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Axl as a mediator of cellular growth and survival
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ABSTRACT

The control of cellular growth and proliferation is key to the maintenance of 

homeostasis. Survival, proliferation, and arrest are regulated, in part, by Growth 

Arrest Specific 6 (Gas6) through binding to members of the TAM receptor tyrosine 
kinase family. Activation of the TAM receptors leads to downstream signaling through 
common kinases, but the exact mechanism within each cellular context varies and 

remains to be completely elucidated. Deregulation of the TAM family, due to its central 
role in mediating cellular proliferation, has been implicated in multiple diseases. Axl 

was cloned as the first TAM receptor in a search for genes involved in the progression 
of chronic to acute-phase leukemia, and has since been established as playing a critical 

role in the progression of cancer. The oncogenic nature of Axl is demonstrated through 

its activation of signaling pathways involved in proliferation, migration, inhibition 

of apoptosis, and therapeutic resistance. Despite its recent discovery, significant 
progress has been made in the development of effective clinical therapeutics targeting 

Axl. In order to accurately define the role of Axl in normal and diseased processes, it 
must be analyzed in a cell type-specific context.

The TAM receptor tyrosine kinase family 

mediates the function of protein S and Gas6

Receptor tyrosine kinases (RTKs) are classified 
into families based on their structural and functional 
properties. The TAM (Tyro3, Axl, Mer) family is set apart 
based on a unique extracellular domain and common 
ligands (Figure 1). As a Type I receptor family, their 
N-termini are decorated by pairs of immunoglobulin (Ig)-
like and fibronectin III (FNIII) domains. At the time of 
their discovery, this pattern had not been observed in other 
RTKs. In 1991 Axl was cloned as the first TAM receptor in 
which this pattern was observed, and subsequent cloning 
of both Tyro3 and Mer in 1994 revealed the existence of 
similar domains [1–3].

The TAM receptors are also grouped based on their 
common ligands, protein S and Gas6. While Gas6 is able 
to bind all three TAM receptors, however, protein S is 

only able to bind Tyro3 and Mer [4]. Although there is 
some confusion in the literature regarding this finding, it 
may be due to the absence of a pattern of charged residues 
in protein S, which help form the major contact of the 
Gas6/Axl interaction [4–6]. Both ligands share 44% 
amino acid identity and are both vitamin K-dependent, 
owing to their shared γ-carboxyglutamic acid (Gla) 
domain. The Gla domain allows for cell membrane 
contact through calcium-dependent phospholipid 
binding, and is present in all vitamin K-dependent 
proteins [7]. Carboxylation of Gas6 and protein S is 
necessary for their activation of the TAM receptors, and 
thus inhibitors of vitamin K such as warfarin are able to 
block TAM receptor signaling, indicating a further level 
of control [8–11]. Protein S and Gas6 also share a region 
of homology in their four EGF-like domains, which 
mediate cell-cell communication [12, 13]. Physiologic 
differences between the two proteins are that Gas6 is 
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present at ~0.2nM in human plasma and is complexed 
with the soluble form of Axl, whereas protein S is present 
at 1,000 times higher concentration and 60–70% is bound 
to the complement regulator C4b-binding protein (C4BP) 
[14–16]. Initially, it was thought that protein S was the 
ligand for Tyro3 (Sky, BYK, Dtk, RSE, Tif), Gas6 was 
the ligand for Axl (Ufo, JTK11), and that additional 
protein S-related factors were potential candidates as 
the ligand for Mer (c-mer, RP38) [17]. By the time these 
were established as activating ligands, protein S had 
already been functionally characterized as a negative 
regulator of the coagulation pathway. However, the 
function of Gas6 was unknown. Later studies have 
shown that Gas6 is actually a common ligand for all three 
receptors, having the highest affinity for Axl, followed 
by intermediate and minor affinities for Tyro3 and 

Mer, respectively [18]. The Gas6 gene was cloned in 
1988 and characterized in 1993. Its name derives from 
its discovery – in a hunt for regulators of cell cycle 
arrest, Schneider et al. termed their findings “growth 
arrest-specific” factors [19]. The origin of Gas6 suggests 
a functional role for the TAM receptors in protection 
from cell death, and indeed later studies have proposed 
various roles for the receptor family in cell survival. 
Furthermore, the roles of Axl, Tyro3, and Mer extend to 
mediation of processes such as proliferation, migration, 
and adhesion in both normal and disease settings. The 
signaling overlap downstream of these receptors is 
evidence of their functional similarities, however much 
of the context- and receptor-specific signaling remains 
uncertain. Indeed, it is important to note that these roles 
are cell context-dependent, highlighting their complexity.

Figure 1: Structures of the TAM receptors and their shared ligand, Gas6. (A) The TAM family of receptors share common 
extracellular structures, composed of two Ig-like domains for ligand binding and two fibronectin III domains. Axl and Mer have both been 
shown to yield soluble extracellular fragments by protease cleavage just outside their transmembrane domains. To date, this has not been 
demonstrated for Tyro3. Potential glycosylation sites are represented on each receptor; Axl, amino acids 43, 157, 198, 339, 345, 401; Tyro3, 
amino acids 63, 191, 230, 240, 293, 366, 380; Mer, amino acids 114, 170, 207, 215, 234, 294, 316, 329, 336, 354, 389, 395, 442 (confirmed), 
454. (B) Gas6 is a vitamin K-dependent protein that binds Axl with higher affinity compared to Tyro3 or Mer. The Gla domain allows for 
cell membrane contact and the LG domains bind the Ig-like domains of the receptors.
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Discovery of Axl

Axl was first isolated as an unidentified gene 
detected in two separate patients when Liu et al. began 
a search for transformants in chronic myelogenous 
leukemia in 1988 [20]. A few years later it was 
characterized and given the name “Axl,” derived from 
the Greek term “anexelekto,” or uncontrolled, based on 
the initial observations of its function [2]. Coincidentally 
in 1991, Janssen et al. cloned the same gene from a 
patient with a chronic myeloproliferative disorder, which 
they termed “UFO” for its unknown function [21]. The 
gene was shown to have low transforming potential 
that was not enhanced after multiple passages. When 
Axl was characterized in 1991, it was found that it was 
necessary but not sufficient for transformation [2, 20]. 
Rather, the transforming property of Axl was suggested 
to be due to a selection of its overexpression in cells, 
and to date, there have not been any activating mutations 
found [2, 22].

The structure of Axl

The Axl gene is located on the long arm of 
chromosome 19, at position q13.2 [2]. The protein is 
approximately 140kDa in the fully glycosylated state, 
and is 120kDa when partially glycosylated (Figure 1). 
There are long and short isoforms of Axl, differing in the 
presence or absence of exon 10 by alternative splicing; 
the full-length isoform is the most abundant [2]. The 
alternative splicing of Axl has not been well studied, but it 
is proposed that inhibition of PKC coupled to downstream 
splicing effectors can induce exon skipping [23].

Exon 1

The insertion of Axl into the plasma membrane is 
dependent upon the presence of a signal peptide located 
in exon 1 (Figure 1).

Exons 2–5

Exons 2–5 make up the two Ig-like domains, which 
bind one laminin G-like (LG) domain in the sex hormone-
binding globulin (SHBG) region of Gas6 (Figure 1). The 
structure of the Axl-Gas6 complex reveals that the first and 
second Ig-like domains of Axl form the major and minor 
contacts, respectively, with only the first laminin G-like 
domain in Gas6 (Figure 2) [24]. Binding in this manner 
prevents any direct Axl/Axl or Gas6/Gas6 contacts. The 
minor contact is conserved in Tyro3 and Mer, however 
the major contact responsible for high affinity binding is 
not, reflecting the hierarchy of Gas6 binding to each of the 
receptors [24].

Exons 6–9

The FNIII domains in exons 6–9 provide the basis 
for the proposed role of Axl in adhesion (Figure 1). These 
domains are found within other adhesion molecules 
such as the neural cell adhesion molecule (NCAM), and 
fibronectin itself acts as molecular bridge for integrins and 
extracellular matrix components. Early on, Gas6 binding 
to Axl was shown to have a positive influence on cell-
cell adhesion [25]. In fact, Axl is also known as “Ark” 
which stands for “adhesion-related kinase.” More recently, 
studies have demonstrated that the adhesion properties in 
which Axl is involved are both wide-ranging and context-
dependent. In schwannoma, Axl cooperates with NFκB 
signaling to mediate cell-matrix adhesion, but in cutaneous 
squamous cell carcinoma, Axl mediates EMT by exerting 
a negative influence on cell-cell adhesion [26, 27].  
Furthermore, in lung cancer cell lines Axl expression 
correlates with the adherence or suspension of cultures, 
but its expression seems to be a consequence of gaining 
adherent properties [28].

Exon 11

It has been established that Axl can undergo 
an extracellular cleavage event in exon 11 near the 
transmembrane domain by an unconfirmed protease, 
producing a soluble fragment (Figure 1). This fragment 
contains both the FNIII and Ig-like domains, and is able 
to bind available Gas6 as a decoy receptor to effectively 
dampen Gas6 signaling [29, 30]. It has also been shown to 
bind membrane-associated Axl to inhibit signaling [31]. 
Soluble Axl (sAxl) has been detected in tumors, but it also 
may have a normal biological role in human serum where 
it binds to circulating Gas6 [16, 32]. Notably, application 
of sAxl to target Gas6/Axl signaling has been proposed as 
a therapeutic strategy in cancer [33, 34].

Exons 13–20

As a Type I transmembrane receptor, Axl’s 
enzymatic kinase domain spans exons 13–20 within the 
intracellular C-terminus (Figure 1). The TAM receptors 
share a family-specific motif in their kinase domains, about 
100 amino acids downstream from the ATP active site. In 
Axl and Mer the amino acid sequence is KWIAIES, but 
in Tyro3 the isoleucines are substituted with leucines [1].

Axl in evolution and development

Axl homologs have been identified in Pan 

troglodytes, Canis lupus, Bos taurus, Mus musculus, 
Rattus norvegicus, and Xenopus tropicalis, while 
orthologs have been identified in over 70 organisms. 



Oncotarget4www.impactjournals.com/oncotarget

The TAM receptors seem to have arisen relatively recently 
in evolution, as they have no representation in Drosophila 

melanogaster or Caenorhabditis elegans [35]. The later 
appearance of the TAM receptors compared to other 
kinases such as those of the MAPK pathway supports 
their role in complex processes like hematopoiesis and the 
immune response [35].

