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The physical mechanisms for vortex breakdown which, it is proposed here, rely on 
the production of a negative azimuthal component of vorticity, are elucidated with 
the aid of a simple, steady, inviscid, axisymmetric equation of motion. Most studies 
of vortex breakdown use as a starting point an equation for the azimuthal vorticity 
(Squire 1960), but a departure in the present study is that it is explored directly and 
not through perturbations of an initial stream function. The inviscid equation of 
motion that is derived leads to a criterion for vortex breakdown based on the 

generation of negative azimuthal vorticity on some stream surfaces. Inviscid 
predictions are tested against results from numerical calculations of the Navier- 

Stokes equations for which breakdown occurs. 

1. Introduction 

The attraction of the confined swirling flow of Part 1 (Lopez 1990; see also Lopez 
1988) for a study of vortex breakdown is that the flow is defined by only four 
variables, H ,  R, B and v (respectively the height and radius of the cylinder, angular 
velocity and kinematic viscosity), each of which, in an experiment, can be very 
accurately determined. Similarly, from a numerical point of view, the flow is confined 
in a fixed volume with very well-defined boundary conditions. It was hoped that if 
numerical solutions for various H I R  and Reynolds number Re = BR2/v could be 
obtained which very accurately predicted the resulting flow in such a well-defined 
experiment then the physical mechanisms of vortex breakdown could be elucidated 
from these solutions and, further, that these mechanisms might be generalized to the 
swirling flows of more practical significance in pipes and in a free stream. 

Many features of vortex breakdown have been well.recognized and the early works 
of Squire (1960) and Benjamin (1962) have been the starting point for many 
subsequent studies. These have led to postulated criteria for vortex breakdown based 
on the ratio of an axial to an azimuthal component of velocity (e.g. Squire 1960; 
Benjamin 1962; Keller, Egli & Exley 1985; and Spall, Gatski & Gresch 1987). A 
departure in the present study from these formulations is that the numerical 
solutions are explored not from a consideration of perturbations to an initial stream 
function but more directly from the development of the azimuthal component of 
vorticity. This leads to a criterion for a recirculation region based on the relationship 
between the angle of the velocity vector and the vorticity vector on stream surfaces 
upstream of this region. 

The numerical results in Part 1 demonstrate the accuracy with which the 
experimental results can be predicted for confined flows in which ‘vortex breakdown ’ 
develops and this paper, Part 2, explores the underlying physical mechanisms which 
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account for the essential features of the flow and are important in ‘vortex 
breakdown’. 

2. Confined swirling flows 

2.1. ~ u r n r n a r ~  of the principal features of the $ow 

As suggested in Part 1,  for the confined flow in which H I R  = 2.5 and Re > 1600, the 
central core flow, i.e. the flow returning towards the rotating endwall, might be 
regarded as practically inviscid apart from the recirculation zone and the fluid that 
passes near to it. This first approximation, expected to be increasingly valid as 
Reynolds number increases, is supported by figures 2 ( f )  and 3 from Part 1 which 
show contours of the stream function 4, the angular momentum, or circulation, r 
and the total head X .  A detailed comparison between these contours shows that in 
this central core region r and X are approximately constant on stream surfaces, 
apart from those surfaces within and near to the recirculation bubble where r and 
X are relatively small. An approximation that they are constant on the stream 
surface would seem unlikely to change the principal features of the flow. Of course, 
the experiments and the numerical calculations show that this core flow is critically 
dependent on Reynolds number but mainly in the sense, it seems, that Re determines 
an ‘upstream’ distribution of T(r) and X ( r )  and that once this distribution is 
established the subsequent core flow, in which vortex breakdown occurs, is largely an 
inviscid rotational flow apart from the flow within and near to the recirculation 
zones. 

The most striking features of this core flow are the divergence from an upstream 
narrow core to a much larger diameter flow which is almost in solid-body rotation, 
and correspondingly, the development of a wave as a result of an ‘overshoot ’ in the 
initial divergence. The apparent effect of increasing Reynolds number is to change 
the upstream distribution of r ( r )  and &(r) in such a way as to increase the initial 
divergence, increase the ‘overshoot ’, reduce the wavelength of the resulting wave 
and reduce the ‘damping’ of this wave. The contours of the stream function (figure 
2 from Part 1)  suggest that the appearance of recirculation bubbles is related to the 
waviness in the outer flow. These preliminary observations provide useful 
approximations and working hypotheses which are explored in the remainder of 52. 

2.2. Theoretical considerations 

Steady, inviscid, axisymmetric swirling flow is particularly interesting in that it can 
be looked at from the point of view of an interaction between the total head and the 
angular momentum of the fluid (both of which are conserved on a stream surface), 
or in terms of a balance between the radial pressure gradient and the centrifugal 
force, or in terms of the generation of the azimuthal component of vorticity through 
the stretching and tilting of vortex lines. 

The relationship between these three different perspectives is as follows. In  terms 
of the radial pressure gradient and the centrifugal force, the other radial acceleration 
terms are 
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In  terms of the angular momentum (or circulation) r = rv,  and the total head 2 = 

p / p  + g(u2 + v2 + w2) ,  (1) may be written as 

Thirdly, since the azimuthal component of vorticity is 7 = au/az-aw/ar, then from 

(2) 

or, since the stream function $ is determined by u = - ( l / r )  (a$/&) and w = 

(l/r)(a$/ar) and since r and 2 are constant on +, it follows from (3) that 

r d r  d x  
’I = ---r- (4) r d $  d$’  

Equation (4) has been a starting point for most discussions of vortex breakdown. 
Following Squire (1960), it is usually rewritten by replacing 7 with - ( l / r ) V $ .  

