1G3-D3M10 I 49.29 3.79 −308.8 0.0363 10 2.9 0.036! 117.5 0.036

A1B1G3-D3M11 I 49.29 3.79 −307.9 0.33 10 2.9 0.39! 96.1 0.38

A1B1G3-D3M12 I 49.29 3.79 −282.3 9.57 10 2.9 0.74 (0.37) 64.7 0.62

A1B1G3-D3M13 I 50.46 3.74 −572.2 −111.2 130 2.6 1.9 (1.4) 55.4 0.71

A1B3G1-D3M10 II 95.16 2.11 −1305 0.0028 90 10.8 4.3 × 10−5! 129.5 4.2 × 10−5

A1B3G1-D3M11 II 95.16 2.11 −1305 0.26 90 10.8 4.7 × 10−3! 130.3 4.5 × 10−3

A1B3G1-D3M12 II 95.23 2.11 −1297 15.3 10.7 0.42! 148.7 0.36

A1B3G1-D3M13 II 102.1 1.10! −900.6 59.6 7.6 2.2 115.0 1.1

A1B3G3-D3M10 I 48.62 3.40 −1037 0.0093 40 8.1 2.0 × 10−3! 66.16 2.0 × 10−3

A1B3G3-D3M11 I 48.62 3.40 −1037 0.85 40 8.1 0.048! 58.5 0.048

A1B3G3-D3M12 I 48.64 3.40 −1016 31.3 80 8.1 1.1 (1.0) 71.3 0.85

A1B3G3-D3M13 I 49.68 3.41 −1344 191 420 7.0 3.1 (2.1) 53.69 1.7

A1B3G5-D3M10 III 29.94 4.21 133.7 −2.2 × 10−5 16 3.5 1.8 × 10−4! 48.33 1.8 × 10−4

A1B3G5-D3M11 III 29.94 4.21 133.8 −2.3 × 10−3 16 3.5 0.017! 48.11 0.017

A1B3G5-D3M12 III 29.94 4.21 136.4 −0.38 5.5 3.5 6.3! 61.5 0.51

A1B3G5-D3M13 III 30.08 4.21 259 −52 18 3.2 2.8 (1.8) 33.84 1.1

A2B4G1-D3M10 II 99.87 0.114 −608.6 0.0014 10 11.8 1.08 × 10−4! 215.6 1.07 × 10−4

A2B4G1-D3M11 II 99.87 0.114 −608.6 0.13 10 11.8 3.6 × 10−3! 153.6 3.4 × 10−3

A2B4G1-D3M12 II 99.96 0.114 −606.3 7.1 10 11.8 0.19! 159.8 0.17

A2B4G1-D3M13 II 112.5 0.0685! −441.0 111.1 80 9.3 2.4! 147.1 1.4

A2B4G4-D3M10 I 39.77 2.79 −743.8 0.0017 0 15.3 7.9 × 10−4! 74.8 7.8 × 10−4

A2B4G4-D3M11 I 39.77 2.79 −743.7 0.17 0 15.3 0.062! 70.7 0.062

A2B4G4-D3M12 I 39.77 2.80 −742.3 14.83 100 15.3 0.79! 48.98 0.74

A2B4G4-D3M13 I 40.31 2.88! −720.1 370.1 400 13.9 4.9 (4.4) 43.37 3.1

A2B4G5-D3M10 III 30.37 3.53 331.6 2.0 × 10−4 −30 9.6 1.6 × 10−4! 45.6 1.6 × 10−4

A2B4G5-D3M11 III 30.37 3.53 331.7 2.0 × 10−2 −30 9.6 0.03.6! 52.9 0.036

A2B4G5-D3M12 III 30.37 3.53! 331.3 1.7 25 9.6 1.4 (1.3) 65.8 1.1

A2B4G5-D3M13 III 30.45 3.53! 338.1 −29.4 140 9.0 5.2 (3.2) 37.6 2.6

A3B2G4-D3M10 I 39.15 3.45 −734.1 0.0011 10 9.1 5.5 × 10−4! 58.4 5.5 × 10−4

A3B2G4-D3M11 I 39.15 3.45 −734.1 0.11 10 9.1 0.051! 57.9 0.050

A3B2G4-D3M12 I 39.16 3.45 −726.2 9.6 16 9.1 1.0! 49.7 0.92

A3B2G4-D3M13 I 39.70 3.48! −626 39.94 250 8.0 3.6 (3.0) 44.23 1.8

A3B3G3-D3M10 II/I 49.70 2.41 −1400 0.017 30 16 1.3 × 10−3! 75.0 1.2 × 10−3

A3B3G3-D3M11 II/I 49.70 2.41 −1401 1.5 30 16 0.18! 73.4 0.18

A3B3G3-D3M12 II/I 49.71 2.42! −1379 56 40 16 14! 71.1 11

A3B3G3-D1M13 II/I 49.79 2.39 −1400 2.2 40 16 0.49! 77.1 0.46

A3B3G3-D3M13 II/I 51.00 2.68! −1128 705 600 13.5 5.3 (2.6) 52.9 3.1

A3B3G3-D0M13 II/I 50.41 2.48! −1339 204 600 15 21 (7.4) 0.93 2.4 × 10−4

A3B3G4-D3M10 I 39.64 2.86 −895.7 0.0021 −25 14.6 0.017! 145.8 0.017

