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We present experimental results for the acoustic field of jets with Mach numbers

between 0.35 and 0.6. An azimuthal ring array of six microphones, whose polar

angle, θ , was progressively varied, allows the decomposition of the acoustic pressure

into azimuthal Fourier modes. In agreement with past observations, the sound field for

low polar angles (measured with respect to the jet axis) is found to be dominated by

the axisymmetric mode, particularly at the peak Strouhal number. The axisymmetric

mode of the acoustic field can be clearly associated with an axially non-compact

source, in the form of a wavepacket: the sound pressure level for peak frequencies is

found be superdirective for all Mach numbers considered, with exponential decay as a

function of (1 − Mc cos θ)2, where Mc is the Mach number based on the phase velocity

Uc of the convected wave. While the mode m = 1 spectrum scales with Strouhal

number, suggesting that its energy content is associated with turbulence scales,

the axisymmetric mode scales with Helmholtz number – the ratio between source

length scale and acoustic wavelength. The axisymmetric radiation has a stronger

velocity dependence than the higher-order azimuthal modes, again in agreement with

predictions of wavepacket models. We estimate the axial extent of the source of

the axisymmetric component of the sound field to be of the order of six to eight

jet diameters. This estimate is obtained in two different ways, using, respectively,

the directivity shape and the velocity exponent of the sound radiation. The analysis

furthermore shows that compressibility plays a significant role in the wavepacket

dynamics, even at this low Mach number. Velocity fluctuations on the jet centreline

are reduced as the Mach number is increased, an effect that must be accounted for

in order to obtain a correct estimation of the velocity dependence of sound radiation.

Finally, the higher-order azimuthal modes of the sound field are considered, and a

model for the low-angle sound radiation by helical wavepackets is developed. The

measured sound for azimuthal modes 1 and 2 at low Strouhal numbers is seen to

correspond closely to the predicted directivity shapes.
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1. Introduction

Sound generation by subsonic turbulent jets is a problem comprising coupling
between the turbulent motions of the jet and the less complex acoustic motions of
the sound field. A difference in complexity is apparent in both the structure of the
equations that model the two different kinds of motion, and in the experimentally
measured fluctuations in the near and far fields.

If we consider, for instance, the azimuthal dependence of the fluctuations in each
region, considerably fewer azimuthal Fourier modes are necessary to represent the
sound field than are needed to represent the turbulence (Michalke & Fuchs 1975;
Fuchs & Michel 1978). Many researchers have interpreted this low-order azimuthal
structure of the sound field as evidence of a corresponding low-order sound-producing
turbulence structure (see for instance Crow & Champagne 1971; Moore 1977; Juvé,
Sunyach & Comte-Bellot 1979; Hussain & Zaman 1981; Brown & Bridges 2006;
Tinney & Jordan 2008).

A candidate source model for the coherent structures is an axially extensive
wavepacket. This model can be motivated theoretically by linear stability theory
applied to a steady jet base flow, and physically justified by means of a scale-
separation argument. The acoustically important features of the wavepacket are its
frequency, wavelength, axial amplification, saturation and downstream decay; the
saturation is not necessarily associated with nonlinearity, and can be accounted for in
a linear framework by appealing to the slow spread of the mean flow (Gudmundsson
& Colonius 2011). While Mollo-Christensen (1963, 1967) observed and discussed
these features from the point of view of both hydrodynamic stability theory and
aeroacoustics, Crow (1972) (see also Crighton 1975) was first to propose a source
model, using the framework of Lighthill’s (1952) acoustic analogy. The radiation of
such sources, for subsonic convection speeds, is highly directive and concentrated at
low polar angles θ (measured with respect to the downstream jet axis).

Similar studies were undertaken by Crighton & Huerre (1990), who evaluated
the directivity pattern of different envelope functions for the convected wave, and
by Sandham, Morfey & Hu (2006), who showed that temporal modulation of such
convected wavepackets can further enhance sound radiation. Other variants, proposed
by Ffowcs Williams & Kempton (1978) and Cavalieri et al. (2011b), allow inclusion
of the intermittency that is observed in high-Reynolds-number turbulent jets, i.e. the
appearance and disappearance of the trains of turbulent ‘puffs’ observed by Crow &
Champagne (1971).

All of the above models have in common their directivity: sound radiation is
concentrated at low polar angles with exponential decay at higher polar angles.
The term superdirectivity was used by Crighton & Huerre (1990) to describe this
characteristic of the sound field, and they showed that acoustic non-compactness is a
requirement for such radiation.

Experimentally, there is not, for the moment, a complete consensus regarding the
relationship between the superdirectivity of wavepacket models and the sound field
of subsonic jets; while the latter does present higher sound intensities at low polar
angles, it does not have exponential decay as a function of θ . Superdirectivity has
been observed in a forced jet by Laufer & Yen (1983), where forcing was effected
at a Strouhal number, based on the momentum thickness, of Stδ2 = 0.017. The
excited jet comprised subharmonics of the forcing frequency, and the directivity of the
subharmonic sound radiation was observed to decay exponentially with (1 − Mc cos θ)2

(where Mc is the Mach number based on the phase velocity Uc of the convected wave),
in agreement with the directivity of the models of Crow (1972) and Ffowcs Williams
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& Kempton (1978). However, the excitation frequency corresponds to a Strouhal
number, based on the jet diameter, of St = 5.8, which is much higher than the Strouhal
numbers of the most energetic part of the sound field radiated by free turbulent jets.
It is therefore difficult to affirm that Laufer & Yen’s experiment corresponds to what
occurs in unforced jet flows; the mechanism they studied is most likely to be restricted
to low-Mach-number jets with laminar boundary layers at the nozzle exit, as discussed
by Bridges & Hussain (1987).

On the other hand, Cavalieri et al. (2011a) have shown, with numerical data from
a large-eddy simulation (LES) of a Mach 0.9 jet, that a simplified wavepacket
Ansatz, fitted with velocity data from the LES, can reproduce the radiated sound
for the axisymmetric mode of the simulation to within 1.5 dB at low polar angles.
Furthermore, the axisymmetric mode was found to be highly directive, dominating
sound radiation at low polar angles, as found experimentally by Fuchs & Michel
(1978) and Juvé et al. (1979). These results suggest that the signature of a wavepacket
source structure may be observable in high-Reynolds-number jets if the axisymmetric
radiation is isolated from the other azimuthal modes present in the acoustic field.

The objective of the present work is to investigate, experimentally, if such
superdirective wavepacket signatures are present in the acoustic field of unforced

subsonic jets. We decompose the acoustic field measured by a microphone ring array
into azimuthal Fourier modes. We then examine the directivity and spectra of each
azimuthal mode; polar spacings of 1θ = 5◦ are used at low emission angles, in order
to obtain good angular resolution of the directivity of the different azimuthal modes,
and to detect the expected high variations in acoustic intensity. We focus particularly
on the axisymmetric mode, in an effort to characterize its structure and ascertain if it
is consistent with existing wavepacket models.

In our evaluation of the experimental data we consider a model problem wherein the
free-space wave equation is driven by a simplified line source; the form of the source
is consistent with Lighthill’s acoustic analogy. The model problem considered is not,
of course, intended to correspond to the real flow, or to contain all of the physics
of jet noise production; its purpose is to allow us to test hypotheses. On one hand
we want to check for consistency between experimentally observed features of the
sound field and hypothesized, acoustically important, features of the flow. On the other
hand, we wish to rule out source features that are not consistent with the sound field:
for example, a superdirective sound field at low Mach number cannot be produced
by an acoustically compact source; an extended axial source region, with significant
interference effects, is required to generate such an acoustic field (Crighton & Huerre
1990), and one of the conclusions of the analysis is that the sound radiated to low
polar angles is indeed dominated by such a source.

