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Abstract: Chronic pain is a debilitating condition that influences the social, economic, and psycho-
logical aspects of patients’ lives. Hence, the need for better treatment is drawing extensive interest
from the research community. Developmental molecules such as Wnt, ephrins, and semaphorins are
acknowledged as central players in the proper growth of a biological system. Their receptors and
ligands are expressed in a wide variety in both neurons and glial cells, which are implicated in pain
development, maintenance, and resolution. Thereby, it is not surprising that the impairment of those
pathways affects the activities and functions of the entire cell. Evidence indicates aberrant activation
of their pathways in the nervous system in rodent models of chronic pain. In those conditions, Wnt,
ephrin, and semaphorin signaling participate in enhancing neuronal excitability, peripheral sensiti-
zation, synaptic plasticity, and the production and release of inflammatory cytokines. This review
summarizes the current knowledge on three main developmental pathways and their mechanisms
linked with the pathogenesis and progression of pain, considering their impacts on neuronal and
glial cells in experimental animal models. Elucidations of the downstream pathways may provide a
new mechanism for the involvement of Wnt, ephrin, and semaphorin pathways in pain chronicity.
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1. Introduction

Pain is an essential physiological sensory and emotional experience that is necessary
for protecting the integrity of the body. Under certain circumstances, physiological pain
undergoes maladaptive processes and becomes chronic, i.e., a pain that persists for more
than three months. Chronic pain affects around one-fifth of the world’s population, but for
a considerable percentage of patients, the current therapies and conventional analgesics
are not successful. Better knowledge of the pathophysiological mechanisms involved in
the development and maintenance of chronic pain is needed to achieve more specific and
efficient therapies.

Different classes of molecules are well known to mediate pain. At the periphery,
nerve injury, inflammatory condition, or cancer growth can recruit different kinds of cells,
such as Schwann cells, fibroblast, dendritic cells, epithelial cells, mast cells, lymphocytes,
macrophages, and neutrophils. These cells secrete primary mediators such as chemokines,
cytokines, neuropeptides, and growth factors, generating an “inflammatory soup.” Primary
mediators directly activate or sensitize sensory nerve endings by changing ion channel
properties, altering gene expression, or inducing post-transcriptional modification (among
other means). These changes result in increased excitability, spontaneous activity, and the
release of secondary mediators at the spinal level.

Secondary mediators such as colony stimulating factor 1 (CSF-1) and chemokine
(C-C motif) ligand 21 (CCL21) activate spinal cells such as astrocytes and microglial cells,
causing them to release tertiary mediators, such as brain derived neurotrophic factor
(BDNF), tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β), that increase
excitatory transmission and attenuate the inhibitory synaptic transmission of the spinal

Cells 2022, 11, 3143. https://doi.org/10.3390/cells11193143 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11193143
https://doi.org/10.3390/cells11193143
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-1205-1097
https://orcid.org/0000-0003-0056-7595
https://doi.org/10.3390/cells11193143
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11193143?type=check_update&version=2


Cells 2022, 11, 3143 2 of 30

dorsal horn (SDH) neurons. More recently, secreted extracellular vesicles or exosomes
containing microRNAs have also been shown to be involved.

Often, in adulthood, in certain physiological and pathological conditions, there is a
re-awakening of genes and proteins that sculpt the developing nervous system. Over the
past 20 years, molecules that are crucial during embryogenesis and development processes,
such as the wingless-related integration site (Wnt) morphogens, and the axon guidance
molecules, semaphorins and ephrins, have emerged as important factors involved in the
pathophysiology of various forms of chronic pain. Indeed, evidence indicates aberrant
activation of their pathways in the nervous system in rodent models of chronic pain.

Wnt ligands (Wnts) are a large family of secreted glycoproteins whose signaling path-
way is highly conserved and plays a key role in intercellular interaction and communication.
Wnts are strongly involved in cell differentiation, migration, and proliferation and in the
development of the central and peripheral nervous system (CNS and PNS). Furthermore,
neuronal Wnt signaling participates in various postnatal processes, such as brain plasticity
and synaptic physiology. In the adult mouse brain, Wnts can affect memory formation and
the development of activity-dependent long-term potentiation (LTP), a form of persistent
increase in synaptic strength driven by neuronal activity. Moreover, a variety of neurologic
disorders, including psychiatric and neurodegenerative diseases, such as Alzheimer’s
disease, Parkinson’s disease, schizophrenia, and chronic pain, have been associated with
the dysregulation of Wnt signaling [1–4].

Ephrin receptors (Eph receptors) are a large family of receptor tyrosine kinases (RTK)
involved in embryonic development that bind the membrane-bound proteins called ephrins
(ligands) [5]. Ephrins regulate the development of many organs and tissues [6,7], including
the CNS, where they mediate axon repulsion [8]. The Eph–ephrin system regulates adult
tissue homeostasis and tumor development [7]. Furthermore, in the adult CNS, ephrins are
expressed by neurons and glial cells and mediate synaptogenesis and synaptic plasticity [9,10].