Notwithstanding that r and YP are functions of r and z ,  the equation as it stands is 
of such a simple form that we have pursued its implications more directly. In 
particular, if the curve C in the (r,z)-plane whose radius r is given by r = a(z) is 
chosen such that on C the stream function is a constant, i.e. $(r ,  z )  = $17 then on C 

d$ = 0 and u = WU’(Z);  

or, on a stream surface 

and 

A 
T ( Z )  = --Bu, 

LT 

dy = -($+B)ds, 

(7) 

where A = r(g1) r)($l) and B = &“($J. 
Equation (7) is remarkable since it provides such a simple expression for one 

component of the vorticity in terms only of the radius of the stream surface yet in 
a complex flow where the vorticity is three-dimensional, not normal to the velocity, 
and where the stretching of vorticity is an essential mechanism in the flow. 

Further insight into the implications of (7) and (8) is gained if it is assumed that 
a t  some upstream station zo and on a particular stream surface + = +1, the radius of 
the stream surface is c0 and the azimuthal and axial components of both the velocity, 
i.e. v and w,  and vorticity, i.e. 7 and 5, are known and have the values vo, wo, v0 and 
lo (see figure 1) .  In  this case A and B may be determined simply, since 

so that on 
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FIQURE 1. Coordinate system used and a typical stream surface + = for which r = r ( z )  and 
the helix angles for the velocity and vorticity at  zo are a, and b,,. 

and 

B may be determined from (7) evaluated at z = zo. If v0 + 0, then 

and if v0 = 0 then 

Thus from (7) the equation for T on the stream surface downstream from xo is 

~ = a ~ [ ~  --- for v0 = 0 ,  (2 :) 
or 

where do = vo/wo and Po = qo/c0 are the tangents of the helix angle for the velocity 
and vorticity respectively. Thus, downstream of zo, the ratio of y on a stream surface 
to its value on the surface at  zo depends only on the ratio of the tangents of the helix 
angles of the vorticity and velocity on the surface at  zo and on the ratio of the radius 
of the stream surface to the radius at  zo. 

From the point of view of vortex breakdown, (7)  and (9) have important 
implications. A reasonable hypothesis (in the absence of bodies in the flow field) is 
that the development of a negative azimuthal component of vorticity on some 
stream surfaces is necessary if the axial velocity is to be brought to zero (see figure 
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FIGURE 2. Plot of T / V ,  = ( ~ ~ / ~ ) ( a , , / ~ ~ ) - -  (~~ /v , ) (a , /~ , -  1)  (equation (9)) for 
various values of a,/p, as indicated. 

1).t  This is intuitively reasonable because the velocity due to a field of vorticity is 
given by 

where s = r - r’, and in the case of an axisymmetric flow field the velocity on the axis 
due to the vorticity field is 

We infer that, in addition to any irrotational component of the velocity which 
satisfies the boundary conditions, it  is the local azimuthal vorticity which contributes 
most to the velocity at a point on the axis since the contribution from vorticity in 
the far field decays as (~-2’)~ and, importantly, the velocity on the axis due to the 
vorticity will only be zero or negative at some z if q(u, z’) is negative in some region 
since the other terms in the integral are everywhere positive. 

Equation (7) implies that q can only become negative if B is positive or, more 
specifically from (9)) for qo positive, q will only become negative on a diverging 
stream surface if a, > Po, i.e. w,/w, > qo/co. A helix angle for the velocity which 
exceeds that of the vorticity on some stream surfaces would seem therefore to be a 
necessary condition for vortex breakdown to occur since, from (9), as u/ao 

increases from unity, then for a, > Po, q/q0 decreases to zero and becomes negative 
at  a sufficiently large a/ao. Figure 2 illustrates the behaviour and the dependence on 
a0/j3,. (In 33.2 the development of q/qo on a stream surface obtained from the 

t For simplicity, in this paper z is taken to increase in the direction of the primary axial velocity 
in the core flow and correspondingly negative azimuthal vorticity will induce an axial velocity in 
the opposite direction. In Part 1 increasing z is in the opposite direction, away from the rotating 
endwall, and the sign of the corresponding azimuthal vorticity is the reverse of its sign in this paper. 
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numerical solutions of the Navier-Stokes equations for a swirling flow is compared 
with the inviscid prediction from (9) and is found to be in good agreement.) 

The relatively rapid divergence of stream surfaces in the region of breakdown can 
also be qualitatively understood from these equations. The development of negative 
7 on stream surfaces will induce a negative axial velocity on the axis which, by 
continuity, will lead to a further increase in u and correspondingly (from (7)  or (9)), 

a further increase in negative vorticity, etc. This can be thought of as a kind of 
‘positive feedback’, but in essence, it is a matter of compatibility between the 
velocity (U) and the vorticity (V x U) arrived a t  from a consideration of the 
dynamics of vorticity on a stream surface on the one hand and the requirements of 
continuity on the other. 

We are led to conclude that, in the absence of viscous or turbulent diffusion, a 

necessary condition for vortex breakdown to occur downstream of zo would seem to 
be that at  zo,vo/wo > vo/c0 on some stream surfaces. 