The paper is organized as follows. In § 2 we describe the experimental setup. In
§ 3 there is a brief review of pertinent results concerning wavepacket sound radiation.
This is followed by a presentation and general discussion of the experimental results
in § 4. We first focus on the results for the Mach 0.6 jet and show that the
axisymmetric mode dominates the peak-frequency acoustic field at low polar angles,
and the sound pressure level (SPL) for St = 0.2 is shown to be in agreement
with the superdirectivity predicted by non-compact wavepacket models. The same
characteristics are observed for the lower-Mach-number jets (M = 0.4, M = 0.5).
Next, the axial extent of the source is estimated using the wavepacket model of
Crow (1972). In § 4.3 we explore the scaling of the different azimuthal modes
as a function of Strouhal and Helmholtz numbers to evaluate non-compactness
effects on the spectral shape of the individual modes. We consider in § 4.4 the
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velocity dependence of the different azimuthal modes; the analysis provides a
second estimate of the source axial extent which is consistent with the one made
using the directivity (provided compressibility effects are correctly accounted for).
Extrapolation of the present results to higher subsonic Mach numbers suggests that the
dominance of the axisymmetric mode will be further enhanced as the Mach number is
increased.

While the main focus of the present work is the axisymmetric mode, results for
higher-order modes are also shown to be compatible with wavepacket radiation. A
theoretical framework is developed in appendix B, and in § 5 we present comparisons
of a model of sound radiation by helical wavepackets with the present experimental
results.

2. Experimental setup

The experiments were performed in the ‘Bruit et Vent’ anechoic facility at the
Centre d’Etudes Aérodynamiques et Thermiques (CEAT), Institut Pprime, Poitiers,
France. A photo of the setup is shown in figure 3 below. Acoustic measurements
were made for unheated jets, with acoustic Mach numbers (M = U/c, where U is the
jet exit velocity and c the ambient sound speed) in the range 0.35 6 M 6 0.6 with
an increment of 0.05. The nozzle diameter, D, was 0.05 m. With these conditions,
the Reynolds number, ρUD/µ, varies from 3.7 × 105 to 5.7 × 105, where ρ and µ

are, respectively, the density and the viscosity at the nozzle exit. All but the lowest
velocity lead to a Reynolds number above 4 × 105, which was seen by Viswanathan
(2004) as a critical number above which sound radiation attains asymptotic spectral
shapes.

The velocity field is considered in cylindrical coordinates (x, r, φ), where x is
aligned with the jet axis, r is the radius and φ the azimuthal angle; spherical
coordinates (R, θ,Φ) are used for the acoustic field, where R is the radius, θ is
the polar angle measured from the downstream jet axis and Φ is the azimuthal angle.
For both systems, the origin is at the nozzle exit. The three velocity components are
denoted ux, ur and uφ .

A convergent section was located upstream of the jet exit, with an area contraction
of 31. This was followed by a straight circular section of length 150 mm; a boundary
layer trip was used to force transition 135 mm upstream (2.7D) of the nozzle exit.
Extensive hot-wire velocity measurements were made throughout the jet, including
the nozzle exit plane. An in situ calibration of the hot wire was performed using
Pitot tube measurements as reference values (Tutkun et al. 2009). The mean axial
velocity fields are shown in figure 1 for Mach numbers of 0.4, 0.5 and 0.6. Aside
from a slight lengthening of the potential core as the Mach number is increased, there
are only small differences between the normalized mean velocity profiles for these
jets.

Radial profiles of the velocity field in the nozzle exit plane were obtained with
high spatial resolution both upstream and downstream of the exit plane in order to
discern the character of the boundary layer. The results, shown in figure 2, indicate
that the boundary layers (Bridges & Hussain 1987) are turbulent. The boundary layer
and momentum thicknesses at the nozzle exit are shown in table 1. For these estimates,
the Crocco–Busemann relation for unitary Prandtl number was used to determine the
density across the boundary layer.

Six microphones were deployed on an azimuthal ring in the acoustic field with a
fixed angle θ to the downstream jet axis. The setup is shown in figure 3. The ring has
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FIGURE 1. Mean axial velocity ūx fields for: (a) M = 0.4; (b) M = 0.5; and (c) M = 0.6.
Contours are equally spaced from 0.1U to 0.99U.
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FIGURE 2. Boundary layer profiles at the nozzle exit for the Mach 0.5 jet: (a) mean velocity
and (b) r.m.s. value. Dashed line in (a) is the Blasius profile.

M δ (mm) δ/D δ2 (mm) δ2/D

0.4 4.5 9.0 × 10−2 0.477 9.5 × 10−3

0.5 4.25 8.5 × 10−2 0.401 8.0 × 10−3

0.6 4.25 8.5 × 10−2 0.396 7.9 × 10−3

TABLE 1. Boundary layer thickness δ and momentum thickness δ2 at the nozzle exit.

a diameter of 35D. The entire array was displaced incrementally along the jet axis in
order to characterize the sound field as a function of θ . On account of the resulting
differences in the distance, R, between the nozzle exit and the microphones, a 1/R

scaling is applied to the acoustic pressure in order to rescale the measurements to a
fixed distance of R = 35D. The circumferential homogeneity of the acoustic field was
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FIGURE 3. (Colour online) (a) Experimental setup (microphones are highlighted with white
circles); (b) spectra of the six microphones at θ = 30◦ and M = 0.6.

verified by comparing spectra of the individual microphones, shown in figure 3(b). The

pressure from the six microphones was used to decompose the far acoustic field into

azimuthal Fourier modes. The procedure is described in appendix A, where we also

use the coherence between neighbouring microphones to assess the accuracy of the

Fourier series. This evaluation shows that the procedure is appropriate up to Strouhal

number of unity for the present microphone ring, which is the range of frequencies we

focus on in the present work.

3. Sound radiation by an axisymmetric wavepacket

In this section we recall the results of Crow (1972) (see also Crighton 1975, § 10)

for a simple wavepacket source. The results of this model are used for analysis of the

experimental results presented in the following sections. The model is based on the

acoustic analogy of Lighthill (1952). The continuity and Navier–Stokes equations are

combined and rewritten as an inhomogeneous free-space wave equation with nonlinear

source terms (Lighthill’s stress tensor Tij) on the right-hand side that depend on

turbulent fluctuations:

∂2ρ

∂t2
− c2∇2ρ = ∂2Tij

∂xi∂xj

(3.1)

with

Tij = ρuiuj + (p − c2ρ)δij. (3.2)

In the spirit of the Lighthill’s theory, the problem considered is an analogue of

a compressible, turbulent flow. The source terms on the right-hand side of (3.1) are

considered as given, and the radiated sound can be calculated, for a free jet, using the

free-field Green’s function.

In Crow’s model, the wave equation is driven by a simplified line source Sxx,

constructed using the axisymmetric part of the Txx term alone (i.e. a distribution of

axially aligned, longitudinal quadrupoles), as

Sxx(x, m = 0, ω) =
∫

Txx(x, r, m = 0, ω)r dr (3.3)
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where m is the azimuthal Fourier mode, and ω the frequency, so that the far-field
pressure is given, as shown in appendix B, as

p(R, θ, m = 0, ω) = −k2
acos2θe−ikaR

2R

∫ ∞

−∞
Sxx(x, m = 0, ω)e−ikax cos θ dx, (3.4)

where ka is the acoustic wavenumber ω/c.
This line source model comprises a convected wave of frequency ω and

wavenumber k, modulated by a Gaussian with characteristic length L,

Sxx(x, m = 0, ω) = ρ0Uûx

D2

4
e−ikxe−x2/L2

, (3.5)

where ρ0 is the density of the undisturbed fluid and ûx the streamwise velocity
fluctuation amplitude, which is obtained by the radial integration in (3.3) of a radially
constant Txx, given as

Txx(x, r, m = 0, ω) = 2ρ0Uûxe
−ikxe−x2/L2

(3.6)

between 0 and D/2. An envelope function given by a Gaussian, as in (3.6),
is supported by the near-field measurements of forced jets by Laufer & Yen
(1983), and of unforced, heated jets with Mach numbers ranging from 0.9 to 1.58
(Reba, Narayanan & Colonius 2010). Gaussian envelopes were also seen to match
envelopes taken from the velocity field of large-eddy simulations of cold M = 0.9
jets (Cavalieri et al. 2011b). Finally, the experimental near-field pressure results
presented by Gudmundsson & Colonius (2011), including an unheated jet at M = 0.5
and Re = 7 × 105, suggest that a Gaussian envelope may be appropriate to model
wavepackets in jets with the operating conditions of the present work.

The line-source approximation in (3.6) can be justified in Lighthill’s analogy for the
axisymmetric part of the source if we consider radial compactness, i.e. the jet diameter
is much smaller than the acoustic wavelength, as shown in appendix B. This is the
case for low values of the Strouhal and Mach numbers.