Semaphorins are an important family of conserved molecules that are crucial for
driving axons to their targets during the development of the nervous systems [11]. They
can be soluble or membrane-associated via a transmembrane segment or via a glyco-
sylphosphatidylinositol (GPI) tail and binds the transmembrane proteins plexins and
neuropilins [12]. The correct semaphorin–plexins signaling during development is funda-
mental for the formation and organization of neuronal circuitry. Indeed, its dysregulation
has been linked to developmental diseases of the nervous system such as autism and
schizophrenia, among others [13–16], and to neurodegenerative diseases [17].

These three signaling systems share many common elements: they are redundant,
interact with each other, and are active and necessary for the processes of embryonic
development and the proper functioning of the CNS in the adult. Indeed, alterations in each
one of these signaling pathways lead to neurodegenerative diseases and the development
of certain tumors. Interestingly, their involvement has also been recently described in
chronic pain.

In the adult CNS, members of these important protein families are expressed by
different cell types involved in pain, including neurons, astrocytes, and microglia.

Under physiological conditions, astrocytes exert a wide range of functions in the CNS.
Among others, they provide metabolic support, regulate synaptic plasticity, control blood
flow and iron homeostasis, neutralize reactive oxidative substances (ROS), and maintain
the structure and function of the blood–brain barrier. Astrocytes react to any perturbation
of CNS homeostasis, developing a complex response whose output can be beneficial or
deleterious, depending on the type of injury, the metabolic state, and the crosstalk with
microglia and neurons (reviewed in [18,19]).

Microglia are macrophage-like cells of the CNS which regulate tissue maintenance.
Microglial cells constantly monitor the surrounding environment to react promptly to any
element that disturbs the homeostasis of the CNS. They are extremely plastic and capable
of rapidly changing their phenotypes in response to external conditions and stimuli that are
detected due to the wide variety of receptors they express. Numerous pieces of evidence
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demonstrate the involvement of astrocytes and microglia in the development of chronic
pain, both at the spinal level and at the brain level [20–23].

This review summarizes recent advances in finding determinant molecules in chronic
pain, with a particular focus on the Wnt, Eph–ephrin, and semaphorin–plexin signaling.

2. Wnt Signaling in Pain

The heterogeneity of Wnt signaling starts with the ligand itself. There are 19 members
of the Wnt family in humans and rodents, each one with a different expression pattern
and function. These ligands bind different kinds of receptors: the classical Frizzled (Fzd)
receptors (a family of G protein-coupled receptors that comprises 10 members in verte-
brates), which are frequently associated with co-receptors, such as low-density lipoprotein
receptor-related protein 5/6 (LRP5/6), the RTKs, receptor-like tyrosine kinase (Ryk), re-
ceptor tyrosine kinase-like orphan receptor 2 (Ror2), protein-tyrosine kinase-7 (PKT7), and
muscle-specific kinase (MuSK), or proteoglycans. Usually, many ligands can bind the
same receptor and one ligand can bind different receptors, increasing the complexity of
Wnt signaling.

Depending on the cell type and the cellular metabolic state, Wnt ligands can engage
different pathways. The most common are the canonical or β-catenin-dependent pathway
and two non-canonical pathways, the planar cell polarity (PCP) pathway and the calcium
(Ca2+) pathway. Briefly, the canonical pathway is mediated by β-catenin stabilization and
its nuclear translocation, resulting in β-catenin-dependent gene transcription. The PCP
pathway involves the activation of the small GPTases Rho and Ras-related C3 substrate
botulinum toxin 1 (Rac-1), which activate Rho-associated protein kinase (ROCK), c-Jun
amino (N)-terminal kinase (JNK), mediating cytoskeletal rearrangement and gene tran-
scription. Fzd-dependent activation of phospholipase C (PLC) mediates the Wnt-Ca2+

pathway in an inositol 3-phosphate (IP3)-dependent manner. This increases intracellular
Ca2+ transients and leads to the activation of several Ca2+-dependent kinases that promote
gene transcription and phosphorylation of signaling proteins and ion channels. Due to
its crucial functions, Wnt signaling is tightly regulated at several levels (reviewed in [24]).
Synaptic-activity-regulated Wnt signaling has been shown to be critical for the functional
and structural remodeling of synapses [25].

2.1. Involvement of Wnt Signaling in Chronic Pain

In the last decade, a growing body of evidence has demonstrated the involvement of
the Wnt signaling pathway in the context of chronic pain, both in patients and in several
pre-clinical mouse models of pain [26].