Axl is expressed fairly late in embryogenesis 
compared to other RTKs. RNA in situ hybridization 
analysis has revealed the initial expression of Axl in 
substructures of developing tissues at day 12.5 after 
fertilization [36]. Whereas many RTKs are known for 
their essential role in embryonic development, the TAM 
receptor family seems to be dispensable. Triple knockout 

Figure 2: Gas6 activation of Axl leads to homodimerization and activation of downstream signal cascades with 

functional consequences. The above signaling diagram represents events downstream of Gas6 binding and Axl homodimerization 
across many cell types. Gas6 binding to Axl creates a major contact formed between the LG1 domain of Gas6 and the Ig-like 1 domain of 
Axl, and a minor contact between the LG1 domain of Gas6 and the Ig-like 2 domain of Axl. Other ligands not shown: protein S contains the 
same domains as Gas6, and binds Tyro3 and Mer through its SHGB region; tubby and Tulp1 contain “minimal phagocytic determinants” 
(MPDs) in their N-termini which are essential for receptor binding; tubby binds Mer and Tulp1 binds all three TAM receptors.
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of all TAM receptors in mice lead to viable offspring, 
whereas even a single point mutation in developmentally 
required RTKs can result in embryonic lethality [37, 38].  
Although the triple negative offspring live, they do 
develop abnormalities such as autoimmune disorders due 
to hyperactivation of antigen-presenting cells as well as 
increased B and T cell populations [39].

Activation of Axl and downstream consequences

As a receptor tyrosine kinase, Axl is activated upon 
paracrine or autocrine Gas6 binding and subsequent 
homodimerization, causing tyrosine autophosphorylation 
and phosphorylation of downstream targets (Figure 2). 
However, the mechanism of the activation step alone 
has been contested in various settings. It has been 
thought that Axl activation and autophosphorylation can 
occur independently of ligand binding, such as in the 
experimental setting of Axl overexpression. This leads to 
homophilic binding of extracellular domains on opposite 
cells and causes cell aggregation, independent of both 

calcium and the Axl kinase domain [40]. In vascular 
smooth muscle cells (VSMCs) and lens epithelial cells 
ligand-independent activation of Axl occurs in response 
to hydrogen peroxide, where activation of Axl in the 
former involves reactive oxygen species (ROS) [41, 
42]. In vascular endothelial cells, Axl phosphorylation 
in response to laminar sheer stress may occur by 
an association with β3 integrin [31]. Additionally, 
phosphorylation of Axl can occur through VEGF-A 
induction of a SRC family kinase member (SFK) in 
endothelial cells [43].

Studies have found that heterodimerization 
between the TAM receptors may be a mode of 
activation (Figure 3). Due to the differential affinity 
of Gas6 for the receptors, it would make sense for Axl 
and Tyro3 to preferentially heterodimerize. Indeed, 
they co-immunoprecipitate in gonadotropin-releasing 
hormone (GnRH) neuronal cells [44]. On the surface 
of macrophages, Mer phosphorylation requires Axl and 
Tyro3 to efficiently mediate apoptotic cell clearance, and 
this may be due to their heterodimerization with Mer 

Figure 3: Activation of Axl by heterodimerization with plasma membrane proteins leads to cell-specific consequences. 
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after being stimulated with Gas6 [45]. In Rat2 fibroblast 
cells, Gas6 treatment induces Tyro3-dependent Axl 
phosphorylation, which further leads to the trans-
phosphorylation of Tyro3 [46]. Heterodimerization may 
also occur with non-TAM receptor family members, 
such as the type I interferon receptor (IFNAR) and 
the FLT3 receptor [47, 48]. Notably, addition of FLT3 
ligand leads to heterodimerization of Axl and FLT3, 
and phosphorylation of FLT3 is reduced after addition 
of the extracellular Fc portion of Axl [48]. EGFR 
associates with and transactivates Axl independently 
of Gas6 to amplify EGFR signaling in triple negative 
(TN) breast cancer cells [49]. Weak interaction has been 
proposed for Axl and MET in GnRH neuronal cells, 
where stimulation with their ligands Gas6 and HGF, 
respectively, leads to receptor-specific phosphorylation 
without trans-phosphorylation [50].

Aside from physical association, Axl may 
functionally cross-talk with other signaling pathways, 
leading to context-specific outcomes. In natural killer cell 
differentiation, Gas6/Axl signaling is involved in crosstalk 
with c-Kit signaling, and prevention of Gas6 binding to 
Axl inhibits c-Kit phosphorylation [51]. Importantly, 
Axl signaling synergizes with other RTKs after they are 
therapeutically targeted, leading to diversification of 
signaling and therapeutic resistance [49].

In studies to date, the signaling downstream of Axl 
resembles that of most RTKs. Which specific pathways 
are activated and at what time is context-dependent, 
determined by the extracellular environment, cell type, 
and tissue type. The initial characterization of Axl in 
myeloid leukemia described two PI3K consensus-binding 
sites in the kinase domain, similar to other RTKs [2]. 
Since then Axl signaling through PI3K has been firmly 
established in many circumstances through which it 
regulates cell migration, growth, angiogenesis, and 
apoptosis, among other processes [43, 52–55]. In 1997, 
Braunger et al. identified two subunits of PI3K, p85α 
and p85β, as well as PLCγ, GRB2, SRC, and LCK, as 
substrates of Axl (Table 1) [56]. These substrates all bind 
tyrosine 821; additionally, the p85 proteins can bind Y779 
with lower affinity, and PLCγ can bind Y866 (Table 1). 

A yeast two-hybrid screen using the cytoplasmic domain 
of Axl as bait against a heart cDNA library uncovered 
the p55γ subunit of PI3K, SOCS-1, Nck2, RanBPM, 
and C1-TEN as Axl binding proteins [57]. Importantly,  
C1-TEN was discovered during this screen as a novel C1 
domain-containing protein with homology to tensin and 
PTEN, and has since been implicated in cancer. By binding 
all of these adaptor proteins, Axl has extremely diverse 
signaling capabilities through the PI3K, Akt, mTOR, 
NFκB, and MAPK pathways. It becomes paramount, 
therefore, to determine the exact contribution of Axl in 
each tissue and disease context, and how to therapeutically 
manipulate it.

Regulation of Axl

The direct regulation of Axl at the protein, 
translational, and transcriptional levels remains a large gap 
in the field. Signaling through RTKs may be dampened 
or shut off by a mono-ubiquitination signal, leading 
to endosome-mediated internalization and lysosomal 
degradation. This holds true for Axl signaling, whose 
ubiquitin ligase is c-Cbl. The Cbl family also targets 
EGFR, PDGFR, CSF-1R, and HGFR [58]. Binding of 
Gas6 to Axl promotes its downregulation through this 
mechanism, also common amongst other RTKs and their 
respective ligands [42, 59].

A similar mechanism of Axl downregulation may 
by imposed by the von Hippel-Lindau (VHL) protein, 
a ubiquitin ligase known to target hypoxia-inducible 
factor 1-alpha (HIF1α). Reconstitution of cells with VHL 
decreases Axl protein levels, but does not affect Axl mRNA 
levels, indicating regulation at the protein level [60]. 
Exclusive regulation of Axl at the protein level also occurs 
during chemically-induced hypoxia in prostate cancer cells. 
Although the exact mechanism is unknown, cobalt chloride 
(CoCl2) treatment of Gas6-stimulated cells prevents  Gas6-
mediated downregulation of Axl protein [61].

The use of phosphatases by the cell is a common 
method of reversible downregulation of RTK activity. 
However, there are no confirmed Axl-targeting 
phosphatases to date. As mentioned previously C1-TEN 

Table 1:  Axl tyrosine phosphorylation and respective binding partners.

Tyrosine Potential 

Autophosphorylation?

Binding Partners Reference

702 No Grb2/Ack1 [281]

703 No Grb2/Ack1 [281]

779 Yes PI3K p85α/β [56]

821 Yes/No PLCγ, PI3K p85α/β, 
GRB2, SRC, LCK

[56, 282]

866 Yes PLCγ [56]
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is an Axl binding protein with phosphatase activity, but it 
has not been shown to directly dephosphorylate Axl.

Post-transcriptional regulation has been shown 
to occur through microRNA (miRNA) binding of the 
3’ UTR of Axl. So far, two Axl-targeting miRNAs have 
been identified, miR-34a and miR199a/b, through a 
bioinformatics screen using non-small cell lung cancer, 
breast cancer, and colorectal cancer cell lines [62]. 
Importantly, transfection of these miRNAs inhibits cell 
migration and invasion in vitro, and metastasis in vivo. 

Regulation by miRNAs not only has clinical significance, 
but it unveils another layer of diversity within Axl 
signaling, as expression of miRNAs is often cell/tissue 
specific.

At the transcriptional level, there are multiple ways 
to regulate Axl (Figure 4). Several transcription factors 
have been shown to upregulate Axl transcription. HIF1α 
regulation of Axl was observed in a gene expression 
microarray using RNA from hypoxia-exposed pulmonary 
artery epithelial cells [63]. Although HIF1α binding to the 

Axl promoter has not been functionally validated, HIF1α 
binding to Axl was found to be enriched using ChIP-seq 
in human umbilical vein endothelial cells (HUVEC) 
under hypoxia [64]. MZF1 has been implicated in cancer 
development, and binding to the Axl promoter enhances 
Axl mRNA and protein expression, inducing invasion and 
in vivo metastasis in colorectal and cervical cancer [65]. 
AP1 is also a transcription factor that can regulate Axl, and 
is required for the overexpression of Axl in TKI-resistant 
CML cells [66, 67]. Axl overexpression can also occur 
through four TEAD-binding domains in its promoter, 
which requires the coactivator YAP [68]. The adenovirus 
type 5 early region 1A (E1A) gene exerts tumor 
suppressive activity by downregulating Axl transcription 

to induce apoptosis in Axl-expressing cells [69].  
The SP zinc-finger transcription factors Sp1 and Sp3 have 
been shown to bind GC-rich regions in the Axl promoter 

to upregulate its transcription, while methylation of CpG 
sites in Sp binding regions restricts Axl gene expression 
[70]. Axl also has 17 CCWGG sites in its promoter, and 

Figure 4: Transcription factor binding to the Axl promoter. Adapted compilation of figures from multiple sources (Mudduluru, 
2010; Mudduluru, 2011; Xu, 2011; Mudduluru, 2008; Hong, 2008; Vaughan, 2012). Putative HIF1α binding to HRE sequences is not 
shown. p53 interaction with CREB complex induces histone acetylation around CRE sites. YAP is a transcriptional cofactor for TEAD. 
Methylation of CCWGG sites are marked. CpG methylation is not shown, but occurs in 19 CpG sites within nucleotides -669 to -97. CpG 
methylation also occurs in Sp a, b, and c sites which prevents Sp factors from binding.
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methylation at these sites prevents Axl from responding 
to chemotherapy drugs [71]. Hypomethylation of the Axl 

promoter leading to upregulation is found in Karposi 
sarcoma cell lines [54]. The methylation status of Axl 

not only has implications for disease, but it also affects 
heritability, eliciting the phenomenon of genomic 
imprinting. A differentially methylated region (DMR) in 
the paternal allele of Axl causes silencing and preferential 
expression of the maternal allele [72]. Twin studies have 
found that DNA methylation levels of Axl are significantly 
heritable [73].

Tissue and cell type-specific roles for Axl

Unlike its other family members, Axl is nearly 
ubiquitously expressed among cell types. The biologic 
effects of signaling through Axl, as well as consequences 
of Axl overactivation or downregulation, are cell/tissue 
type specific in health and disease (Table 2).