Furthermore, in a linear problem, such as Lighthill’s, a given azimuthal component
of the source generates the same azimuthal mode in the sound field. This assumption
has been used, for instance, by Michalke (1970, 1972) or Mankbadi & Liu (1984),
and is also shown in the derivation of appendix B. The line-source model in (3.6)
is therefore solely related to the axisymmetric radiation. A similar model for helical
wavepackets is presented in § 5.

Evaluation of the far-field pressure in the time domain leads to

p(R, θ, m = 0, t) = −ρ0UũM2
c (kD)2 L

√
π cos2θ

8R

× exp[−L2k2 (1 − Mc cos θ)2 /4] exp[iω(t − (R/c))], (3.7)

where Mc is the Mach number based on the phase velocity Uc of the convected wave.
The acoustic intensity in the far acoustic field can be calculated as p2/(ρ0c).

The models of Ffowcs Williams & Kempton (1978) and Cavalieri et al. (2011b),
which include jitter in this source shape, also present the same exponential function
exp(−L2k2 (1 − Mc cos θ)2 /4) for the pressure. This exponential polar variation is
referred to as superdirectivity (Crighton & Huerre 1990).

We note that superdirectivity results if the characteristic length, L, of the
Gaussian is large compared to the convected wavelength, i.e. kL = 2πL/λc ≫ 1.
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FIGURE 4. (a) Wavepacket shapes, (b) corresponding directivities for Mc = 0.36 with values
at θ = 20◦ fixed at 0 dB, and (c) velocity exponents, taken with a derivative around Mc = 0.3.

The superdirectivity can thus be seen to result from axial interference in an axially
extended source comprising more than one oscillation wavelength. For subsonic
convection velocities, the interference between regions of positive and negative source
strength results in the sound field being beamed towards low angles, an almost
complete cut-off occurring at high polar angles. This is illustrated in figure 4,
where source shapes and corresponding directivities are plotted for different values
of kL, considering Mc = 0.36. For the compact limit, kL → 0, the directivity of
the source is given by cos4θ for the acoustic intensity. For small values of the
characteristic length, L, the dependence of the directivity on L is weak. However,
as the axial interference becomes significant, the directivity changes considerably,
becoming increasingly concentrated at low axial angles, as can be seen in figure 4(b)
for kL = 6. In this case, the directivity shape is dominated by the exponential term
in (3.7), and is close to a straight line when plotted as a function of (1 − Mc cos θ)2.
For this source extent, as shown in figure 4(a), there is interference between three
neighbouring wavefronts in the source, leading to the observed superdirectivity.

It is clear that the theoretical directivity shape is not purely exponential, and that the
cos2θ term in (3.7) causes deviations from a straight line when the acoustic intensity
is plotted in dB as a function of (1 − Mc cos θ)2. However, for the non-compact
wavepackets educed in the following sections, which have typical extensions leading
to kL ≈ 6, the deviations of such a plot from a fitted straight line are lower than
0.5 dB, and cannot be clearly discerned in the present set of experimental results.
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FIGURE 5. Directivity for the M = 0.6 jet.

Based on this we have chosen to evaluate superdirectivity in our measurements by
a comparison of SPL as a function of (1 − Mc cos θ)2 with straight lines. The cos2θ

factor in acoustic pressure is nonetheless accounted for in all estimations of kL made
in § 4.

A further effect of non-compactness can be seen in the velocity dependence
of sound radiation. A compact source will lead to a U8 velocity dependence of
the acoustic intensity. But as non-compact effects become significant, the velocity
dependence changes, and may be other than a power law; indeed, the expression in
(3.7) is not a power law in the velocity. Figure 4(c) shows the velocity exponent, n,
of the acoustic intensity for M = 0.5, evaluated using (3.7). For this calculation we
assume constant Strouhal number and source extent, L/D. We note that a compact
wavepacket, with, for example kL = 1, has a velocity exponent close to 8 for all
angles; increases in L lead to higher velocity exponents, especially for lower axial
angles.

4. Experimental results and analysis

4.1. Mach 0.6 jet

Figure 5 shows the directivity of the Mach 0.6 jet for the measured angles, as well as
the contributions of the different azimuthal modes. The axisymmetric mode presents a
marked directivity towards the low axial angles. Indeed, there is a 7.8 dB increase in
the overall sound pressure level (OASPL) between 45◦ and 20◦. The other azimuthal
modes increase more gradually over 45◦ 6 θ 6 90◦, with a slope close that of the
axisymmetric mode in the same angular sector. For lower angles, modes 1 and 2 decay
with decreasing angle. Similar directivities for the azimuthal modes 0, 1 and 2 have
been observed in a large-eddy simulation of a Mach 0.9 jet (Cavalieri et al. 2011a).

Spectra for angles 20◦, 30◦ and 40◦ are shown in figure 6. The increase of mode 0
is mostly concentrated in the lower frequencies. For Strouhal numbers greater than 1
there is still a dominance in the total spectra of modes 1 and 2.

To evaluate the directivity of the spectral peak, the SPL for St = 0.2 is shown in
figure 7. We see that for this frequency there is an even higher directivity of mode 0,
with an increase of 15.4 dB between 45◦ and 20◦, i.e. a factor of 34 in the acoustic
intensity.
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FIGURE 7. SPL for St = 0.2 for the Mach 0.6 jet as a function of (a) θ and

(b) (1 − Mc cos θ)2.

As presented in § 3, models representing the wavepacket form of axisymmetric
coherent structures in jets predict an exponential change of sound intensity with
(1 − Mc cos θ)2. Figure 7(b) presents the SPL at St = 0.2 as a function of this
parameter, considering Mc to be equal to 0.6M; changes in Mc from 0.5 to 0.7
were seen to have little impact on the directivity shape. The constant slope in the
sector 20◦ 6 θ 6 45◦ indicates that there is indeed an exponential change. Furthermore,
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since these models are based on a line-source distribution, the radiated sound field is
axisymmetric. The comparison with the experimental mode 0 is thus justified.

The directivity shape of azimuthal modes 1 and 2 in figure 7 is shown in § 5 to
be compatible with a source constituted of helical wavepackets, which do not produce
superdirective radiation. Further discussion of the higher azimuthal modes is postponed
to § 5, where a model for the sound radiation by helical wavepackets is developed.

The superdirectivity observed for the axisymmetric mode is present for a range of
frequencies near the peak as can be seen in figure 8. We note that for 0.1 6 St 6 0.3
the directivity changes very little, and a linear fit made for St = 0.2 closely matches
the directivity for both St = 0.1 and St = 0.3. For higher frequencies, we note that
as the angle is increased, the SPL tends to the same exponential decay observed for
the peak frequency. As the frequency is increased, this decay is progressively less
significant: whereas a decay of 15.4 dB between 20◦ and 45◦ is observed for St = 0.2,
for St = 0.4 we have a decay of 10.7 dB, and for St = 0.6 we have 7.7 dB (now
between 25◦ and 45◦, for the maximum level is obtained for θ = 25◦). Although the
decay at higher St differs from that at St = 0.2, the high-frequency directivity remains
exponential, as seen in figure 9 for St = 0.4, 0.6 and 0.8, but with progressively lower
slopes. The deviations from the straight lines for low angles (20◦ and 25◦) that are
measured for higher frequencies may be due to propagation effects; this is discussed in
more detail in the following section.

The results of figure 8 and the mode-0 spectra shown in figure 6 suggest that the
results for St = 0.2 are representative of a range of frequencies around the spectral
peak.

4.2. Lower Mach numbers

The trends observed in the M = 0.6 jet were also found for the lower-Mach-number
flows. Figures 10 and 11 show spectra for M = 0.4 and M = 0.5, respectively. The
results are similar to the M = 0.6 jet. However, we note that as the Mach number
is reduced, the dominance of the axisymmetric mode at, say, θ = 20◦ or θ = 30◦

is decreased. This effect in the OASPL is shown in figure 12, and for the SPL at
St = 0.2 in figure 13. For convenience, we replot, in both figures, the results for the
M = 0.6 jet.