A3B3G4-D3M11 I 39.64 2.86 −894.9 0.21 15 14.6 0.092! 69.7 0.092

A3B3G4-D3M12 I 39.65 2.86 −888.4 18.1 65 14.5 1.3 (1.2) 52.4 1.1

A3B3G4-D3M13 I 40.14 2.96! −871.8 412.4 450 13.1 4.8 (4.8) 43.0 2.9

A3B3G5-D3M10 III 30.35 3.47 262.5 1.3 × 10−5 −30 9.6 1.6 × 10−4! 44.3 1.5 × 10−4

A3B3G5-D3M11 III 30.35 3.47 262.5 1.3 × 10−3 −30 9.5 0.016! 44.29 0.01.6

A3B3G5-D0M12 III 30.34 3.58 332.1 −5.5 −50 9.5 0.70! 52.7 0.57

A3B3G5-D1M12 III 30.35 3.47 262.4 0.034 −10 9.5 0.12! 56.3 0.12

A3B3G5-D2M12 III 30.35 3.47! 261.6 0.47 −25 9.5 1.0 45.01 0.93

A3B3G5-D3M12 III 30.35 3.47! 264.3 −.079 −7.5 9.5 1.6! 61.9 1.4

A3B3G5-D4M12 III 30.35 3.47! 262.0 −1.6 −3 9.5 1.0! 64.0 0.85

A3B3G5-D3M13 III 30.56 3.47! 343 −31.9 130 8.9 5.1 (3.1) 37.4 2.5
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Table D.1. continued.

Model type tb ρb AE2
20

AE2
20;mag

AE2
20;∞ βmax

rot βmax
mag (βfin

mag) tm βmax
mag,φ

[ms] [1014 g

cm3 ] [cm] [cm] [cm] % % [ms] %

A4B5G5-D3M10 I/II 30.80 1.97 −4141 0.0070 140 34.6 3.3 × 10−4! 64.0 3.2 × 10−4

A4B5G5-D3M11 I/II 30.80 1.97 −4140 0.69 140 34.6 0.022! 57.6 0.021

A4B5G5-D3M12 I/II 30.79 2.00 −4101 43.6 140 34.5 0.60! 32.1 0.52

A4B5G5-D3M13 I/II 30.93 2.10! −3473 1225 1900 34.5 11.1 (6.2) 36.2 7.0
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Table D.2. Some characteristic model quantities (name of model given in Col. 1) at time t (in msec; Col. 2) when the core has reached a quasi-

equilibrium state. For models which do not reach a quasi-equilibrium state until the end of the simulation (e.g. type-II models with large

scale core pulsations) we provide upper (top value) and lower (bottom value) bounds estimated from the values at maximum and minimum

contraction. Columns 3 and 4 give the surface radius rc (in km) and the mass Mc (in solar masses) of the quasi-equilibrium configuration,

respectively. Since it is still surrounded by an (expanding) envelope of high density matter, the definition of its surface radius rc is somewhat

uncertain. As the rotation rate 2π/Ω (in ms), where Ω is the angular velocity averaged over the angle θ, as well as the total magnetic field |b|
and (the absolute value of) its toroidal component bφ (both in Gauss) vary strongly near the surface and on short time scales, the corresponding

values in Cols. 5–7 should be used with care. Negative values of the rotation rate signify counter-rotating cores. Finally, in Cols. 8 and 9 we

give the radii of the shock at the polar axis, r
p

sh
, and at the equator, re

sh
(both in cm), respectively. No entry in these columns implies that the

shock has already left the computational grid.