A reduction in azimuthal vorticity with increasing radius is readily understood 
physically for the simple case of a flow that is cylindrical upstream and has 7 = 0. If 
two material points on a vortex line (which is axial in this cylindrical flow) move with 
the fluid and the leading point advances to a location where the radius has begun to 
increase, then this leading point will experience a reduction in azimuthal velocity due 
to the conservation of r on the stream surface. The material line between the points 
is therefore stretched and tilted, and since the vorticity moves with this material line, 
a negative azimuthal component of vorticity is generated. This accords of course 
with the T~ = 0 case of equation (9). More generally, however, for T~ $; 0 then from 

It follows that for u/uo 2 1 and q0 positive then for 01,//3, < 0.5, dq/da > 0 ;  for 
0.5 < o0//3, < 1,  7 remains positive and a t  sufficiently large O/G,, dy/da > 0;  and 
from (9) only for a,/Po > 1 does 7 become negative for sufficiently large u/uo and 
dV/du remain negative (see figure 2). The result that dy/da > 0 for Po > 201, seems a 
counter-intuitive one a t  first sight and in terms of the above ‘feedback’ argument, 
suggests a kind of stability in the sense that a perturbation in u would generate 
azimuthal vorticity which, by continuity, would produce a restoring change in u. We 
have not pursued the possible connection between these results and the supercritical 
and subcritical ideas which, following Benjamin (1962), have been associated with 
vortex breakdown. 

With these general considerations in mind, the vortex breakdown features of the 
confined swirling flow may be interpreted as follows. 

2.3. Physical mechanisms 

The summary in 9 2.1 and these theoretical considerations suggest that an important 
question to ask is why the strong vortical core flow begins to diverge 1 A simple, if 
simplistic, answer is clear from (1).  Downstream from the point where u = 0 and the 
stream surface has its smallest radius (or, more generally, downstream from a region 
in which the flow is cylindrical) there will be divergence, i.e. positive au/az only if the 
centrifugal force exceeds the radial pressure gradient (in the absence of viscous 
stresses). For the confined flow, this imbalance clearly arises from the fact that the 
radial distribution of r and 3f in the narrow upstream core region is determined by 
the ‘upstream ’ history of a fluid particle as it travels on its closed stream surface. In 
particular, the particle acquires and loses most of its angular momentum and total 
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FIGURE 3. Contour plot of v2/r  - (i/p)(ap/&) in the meridional plane for H / R  = 2.5 and Re = 1994. 
The contour levels are non-uniformly space, with 20 positive and 20 negative levels determined by 
c-level(i) = Max(wariab2e) x (i/20)3 and c-level(i) = Min(variab2e) x (i/20)* respectively. The 
contours are plotted at  t = 1000, by which time a steady state has been reached. 

head through the action of viscous stresses in the boundary layers near the surface 
of the volume, as noted in Part 1. There is no reason why the radial distributions of 
r and i%' should lead to 7 = 0 (equation (3)), or to cyclostrophic balance (equation 
(1)).  Quite the contrary, in fact, since the turning of the flow from radially inward 
towards the lower rotating endwall requires the centrifugal force to exceed the radial 
pressure gradient. This is supported by figure 3 which shows the calculated contours 
of w2/r - ( l / p ) ( a p / a r )  for the case Re = 1994, H/R = 2.5. These contours provide an 
interesting view of the force field; they are not surprising in the sense that they 
accord with the waviness of the stream surface and the corresponding sinusoidal-like 
variation in the radial acceleration. 

The reason for the initial ' overshoot ' in the divergence of the stream surfaces and 
the subsequent waviness can be seen as follows. From (4), we have 

For the confined swirling flow, if z = z,, where u = 0 and au/az has a local extrema, 
i.e. where a stream surface has its smallest radius, then on a particular stream surface 
of radius r = u ( z ) ,  whose radius is u = u,, a t  z = zo, 
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where A and B are the particular values of TdT/d$ and d.@/d$ on this stream 
surface. 

An approximation for au/azI, on the stream surface can be obtained by noting that 

and 

from which it  follows, since u = wcr’ (equation (6)) on $ = constant, that 

= w(2) cr”(2) + w’(2) d ( Z )  --- , 
7 war 

or in terms of a small perturbation linearization of the form u = eul(r,z), w = 

wo+ewl(r, z )  and cr = c r o + ~ a , ( x ) ,  to first order au/& x WU’’. Thus an approximation 
to (11) which allows some insight to be gained into the shape of the stream surface 
downstream from zo is 

Immediately downstream of zo, the diverging stream surface implies an increasing 
cr and u’’ is expected to decrease, i.e. d ’ ( z )  < cr”(z0) because A(l/u-l/cro) and 
--B(u--a,) are both negative, assuming, in accord with 52.2, that since breakdown 
occurs, a. > Po and B is, therefore, positive. Note however that i3w/i3rl,-aw/arlu, is 
expected to be positive because diverging stream surfaces imply by continuity a 
reduction in w, and a relatively larger reduction in w is expected near r = 0 than at  
large r (aw/arl, is expected to be negative). Thus, downstream of zo, a’’ is expected 
to decrease, but the rate at which this occurs will depend on w. The continued 
divergence of the flow and corresponding reduction in u” therefore leads to a radius 
of the stream surface at  which d’ = 0 (infinite radius of curvature of the stream 
surface). At this point the local slope d is a maximum. Since the flow continues to 
diverge downstream from this point, cr” becomes negative and the stream surface 
begins to reduce in slope, turning back towards the axis. 

An alternative explanation for the flow divergence and subsequent turning of the 
flow towards the axis may be sought in terms of equation (1). An imbalance in v2 / r  - 
(i/p)(ap/&) gives rise to a positive value of d’. On this diverging stream surface, v2/r  
is decreased owing to the conservation of r and, at  the same time, w and v are 
reduced owing to the divergence, leading to an increased pressure with relatively 
larger changes for small r and a reduction in the radial pressure gradient. While not 
self-evident, the reduction in v2 / r  must exceed the reduction in ap/& since, as 
outlined above, u‘‘ approaches zero. 