For M = 0.4 to M = 0.6, the SPL at St = 0.2 is shown as a function of
(1 − Mc cos θ)2 in figure 14. We note once more the same trends for all three
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FIGURE 9. Directivity for the axisymmetric mode as a function of (1 − Mc cos θ)2 for
(a) St = 0.2, (b) St = 0.4, (c) St = 0.6 and (d) St = 0.8.

Mach numbers, with an exponential decay of the acoustic intensity as a function
of (1 − Mc cos θ)2, indicating again the superdirectivity of the axisymmetric mode.

The behaviour observed at other frequencies is shown in figure 15 for M = 0.4 and
M = 0.5. The M = 0.6 results are repeated for convenience. We note that for the three
cases the directivity shapes for St = 0.1 and 0.3 closely follow the straight line fitted
for St = 0.2, showing that superdirectivity is present over a range of frequencies.
Moreover, as the Mach number decreases, a broader range of frequencies have
directivities close to that of the St = 0.2 component: the change of slope observed
with increasing St , shown in figure 9 for M = 0.6, is less significant at lower Mach
numbers.

Another feature of the directivity shapes in figure 15 is that for high frequencies
there is a departure from the superdirective behaviour, a reduction of SPL occurring
at the lower angles. This is especially marked for M = 0.6 at Strouhal numbers of
0.5 and above. For lower Mach numbers the effect is significantly reduced. A possible
explanation can be given in terms of propagation effects such as refraction by the
mean shear, which tends to decrease the sound at low polar angles, especially at higher
Mach number. This is not accounted for by the simplified model of (3.6) and (3.7),
which is based on Lighthill’s analogy. This point merits further study, but is outside
the scope of the present work.

Since the directivity for St = 0.2 is exponential between θ = 20◦ and θ = 45◦,
we can use the measured exponential decay rate to estimate the wavepacket axial
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M SPL(θ = 20◦) − SPL(θ = 45◦) (dB) kL L/D

0.4 13.2 6.50 3.10
0.5 14.1 6.34 3.03
0.6 15.4 6.40 3.06

TABLE 2. Estimation of source extent using the axisymmetric mode at St = 0.2.

extent, L/D, via the wavepacket Ansatz described in § 3 and an assumed value of
Uc/U = 0.6. A best fit of the experimental data then results in the estimated values of
L/D given in table 2.

The use of Crow’s wavepacket model results in a consistent estimation of L/D

for all three Mach numbers, with a value close to 3. In turn, this value of L/D

indicates that the wavepacket extends over an axial region of 6–8 jet diameters, similar
to the result shown in figure 4(a) for kL = 6 (setting Uc/U = 0.6 and St = 0.2,
λc = 3D). This modulation is such that three oscillations are present in the source;
i.e. there is significant axial interference, as discussed in § 3, leading to the observed
superdirectivity in the radiated sound field.

The above estimate of the axial source extent is in agreement with results reported
by Hussain & Zaman (1981), who educed, using phase-averaged measurements in a
jet excited at St = 0.3, a flow pattern comprising a train of three coherent structures,
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FIGURE 12. Directivity for (a) M = 0.4, (b) M = 0.5 and (c) M = 0.6.

characterized by regions of closed vorticity contours, and spanning a region of up
to 7 jet diameters from the nozzle exit. This also agrees with the experimental
observations of Tinney & Jordan (2008), who studied the near pressure field of
unforced coaxial jets, and found a subsonically convected wave extending up to 8
secondary jet diameters downstream of the nozzle exit. In their study, the first two
proper orthogonal decomposition (POD) modes of the near-field pressure had the
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M SPL(θ = 20◦) − SPL(θ = 45◦) (dB) kL L/D

0.4 11.8 5.94 1.42
0.5 11.8 5.48 1.31
0.6 10.7 4.75 1.13

TABLE 3. Estimation of source extent using the axisymmetric mode at St = 0.4.

M SPL(θ = 25◦) − SPL(θ = 45◦) (dB) kL L/D

0.4 8.8 5.18 0.82
0.5 8.3 4.50 0.72
0.6 7.7 3.92 0.62

TABLE 4. Estimation of source extent using the axisymmetric mode at St = 0.6.

M SPL(θ = 30◦) − SPL(θ = 45◦) (dB) kL L/D

0.4 6.1 4.38 0.46
0.5 5.1 3.16 0.42
0.6 4.1 1.81 0.29

TABLE 5. Estimation of source extent using the axisymmetric mode at St = 0.8.

shape of a sine and a cosine modulated by an envelope function comprising three
oscillation cycles.

The same estimation was performed using the directivities observed at St = 0.4, 0.6
and 0.8, and the results are shown in tables 3–5, respectively. For the Mach 0.4 jet
the estimated source extent for St = 0.4 is roughly half that estimated for St = 0.2.
Since the wavelength of the convected wave is also halved as the Strouhal number is
increased, this means that in this case the source also presents three spatial oscillations.
As the Mach number is increased the estimated values of L/D are reduced; however,
this does not mean that the source becomes compact, since we are still far from
the kL → 0 limit, as seen in § 3. Estimation of the source extent for St = 0.6 shows
similar trends to those observed at St = 0.4. The estimated values of L/D become
lower as the Mach number is increased, but the wave-like behaviour of the source is
preserved.

For St = 0.8 the source extent is substantially reduced at higher Mach number, and
for M = 0.6 we have a value of kL of 1.8, approaching the compact limit. However,
the apparent ‘cone of silence’ observed in this case (see figure 15) suggests that the
estimation of the source extent may be biased here by flow-acoustic effects.

4.3. Spectral shape for the different azimuthal modes

We now examine the scaling of the spectra with Mach number. Figures 16 and
17 show, respectively for the axisymmetric and first azimuthal mode, the spectra
normalized by their maximum values, and plotted versus either Strouhal number,
fD/U, or Helmholtz number, fD/c. The spectra of the axisymmetric component of the
sound field collapse better when plotted as a function of Helmholtz number, whereas
azimuthal mode 1 collapses better when plotted as a function of Strouhal number.



404 A. V. G. Cavalieri, P. Jordan, T. Colonius and Y. Gervais

–30

–25

–20

–15

–10

–5

0

1.00.1 10.0

S
P

L
 (

ar
b
it

ra
ry

 d
B

)

–35

(a) 5

–30

–25

–20

–15

–10

–5

0

1.0
–35

5(b)

0.1

FIGURE 16. Spectral shapes for azimuthal mode 0 and θ = 30◦ as a function of (a) Strouhal
number and (b) Helmholtz number.

–30

–25

–20

–15

–10

–5

0

1.00.1 10.0

S
P

L
 (

ar
b
it

ra
ry

 d
B

)

–35

(a) 5

–30

–25

–20

–15

–10

–5

0

1.0
–35

5(b)

0.1

FIGURE 17. Spectral shapes for azimuthal mode 1 and θ = 30◦ as a function of (a) Strouhal
number and (b) Helmholtz number.

The Helmholtz number is related to the source compactness, as He = D/λ, where
λ is the acoustic wavelength. If the source extent is comparable to the acoustic
wavelength, the Helmholtz number will play a significant role, for it is a measure
of the interference effects from the different parts of the source; discussion of the
significance of the Helmholtz number for aeroacoustic applications can be found in
the work of Fuchs & Armstrong (1978). The scaling of the axisymmetric mode with
the Helmholtz number suggests again that the non-compactness of the source plays
an important role in the radiation of sound to low axial angles. The scaling of low-
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angle spectra with Helmholtz number (without separation into azimuthal modes) has
been observed previously by Lush (1971), Tanna (1977) and Viswanathan (2004). We
show here that as the axisymmetric mode accounts for most of the radiation at these
angles, the He scaling in the total spectrum is predominantly due to the axisymmetric
component. On the other hand, the Strouhal number scaling found, for instance at 90◦

to the jet axis, can be related to the mode-1 scaling with St , seen in figure 17(a), as at
higher angles the axisymmetric radiation is no longer dominant.

4.4. Velocity dependence of the sound radiation for each azimuthal mode

Close examination of figure 12 shows that the velocity dependence of the OASPL at
each angle is not the same for the different azimuthal modes. Such variations are also
observed in the SPL for St = 0.2, shown in figure 13. In order to evaluate this velocity
dependence as a function of both θ and azimuthal mode, we performed fits of both
OASPL and SPL for St = 0.2 as

OASPL(dB)(m, θ) = a(m, θ) + 10n(m, θ)log10(M), (4.1)

SPL(dB/St)(m, θ) = a(m, θ) + 10n(m, θ)log10(M), (4.2)

respectively, to obtain velocity scalings of the sound radiation, as in previous work
(Zaman & Yu 1985; Viswanathan 2006; Bogey et al. 2007). This was done for the
total values of OASPL and SPL, and also for the individual contributions of azimuthal
modes 0, 1 and 2. Results are shown in figure 18.