Hematopoiesis
The initial discovery of Axl in a screen for CML 

transformants alludes to its involvement in the blood-
forming lineages (Figure 5). Since then, an important role for 
Axl has been established in maintaining normal homeostasis 
of hematopoiesis, and it is most prominent in the CD34+ 

early myeloid lineage of hematopoietic cells [74].
Most likely through Axl signaling, Gas6 production 

by bone marrow stromal cells supports hematopoiesis in 
culture [75]. Support of hematopoiesis was defined in this 
study as the ability to produce myeloid colony-forming 
cells for months [76]. Since the soluble form of Gas6 is 
not sufficient for hematopoietic support, the mechanism 
is proposed to be through Gas6-mediated chemotaxis 
of Axl-expressing progenitor cells [75]. Both Axl and 
Mer cooperate to regulate the differentiation of cells in 
the erythroid lineage, where Axl-/- Mer -/- mice are unable 
to produce differentiated erythroid progenitors [77]. 
These mice also display impaired megakaryocytopoiesis 
indicated by prolonged time to clot after transection of 
the tail tip compared to normal or other combinations of 
double knockout mice [78].

Axl represents a prognostic biomarker in diseases 
of the myeloid lineage such as AML and CML, and 
may be a therapeutic target. Axl is upregulated in 
AML patients and correlates with a decrease in both 
progression-free and overall survival [79]. In FLT3/ITD-
driven AML, Axl positively regulates constitutive FLT3, 
leading to cell growth, proliferation, and inhibition of 
myeloid differentiation [33]. Another study found that 
Axl can be therapeutically targeted in AML independent 
of the FLT3 mutational status [80]. Furthermore, this 
therapeutic inhibition of Axl also inhibits the Akt and 
MAPK pathways, implying a mechanism through which 
Axl upregulation promotes growth and proliferation in 

AML cells [80]. A mode of chemoresistance in AML 
cells has been proposed to be through their instruction of 
bone marrow stromal cells to upregulate Gas6 through 
IL-10 and M-CSF [80]. In CML, resistance to the 
TKI imatinib is also correlated with high levels of Axl 
[66]. The reoccurrence of the participation of Axl in 
therapeutic resistance may also indicate its role as more 
of a “passenger” than a “driver” of disease. In fact, a 
study to determine if Axl participates in the onset or 
the progression of CML became a study of noninsulin-
dependent diabetes mellitus (NIDDM), when ectopic 
overexpression of Axl in the myeloid lineage of transgenic 
mice induced a NIDDM phenotype rather than causing 
hematopoietic malignancies [81]. Although it is more 
frequently expressed in myeloid cells, inhibition of Axl in 
B cell-derived microvesicles has been shown to increase 
apoptosis in CLL B cells [82]. However because of the 
cooperative nature of Axl, these apoptotic effects may 
be mediated by combination signaling with the other 
upregulated kinases in CLL such as PI3K, c-Src, and 
PLCγ2 [82]. Additionally, B cell-derived microvesicles 
circulating in CLL plasma can deliver constitutively 
phosphorylated Axl to BMSCs to enhance the tumor 
microenvironment and recruit additional tyrosine kinases, 
and not surprisingly, this phosphorylation status correlates 
with clinical prognosis [82, 83]. Axl expression also has 
implications in other cells of the lymphoid lineage, such 
as natural killer (NK) cells. In combination with Tyro3 
and Mer, Axl signaling is essential for the differentiation 
of NK cells, where it regulates the IL-15, c-Kit, and 
FLT3 pathways [48, 51, 84]. Interestingly, NK cells can 
be instructed to reject metastatic tumors through the 
inhibition of Cbl-b, an E3 ubiquitin ligase for all three 
TAM receptors [85].

Myeloid lineage

Macrophages are differentiated cells of the 
myeloid lineage, and of the TAM receptors, mutated 
Mer seems to have the most pronounced effect on 
macrophage function [86]. However, given that Axl is 
preferentially expressed in macrophages, monocytes, 
and dendritic cells compared to cells of the lymphoid 
lineage, its role in the innate immune response cannot be 
overlooked. Macrophages are an important component of 
the immune system, in that they ingest foreign material 
and can act as antigen-presenting cells. Triple knockouts 
of the TAM receptors in mice remain embryonically 
viable, but develop autoimmune diseases around 4 weeks 
postnatal [86]. Specifically, the inability of macrophages 
to phagocytose and clear apoptotic cells reflects the 
normal role of the TAM receptors in this process, 
although it is more attributed to the Mer receptor [86]. 
The Gla domains of both Gas6 and protein S are able to 
bind phosphatidylserine (PS) and acidic phospholipids 
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Table 2:  Axl signaling and functional consequences in normal and disease contexts.

Normal Cell/Tissue Type Signaling Consequence Reference

HSCs – Hematopoietic support, 
inhibition of proliferation

[75]

Erythrocytes – Differentiation [77]

Platelets β3 integrin, PI3K/Akt Aggregation [166–168]

Megakaryocytes Differentiation [78]

NK cells STAT5, c-Kit, FLT3 Differentiation [48, 51, 84]

Macrophages – Apoptotic cell clearance, 
regulation of immune 
response

[86, 88, 91]

Dendritic cells STAT1 Regulation of immune 
response

[47]

Chondrocytes ERK1/2 Proliferation/differentiation [95]

Lung (general) MCP-1, IL-8, IFN-β, IL-13 Regulation of immune 
response

[6, 123, 124]

Vascular smooth muscle cells PI3K/Akt/PKB/S6K, SHP2, 
PLCγ, ERK1/2

Apoptotic/injury protection, 
migration, survival

[157–159, 161–163,  
175–177, 179, 185]

Vascular endothelial cells c-SRC, PI3K/Akt/NFκB/
Bcl2, VEGF, SHP2, β3 
integrin, IFN-γ

Proliferation, apoptotic 
protection of quiescent cells, 
angiogenesis, inflammatory 
response

[31, 43, 53, 107, 164, 165, 
181, 182, 187, 188]

Cardiac fibroblasts ERK Proliferation [174]

Renal glomerular cells PDGF Proliferation [191]

Renal tubular cells – Proliferation [193]

Adipocytes – Maintenance of stemness [201–203]

Schwann cells ERK2 Proliferation [221]

GnRH neurons MEF-2, PI3K/Akt, ERK1/2 Migration, apoptotic 
protection

[44, 226–228]

Microglia p38 MAPK, NFκB Apoptotic clearance, 
inhibition of cytokine 
signaling

[224, 231–233]

Cerebral endothelial cells Akt Apoptotic protection [234]

Oligodendrocytes PI3K/Akt Apoptotic protection [235, 236]

Lens epithelial cells PI3K/Akt Proliferation, survival, 
development

[245, 246]

Retinal cells – Clearance of apoptotic cells [90, 247, 248]

Hepatic oval cells – Apoptotic protection [266]

Hepatic stellate cells PI3K/Akt, NFκB Apoptotic protection [269]

Liver (general) SOCS1 Regulation of immune 
response

[5, 271]

(Continued)
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Disease Cell/Tissue Type Downstream Signaling Consequence Reference

AML FLT3, Akt, MAPK, IL-10, 
M-CSF

Proliferation, maintenance 
of stemness, therapeutic 
resistance

[33, 79, 80]

CML – Therapeutic resistance [66]

B cell-derived microvesicles 
in CLL

PI3K, SRC, PLCγ2, Akt Apoptotic protection [82, 83]

Osteosarcoma Akt, MMP-9 Apoptotic protection, 
invasion/migration, 
proliferation

[96–99]

Prostate cancer PI3K/Akt/NFκB, MAPK Proliferation, invasion/
migration, dormancy, 
therapeutic resistance

[100–104]

Breast cancer NFκB, c-MET, PDGFR, 
EGFR, MMP-9, SOCS

EMT/migration, proliferation, 
apoptotic protection, 
therapeutic resistance

[49, 69, 108, 109, 112–117, 
120–122]

Mesothelioma PI3K/Akt/mTOR, MAPK Migration/invasion, 
proliferation

[126, 127]

NSCLC ERK, PI3K/Akt/Rac1, NFκB, 
EGFR

Regulation of immune 
response, proliferation, 
EMT/migration, therapeutic 
resistance

[62, 129–132, 136–138, 
140–142, 146, 147, 149]

Renal cell carcinoma – Proliferation, angiogenesis [60, 196–200]

Melanoma STAT3, RAF/MEK, NFκB Migration/invasion, apoptotic 
protection, therapeutic 
resistance

[210, 212–215, 217]

Squamous cell carcinoma Akt/Blc2, Wnt/TGFβ, NFκB Migration/invasion, apoptotic 
protection, therapeutic 
resistance, disruption of cell-
cell adhesion

[27, 93, 220]

Schwannoma FAK/Src/NFκB Proliferation, cell-matrix 
adhesion

[26]

Astrocytoma PI3K/Akt, ERK1/2 Therapeutic resistance, 
apoptotic protection

[230]

Glioma – Migration/invasion, survival, 
maintenance of stemness, 
angiogenesis

[158, 237–241]

Ocular melanoma Cyr61 Apoptotic protection, 
proliferation

[251]

Retinoblastoma – Proliferation [252]

Thyroid carcinoma cells – Apoptotic protection, 
proliferation, invasion, 
angiogenesis

[253–256]

Colon carcinoma STAT3, SFK, PI3K/Akt Proliferation, invasion, 
therapeutic resistance

[65, 258–263]

Hepatocellular carcinoma Cyr61, ERK, PI3K/Akt Migration [274, 275, 277]
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Figure 5: Representation of Axl in the blood-forming lineages. Axl contributes to the maintenance of HSCs and helps regulate 
differentiation of various HSC lineages. Axl plays a major role in the immune response by regulating inflammation and helping to clear 
apoptotic cells.

which become expressed on the outer leaflet of the 
plasma membrane during apoptosis [87]. It is proposed 
that the ligands are still available for TAM receptor 
binding, which under normal circumstances leads to 
mobilization of apoptotic cells to macrophages which 
have upregulated TAM receptors as a response to the 
initial immune stimulus [86]. This mechanism becomes 
hijacked in infertile men in which increased levels of 
estradiol stimulate Leydig cells to produce more Gas6 
and elevate levels of PS on their surfaces, independent 
of the apoptotic status of the cells [88]. In this setting 
Axl acts as the primary receptor for bridging Gas6 with 
testicular macrophages. Additional ligands for the TAM 
receptors, tubby and Tulp1, have been more recently 
discovered for their role as macrophage phagocytosis 
ligands, acting in a similar manner to Gas6 and protein 
S in their ability to bridge macrophages with apoptotic 
cells [89, 90]. Tubby is specific for Mer, but Tulp1 can 
interact with any of the TAM receptors. Additionally, 
Axl has a normal role in regulating innate immunity 

by limiting cytokine-mediated inflammation. This is 
in part due to the activity of the JAK/STAT pathway, 
whereby TLR-driven cytokine activation leads to STAT/
IFNAR-dependent transcription of Axl in dendritic 
cells [47]. Upregulation of Axl by Type I interferon 
(IFN) is required for IFN downregulation of TNF-α 
production, hence the anti-inflammatory role of Axl in 
the innate immune response [47]. This extends positively 
as a protective role in colitis and colorectal adenomas, 
the risks of which are both dramatically increased 
with chronic inflammation. Axl and Mer cooperation 
in lamina propria macrophages helps to regulate the 
inflammatory immune response, as Axl-/-Mer -/- mice have 
a significant increase in proinflammatory mediators [91].