The fact that the divergence ‘overshoots’ and that a wave in the stream surface 
results may be seen approximately by linearizing (12) about the radius u = u1 at 
which cr” = 0. Thus for cr = al+E(z), then from (12) 
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Re 

1600 
1800 
1918 
1942 
1994 
2126 
2494 

h (eq. (15)) h (eq. (14)) h (num. soln.) 

0.64 0.87 1.03 
0.55 0.81 0.82 
0.57 0.72 0.77 
0.70 0.72 0.77 
0.66 0.72 0.77 
0.61 0.69 0.75 
0.66 0.61 0.72 

TABLE I .  Estimates of the wavelengths of the oscillations in the displacement of the stream surface 
determined (if from the expressions given by (14) and (15) and (ii) from the periodicity in the 
contours of va/r-  (l/p)(ap/ar) for various Re as indicated and H/R = 2.5 

where perturbations in aw/ar have been neglected compared with au/az. A wave in 
the stream surface is therefore established with wavenumber k given by w 1 k 2  -x 
A/uf + B. 

The shape of a characteristic stream surface in the core flow downstream of zo can 
be summarized as follows. The stream surface u(z) diverges from uo to ul, and u" is 
reduced from a maximum to zero. At the radius u = ul, the positive slope d is a 

maximum and the flow continues to diverge, E > 0, but us, or r ,  becomes nega- 
tive and the surface begins to turn towards the axis. This overshoot of the 
radial displacement leads to a subsequent oscillation in the displacement of the 
stream surface about u = ul, i.e. 5 = 0. The wavelength of this displacement is 
approximately 

where w1 is the axial velocity at r = ul. 

approximated by 
Using the expressions for A and B from $ 2 . 2 ,  the wavelength can also be 

--x h 2 n ( 2 y [ ! 3 ( p ) + ; ]  -t 

u1 

A comparison between the wavelength evaluated from (15) and that determined 
from the periodicity in the numerical solution is presented in table 1. The wavelength 
predicted by (15) was evaluated on a stream surface where r and .% are 
approximately constant (selected by comparing the contours of r, .% and I,? as in 
figures 2 ( f )  and 3 from Part 1). The wavelength from the numerical solution was 
determined from the contours of w2/r- (l/p)(ap/&). Of course, the wavelength found 
in both cases can be regarded only as a typical wavelength. As expected the 
agreement (approximate) in table 1 between the inviscid prediction of (15) (and (14)) 

and the numerical solution increases with increasing Reynolds number. The 
difference between the predictions of (14) and (15) reflects the fact that (14) is 
evaluated in the region of the waves, where the flow is most inviscid, whereas (i5) 
assumes inviscid flow from zo where the radius of the stream surface is a minimum. 
Closer examination of figures 2 (f) and 3 from Part 1 shows that the approximation 
that r and .% are constant on stream surfaces is not accurate in this region. 
Particularly at lower Reynolds numbers i t  is not surprising therefore that the 
azimuthal viscous stresses should lead to some additional reduction in the azimuthal 
component of vorticity in this region and correspondingly that (9) would predict a 
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larger radius than the numerical solution, for a given reduction in 7. This is 
consistent with the prediction from (15) of a shorter wavelength than is found from 
the numerical solution. 

As a check on whether the model describes the principal features of the flow, 
however, the agreement seems satisfactory. In  accord with this discussion and that 
of 9 2.2 the subsequent development of a second recirculation zone could be expected 
if the wave is of sufficient amplitude for the subsequent diverging stream surface to 
develop sufficient negative azimuthal vorticity to again bring the axial velocity to 
zero. The converging stream surface, by contrast, generates positive azimuthal 
vorticity which accelerates the axial flow. 

The principal features and physical mechanisms of the recirculation bubbles in the 
confined swirling flow are therefore comprehensible in terms of inviscid phenomena. 
The initial divergence from a narrow core is the result of the upstream radial 
distribution of 2 and r, the subsequent waviness of the stream surface is a result of 
a stationary inertial or centrifugal wave and the development of one or more 
recirculation zones is a consequence of the generation of negative azimuthal vorticity 
through the stretching and tilting of vortex lines in a diverging, swirling inviscid 
flow, At a Reynolds number above that a t  which a recirculation bubble first occurs, 
the apparent ‘critical’ dependence of the flow on Re, discussed in Part 1, arises 
essentially from the dependence of the radial distributions of r and 2 (in the core 
flow) on the action of viscous stresses in the boundary-layer regions near the walls. 
At higher Reynolds number the core flow behaves in a broadly inviscid manner and 
the recirculation zones appear to have relatively little dynamical significance, except 
insofar as they are within the region of strong negative azimuthal vorticity. 

These mechanisms, which appear to account for the principal features of the 
recirculation bubbles in the confined flow, led to our considering their applicability 
to swirling flows in pipes. 

3. Swirling flows in pipes and in a free stream 

3.1. Preliminary considerations 

The relatively sudden appearance of a rapid divergence in the stream surfaces, and 
the corresponding appearance of recirculation zones, occurs in some swirling pipe 
flows and in the vortex breakdown observed in flows over delta wings at high angle 
of attack. A comparison with the ‘breakdown ’ observed in the confined swirling flow 
suggests that these breakdown regions are qualitatively similar, a t  least up to the 
first recirculation region. An essential difference, however, is that  for swirling pipe 
flows and to some extent the delta-wing flow, the ‘upstream ’ region may be regarded 
as essentially a cylindrical flow for which initially v 2 / r  = ( l / p ) (ap /ar )  or, in terms of 

(4) 

= 0. 