The velocity exponents for OASPL shown in figure 18(a) do not show clear trends
among the different azimuthal modes for higher angles. However, we note that for low
angles the mode-0 exponent is higher than both those of the other azimuthal modes
and of the total spectrum. If we extrapolate these trends for higher Mach numbers, we
can expect that for low angles the mode-0 dominance in OASPL will be even more
pronounced.

Considering the velocity dependence of SPL for St = 0.2 alone, shown in
figure 18(b), these effects are even more marked, the velocity exponent of the
axisymmetric mode for low angles being considerably higher than that of the other
modes. This, as shown in § 3, is another indication of non-compactness of the source.

Naive use of the values obtained for n for St = 0.2 to estimate the source length
based on the wavepacket model of § 3 leads to a source extent of L/D ≈ 1.5 (source
extent of 3–4 jet diameters) which is roughly half that estimated in § 4.3 based on
the directivity. However, the derivation of the velocity exponent with the Crow (1972)
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wavepacket model assumes that the source extent and maximum amplitude do not

change with increasing Mach number, and it also assumes a constant ratio between

convection and jet speeds. Moreover, compressibility affects the development of the

velocity fluctuations as a function of Mach number (see Lele 1994 and references

therein for studies on compressible mixing layers). Linear stability theory also predicts

lower growth rates as the Mach number is increased (see, for instance, reviews by

Michalke (1984) and Morris (2010)).

Velocity spectra on the jet centreline are shown in figure 19(a,b) for x = 2D

and x = 4D. The centreline spectrum is chosen to highlight the axisymmetric mode

of the velocity fluctuations. In stability theory the boundary conditions on the jet

centreline are of zero transverse velocity and arbitrary finite streamwise velocity for

m = 0, and zero streamwise velocity for all higher-order azimuthal modes (Batchelor

& Gill 1962); therefore, we expect the centreline spectrum to be representative of

the axisymmetric mode; indeed, such measurements have been used in the past for

comparison with stability results (Crow & Champagne 1971; Michalke 1971; Crighton

& Gaster 1976).

We see that for both axial positions the amplitude of the velocity fluctuations,

when normalized by the jet velocity, decreases as the Mach number is increased.

This can be attributed to the lower growth rate predicted by stability theory for

higher Mach numbers, since the differences in the mean velocity profiles are slight

(see figure 1) and could not cause such a significant effect. The reduction of the

normalized amplitude for higher Mach numbers was also observed by Armstrong,

Fuchs & Michalke (1977) and Suzuki & Colonius (2006) in experimental results for

the near-field pressure. On the other hand, for the velocity spectra on the jet lipline,

shown in figure 19(c), the results for the three Mach numbers collapse. The variation

of the Mach number from 0.4 to 0.6 therefore has a significant effect on the evolution

of the axisymmetric mode, but no detectable effect on the full jet turbulence.

This suggests that in order to appropriately account for the velocity dependence in

the axisymmetric wavepacket model of § 3, one should account for the reduction of the

normalized amplitude ûx/U as the Mach number is increased, leading to lower velocity

exponents than the results of figure 4(c). To perform an estimation of the source extent

that accounts for compressibility effects in the evaluation of n, we have plotted in

figure 20 the power spectral density for the centreline velocity for St = 0.2. We note

that the decrease in the power can be roughly approximated by the straight line in the

figure with a slope of −1.8. Using this expression in the evaluation of the velocity

exponent n of the sound radiation of Crow’s wavepacket model we obtain the results

shown in figure 20(b). The exponents for kL = 6 are close to the experimental values

in the angular range 20◦ 6 θ 6 45◦ where superdirectivity was observed, consistent

with the value of kL educed from the directivity in § 4.2.

Although the use of a velocity exponent n is useful to scale jet data at different

Mach numbers and predict the increase of sound level as the jet velocity increases, it

should be noted that non-compact sources, such as are described by the wavepacket

model of (3.7), lead to a velocity dependence for the sound intensity that departs from

a Un form. As the Mach-number range of the present tests is not comprehensive, a

conclusive answer is not at present available regarding the precise form of the velocity

dependence for the different azimuthal modes. Deviations from a Un law can be seen

in the results of Lush (1971), which spanned Mach numbers from 0.3 to 1.



Axisymmetric superdirectivity in subsonic jets 407

(a)

10–4

10–5

10–6

10–7

10–3

10–2

(b)

(c)

10–4

10–5

10–6

10–7

10–3

10–2

10–4

10–5

10–6

10–7

10–3

10–2

10–8

10–1

10–1 10010–2 101

10–1 10010–2 101

10–1 10010–2 101
10–8

10–1

10–8

10–1
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5. Sound radiation by helical wavepackets

The far-field sound radiation from a given azimuthal mode of the Txx component of

Lighthill’s stress tensor, derived in appendix B, is

p(R, θ, m, ω) = − imk2
acos2θe−ikaR

2R

∫
eikax cos θ dx

∫
Txx(x, r, m, ω)

× Jm(kar sin θ)r dr. (5.1)

The line-source approximation, used in the analysis of the preceding section, and

derived in appendix B for the axisymmetric mode, cannot be applied for the other

azimuthal modes. The reason is the presence of sin θ in the argument of the Bessel

function in (5.1); even though equivalent line sources can be obtained after the radial
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integration, a different line distribution is obtained for each polar angle, and hence no
single line source is valid for all θ .

Another difference when we evaluate the sound radiation for a helical mode is
that the radial distribution of fluctuations plays a significant role, even for small
frequencies and Mach numbers. The Bessel functions of first kind of order m

are proportional to xm for low x; thus, for the axisymmetric mode they can be
approximated as constant, whereas for the other azimuthal modes their precise shape
will influence the result of the radial integral in (5.1). Moreover, the assumption that
the axial velocity fluctuations do not change radially, used in Crow’s model, can
only be used for the axisymmetric mode, since for helical modes the axial velocity
fluctuation on the jet centreline is zero (Batchelor & Gill 1962).

In order to obtain the directivity of the sound radiated by the helical modes, we
consider the radial structure of Txx, modelling it as

Txx(x, r, m, ω) = 2ρ0ūx(r) ûx(r, m, ω)e−ikxe−x2/L2
, (5.2)

where ūx(r) was taken as the mean velocity profile at x = D, and the velocity
fluctuations ûx(r, m, ω) were modelled as linear instability waves of frequency ω

and azimuthal mode m. A linear spatial stability analysis is performed, based on a
parallel shear flow whose mean velocity profile is that measured at x = D, and the
most unstable mode used in order to model the radial structure of the source. Radial
distributions of velocity fluctuations obtained in this way have previously been seen to
closely match experimental results for forced jets (Cohen & Wygnanski 1987; Petersen
& Samet 1988), and there is evidence of similar agreement of instability wave models
for unforced jets (Gudmundsson & Colonius 2011).

The linear spatial instability calculation was performed assuming parallel,
compressible, inviscid flow, as in Michalke (1984). Numerical results were obtained
with a Runge–Kutta integration in a shooting procedure, and the present results were
seen to reproduce growth rates and convection velocities of the cited paper. Radial
eigenfunctions so obtained are shown in figure 21. The eigenfunctions have a near-
zero amplitude close to the jet lipline. This low amplitude is seen in figure 21(b) to
correspond to a position where the phase has an jump of π. The two sides of the jet
mixing layer present a phase opposition for the axial velocity, a feature observed in
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Azimuthal mode Uc/U kL

0 0.97 6.0
1 0.72 3.3
2 0.63 2.3

TABLE 6. Wavepacket parameters for M = 0.6 and St = 0.2.

forced jets (Cohen & Wygnanski 1987; Petersen & Samet 1988), but also in natural,

turbulent jets (Lau, Fisher & Fuchs 1972).