Macrophages can also interact with tumor cells to 
promote malignancy. Tumor-associated macrophages 
express and secrete high levels of Gas6 in the tumor 
stroma, possibly to help educate infiltrating leukocytes 
to increase their production of Gas6, and this cooperative 
Gas6 increase in the bone marrow niche promotes tumor 
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growth and metastasis of cells expressing high Axl [92]. 
In oral squamous cell carcinoma (OSCC) cells, expression 
of Axl is increased during coculture with tumor-associated 
macrophages having abundant levels of Gas6 [93]. This 
stimulates Axl signaling through NFκB to promote 
malignancy. Taken together, this suggests that tumor 
cells can exploit Axl by increasing the availability of its 
ligand through macrophages in order to create a supportive 
environment for tumor growth and survival. Again, this is 
consistent with a more secondary role for Axl, where it 
becomes a factor in cancer progression and maintenance, 
rather than initiation.

Bone

As alluded to previously, Axl/Gas6 signaling is an 
important part of the interaction between bone marrow 
derived hematopoietic stem cells and bone marrow 
stromal cells. Because of the heterogeneous nature of 
the bone marrow, the autocrine/paracrine secretion of 
Gas6 becomes an important aspect of Axl signaling and 
communication between different cell types. This is a 
normal component of the bone marrow microenvironment, 
but is also exploited to support cancer development and 
maintenance. Axl expression was observed to be greater 
than 800-fold higher in bone marrow mesenchymal 
stromal cells (BMMSCs) compared to bone marrow-
derived hematopoietic stem cells, and Gas6 expression is 
similarly increased in BMMSCs around 380-fold [94]. The 
maturation of chondrocytes is another alternative step in 
the differentiation of mesenchymal stem cells in the bone 
marrow, and this process correlates with the expression 
of Axl and Mer [94, 95]. A study in bovine tissue found 
differential regulation of chrondrocyte differentiation by 
Gas6, and that this was due to opposite expression of 
Axl and Mer at different times [95]. Specifically, Gas6/
Axl signaling in the earlier phase was suppressive of 
differentiation, whereas in the later phase Gas6/Mer 
signaling was supportive of differentiation.

Although a role for Axl in osteocyte differentiation 
from mesenchymal stem cells has not been proposed, 
its expression in osteoblasts is significant in cancer. Not 
unlike other cancers, osteosarcoma cells show increased 
levels of activated Axl which are correlated with clinical 
prognosis [96]. In this setting, Axl protects tumor cells 
from apoptosis and promotes their invasion and migration, 
potentially contributing to lung metastasis. Phosphorylated 
Axl may mediate these effects through Akt signaling and 
upregulation of matrix metalloproteinase 9 (MMP-9). In 
the same manner, another study showed that knockdown 
of Axl increased apoptosis and decreased proliferation, 
also mediated by downregulation of the Akt pathway [97]. 
A recent study unraveled additional RTKs involved in the 
metastatic potential of osteosarcoma, and after lengthy 
metastatic-dependent validations Axl came out as a top 

hit in a metastatic osteosarcoma cell line [98]. Axl also 

emerged from another screen for differentially expressed 
genes in high versus low metastatic osteosarcoma 
sublines [99].

In a similar manner to the exploitation of 
macrophages by cancer cells to create a supportive tumor 
niche, osteoblasts can support disseminated prostate tumor 
cells (DTCs) that metastasize to the bone marrow. There, 
osteoblasts physically bind DTCs through annexin2, and 
this causes upregulation of Axl transcription and display on 
the DTC surface [100]. This allows for sufficient, localized 
binding of Gas6, which is secreted by the osteoblasts. 
However, unlike the pro-proliferative properties of Axl in 
other cancers, Gas6/Axl signaling in this cellular context 
leads to tumor cell dormancy and evasion of therapy.

Prostate

The contribution of Axl to processes in the normal 
prostate has not been studied, but in prostate cancer, Axl 
has clinically significant implications. The first account 
of Axl in prostate cancer was its elevated expression in a 
metastatic prostate carcinoma cell line, DU145, compared 
to normal prostate cells and another prostate carcinoma 
cell line, PC3 [101]. This has since been confirmed by 
other studies. On the other hand, the mRNA levels of 
Gas6 are unchanged between normal and prostate cancer 
tissue [102]. Notably, Axl activation also correlates with 
the androgen-insensitive cell lines PC3, DU145, and CL1 
[102]. As well as possessing a putative role in metastasis, 
Axl has been shown to increase proliferation of prostate 
cancer cells. Both PC3 and DU145 cells respond to Gas6 
by increasing their proliferation, but this effect is more 
predominant in DU145 cells in correlation with elevated 
levels of Axl [103]. This mitogenic signaling is through a 
combination of the PI3K/Akt and MAPK pathways, and is 
therefore complicated by the common occurrence of PTEN 
deletions in prostate carcinomas and the PC3 cell line 
[103]. Further investigation into the mitogenic signaling 
downstream effector of Axl/Akt activation in prostate 
cancer uncovers NFκB, which also induces the secretion of 
IL-6 to activate IL-6/STAT3 signaling [102]. Silencing Axl 

in PC3 cells inhibits proliferation, invasion, and migration; 
implantation of Axl-silenced PC3 cells into mice displays 
reduced cell growth compared to mice implanted with 
untransfected PC3 cells [102]. Unlike in other cancer types, 
Gas6/Axl signaling is unable to protect prostate cancer cell 
lines from serum starvation-induced apoptosis [103].

Prostate cancer preferentially metastasizes to the 
bone, leading to devastating morbidity and mortality. In 
mouse models of human prostate cancer, Axl expression 
is increased in DTCs compared to the primary tumor, 
where Tyro3 expression prevails [104]. Proliferation 
appears to correlate with increased Tyro3 levels, whereas 
decreased Ki67 staining correlates with increased Axl 
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levels, implying dormancy of DTCs [104]. It is thought 
that the mechanisms governing HSC quiescence and 
hematopoiesis are transferrable to DTC dormancy, and 
this supports the involvement of Gas6/Axl signaling 
[75, 104]. As mentioned earlier, Gas6 is secreted by 
osteoblasts in the bone marrow, which increases Axl 

expression in DTCs upon binding to annexin A2 [100]. 
The tendency of prostate metastases to be osteoblastic 
rather than osteolytic, further builds a more suitable 
cancer niche to facilitate DTC dormancy through a 
Gas6/Axl axis. The stability of Gas6/Axl signaling is 
thought to be mediated by hypoxia, where the hypoxia-
mimicking agent, CoCl2, prevents the c-Cbl-mediated 
downregulation of Axl [61]. This downregulation of Axl 
is exclusively at the protein level, as Axl mRNA levels 
are unchanged. It is undetermined whether the chemically-
induced stabilization of HIF1α is an accurate reproduction 
of the hypoxic environment in terms of Axl stabilization. 
This will be an important feature to determine, as the 
bone marrow exhibits reduced oxygen levels. Dormancy 
through Gas6/Axl signaling may be involved in mediating 
protection against chemotherapy, as treatment of PC3 
cells in vitro with Gas6 decreased chemotherapy-mediated 
apoptosis [100]. Axl has been implicated as a prognostic 
and imaging marker in some cancers, including prostate 
cancer. A protein array detecting antigens from serum 
of immunized mice identified Axl as a strong candidate 
[105, 106].

The dichotomous effects of Axl in proliferation 
in prostate cancer models suggests that its role most 
likely depends on the exact cellular context. Studies that 
observe pro-proliferative effects by Axl seem to focus 
on the primary tumor, whereas cell dormancy mediated 
by Axl occurs in the bone marrow. It could also be that 
Axl is merely associated with DTC dormancy in the bone 
marrow, where it acts as a pro-survival factor to keep 
cells from undergoing apoptosis until they receive further 
signals to reawaken. This notion has been implicated in 
the quiescent endothelial cells of the vessel wall [107]. 
Additionally, proliferation assays in vitro of PC3 cells 
with Gas6 yield opposite results in different studies 
[103, 104]. This may simply be due to discrepancies of 
the assays, or more significantly, to the sensitivity of Axl 
to the surrounding environment. Regardless, it will be 
important to determine the regulation of Axl and Gas6 in 
these contexts in order to fully understand the contribution 
of Axl signaling to the progression of prostate cancer. 
Axl may represent a therapeutic target in preventing 
metastasis.

Breast

Axl is expressed in the normal mammary gland, 
but many studies have detected its overexpression in 
aggressive tumors, cell models of breast cancer, and 
metastatic tumors, and thus, it may independently predict 

reduced patient survival [108–112]. This has led to the 
emergence of multiple Axl inhibitors for research and 
therapeutic use across many cancers. It is worth noting 
that Axl is expressed exclusively in breast epithelial cells, 
and not in the surrounding fibroblasts or adipose tissue 
[109]. Although Axl is upregulated in TN breast cancer 
cell lines, this correlation does not carry over to patient 
samples [113]. Instead, membranous expression of Axl 
is associated with lymphovascular invasion, implying 
a role in migration and metastasis [113]. Interestingly, 
increased expression of Axl in metastasized breast cancer 
has been shown to be an effector of metastasis, where it 
maintains invasiveness rather than functioning as a driver 
[108]. This is attributed to the induction of Axl by EMT-
inducing transcription factors, and a follow-up study 
implicated vimentin as an intermediary between the two 
[108, 114]. Microarray analysis in breast epithelial cells 
showed decreased expression of Axl after knockdown of 
vimentin, and that Axl and vimentin correlate positively 
in patient samples [114]. Functional studies further define 
Axl as an important regulator of migration, and some even 
place Axl upstream as an inducer of EMT [114, 115]. In 
inflammatory breast cancer cells, TIG1 stabilizes Axl by 
inhibiting its proteasome-dependent degradation; this 
reduces proliferation, migration, and invasion of the cells 
through NFκB and MMP-9 activation [116]. Regulation of 
Axl to promote invasion and metastasis can also occur via 
glycosylation, as evidenced by inhibition of ST6GalNAcII 
resulting in decreased Axl expression and invasive ability 
in malignant tumor cells [112].

Axl is necessary for the tumorigenesis of breast 
cancer cells in vivo, and this extends to maintaining tumor 
growth despite apoptotic signals induced by nutrient 
deprivation [69, 117]. Overexpression of Axl protects 
breast cancer cells from serum starvation-induced 
apoptosis, as it does in osteosarcoma cells, mentioned 
previously [69, 109, 117]. Negative regulation of Axl 

by the early region 1A (E1A) gene mediates the pro-
apoptotic, tumor suppressive properties of E1A in breast 
cancer, whereas estrogen induction of Axl protects breast 

cancer cells from apoptosis [69, 109]. Axl and the estrogen 
receptor (ER) have high expression correlation in a subset 
of breast cancer, and treatment of ER+ cells with an ER 
antagonist or depriving them of estrogen decreases Axl 
expression [109, 118].