Model t rc Mc 2π/Ω |b| |bφ | r
p

sh
re

sh

[ms] [km] [M⊙] [ms] [G] [G] [km] [km]

A1B1G3-D3M10 75 22.5 0.59 9.6 4.9 × 1013 4.7 × 1013 725 692

A1B1G3-D3M11 75 22.3 0.59 8.2 5.7 × 1014 5.6 × 1013 725 692

A1B1G3-D3M12 75 21.5 0.59 11.9 8.7 × 1014 4.8 × 1014 725 692

A1B1G3-D3M13 75 23.4 0.61 −104.9 8.5 × 1014 4.6 × 1013 768 669

A1B3G1-D3M10 116 49.8 1.2 8.0 1.9 × 1012 1.9 × 1012 920 745

126 129 1.2 52.4 3.6 × 1011 3.6 × 1011

A1B3G1-D3M11 116 49.7 1.2 8.0 1.9 × 1013 1.9 × 1013 920 745

126 129 1.2 46.7 3.2 × 1012 3.2 × 1012

A1B3G1-D3M12 116 49.0 1.2 7.9 2.0 × 1014 1.9 × 1014 920 745

125 129 1.2 45.5 3.2 × 1013 3.2 × 1013

A1B3G1-D3M13 117 35.3 1.1 6.3 1.4 × 1015 4.7 × 1014 813 568

A1B3G3-D3M10 70 25.5 0.68 6.6 5.4 × 1013 5.4 × 1013 617 544

A1B3G3-D3M11 58.5 29.1 0.68 8.3 2.2 × 1014 2.2 × 1014 330 2.77

A1B3G3-D3M12 70 23.6 0.70 4.6 1.4 × 1015 1.2 × 1015 625 557

A1B3G3-D3M13 70 27.1 0.73 140.7 9.9 × 1014 1.2 × 1014 1068 568

A1B3G5-D3M10 48 13.6 0.21 4.9 4.4 × 1013 4.4 × 1013 282 278

A1B3G5-D3M11 48 13.6 0.21 4.8 4.9 × 1014 4.9 × 1014 282 278

A1B3G5-D3M12 48 14.2 0.22 4.9 8.8 × 1014 7.2 × 1014 282 278

A1B3G5-D3M13 48 13.6 0.24 −215 1.9 × 1015 4.8 × 1013 285 278

A2B4G1-D3M10 114 119 0.86 58.1 3.9 × 1011 3.9 × 1011 518 438

151 110 1.24 29.4 3.6 × 1011 3.6 × 1011

179 118 0.91 57.0 6.9 × 1011 6.9 × 1011

A2B4G1-D3M11 115 119 0.85 58.0 4.0 × 1012 3.9 × 1012 518 438

151 111 1.24 29.4 3.6 × 1012 3.6 × 1012

A2B4G1-D3M12 124 120 0.76 72.2 2.6 × 1013 2.1 × 1013 881 634

A2B4G1-D3M13 123 120 1.1 40.3 1.5 × 1014 1.1 × 1014 570 506

143 57.4 1.1 8.3 5.4 × 1014 3.3 × 1014

146 60.6 1.1 8.2 5.8 × 1014 3.1 × 1014

A2B4G4-D3M10 48 28 0.47 6.4 8.8 × 1012 8.6 × 1012 246 186

60 29.5 0.48 7.1 1.1 × 1013 1.1 × 1013 482 370

A2B4G4-D3M11 48 28 0.47 6.4 8.7 × 1013 8.6 × 1013 246 184

60 29.4 0.48 7.0 9.3 × 1013 9.0 × 1013 482 370

A2B4G4-D3M12 48 28.3 0.47 6.0 8.0 × 1014 7.8 × 1014 266 201

A2B4G4-D3M13 48 17.6 0.48 10.6 1.9 × 1015 4.5 × 1014 332 249

A2B4G5-D3M10 50 13.9 0.21 3.1 2.7 × 1013 2.7 × 1013 308 290