The source defined in (5.2) was used in (5.1) to obtain the radiated sound field for

azimuthal modes 0, 1 and 2 as

p(R, θ, m, ω) = − imρ0k2
acos2θe−ikaR

R

∫
exp[i(kax cos θ − kx) − x2/L2] dx

×
∫

ūx(r)ûx(r, m, ω)Jm(kar sin θ)r dr. (5.3)

The convection wavenumber k was taken as the real part of the wavenumber

predicted by the stability calculation. Equation (5.2) has two parameters: a free

amplitude for ûx(r, m, ω) and the wavepacket characteristic length L. The free

amplitude was determined so as to match the SPL values at θ = 30◦, and L was

chosen to provide the best agreement with the other angles. Results are presented in

figure 22, and the wavepacket parameters summarized in table 6. The calculated sound

radiation of the wavepackets closely fits the directivity shape in the experiment for the

three azimuthal modes.

The determination of kL for the axisymmetric mode, which was done in § 4.2, is

repeated here, and despite the difference between the convection speed assumed in

§ 4.2 (0.6 times the jet velocity) and the value predicted by instability theory at x = D

(0.97U) there is little change in the estimated value of kL (compare with table 2),
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showing that the conclusions of § 4 do not depend on the assumption of a particular
value for the convection velocity.

Figure 22 also illustrates the changes in the directivity as a function of the azimuthal
mode. As m is increased, for low θ the function Jm(kr sin θ) causes a ‘cut-off’ of the
radiated sound. This cut-off is due to the azimuthal interference in the source. In the
limit θ = 0 only the axisymmetric mode radiates to the far field (Michalke & Fuchs
1975), since Jm(0) is equal to 1 for m = 0 and 0 for all other m.

The azimuthal interference for the helical modes causes the sound field to lose its
superdirective behaviour for higher m, with increasing cut-off with m. It is thus not
surprising that superdirectivity was verified only for the axisymmetric mode, as shown
in § 4. The results show however, again, that with appropriately chosen parameters the
directivity shape is very closely matched by a wavepacket model.

Finally, we note that the spatial extents estimated for both helical wavepackets are
significantly lower than that of the axisymmetric component. Although values of kL

around 3, as in table 6 for m = 1, still correspond to non-compact sources (see § 3),
their influence on the radiated sound is lower than for the axisymmetric mode, which
may explain the Strouhal-number scaling observed in § 4.3 for m = 1.

To study the influence of axial non-compactness of the estimated wavepackets on
the sound radiation, we have included in figure 22 dashed lines with the results for an
axially compact source. We see that for m = 0 and m = 1 the axial extent of the source
is significant for sound radiation, and neglect of it leads to errors in the directivity
shape, particularly for the axisymmetric mode, as discussed in § 4. However, for m = 2
the low value of kL is such that the differences between the wavepacket model and a
compact source are quite small, and axial interference does not play a significant role
in this case.

Results of the sound radiation by helical wavepackets for other values of the
Strouhal and Mach numbers are shown in figures 23 and 24, for azimuthal modes
1 and 2, respectively. In each calculation the radial eigenfunction of linear instability
corresponding to the values of St and M was used. As before, the free amplitude of
ûx is determined so as to match the radiated sound for θ = 30◦, and the value of L is
chosen to match the directivity shape. However, we kept the same value of kL for the
three Mach numbers to constrain the model, avoiding an excess of parameters to fit the
experiments. The values of kL for Strouhal numbers of 0.2, 0.4 and 0.6 are shown in
table 7 for azimuthal modes 1 and 2.
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FIGURE 23. Comparison of experimental results with sound radiation from wavepacket
models for azimuthal mode 1 and (a) St = 0.2, (b) St = 0.4 and (c) St = 0.6.

Azimuthal mode kL(St = 0.2) kL(St = 0.4) kL(St = 0.6)

1 3.3 2.8 2.6
2 2.3 2.1 1.9

TABLE 7. Wavepacket parameters for the three Mach numbers in figures 23 and 24.

The results in figures 23 and 24 are close to the experimental results and present the
same trends of the measurements. This confirms that the sound radiation at low angles
for a range of Strouhal and Mach numbers has the directivity of helical wavepackets.
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FIGURE 24. Comparison of experimental results with sound radiation from wavepacket
models for azimuthal mode 2 and (a) St = 0.2, (b) St = 0.4 and (c) St = 0.6.

6. Conclusion

An experimental investigation of the azimuthal components of the sound radiated by
subsonic jets in the Mach number range 0.35 6 M 6 0.6 has been carried out using a
ring array comprising six microphones. For this Mach-number range the axisymmetric
mode is seen to be highly directive, large increases in intensity being observed as the
angle to the downstream jet axis is decreased. This trend is more marked for the peak
frequencies. The observed increase is such that the axisymmetric mode dominates the
sound radiation for low polar angles.

An exponential change of SPL with the parameter (1 − Mc cos θ)2 is predicted
by wavepacket models, using an axially non-compact source distribution. The non-
compactness leads to interference between different regions of the source; the sound
radiation is, as a result, concentrated at low angles, and, for subsonic convection
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velocities, decreases exponentially as (1 − Mc cos θ)2 is increased. This effect has been
observed for the axisymmetric mode, a decay of 15.4 dB being seen for the peak
frequency. With this value, and a wavepacket Ansatz, the axial extent of the source has
been estimated to be of the order of 6–8 jet diameters for the M = 0.4, 0.5 and 0.6
jets. Further evidence of the importance of the non-compactness of the source for the
axisymmetric mode is observed in a Helmholtz scaling of the axisymmetric mode and
in a velocity dependence with an exponent of 9.6 for low angles.

The analysis is extended to include higher-order azimuthal modes, and a model
is proposed for sound radiation to low polar angles by helical wavepackets. The
superdirective radiation, characteristic of the axisymmetric mode, is changed due to the
azimuthal interference in the source, which reduces the radiation for low θ . The model
presents favourable comparisons with measurements for modes 1 and 2, showing that
the sound field for helical modes also corresponds to wavepacket radiation. However,
the educed source extents are decreased for higher azimuthal modes, and, for mode 2,
are close to the compact limit.

Since the present Mach-number range is below most aeronautical applications, it is
useful to evaluate the trends with increasing M. Recalling that the velocity exponent
n in (4.1) and (4.2) and in figure 18 reflects the increment of the radiated sound as
M is increased, the observations in the present work allow the following scenario to
be postulated with regard to the effect of increasing jet Mach number on the radiated
sound.

(a) As the jet Mach number is increased, the sound radiation of the axisymmetric
mode grows faster than the sound field of the higher-order modes (figure 18a).

(b) The increase in the axisymmetric radiation is even more pronounced near the
spectral peak (figure 18b).

(c) The velocity increase therefore causes the sound radiation at low angles to be
dominated by the axisymmetric mode, especially at the peak Strouhal number.

These trends suggest that at higher subsonic Mach numbers the observed
axisymmetric radiation will have increased importance. Furthermore, the results
suggest that the axisymmetric radiation can be appropriately modelled if, instead of
considering the turbulent field to be formed by stochastic eddies with random phase
(Lee & Ribner 1972; Crighton 1975), the axial interference over a non-compact source
region is taken into account (see for instance Michalke 1970; Michel 2009). Some
of the shortcomings in acoustic analogies may be overcome if we use appropriate
source models for the large-scale structures in jets, accounting for axially extended
wavepackets such as we have studied here.

For modelling purposes, we can think of the axial source interference in two ways,
which are not mutually exclusive. The first is in an average sense: we look for an
averaged mutual interference between the different positions of a jet, and particularly
for its average effect in the sound field. For this evaluation, correlations and cross-
spectra are appropriate measures, and, especially in the near field, as shown by Tinney
& Jordan (2008) and Reba et al. (2010), these prove to be significant over a region
extending several jet diameters from the nozzle exit. Furthermore, since for many
practical applications determination of the radiated spectra is sufficient, this can be
accomplished by coupling such correlation data with an acoustic analogy, as done,
for example, by Karabasov et al. (2010), among others, or with a Kirchhoff surface,
as shown by Reba et al. (2010). For such an approach, stability calculations may
constitute an appropriate dynamic model, and indeed it has been shown that reasonable
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predictions can be obtained for the radiated sound at low angles (Colonius, Samanta &
Gudmundsson 2010).