The study of Axl in breast cancer has led to the 
development of novel therapeutics, as well as a role in 
therapeutic resistance to other targeted therapies. Initial 
Axl-targeting strategies have employed anti-Axl polyclonal 
antibodies, and small molecule inhibitors which target 
multiple TKRs [117]. Since then, anti-Axl monoclonal 
antibodies have been developed, which have further 
validated the role of Axl in tumor growth and metastasis 
in breast cancer xenograft tumors [119]. Touching on the 
negative role of the TAM receptors in innate immunity, 
implications for immunotherapy in breast cancer have 
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arose based on the observation that therapeutic-resistant 
cancer stem cells have increased signaling through 
cooperation of SOCS and the TAM receptors, making 
them more susceptible to oncolytic adenovirus [120]. 
The use of bi-specific inhibitors was also proposed when 
it was discovered that Axl phosphorylates c-MET in 
response to Gas6 in TN breast cancer cells [121]. MP470 
is a multikinase inhibitor which targets Axl, mutant c-KIT, 
and PDGFRα, and reverses EMT in breast cancer stem 
cells through the NFκB pathway [115]. On the other 
hand, a selective Axl inhibitor, R428, is still able to inhibit 
metastasis and angiogenesis [122].

For many women, breast cancer therapy targets the 
HER2 receptor, but this treatment almost always eventually 
fails secondary to resistance by mechanisms which are 
currently being explored. Axl overexpression appears 
to be a contributor to resistance. Blocking Axl with the 
multikinase inhibitor GSK1363089 restores sensitivity to 
HER2/ER positive cells originally treated with lapatinib and 
trastuzumab [118]. Furthermore, Axl was identified from a 
database as being predictive of a lack of response to therapies 
targeting the ERBB receptor family. It was shown to be 
physically associated with, and transactivated by EGFR, 
leading to diversification beyond EGFR signaling alone [49]. 
Notably, Axl also associated with MET and PDGFR.

Lung

The regulation of the innate immune system by Axl 
has implications in the lung. Activation of Axl decreases 
inflammation in a cell model of LPS-induced acute lung 
injury through the inhibition of cytokine signaling [6]. 
In respiratory viruses, an anti-Axl monoclonal antibody 
is able to extinguish many consequences of infection by 
boosting the antiviral immune response with type I IFN, as 
well as inhibiting allergic inflammatory responses [123].  
Further support for targeting Axl in respiratory diseases 
comes from a subsequent study in which Gas6 plasma 
levels are elevated by M2 macrophages in clinical asthma, 
driving T cell activation through Axl expression on 
dendritic cells [124].

Pleural mesothelioma is a cancer that is highly 
dependent on RTK signaling for proliferation, and is often 
chemotherapy-resistant [125]. Axl is among the RTKs 
involved, and its expression is found to be higher than 
in other cancers in which it plays a role [126]. Inhibition 
of Axl in mesothelioma cell lines inhibits migration and 
invasion, but the major function of Axl in mesothelioma 
is to promote proliferation [126]. Axl induces proliferation 
through a PI3K/Akt/mTOR axis, and inhibition of Axl 
leads to G1 growth arrest [126, 127]. Overexpression of 
Axl alone is able to predict patient survival, but selective 
RTK inhibition in mesothelioma has not been effective, 
as in the case of EGFR inhibitors [125, 128]. Therefore, 
targeting an array of RTKs might be a more suitable 
approach to take in treating mesothelioma patients [125].

One of the earliest accounts of Axl in lung cancer 
was due to its expression correlation in adherent cultures 
of lung cancer versus suspension cultures, owing to the 
structural adhesion features in its extracellular domain 
[28]. However, Axl expression seems to be a consequence 
of inducing adhesion in suspension cultures, which also 
correlates with the type of lung cancer. Non-small cell 
lung cancer (NSCLC) grows as adherent cultures, whereas 
small cell lung cancer (SCLC) grows in suspension. Since 
then, Axl expression has been shown to correlate with 
many features of NSCLC [129–132]. Both protein and 
mRNA levels of Axl are associated with poor prognosis 
and pathological features of lung adenocarcinoma [131]. 
This holds true for Gas6 protein levels, whereas high 
Gas6 mRNA levels are actually related to better clinical 
outcome for patients [131]. Gas6 secretion by exogenous 
sources in the surrounding tumor environment may explain 
this inconsistency [131]. Furthermore, activated Axl is 
detected in the majority of lung adenocarcinoma cases, 
and correlates with increased tumor size [130]. In fact, 
recent in vivo imaging of Axl using an anti-Axl antibody 
in lung cancer xenografts has demonstrated to be of use in 
diagnosis, prognosis, and tumor monitoring [133].

Axl-mediated tumor growth is predicted to be 
through ERK, as an anti-Axl mAb inhibits its activation 
and decreases proliferation in vitro [130]. Axl may 
be positively regulated by YES-associated protein 1 
(YAP1); knockdown of YAP decreases both Axl and 
PCNA expression, and inhibits proliferation of lung 
adenocarcinoma cells [129]. Different mutated forms of 
p53 frequently drive lung cancer, and functional analysis 
has demonstrated that Axl is a transcriptional target of 

both WT and mutant p53 [134]. Thus, Axl is induced by a 
driver of tumorigenicity, presenting a notion that drivers 
of cancer must have the ability to be mutated, whereas 
the lack of Axl activating mutations may place it in 
more of a passenger position, being recruited for cancer 
maintenance. Aside from transcriptional and translational 
regulation, a potential method of Axl activation has 
been found by transcriptome sequencing of primary 
lung adenocarcinomas, unveiling a novel fusion gene of 
Axl and MBIP [135]. The fusion gene retains the kinase 
domains and dimerization units, necessary for activation. 
Further investigation into the causes and consequences of 
this fusion event is warranted.

Axl is also involved in EMT and migration of lung 
cancer. Metastases of the lung usually end up in the lymph 
nodes, and Axl expression is seen to correlate with this 
status [132, 136]. Transfection of miR-34a and miR-199a, 
which target Axl, inhibits invasion in metastatic lung 
cancer cells and in vivo metastasis [62]. Migration may 
also occur through ROS activation of Axl with subsequent 
activation of PI3K/Akt and Rac1, and this would 
represent an adaptive characteristic of the tumor cell to 
oxidative stress [137]. Overexpression of Axl in cells 

induces filopodia formation and EMT-like morphology, 
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and their invasive potential is dependent on the first Ig 
domain on the N-terminus and on the kinase domain, but 
not on the two FN3 domains [138]. Furthermore, Axl 
signaling through NFκB might be part of this mechanism, 
as treatment with a NFκB inhibitor diminished the Axl-
mediated invasiveness [138].

The participation of Axl in EMT is implicated in 
mechanisms of chemotherapy and TKI resistance. Since 
significant time has passed since the development of 
TKIs such as erlotinib and gefitinib, the overwhelming 
majority of Axl studies in lung cancer attempt to elucidate 
mechanisms of acquired resistance. More recently, Axl 
has been added to the list of common contributors of TKI 
resistance in lung cancer such as secondary mutations in 
EGFR, and overactivation of other genes like MET, HGF, 
and IGF1-R [139]. Patients with developed resistance to 
erlotinib due to mutations in EGFR also have increased 
levels of Axl [136, 140]. In these patients, Axl also 
promotes EMT, and inhibition of Axl restores erlotinib 
sensitivity in tumor models [140]. Axl can also act as 
a binding partner with EGFR upon HGF treatment in 
EGFR-mediated TKI-insensitive models, potentially 
contributing to a mode of resistance [141]. Chemotherapy 
resistance can influence acquired resistance to TKIs, and 
Axl has also been shown to increase cell motility in this 
setting [142]. Whether Axl upregulation is an overall 
inducer or a consequence of EMT is not clear, and may 
depend on the particular experimental or physiological 
setting. Studies of EMT in TKI resistance in lung cancer 
typically have implicated Axl as a marker of EMT, joining 
the rank of snail, twist, vimentin, and N-cadherin, to name 
a few [143–145]. EMT as a driver of erlotinib resistance 
has been proposed, where Axl is part of an EMT signature 
in resistant mesenchymal cells, which consequently have 
greater sensitivity to the Axl inhibitor, SGI-7079 [146]. 
Expression of Axl-altered miRNAs can induce resistance 
as well as EMT morphology and functional characteristics 
in gefinitib-sensitive cell lines, indicating a role for Axl 
as an EMT driver [147]. However, one study found that 
knockdown of Axl in generated erlotinib-resistant cells 
did not restore their sensitivity [148]. Protection from 
apoptosis as a mechanism of therapeutic resistance 
includes Axl as well – knockdown of Axl leads to NSCLC 
sensitivity by increasing apoptosis [149].

The role of Axl in lung cancer and in resistance 
to current therapies have sparked the development 
of Axl inhibitors for research and clinical use [150].  
A high-throughput, high-content screen based off of Gas6-
induced phosphorylation of Akt in a NSCLC cell line was 
recently developed as a tool for identifying potential new 
therapeutics [151]. Axl was recently identified as a target 
of apigenin, a natural product of plants with implications in 
chemoprevention [152, 153]. Another natural compound, 
epigallocatechin gallate (EGCG), induces cytotoxicity in 
lung cancer cells whether treated with or without cisplatin, 
by suppressing both Axl and Tyro3 [154]. Similarly, Met 

and Axl can both be targeted by NPS-1034 in cells with 
acquired resistance to TKIs, leading to cell death [155]. 
A novel approach to Axl inhibition is the development 
of aptamer-miRNA conjugates, whereby targeting Axl 

reduces growth of tumor xenografts [156].

Vascular smooth muscle/endothelial cells

Axl is highly expressed in vascular smooth muscle 
cells (VSMCs) and serves a protective role during vascular 
injury [157–159]. As in other cellular contexts, Axl exerts 
anti-apoptotic effects to mediate a variety of processes. 
Constitutive phosphorylation of Axl is observed in 
growth-arrested pulmonary artery endothelial cells, and 
addition of Gas6 further increases phosphorylation of 
Axl and leads to greater cell viability [107]. Inorganic 
phosphate (Pi) induces VSMC calcification through 
apoptosis, initially found to be through downregulation 
of Gas6/Axl interaction which can be restored by statins 
[160–162]. In the absence of Pi, normal anti-apoptotic 
effects are specifically due to Gas6/Axl activation of the 
PI3K/Akt pathway, leading to activation of NFκB and 
the anti-apoptotic member Bcl2 [163, 164]. Acidification 
as a result of hypercarbia also inhibits cellular apoptosis 
through Gas6/Axl activation [165]. Mild acidification can 
be a result of laminar sheer stress due to tangential blood 
flow against vascular endothelial cells, leading to an array 
of signaling cascades and anti-apoptotic effects mediated 
by Axl [31]. Axl is upregulated in cells undergoing 
laminar stress compared to those in static flow, and its 
phosphorylation is independent of Gas6 [31]. Instead, 
Axl physically associates with β3 integrin, promoting 
its own phosphorylation and anti-apoptotic effects [31]. 
Axl and its other family members can also stimulate 
the phosphorylation of β3 integrin to promote platelet 
aggregation, potentially through their activation of PI3K/
Akt, known to play a role in this process [166–168].