For this case, the question that is immediately posed is how does ‘breakdown ’ begin 1 
There has been a large number of numerical studies of this swirling pipe flow. One 

of the earliest examples is that of Kopecky & Torrance (1973), where the time- 
dependent axisymmetric Navier-Stokes equations were solved using an explicit 
finite-difference technique. The coameness of their grid (typically, they used 11 x 21 

grid points uniformally spaced) required them to consider low-Reynolds-number 
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FIGURE 4. The dependence of the ratio of the velocity and vorticity helix angles ao/p0 on the 
dimensionless azimuthal velocity V,  and axial velocity excess W, a t  r = a a t  the upstream boundary 
of a swirling pipe flow with azimuthal and axial velocity components given by (16) and (17) 
respectively. The circles indicate the location in (V,, W,)-space where the numerical solutions 
showed breakdown to occur and the stars indicate where breakdown was not found. 

flows; it may also have been responsible for the solutions being steady and for the 
overly large axial extent, compared with the present study, of the recirculation zone. 
Grabowski & Berger (1976), utilizing a much finer grid, were able to find solutions 
with a closed recirculation zone of similar spatial dimensions to those found 
experimentally by Sarpkaya (1971 b). Their results did not show the detailed 
structure of the bubble as found by Faler & Leibovich (1978) in which a counter- 
rotating vortex ring was measured inside the breakdown bubble. Also, Grabowski & 
Berger (1976) solved only the time-independent Navier-Stokes equations. More 
recently, Krause, Shi & Hartwich (1983) and Shi (1985) solved the time-dependent 
Navier-Stokes equations for swirling pipe flow. When the flow underwent vortex 
breakdown, they found that it did not reach a steady state and that the upstream 
boundary condition had a significant influence on the solutions at  late times. These 
studies were the first to numerically reproduce the ' two-celled' internal structure of 
the breakdown bubble, first observed by Faler & Leibovich (1978). 

One of us (Lopez) has obtained time-dependent numerical solutions of the 
Navier-Stokes equations for various swirling flows in a pipe by the methods outlined 
in Part 1. The purpose of presenting these computations here is to provide a further 
test for the ideas put forward in $2 and to demonstrate their more general 
applicability. 

The particular family of flows that has been calculated is given at  t = 0 by a zero 
radial component of velocity, an azimuthal component of velocity 
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FIGURE 5(a).  For caption see page 567. 



Axiaymmetric vortex breakdown. Part 2 

FIGURE 5 ( b ) .  For caption see page 567. 
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FIGURE 5 ( c ) .  For caption see facing page. 
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and an axial component of velocity 

w = w,(i + W, e-r2/a2). (17) 

These distributions have been found to be good fits to various experimental 
observations of vortices undergoing breakdown (e.g. Garg & Leibovich 1979). This 
azimuthal velocity distribution has the further merit that it has the same form as the 
exact solution for the diffusion of vorticity from a line vortex (Burgers 1940). 

The distributions of velocity in (16) and (17) have the corresponding azimuthal 
and axial components of vorticity, 

and 

and in terms of the helix angles for velocity and vorticity discussed in $2.2, on stream 
surfaces a t  z = 0 

where V,  = vc/Wm. Within the range 1 < W, < 2, a/P does not vary substantially for 
stream surfaces for which 0 < r / a  < 1, and at r/a = 1 

This relationship between a, and Po a t  r/a = 1 for various values of V,  and W, is 
shown in figure 4 and the region where a. > Po is marked. The particular values of 
V, and W, where the numerical solutions obtained led in time to the formation of 
recirculation bubbles are also given in this figure, along with two further cases (a, = 

0.90P, and a,, = 0.62P0, Re = 300) in which recirculation bubbles were not found after 
an integration time of 350. (In both these cases an asymptotically steady state was 
reached.) For a particular flow to be discussed, V,  = 1.5, W, = 1.25 and a t  r = a, ao/Po 

is 1.95. 
The initial conditions for the calculated flows are that the velocities at t = 0 for all 

z are given by (16) and (17) and the upstream boundary condition is that these 
velocities are imposed for t > 0. The radial boundary condition a t  r = R is u = 0, 

a v p r  = 0 and 7 = 0. The usual outflow condition, a/az = 0 is applied. (A further 
discussion of these conditions and their implementation is in the Appendix.) With 
these initial and boundary conditions the presence of viscosity is essential for the 
evolution of this flow - inviscid flow would not change with time. An example of the 
development of the flow for a particular Reynolds number is shown in figure 5.  Of 
course, at very low Reynolds number, viscous diffusion dominates the flow 

FIGURE 5. The evolution of the axisymmetric vortex breakdown phenomenon in swirling pipe flow 
for the case of V ,  = 1.5, W, = 1.25 and Re = W,a/v = 250. The computational domain has a radial 
extent of 5a and an axial extent of 35a in which 351 grid points are uniformly distributed in the 
axial direction and 51 grid points are non-uniformly distributed in the radial direction and are 
concentrated near r = 0. The time increment for the evolution is 6t = 0.01 and the non-dimensional 
times at which the instantaneous contours of (a) +, (21) 7 and (c )  w are indicated in each figure. 
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development. At higher Reynolds numbers, however, we have found that for the 
same initial cylindrical velocity distributions, the time taken before a recirculation 
zone appears increases with Reynolds number (defined as Re = W, a/.). Unlike the 
confined swirling flow, for these flows it is the diffusion of axial vorticity which leads 
initially to v2/r  - (l/p)(i3p/i3r) becoming positive. Alternatively, we anticipate that it 
must be the diffusion of vorticity that leads to a radial redistribution of r and to the 
stretching and tilting of vortex lines (due to the axial change in v), with a 
corresponding reduction in the initial positive azimuthal component of vorticity with 
axial distance, and the subsequent beginning of an ‘inviscid ’ breakdown process. 