A second approach for studying such source interference effects involves an
instantaneous perspective. Since a turbulent jet is intermittent, source interference
changes with time. This leads to periods when the interference is destructive, during
which we have periods of ‘relative quiet’; or periods during which the destructive
interference may be less significant, resulting in high-energy temporally localized
bursts in the acoustic field (Hileman et al. 2005; Kœnig et al. 2010). Experimental
evaluation of the instantaneous interference between coherent structures in a flow is
not an easy task, but such endeavours appear worthwhile considering the additional
physical insight to be gained in terms of the dynamic law of jet noise source
mechanisms. Furthermore, as seen by Cavalieri et al. (2010), the details of the mutual
interference in the source region can be crucial for the understanding of differences
between uncontrolled, noisy flows and their controlled, quieter counterparts.
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Appendix A. Azimuthal decomposition of the acoustic field

A.1. Definitions

We present here the azimuthal Fourier series applied for the far-field pressure. The
coefficients of a Fourier series in Φ are given by

p(R, θ, m, t) = 1

2π

∫
π

−π
p(R, θ,Φ, t)eimΦ dΦ, (A 1)

and the reconstruction of the pressure signal is

p(R, θ,Φ, t) =
∞∑

m=−∞
p(R, θ, m, t)e−imΦ (A 2)

with the property

p(R, θ,−m, t) = p∗(R, θ, m, t) (A 3)

since the pressure is a real-valued function.
In particular, we have for Φ = 0 the reconstruction

p(R, θ,Φ = 0, t) =
∞∑

m=−∞
p(R, θ, m, t), (A 4)

and each azimuthal component is given by

p0(R, θ,Φ = 0, t) = p(R, θ, m = 0, t), (A 5)

pm(R, θ,Φ = 0, t) = p(R, θ, m, t) + p(R, θ,−m, t) if m 6= 0. (A 6)

The azimuthal components pm so defined are real-valued. The use of Φ = 0 for the
reconstruction is without loss of generality due to the circumferential homogeneity of
the acoustic field of axisymmetric jets.
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A.2. Evaluation of the accuracy of the Fourier series

In the present work we have used a ring of six microphones in the far field to
determine the azimuthal Fourier modes of the acoustic pressure. In order to evaluate if
the spacing of ϕ = 60◦ between microphones is appropriate, we evaluate the coherence
function

C(ϕ, ω) = |W(ϕ, ω) |2
Spp(Φ0, ω)Spp(Φ0 + ϕ, ω)

(A 7)

where Spp is the power spectral density of a single microphone and W is the cross-
spectral density between two microphones spaced azimuthally by ϕ, given as

W(ϕ, ω) = p̂(Φ, ω)p̂∗(Φ + ϕ, ω), (A 8)

where averaging between Fourier transforms of segments of the time series is implicit,
and the spherical coordinates R and θ have been dropped for compactness.

The relationship between the coherence function and the azimuthal Fourier series
can be obtained as follows. Using (A 2), the spatio-temporal correlation of two
microphones spaced by ϕ with a time lag of τ can be written as

p(Φ, t)p(Φ + ϕ, t + τ) =
∞∑

m=0

pm(t)pm(t + τ) cos(mϕ) (A 9)

since the correlation function is even in ϕ and does not depend on Φ due to the
circumferential homogeneity of the jet.

We take the temporal average of both sides and use the correlation theorem to
obtain

p̂(Φ, ω)p̂∗(Φ + ϕ, ω) =
∞∑

m=0

|p̂m(ω)|2 cos(mϕ) (A 10)

such that p̂m(ω) can be obtained by the cross-spectral density as

|p̂0(ω)|2 = 1

2π

∫ 2π

0

p̂(Φ, ω)p̂∗(Φ + ϕ, ω) dϕ, (A 11)

|p̂m(ω)|2 = 1

π

∫ 2π

0

p̂(Φ, ω)p̂∗(Φ + ϕ, ω) cos(mϕ) dϕ if m 6= 0. (A 12)

Now consider that the integral is calculated numerically; for instance, (A 12) is
approximated as

|p̂m(ω)|2 = 1

2π

∑
ϕ

p̂(Φ, ω)p̂∗(Φ + ϕ, ω) cos(mϕ)1ϕ. (A 13)

If the coherence function is zero for all but ϕ = 0 for some frequency ω, the
microphone spacing is smaller than the azimuthal coherence length. In this case, the
result will be

|p̂0(ω)|2 = 1

2π
|p̂(Φ, ω)|2 1ϕ (A 14)

and

|p̂m(ω)|2 = 1

π

|p̂(Φ, ω)|2 1ϕ if m 6= 0 (A 15)
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FIGURE 25. Coherence between microphones with azimuthal spacing of ϕ = 60◦ for
(a) θ = 20◦ and (b) θ = 30◦.

for all m, which is not an accurate result: a uniform distribution in azimuthal modes is
obtained only for a function with zero azimuthal coherence length, but for all physical
quantities this length will be finite. This result is only an artifact of the azimuthal
spacing. Hence, to obtain meaningful results for the azimuthal Fourier series, the
coherence should be non-zero for the microphone spacing ϕ.

Coherence results are shown in figure 25 for θ = 20◦ and 30◦. We see that for
both polar angles the coherences are significant for Strouhal numbers up to 1, and
decay to zero for St ≈ 2. This validates the analysis in §§ 4 and 5, done mostly for
Strouhal numbers lower than unity. However, care should be taken in analysing higher
frequencies, which we avoid in the present work. For such a task an azimuthal ring
with a larger number of microphones would be necessary.

Appendix B. The line-source approximation for low-angle radiation

The purpose of the present Appendix is to show, using Lighthill’s analogy, the steps
that allow the solution of the radiated sound at low polar angles to be expressed, in
certain cases, as the radiation by a line source, such as the Crow’s model in (3.6).

The solution of Lighthill’s equation for the pressure p in the frequency domain is
given in x as

p(x, ω) =
∫∫∫

∂2Tij

∂yi∂yj

(y, ω)
exp(−ika|x − y|)

4π|x − y| dy, (B 1)

where ka = ω/c is the acoustic wavenumber and a time factor of exp(iωt) is implied.
If we are interested in the radiation to low polar angles, we can consider the T11

term of Lighthill’s tensor alone as a first approximation. It can be shown that only the
quadrupoles aligned with the radiation direction generate sound in the far acoustic field
(Crighton 1975), and for low angles these quadrupoles can be approximated by the
T11 term. Another reason is that while the velocity fluctuations in the three directions
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have similar amplitudes in a jet, the mean streamwise velocity is more than an order
of magnitude higher than the transverse components. The use of T11 alone to calculate
sound radiation for low angles was used in the models of Cavalieri et al. (2011b), and
led to good agreement with results of a large-eddy simulation.

We rewrite the source in cylindrical coordinates (x, r, φ) and the observer in
spherical coordinates (R, θ,Φ). The far-field approximation gives a distance between
source and observer equal to R − x cos θ − r sin θ cos(φ − Φ), leading to

p(R, θ,Φ, ω) = 1

4πR

∫∫∫
∂2Txx

∂x2
(x, r, φ, ω)

× exp[−ika(R − x cos θ − r sin θ cos(φ − Φ))]r dx dr dφ. (B 2)

The double derivative can be passed from Lighthill’s tensor to the Green’s function,
as shown, for instance, by Goldstein (1976). This gives

p(R, θ,Φ, ω) = 1

4πR

∫∫∫
Txx(x, r, φ, ω)

× ∂2

∂x2
[exp[−ika(R − x cos θ − r sin θ cos(φ − Φ))]]r dx dr dφ. (B 3)

The azimuthal dependence of Txx can be expanded in an azimuthal Fourier series.
Taking the mode m of Txx leads to

p(R, θ,Φ, ω) = 1

4πR

∫∫∫
Txx(x, r, m, ω)e−imφ

× ∂2

∂x2
[exp[−ika(R − x cos θ − r sin θ cos(φ − Φ))]]r dx dr dφ, (B 4)

which can be manipulated to give

p(R, θ,Φ, ω) = e−imΦ

4πR

∫∫∫
Txx(x, r, m, ω)e−im(φ−Φ)

× ∂2

∂x2
[exp[−ika(R − x cos θ − r sin θ cos(φ − Φ))]]r dx dr dφ. (B 5)