A2B4G5-D3M11 50 13.9 0.22 3.1 3.4 × 1014 3.4 × 1014 308 290

A2B4G5-D3M12 50 12.0 0.23 3.2 3.2 × 1015 2.9 × 1015 316 293

A2B4G5-D3M13 50 15.2 0.28 −70.7 2.4 × 1015 1.1 × 1014 891 320
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Table D.2. continued.

Model t rc Mc 2π/Ω |b| |bφ | r
p

sh
re

sh

[ms] [km] [M⊙] [ms] [G] [G] [km] [km]

A3B2G4-D3M10 57 19.6 0.44 4.6 4.7 × 1013 4.7 × 1013 378 340

A3B2G4-D3M11 57 20.0 0.44 4.8 4.0 × 1014 4.0 × 1014 382 340

A3B2G4-D3M12 57 28.2 0.44 8.7 8.7 × 1014 8.4 × 1014 382 348

A3B2G4-D3M13 57 17.1 0.45 41.2 2.4 × 1015 2.1 × 1014 906 405

A3B3G3-D3M10 64.7 54.9 0.73 20.3 2.0 × 1013 1.9 × 1013 491 398

67.8 37.4 0.71 10.0 1.1 × 1013 1.1 × 1013 564 463

A3B3G3-D3M11 64.7 54.9 0.73 20.3 2.0 × 1013 1.9 × 1013 485 398

67.7 37.5 0.71 9.9 1.2 × 1014 1.2 × 1014 558 458

A3B3G3-D3M12 68 39.7 0.65 6.2 7.0 × 1014 6.9 × 1014 564 469

A3B3G3-D0M13 64.2 63.1 0.68 12.8 4.2 × 1014 2.5 × 1014 911.5 508.4

A3B3G3-D1M13 68 39.7 0.71 14.8 4.9 × 1013 4.8 × 1013 571 469

A3B3G3-D3M13 68 24.7 0.63 11.1 1.1 × 1015 3.4 × 1014 901 571

A3B3G4-D3M10 61.7 25.2 0.47 6.3 2.7 × 1013 2.7 × 1013 497 412

A3B3G4-D3M11 62 24.4 0.46 5.7 4.3 × 1014 4.3 × 1014 503 417

A3B3G4-D3M12 62 35.9 0.44 5.5 9.4 × 1014 7.0 × 1014 520 417

A3B3G4-D3M13 43 27.72 0.48 34.2 2.3 × 1014 1.4 × 1014 131 111

A3B3G5-D3M10 44.3 13.4 0.22 3.3 2.8 × 1013 2.7 × 1013 224 221

A3B3G5-D3M11 44.3 13.7 0.22 3.6 3.3 × 1014 3.3 × 1014 226 224

A3B3G5-D0M12 52.7 29.2 0.23 7.7 5.3 × 1014 5.2 × 1014 375 358

A3B3G5-D1M12 54.6 16.4 0.24 5.6 1.3 × 1014 1.3 × 1014 371 371

A3B3G5-D2M12 54.6 13.7 0.25 3.4 2.0 × 1015 1.9 × 1015 384 388

A3B3G5-D3M12 56.9 12.6 0.24 2.3 3.1 × 1015 2.8 × 1015 417 417

A3B3G5-D4M12 57.6 14.8 0.24 3.4 5.3 × 1014 5.2 × 1014 375 358

A3B3G5-D3M13 59.6 15.1 0.27 −38.0 2.3 × 1015 8.9 × 1013 1009 354

A4B5G5-D3M10 52.7 86.0 0.74 21.6 2.3 × 1012 1.2 × 1012

A4B5G5-D3M11 52.7 71.3 0.68 17.1 2.3 × 1013 2.22 × 1013

A4B5G5-D3M12 36.1 74.4 0.70 10.9 1.4 × 1014 1.0 × 1014

A4B5G5-D3M13 46.8 13.9 0.36 34.8 3.4 × 1015 2.0 × 1014