Restoring Axl function may be a therapeutic strategy 
in patients with disease linked to calcified blood vessels, 
such as atherosclerosis, diabetes, and kidney disease [169]. 
Axl and Gas6 upregulation may contribute to the observed 
reduction in atherosclerotic events within the left internal 
mammary artery, used for coronary artery bypass grafting, 
compared to in the aorta [170]. Advanced atherosclerotic 
plaques show decreased expression of Axl, whereas the 
expression of Mer and protein S is increased, consistent 
with the abundance of protein S known to be in the plasma 
[171]. Another study found that plasma Gas6 levels may 
be used as a biomarker in atherosclerotic disease, due to its 
correlation with high Gas6 and Axl expression in the aorta 
of CABG patients [172].

Response to vascular injury requires efficient 
migration and proliferation of cells, and this is mediated by 
signaling of growth factors through RTKs. Upregulation 
and secretion of Gas6, and subsequent activation of 
Axl is one aspect of vascular injury response. Both Axl 
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and sAxl are upregulated in heart failure patients, 
and sAxl may be of use as a diagnostic marker [173]. 
Cardiac fibroblasts respond to Gas6 and increase their 
proliferation through Axl-activated ERK [174]. Axl can 

be increased by thrombin or angiotensin II (Ang II), and 
activation by Gas6 leads to cell proliferation at the site 
of injury [175, 176]. Furthermore, the time over which 
Gas6/Axl signaling increases after injury parallels the 
timeline of the neointima formation [157]. Axl increases 
proliferation of cells by inhibiting apoptosis, and again, 
this is through activation of the PI3K/Akt pathway rather 
than through ERK1/2 [177]. In addition to mediating 
apoptosis at sites of vascular trauma, Axl signaling can 
regulate immune heterogeneity of vascular cells, the 
expression of cytokines and chemokines, and remodeling 
of the ECM [178]. Another important feature of vascular 
remodeling is the ability of cells to migrate, and just as 
Axl mediates EMT and migration in cancer models, it is 
able to increase migration in VSMCs by interacting with 
the myosin heavy chain (MHC)-IIB in response to Gas6-
stimulated ROS production [179]. Oxidative stress plays 
a large role in vascular disease, as ROS is an important 
signaling molecule. In the setting of vascular injury, 
activation of Axl by ROS is partially ligand-independent, 
where inhibition of Gas6 somewhat decreases Axl 
phosphorylation [41]. ROS-activated Axl contributes to 
vascular pathology, making Axl an attractive therapeutic 
target [180].

Vascular remodeling in response to hypertension 
also uses Axl signaling to protect against apoptosis, but 
this contributes to endothelial dysfunction [181]. Increased 
vascular apoptosis in mice lacking Axl display lower 
systolic blood pressure [181]. Furthermore, hematopoietic 
expression of Axl is responsible for the initiation of salt 
hypertension due, in part, to the upregulation of IFN-γ 
[182]. Thus, in this setting, Axl promotes the inflammatory 
response, unlike its normal anti-inflammatory role 
in the immune system. During pregnancy, severe 
preeclampsia correlates with elevated levels of plasma 
sAxl [183]. This form of Axl is complexed with Gas6, 
making it unavailable for signaling. Endothelial damage 
is supposedly a hallmark of preeclampsia, but the 
implications of reduced Axl signaling in this context are 
yet to be explained. Hypertension can also be a result of 
diabetes, in which VSMC signaling is altered by changes 
in glucose levels [184]. Glucose affects Axl signaling by 
altering its interactions with its binding partners – in low 
glucose, Axl associates with PI3K, but increased glucose 
leads to interaction with protein tyrosine phosphatase 
SHP-2 [185]. Consequently, Axl/PI3K interaction leads to 
increased cell survival, and Axl/SHP-2 interaction leads to 
increased migration through activation of ERK1/2 [185].  
Another study found that high glucose is inversely 
correlated with plasma Gas6 levels, leading to decreased 
Axl signaling through Akt and increased adhesion in 
human microvascular endothelial cells [186].

Angiogenesis is a key feature of tumor growth, 
whereby vascular endothelial cells gain the ability to 
proliferate off of and extend existing vessels. Axl was 
first implicated in the process of angiogenesis in a search 
for RTKs expressed in the rheumatoid synovium of 
rheumatoid arthritis patients [187]. Gas6 was shown to 
protect human umbilical vein endothelial cells (HUVECs) 
from TNFα-mediated apoptosis [187]. Functional 
interaction with VEGF activates SFKs to mediate ligand-
independent Axl activation and subsequent PI3K/Akt 
signaling [43]. However, Gas6 has been implicated as a 
negative regulator of angiogenesis, whereby stimulation 
of Axl in vascular endothelial cells results in the reversal 
of ligand-mediated VEGF activation by recruiting the 
tyrosine phosphatase SHP-2 [188].

In cancer models, simultaneous inhibition of Axl 
and VEGF effectively impairs tube formation, suggesting 
a potential method of intervention to prevent tumor growth 
and metastasis [119, 189]. Given that hypoxia drives 
angiogenesis within tumors, it is interesting to consider the 
role of Axl in response to hypoxia. As mentioned earlier, 
HIF1α has been shown to bind Axl by ChIP analysis, and 
Axl signaling is stabilized in prostate cancer cells after 
treatment with CoCl2, a stabilizer of HIF1α. Thus, within 
a tumor, the stabilization or upregulation of Axl by the 
hypoxic environment could also help to further promote 
angiogenesis.

Post-transcriptional upregulation of Gas6 is found to 
occur after lactate addition to HUVECs, and this engages 
Axl to promote PI3K/Akt signaling in angiogenesis [53]. 
An early study proposed Gas6 to be a chemoattractant for 
the migration of primary vascular endothelial cells, but 
without possessing significant mitogenic potential [190].  
However, the first demonstration of VEGFR2-Axl 
crosstalk found that Gas6-activated Axl was antagonizing 
for vascularization, and that Gas6 inhibited chemotaxis of 
endothelial cells [188].

Kidney

Axl is involved in various diseases of the kidney. 
Control of proliferation by Axl has been observed in 
glomerulonephritis, where treatment of mice with a low 
dose of warfarin inhibits glomerular proliferation [191].  
Axl is upregulated in acute tubular necrosis associated 
with chronic rejection following renal transplantation, 
and this coincides with Gas6 levels [192]. Furthermore, 
albuminuria due to podocyte loss results in proliferation 
of the tubule cells as an adaptive response, possibly 
associated with the observed increase in Axl 
phosphorylation [193]. Axl is also localized to the tubular 
segments of the medulla after treatment of mice with an 
angiotensin-converting enzyme (ACE) inhibitor, used to 
prevent renal tubule atrophy, and an inhibitor of nitric 
oxide synthesis [194]. However, the upregulation of Axl 
in this situation is an unexpected result, as findings from 
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a previous study observed upregulation of Axl and Gas6 
by Ang II and subsequent downregulation after inhibition 
of NADPH-oxidase [195]. These findings may heavily 
depend on the type of renal injury, but implicate Gas6/Axl 
signaling as an important aspect of renal disease.

The oncogenic role of Axl extends to renal cell 
carcinoma (RCC), where its expression is increased 
compared to in the normal kidney [196, 197]. Specifically, 
patients with low Axl and high Gas6 mRNA levels in the 
tumor have better prognosis than those without [198]. Better 
prognosis is also observed in patients with both low sAxl 
and Gas6 in their serum, but it is unknown whether these 
levels are affected by the output of surrounding cells [198]. 
Clear cell renal cell carcinoma (ccRCC) is often found to 
display genetic alteration of VHL, increasing angiogenic 
potential by stabilizing HIF1α and HIF2α, and increasing 
VEGF expression [199]. In a ccRCC cell line, expression 
of functional VHL decreases Axl protein levels, but Axl 

mRNA levels are unchanged [60]. Since VHL is a ubiquitin 
ligase, it may target Axl for protein degradation. The 
biology of Gas6/Axl signaling in ccRCC is complicated by 
the fact that it has been shown to inhibit VEGFR-dependent 
angiogenesis in vascular endothelial cells, but again, this 
may depend on cell type [60, 188]. Another study found 
that Axl expression is dependent on VHL in RCC, and that 
higher expression in endothelial cells correlates with better 
clinical outcome, consistent with Axl being an antagonist of 
angiogenesis in epithelial cells [200].

Adipocytes

A general role of the TAM family has more 
significant consequences in adipose tissue compared to 
the somewhat controversial role of Axl alone. The first 
characterization of Gas6 and its receptors in adipose tissue 
found that Axl is only expressed in pre-adipocytes, while 
Gas6, Mer, and Tyro3 are expressed in both pre-adipocytes 
and mature adipocytes [201]. Axl was found to be 
downregulated upon adipocyte differentiation, supporting 
a role in maintaining an undifferentiated state, much like in 
other cell types discussed [202]. Small molecule inhibition 
of Axl impairs pre-adipocyte differentiation, consistent 
with the decrease in weight gain of mice on a high fat diet 
relative to untreated mice [203]. However, another study 
found that Axl deficiency does not affect adipogenesis, 
where Tyro3 and Mer may respond to Gas6 in order to 
compensate for Axl [204]. This somewhat supports the 
findings that circulating sAxl has no significant correlation 
with adiposity in adolescents, while Gas6 does [205]. 
Expression of Axl is increased in liposarcoma compared 
to both pre-adipocytes and differentiated adipocytes, and 
only one further study has found it to be a prognosticator 
of survival by univariate analysis [206, 207]. Considering 
the widely credited role of Axl in migration/metastasis of 
tumor cells, Axl may not indeed contribute significantly to 
liposarcoma, which is rarely metastatic.

Skin

Axl becomes overexpressed in melanoma and 
squamous carcinomas, compared to normal cells of the 
epithelium [208, 209]. Probably the most significant 
consequence of Axl upregulation in carcinomas of the 
skin is increased migratory ability of cells. In melanoma, 
Axl is associated with NRAS mutations compared to 
BRAF mutations, and is inversely correlated with the 
expression of the microphthalmia-associated transcription 
factor (MITF) [210–213]. Correlation studies also reveal 
the association of Axl with cell motility, invasion, and 
interactions with the surrounding microenvironment, and 
treatment with R428, a selective Axl inhibitor, reduces 
migration and invasion of cells [213]. Knockdown of 
Axl has uncovered STAT3 signaling as a downstream 
modulator of cell migration [214]. Interestingly, melanomas 
harboring Tyro3 display a higher proliferation rate in more 
differentiated cells, and this is consistent with the roles 
of Tyro3 and Axl in prostate cancer metastasis, as cited 
previously [213]. The differential phenotypes governed 
by each of the two receptors may represent a molecular 
switch in the development of cancer. Another report found 
that Axl and Mer are expressed in a mutually exclusive 
manner, where Mer is associated with BRAF mutations 
and Axl is associated with NRAS mutations [215].  
Accordingly, treatment of NRAS-mutant melanoma cell 
lines with an inhibitor targeting multiple kinases including 
Axl, leads to growth arrest and apoptosis [210]. This drug 
has no effect in BRAS-mutant cell lines which lack Axl 
expression. Furthermore, overexpression of Axl increases 
the migratory ability of cells and is associated with 
genetic markers of invasion, whereas Mer is associated 
with markers of cell proliferation but is not sufficient to 
induce proliferation [215]. Both Axl and Mer inversely 
correlate with the expression of MITF, although it has 
not been determined whether they are direct targets of 
the transcription factor [215]. The mutual expression 
of Axl and N-cadherin in a heterogeneous melanoma 
cell population also marks a more invasive phenotype, 
compared to expression of MITF and E-cadherin [212]. 
Together, this suggests the effective use of Axl as a 
molecular biomarker for MITF-lacking melanomas, 
in which cells are less differentiated and have higher 
migratory ability.