Integration in cylindrical coordinates gives

p(R, θ,Φ, ω) = e−imΦ
e−ikaR

4πR

∫
dx

∫
Txx(x, r, m, ω)

∂2

∂x2
[ei(kax cos θ)]r dr

×
∫

e−im(φ−Φ) exp[ikar sin θ cos(φ − Φ)] dφ. (B 6)

From the integral representation of the Bessel functions Jm with integer m (Morse &
Ingard 1968)

Jm(x) = 1

2πim

∫ 2π

0

eix cos φ cos(mφ) dφ, (B 7)

we can deduce the azimuthal integral to be equal to 2πimJm(kar sin θ). This leads to

p(R, θ,Φ, ω) = −e−imΦ
imk2

acos2θe−ikaR

2R

∫
eikax cos θ dx

∫
Txx(x, r, m, ω)

× Jm(kar sin θ)r dr. (B 8)
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In (B 8) we see that an azimuthal mode m of Txx leads to an e−imΦ factor in the
radiated pressure, showing that there is a direct correspondence between the azimuthal
modes in the source and in the acoustic field, such that

p(R, θ, m, ω) = − imk2
acos2θe−ikaR

2R

∫
eikax cos θ dx

∫
Txx(x, r, m, ω)

× Jm(kar sin θ)r dr (B 9)

where p(R, θ, m, ω) is the coefficient of azimuthal mode m of the radiated pressure.
For the axisymmetric mode, (B 9) gives

p(R, θ, m = 0, ω) = −k2
acos2θe−ikaR

2R

∫
eikax cos θ dx

∫
Txx(x, r, m = 0, ω)

× J0(kar sin θ)r dr. (B 10)

If kar sin θ ≪ 1, we can make a further approximation by taking J0(kar sin θ) to be 1
(more precisely, since J0(x) ≈ 1 − x2/4 for small x, the approximation of J0(kar sin θ)

as 1 is reasonable if k2
ar2sin2θ/4 ≪ 1). Noting that

kar sin θ = 2πStM
r

D
sin θ (B 11)

and considering that the radial integration in (B 8) has significant values for values of
r not much larger than D, the approximation of J0(kar sin θ) as 1 is reasonable for low
values of the radiation angle and of the Strouhal and Mach numbers.

The far-field pressure is then given as

p(R, θ, m = 0, ω) = −k2
acos2θe−ikaR

2R

∫
eikax cos θdx

∫
Txx(z, r, m = 0, ω)r dr, (B 12)

and the axisymmetric source can be approximated as a line distribution of quadrupoles
with intensity

Sxx(x, m = 0, ω) =
∫

Txx(x, r, m = 0, ω)r dr. (B 13)

This or similar approximations have been used in a number of works in the literature
(Crow 1972; Ffowcs Williams & Kempton 1978; Cavalieri et al. 2011b). The far-field
pressure is given as

p(R, θ, m = 0, ω) = −k2
acos2θe−ikaR

2R

∫
Sxx(x, m = 0, ω)e−ikax cos θ dx. (B 14)
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JUVÉ, D., SUNYACH, M. & COMTE-BELLOT, G. 1979 Filtered azimuthal correlations in the
acoustic far field of a subsonic jet. AIAA J. 17, 112.

KARABASOV, S., AFSAR, M. Z., HYNES, T. P., DOWLING, A. P., MCMULLAN, W. A., POKORA,
C. D., PAGE, G. J. & MCGUIRK, J. J. 2010 Jet noise: acoustic analogy informed by large
eddy simulation. AIAA J. 48 (7), 1312–1325.

KŒNIG, M., CAVALIERI, A. V. G., JORDAN, P., DELVILLE, J., GERVAIS, Y., PAPAMOSCHOU, D.,
SAMIMY, M. & LELE, S. K. 2010 Farfield pre-filterering and source-imaging for the study of
jet noise. In 16th AIAA/CEAS Aeroacoustics Conference and Exhibit. Stockholm, Sweden.

LAU, J. C., FISHER, M. J. & FUCHS, H. V. 1972 The intrinsic structure of turbulent jets. J. Sound
Vib. 22 (4), 379–384.

LAUFER, J. & YEN, T.-C. 1983 Noise generation by a low-Mach-number jet. J. Fluid Mech. 134,
1–31.

LEE, H. K. & RIBNER, H. S. 1972 Direct correlation of noise and flow of a jet. J. Acoust. Soc. Am.
52, 1280.

LELE, S. K. 1994 Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26 (1), 211–254.

LIGHTHILL, M. J. 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond.
A 211 (1107), 564–587.

LUSH, P. A. 1971 Measurements of subsonic jet noise and comparison with theory. J. Fluid Mech.
46 (3), 477–500.



420 A. V. G. Cavalieri, P. Jordan, T. Colonius and Y. Gervais

MANKBADI, R. & LIU, J. T. C. 1984 Sound generated aerodynamically revisited: large-scale
structures in a turbulent jet as a source of sound. Phil. Trans. R. Soc. Lond. A 311 (1516),
183–217.

MICHALKE, A. 1970 A wave model for sound generation in circular jets. Tech. Rep. Deutsche Luft-
und Raumfahrt.

MICHALKE, A. 1971 Instabilitat eines Kompressiblen Runden Freistrahls unter Berucksichtigung des
Einflusses der Strahlgrenzschichtdicke. Z. Flugwiss. 19, 319–328; English translation: NASA
TM 75190, 1977.

MICHALKE, A. 1972 An expansion scheme for the noise from circular jets. Z. Flugwiss. 20,
229–237.

MICHALKE, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159–199.

MICHALKE, A. & FUCHS, H. V. 1975 On turbulence and noise of an axisymmetric shear flow.
J. Fluid Mech. 70, 179–205.

MICHEL, U. 2009 The role of source interference in jet noise. In 15th AIAA/CEAS Aeroacoustics
Conference (30th Aeroacoustics Conference), pp. 1–15.

MOLLO-CHRISTENSEN, E. 1963 Measurements of near field pressure of subsonic jets. Tech. Rep.
Advisory Group for Aeronautical Research and Development, Paris, France.

MOLLO-CHRISTENSEN, E. 1967 Jet noise and shear flow instability seen from an experimenter’s
viewpoint (Similarity laws for jet noise and shear flow instability as suggested by
experiments). Trans. ASME: J. Appl. Mech. 34, 1–7.

MOORE, C. J. 1977 The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 80
(2), 321–367.

MORRIS, P. J. 2010 The instability of high speed jets. Intl J. Aeroacoust. 9 (1), 1–50.

MORSE, P. M. & INGARD, K. U. 1968 Theoretical Acoustics. McGraw-Hill.

PETERSEN, R. A. & SAMET, M. M. 1988 On the preferred mode of jet instability. J. Fluid Mech.
194, 153–173.

REBA, R., NARAYANAN, S. & COLONIUS, T. 2010 Wave-packet models for large-scale mixing
noise. Intl J. Aeroacoust. 9 (4), 533–558.

SANDHAM, N. D., MORFEY, C. L. & HU, Z. W. 2006 Sound radiation from exponentially growing
and decaying surface waves. J. Sound Vib. 294 (1), 355–361.

SUZUKI, T. & COLONIUS, T. 2006 Instability waves in a subsonic round jet detected using a
near-field phased microphone array. J. Fluid Mech. 565, 197–226.

TANNA, H. K. 1977 An experimental study of jet noise. Part I. Turbulent mixing noise. J. Sound
Vib. 50 (3), 405–428.

TINNEY, C. E. & JORDAN, P. 2008 The near pressure field of co-axial subsonic jets. J. Fluid Mech.
611, 175–204.

TUTKUN, M., GEORGE, W. K., FOUCAUT, J. M., COUDERT, S., STANISLAS, M. & DELVILLE, J.
2009 In situ calibration of hot wire probes in turbulent flows. Exp. Fluids 46 (4), 617–629.

VISWANATHAN, K. 2004 Aeroacoustics of hot jets. J. Fluid Mech. 516, 39–82.

VISWANATHAN, K. 2006 Scaling laws and a method for identifying components of jet noise. AIAA J.
44 (10), 2274.

ZAMAN, K. B. M. Q. & YU, J. C. 1985 Power spectral density of subsonic jet noise. J. Sound Vib.
98 (4), 519–537.


