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AXISYMMETRIC STAGNATION FLOW ON A CYLINDER*

By CHANG-YI WANG (Michigan State University)

Due to the inherent nonlinearity of the Navier-Stokes equations, there exist only-
three exact solutions of stagnation flows: Hiemenz [1] found a solution to the two-
dimensional stagnation flow against a plate, Homann [2] investigated the axisymmetric
stagnation flow, also against a plate, and Howarth [3] and Davey [4] extended the
results to unsymmetric cases.

The present note presents a new exact solution, namely, axisymmetric stagnation
flow on an infinite circular cylinder. Fig. 1 shows a cylinder described by r = a in the
cylindrical polar coordinates. The flow is axisymmetric about the z axis and also sym-
metric to the z = 0 plane. The stagnation "line" is at z = 0, r = a. This flow may be
useful in certain cooling processes.

Let u and w be the velocities in the directions r and z respectively. If the flow is
inviscid, the potential velocity and pressure distribution in the neighborhood of the
stagnation line are

u = — k(r — a /r), (1)

w = 2 kz,

p = p0- Pk2[2z2 + |(r - a7r)2], (3)

where fc is a given constant of dimensions [1 /T], p0 is the stagnation pressure, and p
is the density. We expect the viscous flow to approach the potential solution as r —► <».

The constant-density Navier-Stokes equations in cylindrical coordinates are

uur + wu, = —- pr + v\urr + - u, + uzz — ") , (4)p \ r r /

uwr + wwt = — i p, + v(wrr + ^ wr + w,^J , (5)

rw2 + (ru)r = 0. (6)

Let
u = -kav~1/2Kv), (7)

w = 2kf'(rj)z, (8)

where -q = (r/a)2. After some algebra, Eqs. (4) and (5) reduce to

vf" + ]" + R(l + 11" - f) = o, (9)

p = Po - pl^Y {j + 2ukl' + , (10)
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where R = ka2/2v is a Reynolds number. The boundary conditions are

/(I) = 0, /'(1) = 0, f(co) = 1. (11)

Eq. (9) is integrated numerically by the Runge-Kutta method. The accuracy is
determined by varying the step size. Figs. 2 and 3 shows /(j?) and /'(??) respectively
for several values of R. Due to the natural length scale a which enters in the parameter

Fig. 1. The coordinate axis.
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ft, these curves are not similar to each other. The numerical results are given in Tables
I, II, III.

Of some interest is the asymptotic behavior for large y. Let /(q) = jj + c + g(v)
where c is a constant and g(rj) is small. Then Eq. (9) linearizes to

&"'G) + (i + k)g" - W = o (12)
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where ^ = Rtj. This shows the solutions are at least similar for large 77. The nontrivial
solution which decays to zero at infinity is found to be

g(£) = const J* |^(X2 + 4\ + 2) J /3~\/32 + 4/3 + 2)~ V d/sj d\. (13)

Eq. (13) can be rewritten in terms of one integral
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<jr(£) = const J ^7j—|- 2£2 + 2£ — — — 2<2 — 2tjt 1(t2 + 4f + 2) 2e ' dt. (14)

The decay is proportional to £~3e"£.
For large R the solution is closely related to the two-dimensional stagnation flow

against a flat plate. The transformation

j(v) = R1/2<p(S) (15)

where £ = R1/2(y — 1) yields Hiemenz's equation

<p"' + <P<P" — <p'2 + 1=0,

<p(0) = <p'(0) = 0, <p'(co) = l

as a first approximation. The error is of order R~1/2. Table IV gives a comparison to
Hiemenz's value.

If the Reynolds number were small, Eq. (9) yields as first approximation

/ = const (?? In 7) — t) + 1) (17)

which is singular at infinity. The solution breaks down at a distance of tj = 0(1/7?),

TABLE I (R = .2)

*1 f, f"

1.0 0 O .78605
1.5 .08170 .29998 .45864
2.0 .28134 .48534 .29900
2.5 .55708 .61005 .20737
3.0 .88537 .69829 .14970
3.5 1.2514 .76290 .11117
4.0 1.6456 .81139 .08432
4.5 2.0609 .84848 .06503
5.0 2.4926 .87726 .05083
6.0 3.3917 .91786 .03205
7.0 4.3235 .94386 .02087
8.0 5.2766 .96100 .01392
9.0 6.2437 .97254 .00947

10.0 7.2204 .98045 .00654
12.0 9.1918 .98982 .00324
14.0 11.176 .99455 .00167
16.0 13.168 .99702 .00088
18.0 15.164 .99834 .00048
20.0 17.161 .99906 .00026
25.0 22.159 .99977 .00006
30.0 27.158 .99995 .00001
35.0 32.158 1.00000 .00000
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TABLE II (R = 1.)

T1

•n

f f"

1 0 0 1.484185
1.2 .02667 .25302 1.07223
1.4 .09665 .43724 .78662
1.6 .19836 .57315 .58369
1.8 .32361 .67444 .43697
2.0 .46647 .75054 .32949
2.5 .87488 .86968 .16664
3.0 1.3266 .93068 .08647
3.5 1.8008 .96261 .04572
4.0 2.2867 .97961 .02453
4.5 2.7791 .98878 .01331
5.0 3.2748 .99378 .00729
6.0 4.2712 .99805 .00224
7.0 5.2700 .99938 .00070
8.0 6.2697 .99980 .00022
9.0 7.2695 .99993 .00007

10.0 8.2695 .99998 .00002
11.0 9.2 695 1.00000 .00000

TABLE III (R = 10.)

f £' f"

1.0 O O 4.16292
1.1 .01857 .35045 2.89754
1.2 .06638 .58982 1.93962
1.3 .13382 .74753 1.25571
1.4 .21400 .84821 .78923
1.5 .30220 .91071 .48298
1.6 .39532 .94852 .28845
1.7 .49139 .97087 .16847
1.8 .58919 .98380 .09640
1.9 .68797 .99114 .05412
2.0 .78731 .99522 .02986
2.2 .98677 .99867 .00866
2.4 1.1866 .99965 .00238
2.6 1.3865 .99991 .00062
2.8 1.5865 .99998 .00015
3.0 1.7865 .99999 .00004
3.5 2.2865 1.00000 .00000
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TABLE IV

R R~U2f" (1)

.2 1.7577
1. 1.484185

10. 1.31643
co 1.232588 (Hiemenz flow, <p" (0))

where, in order to bring in the nonlinear terms, we set / = (1 /R)h{£), £ = Rrj. One
obtains

$fc"' + h" + 1 + hh" - h'2 = 0

which is an equation as difficult as the original one. As i? is increased further, linearization
is possible and we obtain Eq. (12) by setting h(£) = £ + c + g(Q.

The author is indebted to a referee for his comments on the last two paragraphs.
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