Axl is widely implicated in mechanisms of 
therapeutic resistance in lung cancer, and is potentially 
linked to therapeutic resistance in melanoma. When 
melanoma cells are hit with chemotherapy and become 
senescent, they are able to alter the composition of 
their secretome toward being pro-inflammatory, and 
this has tumorigenic effects on neighboring melanoma-
initiating cells [216]. Upregulation of Axl is an example 
of a molecular change in melanoma-initiating cells 
as a response to the secretome of cells undergoing 
senescence [216]. In mutant BRAF-harboring melanoma 
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cells that are resistant to MAPK inhibitors, MITF is 
downregulated whereas Axl and NFκB signaling is 
upregulated [217]. Inhibition of Axl is able to restore 
sensitivity of cells to RAF and MEK inhibitors, except 
to the inhibition of ERK.

Axl has similar roles in the progression of squamous 
cell carcinomas (SCC), where it is overexpressed and 
contributes to cellular migration and EMT. Axl has even 
been used as a marker of SCC in development of an in 

vitro 3D model of SCC [218]. Clinically, Axl expression 
correlates with poor prognosis and lymph node status of 
oral SCC patients, and Gas6 activation induces an EMT-
like gene signature [219]. Alternatively, Axl can also 
exert anti-apoptotic effects in SCC after UV exposure, 
contributing to the growth of tumors through Akt and 
suppression of Bcl-2 family members [220]. As in 
melanoma, Axl may contribute to the resistance of SCC to 
chemotherapy. This is mainly due to its effects on EMT by 
disrupting cell-cell adhesion in cancer stem cells through 
Wnt and TGFβ signaling [27].

CNS

The TAM receptors are important for CNS 
development, but have not been well characterized in 
cells specific to the PNS. However, Gas6 stimulation 
of Axl and Tyro3 has been shown to act as a mitogenic 
factor for Schwann cells with implications in schwannoma 
[26, 221].

Gas6 is widely expressed in the CNS beginning in the 
late embryonic stages, and this is in contrast with protein S 
expression [222]. Many processes in the brain are regulated 
by the cooperation of two or more TAM receptors [223]. 
TKO mice have significantly reduced neural stem cell 
(NSC) proliferation and differentiation [224]. Consistent 
with Tyro3 being the most widely expressed TAM receptor 
in the brain, much of Axl signaling is dependent upon it 
[225]. In the rat brain, the expression of Axl across tissues 
is slightly different from that of Tyro3 [40]. In GnRH 
neurons, Axl and Tyro3 are expressed in migrating cells, 
whereas Mer and Tyro3 are expressed after migration 
[44]. The GnRH promoter is negatively regulated by 
MEF-2 transcription factors which can be induced by 
Axl in migrating cells [226]. Axl/Tyro3 null mice also 
result in increased apoptotic rate of GnRH neurons, 
implicating a normal role in apoptotic protection [227].  
Protection from serum starvation-induced apoptosis is 
through both the PI3K/Akt and ERK pathways [228]. 
Furthermore, nerve growth factor (NGF) can regulate the 
expression and localization of Tyro3 and Axl, contributing 
to induction of neuronal differentiation [229]. Differential 
expression of Axl and Mer may also be responsible for 
the differential activity of Gas6 in early- and late-phase 
maturation of chondrocytes in the growth plate [95]. Taken 
together, this may suggest a phenomenon in which the 

ubiquitous expression of Tyro3 in the CNS can be altered 
to drive cell- and time-specific processes dependent upon 
the presence of either Axl or Mer. Overexpression of Tyro3 

in Axl-expressing Rat2 cells leads to a significant increase 
in cell proliferation, but this effect is not seen upon Mer 

overexpression, supporting this idea [46].
Alternatively, Axl and Mer are able to cooperate to 

inhibit Gas6 signaling in multiple sclerosis (MS), where 
they are found in their soluble forms [30]. The potential 
combination of Axl-mediated survival and Mer-mediated 
clearance of debris is thus inhibited, and may contribute 
to the pathology of MS [30]. In astrocytes, the combined 
signaling of Axl and Mer may account for chemotherapy 
resistance in astrocytoma patients [230]. Inhibition of Axl 
and Mer increases apoptosis and autophagy, and decreases 
cell colony formation, whereas restoration of either 
one alone does not compensate for these effects [230]. 
Microglia are macrophages of the brain, and just as Axl 
and Mer mediate macrophage engulfment of debris, they 
contribute to microglial phagocytosis of apoptotic cells and 
suppression of the immune response in the presence of Gas6 
[224, 231]. However, just loss of Axl can also be responsible 

for increased axonal damage by inhibiting the ability of 
microglia to clear debris from demyelination [232, 233].

Axl mediates processes in the brain similar to in 
other cellular contexts. Anti-apoptotic signaling initiated 
by Gas6/Axl in cerebral endothelial cells is important for 
protection against hypertonicity induced by mannitol during 
clinical opening of the blood brain barrier for drug delivery 
[234]. In oligodendrocyte development, apoptotic inhibition 
by Gas6/Axl signaling is demonstrated to be through the 
PI3K/Akt pathway, specifically by recruiting GRB2 and the 
p85 subunit of PI3K [235, 236]. Thus, Gas6 is a key growth 
factor in the CNS. However, overactivation of pro-survival 
signaling by Gas6/Axl is involved in glioma growth and 
poor prognosis [158, 237, 238]. Expression of Axl in 
gliomas is also responsible for migration and invasion of 
cells, and may also contribute to maintenance of the neural 
stem/progenitor population [237, 239, 240]. Enhancer 
of zeste homolog 2 (EZH2) is a transcription factor that 
upregulates Axl expression in gliomas, and inhibition of 
EZH2 reduces invasiveness [241]. Additionally, Axl and 
Gas6 are coexpressed in tumor vessels, implying a role in 
neovascularization or angiogenesis [158].

Alzheimer’s disease (AD) is another consequence of 
neuronal damage, and its pathogenesis may be caused, in 
part, by a deficiency in vitamin K. It is hypothesized that 
this directly affects Axl signaling in neurons because of the 
dependence of Gas6 on vitamin K for its γ-carboxylation 
and function as a growth factor [242]. Since Gas6/Axl 
signaling has been shown to protect neurons against 
apoptosis, lack of vitamin K would lead to increased 
apoptosis and neuronal damage [228]. In fact, Axl has 
been found to be a potential marker of brain amyloid 
burden associated with AD [243, 244].
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Eye

Axl signaling has implications in normal and 
disease processes in the eye. Axl is expressed in normal 
rat and bovine lens, specifically in the proliferating or 
quiescent epithelial cells in the periphery, rather than in 
differentiated cells [245]. There, Axl is responsible for 
maintaining cell proliferation and survival through the 
PI3K/Akt pathway [245]. Using an apoptosis-specific 
microarray chip to identify gene expression in the 
postnatal mouse lens, Axl was found to be developmentally 
regulated, implicating a normal role in development [246]. 
Another screen-based study found low levels of Axl in the 
normal rat retina, but increased levels after injury [247].  
This is consistent with the role of Axl in helping to 
mediate clearance of apoptotic cells, as phagocytosis of 
apoptotic cells in the retina occurs when cells become 
photodamaged. Phagocytosis of apoptotic cells by retinal 
pigment epithelium (RPE) occurs via the same mechanism 
as macrophages in the immune response. However, instead 
of Gas6, photoreceptor-specific Tulp1 can bridge apoptotic 
cells and RPE cells through any of the TAM receptors [90].  
During oxidative stress, the anti-aging gene Klotho 
increases RPE phagocytosis by upregulating TAM receptor 
expression through cAMP/PKA/CREB activation [248].  
However, Axl may only have a small or supporting role in 
RPE clearance of apoptotic cells, as another study found 
that phagocytosis of apoptotic cells is cell-specific, where 
only Mer is required in the retina [45].

In addition to maintaining normal processes, Axl 
is involved in diseases of the eye. Axl is upregulated 
with age in the lens, as detected in a model of age-onset 
cataract [249]. Oxidative stress is a contributor to age-
related cataract, and Axl transcript levels are upregulated 
in the acute response to H2O2 treatment [250]. In uveal 
melanoma, Axl may be a key factor in maintaining the 
balance of proliferation, apoptosis, and angiogenic 
suppression needed for micrometastatic dormancy [251]. 
Gas6/Axl signaling decreases the angiogenic factor 
Cyr61, mildly protects cells from apoptosis, and increases 
cell proliferation [251]. Treatment of retinoblastoma cell 
lines with a therapeutic agent usually used for macular 
degeneration is able to inhibit growth and proliferation, 
and this is associated with decreased Axl expression [252]. 
As mentioned previously, YAP regulates the transcription 
of Axl, and treatment with this therapeutic downregulates 
YAP [252].

Thyroid

Axl is normally expressed at none or very low levels 
in the thyroid, but its overexpression contributes to thyroid 
cancer [253, 254]. Gas6 mRNA is also expressed in 
thyroid cancer cells where it has a slight mitogenic effect, 
and thus is considered a growth factor for Axl-expressing 
thyroid carcinoma cells [254]. Thyroid carcinomas 

induced by exposure to radiation show increased levels 
of both Gas6 and Axl with reduced apoptosis, implying an 
autocrine activation of Axl [255]. Axl is faintly expressed 
in human thyroid adenomas and is highly expressed 
in carcinomas, with no expression in normal thyroid 
tissue [253]. However, in contrast to breast cancer, Axl 
does not correlate with lymph node metastasis [253].  
CXCR4/SDF-1 signaling transcriptionally regulates both 
Tyro3 and Axl, but silencing of just Axl leads to a decrease 
in cancer cell invasion, increased apoptosis, and inhibition 
of tumor formation due to inhibition of angiogenesis [256]. 
Expression of Axl along the spectrum of differentiated 
thyroid cancers is equal, indicating it is part of a cancer-
initiating event, rather than a consequence [256].  
Alternatively, one study found that Axl expression is 
decreased in tissue associated with malignancy, but 
elevated in the serum of patients with extrathyroidal 
invasion and lymph node metastasis [257]. These 
conflicting results may be attributed to the method of 
detection, as presence of Axl in the serum is most likely a 
result of the cleaved, soluble form. This may coincide with 
decreased detection of Axl in the tissues.