This broad view of the likely role of viscosity and the development of azimuthal 
vorticity is illustrated in the calculations of y?, 7 and v shown in figure 6 and leads 
to the more detailed considerations of $3.2. 

In passing, we note that none of the cases that led to a recirculation bubble ever 
settled down to a steady state. The bubble would migrate upstream until halted by 
the influence of the time-independent upstream boundary conditions. 

3.2. Physical mechanism8 

In considering the results shown in figure 5 ,  particular attention is drawn to the 
reduction of the azimuthal velocity and vorticity with distance downstream. 
Initially, this reduction is due to  viscous effects, but it is clear that by t = 40 there 
is a slight divergence of streamlines which, by the inviscid mechanisms of 52, 
contributes to this reduction. At t = 80 this azimuthal vorticity has been reduced to 
zero on stream surfaces at a downstream distance of about 20a and out to a radius 
of about a and a further divergence of these stream surfaces has generated a negative 
azimuthal component. The inviscid mechanism, described in the discussion of 
equation (9), might be said to drive this further development of a negative azimuthal 
component leading, by t = 240, to a small recirculation zone on the axis, rapid 
changes in the azimuthal vorticity ahead of this region where the streamlines 
diverge, and the evident propagation upstream of the region of negative azimuthal 
vorticity due to its own induced velocity. The subsequent appearance of a second 
recirculation zone located at  a distance downstream where the outer Streamlines 
diverge and where the azimuthal component of the vorticity has a second maximum 
is consistent with the establishment of a wave on the outer stream surfaces by 
essentially the same mechanism as in the confined swirling flows. 

Further insight into the mechanics of the flow is obtained from a detailed 
comparison between the results shown in figures 6 ( b ) ,  6 ( c )  and 6 (d ) .  Figures 6 (a )  and 
6(b)  show the development of the flow for which V,  = 1.75, W, = 1.6 and Re = 300 
(with a corresponding ao/po = 1.91) from t = 227 to t = 250. Figure 6(c) shows a 
corresponding development in an unphysical case in which, for the above flow, at  
t = 227 the viscosity is suddenly doubled, (i.e. Reynolds number reduced from 300 to 
150). Figure 6 ( d )  is a case in which the viscosity is suddenly halved (Re = 600) at 
t = 227. A comparison between figures 6 ( b )  and 6 (c )  shows that the subsequent effect 
of a sudden increase in the viscosity is to diffuse the axial vorticity and increase the 
initial divergence of streamlines but reduce the magnitude of the maximum negative 
component of azimuthal vorticity from - 1.84 to - 1.37, to reduce the size of the 
recirculation bubble. By contrast, comparison between figures 6(b)  and 6 ( d )  shows 
that reducing viscosity reduces the diffusion of axial vorticity which reduces the 
upstream divergence of Streamlines ; the presence of the bubble and divergence of the 
streamlines immediately ahead of it and the reduced diffusion of axial vorticity 
increases the magnitude of the maximum negative component of azimuthal vorticity 
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that is reached from -1.84 to -2.17. The bubble is correspondingly larger, the 
amplitude of the wave on the outer stream surface is greater and a small second 
recirculation zone begins to emerge. 

These results are quite consistent with the discussion in $2.2. For this flow the 
necessary criterion for breakdown to occur (ao > Po) is satisfied. The development of 
the flow requires viscosity to initiate a reduction of the azimuthal components of 
vorticity and velocity with distance downstream and to initiate the divergence of the 
streamlines. However, the development of the breakdown results essentially from the 
inviscid process described in $2.2. The reduction in viscosity introduced after a 
bubble has appeared, figure 6 (d),  shows the dominant role that this inviscid 
mechanism plays. In  some respects the phenomenon in this swirling pipe flow case is 
not unlike boundary-layer transition in the general sense that the initial development 
(Tollmien-Schlichting waves in boundary-layer transition) depends on viscosity and 
the final transition process is a consequence of ‘positive feedback’ in the generation, 
in that case, of a longitudinal component of vorticity. 

The dominant role played by the inviscid mechanism can be demonstrated further 
by comparing directly the calculated azimuthal vorticity on a stream surface with 
the prediction obtain from (9). This comparison was made by selecting a stream 
surface $, in the numerical solution at a given time and choosing an upstream station 
zo, where the flow is essentially cylindrical. For the examples used here, zo = 0 and 

has radius v0 = a at zo. From the numerical solutions, the radius 6, and the 
azimuthal vorticity 7,  are determined a t  various axial stations z,. These values of 7;1 

are then compared with those predicted from (9) for the v(zt) values of the numerical 
solutions. The values of the helix angles of velocity and vorticity a. and Po a t  zo are 
found from (18). 