Colon

The oncogenic properties of Axl have implications 
for the progression of colon carcinomas, as it is weakly 
expressed in the normal colon [258]. Axl is overexpressed 
in malignant cells, specifically in peritoneal metastases 
which represent the most aggressive form of colon 
cancer [258, 259]. MZF1 upregulates Axl and both genes 
positively correlate with colorectal tumors, where MZF1 
induces invasion and metastasis [65]. Structurally similar 
to YAP, TAZ is also a transcriptional regulator of Axl, and 
in colorectal cancers correlates with shorter survival [260]. 
Therefore, both TAZ target genes Axl and CTGF are also 

predictors of patient survival, where patients expressing all 
three genes have worse prognosis than those that express 
just two or one [260]. Knockdown of TAZ decreases Axl 
expression, and leads to decreased proliferation, reduction 
in non-adherent colony formation, and decreased 
tumorigenesis [260]. Furthermore, genes associated with 
EMT are also overexpressed in patients expressing TAZ, 
Axl, and CTGF, in support of the more aggressive status 
of Axl-expressing tumors [260]. Consistent with this 
finding, knockdown of CXCR4 and Axl reduces invasion 
of colon cancer cells [261]. As in thyroid cancer, CXCR4/
SDF-1 signaling leads to the transcriptional regulation 
of Axl, which has implications in metastasis [261]. Axl 
also contributes to chemoresistance in colon cancer, 
as it most prominently does in lung cancer [261]. The 
metastatic and invasive properties of Axl contribute to 
its role in resistance, as micrometastases lay dormant and 
thus are not susceptible to standard chemotherapy. Axl 
phosphorylation is increased in invasive colon cancer 
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cell lines, while RTKs involved in maintaining epithelial 
status are downregulated [262]. In this setting, inhibition 
of Axl leads to decreased STAT3, SFK, and Akt activities, 
consequently reducing cellular migration rate [262]. This 
relates to therapeutic resistance in that treatment of non-
invasive parental colon cancer cell lines with an adjuvant 
leads to an increase in migration and invasion, but this 
increase is eliminated upon silencing of Axl [262]. In 
gastrointestinal stromal tumors, the upregulation of Axl in 
resistance to imatinib mesylate acts as a molecular switch 
from c-KIT expressing tumors [263].

These findings suggest that Axl may be a prognostic 
biomarker and therapeutic target in colorectal cancer. 
Targeting Axl in colorectal cancer may need to occur 
after or in combination with chemotherapy. A multikinase 
inhibitor to Axl, MET, and FGFR is only effective in 
preventing tumor growth after or in combination with 
a VEGF antagonist, and either treatment alone is not as 
effective [264]. Thus, Axl may play a secondary role in 
the dependency of the tumor [264]. It is important to note 
that studies of TAM receptor inhibition in the colon have 
revealed potential adverse effects of systemic therapies 
targeting TAM receptors, specifically Axl and Mer [91].  
In addition to their oncogenic roles, Axl and Mer function 
to limit the inflammatory response in dendritic cells and 
macrophages, as previously explained. Since inflammation 
often sets the stage for cancer initiation, as in ulcerative 
colitis patients, Axl and Mer acquire a protective role 
[265]. Thus, targeted therapy against Axl and Mer in other 
cancers may compromise their ability to limit colonic 
inflammation, increasing the risk for inflammation-
associated colorectal cancer [91]. It then becomes 
desirable to develop tumor-specific approaches to target 
Axl and Mer signaling.

Liver

Tissue repair and regeneration as well as the 
hepatic immune system are essential aspects of normal 
liver homeostasis. Gas6/Axl signaling has important 
implications in these normal processes, as well as those 
involved in disease.

Gas6 and Axl are mainly expressed in oval cells 
of the liver, and not in hepatocytes [266]. Oval cells are 
precursors which differentiate and proliferate upon hepatic 
injury, and display some of the same surface markers as 
hematopoietic stem cells [267]. In these cells, Gas6 acts 
as a survival factor that protects against apoptosis during 
experimental serum deprivation, suggesting its role in 
maintaining the population of precursor cells during 
regeneration [266]. Oval cells are the secondary response 
to hepatic injury, in the situation where hepatic stellate 
cells (HSCs) are unable to proliferate. HSCs are mature 
cells that are responsible for the liver’s regenerative 
ability, and which accumulate at the site of injury and 

transform into cytokine-secreting myofibroblasts [268].  
Just as Gas6 is a survival factor for oval cells, it is 
upregulated and has the same function in HSCs after 
treatment with CCl4, an injury-mimicking agent known 
to induce HSC regeneration [269]. Axl is also expressed 
in HSCs, and signals through the PI3K/Akt and NFκB 
pathways to protect against apoptosis [269]. Axl and 
Gas6 are expressed in macrophages near the site of injury, 
which may aid in the uptake of apoptotic cells that occurs 
before regeneration [269]. Not surprisingly, injection of 
CCl4 into Gas6-deficient mice leads to impaired liver 
repair and decreased cytokine synthesis, through SOCS1 
induction by Axl in a Gas6-independent manner [5]. 
Further studies with Gas6-/- mice have implicated the 
Gas6/Axl pathway in the progression of steatohepatitis 
and fibrosis [270]. Consistent with the function of Axl in 
limiting the immune response in the liver, knockout of all 
three TAM receptors leads to dramatic liver damage due 
to inflammation, demonstrating their essential role in the 
immune tolerance of the liver [271].

Axl is found to be upregulated in hepatocellular 
carcinoma (HCC) tumors compared to normal 
hepatocytes, but these observations are variable, and Axl 
seems to be more associated with lymph node metastasis 
[272–276]. Knockdown of Axl in metastatic HCC cells 
inhibits their metastasis to lymph nodes in vivo, which 
may be due to the Gas6/Axl mediated decrease in Cyr61, 
an angiogenic factor also regulated by Gas6/Axl in the eye 
[277]. Gas6 activation of Axl is able to induce the EMT-
associated transcription factor Slug, but not Snail, Twist, 
or Zeb1/2 in HCC cells [275]. This is through activation of 
ERK, and leads to invasion and migration of cells [275]. 
Interestingly, this study did not detect increased levels of 
Axl or Gas6 in HCCs compared to normal liver tissue, 
implying that the migratory effects downstream of Axl are 
not due to its activation by Gas6, but by activation in a 
ligand-independent manner [275]. Another study found 
Axl modulation of the PI3K/Akt pathway to be responsible 
for the enhanced migratory ability of a metastatic 
HCC cell line, and that Axl expression correlates with 
pathological features of HCC in patients including lymph 
node metastasis [274].

The regulation of Axl in HCC has been explored, 
and is similar to in other cell contexts. As in lung 
cancer, YAP has oncogenic implications in the liver and 
requires Axl for migration, invasion, proliferation, and 
survival of YAP-transformed HCC cells [68]. Oncogenic 
signaling by YAP is partly due to Axl activation of 
ERK1/2 signaling [68]. The deglycosylation of Axl 
by tunicamycin was shown to inhibit the proliferation 
and lymph node metastasis of a metastatic HCC line 
[278]. However, the global inhibition of glycoprotein 
synthesis induced by tunicamycin may also induce off-
target effects partly responsible for the observed effects 
of the study. Loss of miR-122, a microRNA involved 
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in the maintenance of hepatic function in mice, leads to 
increased expression of Axl, which was found to be a 
target of miR-122 in HCC [279]. miR-122 deficiency in 
the liver is associated with tumor formation, and thus the 
subsequent upregulation of Axl may be responsible for 

miR-122-associated tumorigenesis [279].

Clinical implications for Axl

After examining the role of Axl in each cell type, 
it is evident that therapeutic targeting of Axl would be 
beneficial in disease, specifically in cancer. It is also 
evident that its role in each cell type is distinct and 
depends on other surrounding factors. Thus, development 
of Axl-targeted therapeutics for specific cancers requires 
knowledge about what Axl regulates, what regulates 
Axl, and what interacts with Axl in each context. The 
conflicting roles of Axl/Mer in limiting the immune 
response while also promoting tumorigenesis has 
already been implicated as a therapeutic obstacle, and 
further supports the necessity for cell- or tumor-specific 
treatments [91].

Significant progress has been made in the 
development of Axl inhibitors since the late discovery of 
Axl in 1991. One of the most frequently used and most 
potent Axl inhibitors in the laboratory setting, BGB324 
(formerly R428), is the first small molecule inhibitor of 
Axl to enter clinical trials. It is currently in phase I trials, 

and its clinical response is to be assessed in AML and 
NSCLC patients. Other Axl inhibitors in development and 
clinical trials are listed in Table 3, and are further described 
in Feneyrolles, et al. [280]. It is unlikely that selective 
inhibition of Axl will be an effective monotherapy in 
cancer. Taken together, the literature has revealed an 
apparent passenger, rather than driver, role for Axl in the 
progression and resistance of tumors. Selective inhibition 
of Axl may be effective in tumors which have already, or 
are predicted to become, resistant to other therapies.

Concluding remarks

Axl has emerged as a critical player in the immune 
response and in cancer. Axl is usually expressed at lower 
levels in normal tissue compared to in the disease state, 
indicating an oncogenic role for the receptor. There are 
several reasons to suggest that Axl functions to support 
processes which have already undergone an initiating 
step: (1) the lack of known activating mutations, (2) the 
lack of its ability to transform cells, as demonstrated in 
its initial characterization, (3) the lack of a major role in 
development, and (4) its overexpression/overactivation 
in therapeutic resistance.

Axl signals through and amplifies existing pathways 
rather than through any “Axl-specific” pathway. Axl is 
cooperative in nature and future research will hopefully 
identify functional relationships with its other family 

Table 3: Axl inhibitors in pre-clinical and clinical stages.

Name Target(s) Development 

Status

Reference (with Axl)

SGI-7079 Axl, FLT3, Mer, MET, TrkA/B, Ret, Yes, 
Jak2, VEGFR2, JNK3 Abl

Pre-clinical [146]

GL21.T Axl Pre-clinical [283]

NPS-1034 MET, Axl Pre-clinical [155]

TP-0903 Axl Pre-clinical (Tolero website)

BGB324 (R428) Axl Phase I [122]

SU11248 (Sunitinib) FLT3, VEGFR2, KIT, Axl Phase I [284]

S49076 MET, Axl/Mer, FGFR1/2/3 Phase I [264]

LY2801653 Ron, MET, MST1R, FLT3, Axl, Mer, 
TEK, ROS1, DDR1/2, MKNK1/2

Phase I [285]

BMS777607 MET, Ron, FLT3, Axl, Mer, Tyro3 Phase I [286]

MGCD265 MET, Ron, VEGFR1/2/3, Tie-2, Axl Phase II [280]

SKI606 (Bosutinib) Axl, SRC/Abl Phase II [117]

MP470 (Amuvatinib) KIT, PDGFRα, Axl Phase II [263]

GSK1363089 (Foretinib) Axl, MET, VEGFR2, Ron, Tie2, KIT Phase II [118]

XL184 (Cabozantinib) MET, VEGFR2, RET, KIT, Axl, FLT3 Phase III [287]
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members, Tyro3 and Mer. It is clear that the consequence 
of Axl signaling varies between cell type and depends on 
the presence of other signaling molecules, so it is crucial 
to establish an understanding of this within each context.
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