Figure 7 corresponds to the cases in figures 6(b), 6(c) and 6(d) and shows v/v0 from 
the numerical calculations and from (9) plotted against (a)  v/vo and (b )  z. All curves 
shown in figure 7 ( b )  show the rapid development of negative 7 in the vicinity of the 
recirculation bubbles. The agreement is best in this region. This might be expected 
since, in the viscous calculations, the change in v well upstream of the recirculation 
region is primarily due to viscous diffusion, whereas in the recirculation region the 
inviscid mechanism is dominant. The figure shows that as Re is increased, aq/az 

upstream of the recirculation zone tends towards zero and the rapid reduction in 7 
near the recirculation zone is predicted increasingly accurately by (9). As expected, 
the overall agreement between the numerical Navier-Stokes calculations and the 
inviscid theory increases as Re is increased. 

3.3. Comparison with experiment 

While more detailed comparisons with experiment over a wide range of parameters 
have not yet been made, the essential features of the evolution of an axisymmetric 
vortex breakdown are evident. The description by Sarpkaya (1971 a) of the initial 
axisymmetric swelling of the vortex core together with Escudier’s (1986) evolu- 
tionary sequence in his figure 9.12 (reproduced here in figure 8) are seen in the 
calculation of the axisymmetric evolution of figure 5.  Noting that in the calculations 
the timescale of the evolution is given by a/W,, and recalling that the Reynolds 
number is based on the core radius a rather than the pipe diameter, we find that the 
timescale of the evolution compares favourably (at a comparable Re) with that 
obtained in Escudier’s (1986) experiment. (Owing to the lack of a quantitative 
measurement in the experiment, only a rough estimate of the core diameter a could 
be made.) A comparisons between the structure of the leading bubble with the flow 
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FIGURE 8. Escudier's (1986) observation of the formation and propagation of an axisymmetric 
(bubble type) vortex breakdown downstream of a guide-vane system, (vane angle 4 = 70" and the 
Reynolds number, based on the pipe diameter and mean axial velocity, is 960.) (a) t = 0, ( b )  4 s (c) 

8 s ,  (d )  12 s ,  ( e )  20 s ,  (f) 52 s .  

visualizations of Escudier (1986) shows good agreement. For comparable times in 
both the experiment and the calculation, the bubble migrates upstream approxi- 
mately the same distance (four bubble diameters) from the point of initial 
swelling of the core. The appearance of a second breakdown zone a t  about one bubble 
diameter downstream from the leading bubble is evident in both experiment and 
calculation. In  the calculation this second recirculation zone is very unsteady by 
comparison with the leading bubble and the flow visualization is suggestive of 
asymmetries in this region of the flow, whereas the leading bubble is evidently largely 
axisymmetric. The asymmetries of the second bubble may be an artifact of the form 
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noted by Neitzel (1988) from the visualization of unsteady axisymmetric swirling 
flows. Also clearly evident in the computed leading bubble is the ‘two-celled’ 
structure first identified in bubble breakdowns by Faler &, Leibovich (1978). The 
main outer cell, or vortex ring, has an associated negative azimuthal component of 
vorticity and the weaker inner ring has a positive azimuthal component of vorticity. 

4. Concluding remarks 

Many of the features of vortex breakdown have been well recognized previously. 
The early works of Squire (1960) and Benjamin (1962, 1967) have been the starting 
point for many subsequent studies and Hall (1972) has summarized the contributions 
and shortcomings of various ‘explanations ’ for vortex breakdown that have been 
proposed. For the confined flow and the swirling pipe flow, however, we have not 
found the ‘conjugate flow’ theory or the idea of a ‘critical state’ of particular 
assistance in illuminating the mechanics of these flows. The conjugate flow theory 
assumes a cylindrical flow upstream, whereas in the confined flow there is no region 
far upstream of breakdown in which the centrifugal forces balance the radial pressure 
gradient. Similarly, there is no evidence of the importance of energy dissipation in 
the outer flow. In the swirling pipe flow case, the calculations and physical 
mechanisms for the generation of negative azimuthal vorticity that we have 
considered depend initially on the diffusion of axial vorticity, whereas the conjugate 
flow theory assumes an inviscid development. It seems nevertheless true that, having 
established breakdown, the azimuthal vorticity that is generated propagates 
upstream on an inertial timescale and the diffusion of vorticity, which is initially 
responsible for the breakdown, is of lesser significance and continues to operate on 
the much slower viscous timescale. Also we have not found evidence of a disturbance 
downstream that propagates upstream and is responsible for breakdown. 

From the discussion in this paper, the essential feature of vortex breakdown is the 
generation of negative azimuthal vorticity. For the confined flow, the rapid 
generation of this component of vorticity is a consequence of the upstream 
distribution of f ( r )  and X(r )  and the non-cylindrical nature of the upstream flow. 
For the swirling pipe flow, we find the initial reduction in the azimuthal component 
of vorticity to be due to viscous diffusion and the resultant stretching and tilting of 
axial vorticity. As the flow begins to diverge, however, the further production of 
negative azimuthal vorticity is dominated by inviscid mechanisms and there is a 
close similarity between the confined flow and the swirling pipe flow in this region. 

A preliminary application of these ideas to the more complex problem of vortex 
breakdown in delta-wing flows suggests that the radial and axial velocity 
distributions in the core flow which establish a characteristic ao//?o for each angle of 
attack will play a critical role in determining whether breakdown can occur and if so 

the strength and location of it. Similarly, by broad analogy with the swirling pipe 
flow, turbulent diffusion could be expected to be important if the flow initially is in 
approximate cyclostrophic balance. In this case increased turbulent diffusion would 
be expected to reduce the size of the recirculation bubble and to reduce the distance 
to breakdown. Of course, an outer flow which creates diverging stream surfaces will 
shorten the distance to breakdown and increase the relative importance of the 
inviscid mechanism in reducing an initially positive helix angle of the vorticity. This 
effect of a diverging outer flow has been observed in swirling pipe flows and may be 
seen in a comparison between the diverging-pipe results of Sarpkaya (197 1 a) and the 
constant-diameter results of Harvey (1962). 
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The essential ideas that link the generation of negative azimuthal vorticity with 
the helix angles of the velocity and vorticity vectors will also be applicable to 
swirling flows past axisymmetric bodies located on the swirl axis. The inviscid 
mechanism from (9) could account, for example, for the sensitivity of these flows to 
the intrusion of external probes leading in some cases to a rapid development of 
vortex breakdown. For a. > Po the divergence of stream surfaces over a body could 
be expected to lead to a forward recirculation zone ahead of the body if ao/Po is 
sufficiently large or the body has a large enough diameter. Such a flow with a forward 
recirculation zone has been observed recently by P. N. Joubert (private com- 
munication). As discussed in 32.2, the flow for the case where Po > 2a0 is much less 
clear ; the negative feedback that would accompany an increase in radius of a stream 
surface in this case suggests that  some dissipative process ahead of the body will 
occur. 

Appendix 

The main difficulty in the numerical solution of the vortex breakdown problem for 
swirling pipe flow lies in the specification of the boundary conditions. The boundary 
condition on the axis of symmetry is obvious but the other three boundary 
conditions require a higher level of idealization. 

The upstream boundary condition a t  z = 0 is the one of main concern. Owing to 
the limited number of available grid nodes (a 101 x 501 grid has been an upper limit 
in this calculation) the swirl generator, i.e. guide vanes, and the pipe inlet could not 
be simulated a t  the same time as the flow inside the pipe ‘test-section’. Hence, the 
upstream boundary must be placed a t  some location downstream of the inlet and 
upstream of the ‘test-section’. This requires an assumption that the flow at the 
upstream boundary is locally cylindrical and independent of time throughout the 
evolution of the calculated flow. Over the past decade, there have been numerous 
laser Doppler anemometer measurements of the azimuthal and axial components of 
the velocity (e.g. Faler & Leibovich 1978; Escudier, Bornstein & Zehnder 1980; 
Uchida, Nakamura & Ohsawa 1985) and it has been found that the expressions (16) 
and (17) provide a good fit to the experimental distributions well upstream of the 
location where vortex breakdown occurs. For those numerical cases where vortex 
breakdown first appears well downstream of the inlet it would seem therefore that 
these expressions, used as boundary conditions, are a reasonable approximation. 

In those cases where the breakdown bubble migrates upstream a change in the 
velocities near the upstream boundary as a result of this migration is a clear 
indication that the numerical flow has become ‘unphysical’. In  many cases there is 
a substantial evolution of the ‘ breakdown ’ before this occurs. The weakness in this 
boundary condition requiring further evaluation, however, is that the viscosity 
changes discontinuously a t  the boundary and correspondingly gradients in v (and 
therefore u) change relatively rapidly a t  low Reynolds number, near the boundary. 

Of lesser importance, but with its own problems, is the specification of the radial 
and downstream boundary conditions. At the downstream boundary, the usual 
uniform outflow condition is specified. In  the numerical experiments performed, so 

long as no rotational flow enters into the computational domain through this 
boundary, changes in the location of this boundary demonstrated that the effect of 
the downstream boundary was negligible in these calculations, in the development of 
the initial breakdown. However, under some conditions, it was found that multiple 
recirculation bubbles formed (much like those reported by Sarpkaya 1971 a)  and 
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when a bubble forms very near the downstream boundary (which often happens 
when the initial azimuthal component of vorticity is large and positive as a result of 
a strong axial jet), then the assumption of uniform outflow is clearly violated and the 
calculation becomes unphysical. A crude remedy used was to extend the 
computational domain further downstream. 

The radial boundary condition is a somewhat less difficult problem. Typically, it 
was found that if the radial boundary is placed a t  a radius of a t  least two core 
diameters, then the numerical evolution is weakly affected by this boundary. A 
similar weak influence of the radial boundary was also found in the experiments of 
Harvey (1962). For the solutions presented, the boundary is a t  five vortex core radii 
from the axis. In  the model, the computational domain is stretched in the radial 
direction so that there is a concentration of grid nodes near r = 0 thus allowing 
proper resolution of the dynamics in the core region. The radial boundary condition 
is taken to  simulate a limiting streamline, in the irrotational region of the flow, which 
remains parallel to the pipe wall. This is physically reasonable so long as the diffusion 
of vorticity is not large enough to invalidate the irrotational approximation and the 
boundary layer on the pipe wall (which is not computed) remains thin and attached. 

An interesting and relevant observation to be made is the difference between the 
‘downstream ’ boundary condition in the case of confined swirling flow and that in 
other flows in which vortex breakdown occurs. In  these others cases (e.g. vortical 
flow over delta-winged aircraft, swirling pipe flows, Ward-type cyclone chambers, 
tornados and waterspouts) the downstream boundary condition on the vortex core 
is ‘free’, whereas in the confined swirling flow the rotating endwall forms the 
downstream boundary, which results in the physical boundary condition that v = 0 

a t  r = 0. The vortex core is therefore fixed to the centre of the downstream boundary. 
Having this fixed downstream boundary condition on the vortex core perhaps 
accounts for the fact that  the ‘spiral’ form of vortex breakdown which is evident in 
the other examples of vortex breakdown is not evident a t  the values of 52R2/v and 
H / R  reported in the confined flow experiments. 
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