Wnt signaling is activated at different levels along the pain pathway and in diverse
cell types, depending on the chronic pain condition or the pain model studied (Figure 1).
Most studies, using preclinical pain models, focused on Wnt pathway activation in dorsal
root ganglia (DRGs) and the spinal cord. In contrast, reports considering the supraspinal
level are almost completely absent.
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Figure 1. Wnt’s contributions to different pain conditions in various neuronal and non-neuronal
cells. (A) Schematic representation of different pain models in mice. (B) After neuropathic pain
induction, in dorsal root ganglia, activated nociceptors increase the receptors’ expression, such as
TRPV1, P2X3, Na1.7, Ryk, and Fzd8, and that of Wnt-related proteins, e.g., Wnt5a, Wnt5b, Wnt3A,
and Wnt10a. Likewise, in satellite cells, Fdz8 and Wnt3a are also overexpressed. (C) In the spinal
dorsal horn, Wnt signaling is involved in pain sensation and acts on neuronal and non-neuronal
cells. Many Fzd receptors and co-receptors (Ryk and Ror2) are upregulated in neurons, which
brings about phosphorylation, activation of downstream targets (NR2B, Src, and PKC), and a Ca2+

increase. This results in increases in JNK and CaMKII and the release of Wnt3a, Wnt5a, and FKN.
Astrocytes harbor large amounts of Wnt proteins and receptors, which are upregulated during pain.
As a consequence, the concentration of Ca2+ rises in the cytoplasm, along with the concentrations
of β-catenin, kindlin, c-JUN, and C3aR; and the release of CCL2 increases. This last chemokine
triggers microglia, which in situations of pain upregulates Fzd, the LRP5/6 co-receptor, and Wnt3a.
Reactive microglia increase the expression of CX3CR1, ROS/RNS, and NF-kB and the secretion of
IL-1β, IL-6, TNF-α, and BDNF, which in turn escalate the inflammatory condition. ALS, amyotrophic
lateral sclerosis; DPN, diabetic peripheral neuropathy; CPTP, chronic post-thoracotomy pain; CCI,
chronic constriction injury; SNL, spinal nerve ligation; SNI, spared nerve injury; CFA, complete
Freund’s adjuvant; inj., injection; Fzd, Frizzled; FKN, Fractalkine; P, phosphorylation; NR2B, N-
methyl-D-aspartate receptor subunit 2B; JNK, c-Jun amino (N)-terminal kinase; Src, Proto-oncogene
tyrosine-protein kinase; PKC, protein kinase C; CaMKII, Ca2+/calmodulin-dependent protein kinase
II; CCL2/MCP1, CC-chemokine ligand 2; ROS/RNS, reactive oxygen species/reactive nitrogen
species; NF-kB, Nuclear factor kappa-light-chain-enhancer of activated B cells; BDNF, brain-derived
neurotrophic factor; c-JUN, transcription factor Jun; C3aR, complement component 3 fragment a
receptor; LRP5/6, low-density lipoprotein receptor-related protein 5/6; Ryk, receptor-like tyrosine
kinase; Ror2, receptor tyrosine kinase-like orphan receptor 2; CX3CR1, CX3C chemokine receptor 1;
IL, interleukin; TNF-α, tumor necrosis factor alpha.

2.2. Neuronal Wnt Signaling Dysregulation in Chronic Pain

Peripheral sensitization is a mechanism underlying the development of chronic pain.
Generally, it originates from small molecules released by different cell types in pathological
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conditions that can activate and modulate the nociceptors. These small molecules can alter
the properties of nociceptive ion channels such as transient receptor potential cation channel
subfamily V member 1 (TRPV1), transient receptor potential ankyrin 1 (TRPA1), voltage-
dependent sodium channel (Nav) 1.7, and Nav1.8 via post-translational modifications such
as phosphorylation, leading to increased neuronal activity, reduced activation thresholds,
or increased currents [27].

Our laboratory and others demonstrated that Wnt ligands sensitize peripheral nocicep-
tors [28,29]. In a model of cancer pain (osteolytic fibrosarcoma cells in the calcaneus bone),
we found that non-neuronal cells release Wnt3a, which triggers DRG neurons via non-
canonical pathways enhancing the membrane translocation of P2X purinoceptor 3 (P2X3)
and TRPV1 receptors [28]. Moreover, blocking Wnt-Fzd3 signaling in sensory neurons is
sufficient to attenuate cancer pain sensitization.

More recently, He et al. have shown that Wnt5b-Ryk signaling is involved in bone cancer
pain via Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent, P2X3-mediated
increased DRG excitability [30]. In a mouse model of diabetic neuropathic pain (DNP), Wnt5a
is released from A-fiber in a Wnt ligand secretion mediator (GPR177)-dependent way and
directly binds and activates TRPV1 receptors expressed by the neighboring C-fibers [31].
Interestingly, in two different rat models of neuropathic pain, paclitaxel-induced and strepto-
zotocin (STZ)-induced pain, Wnt signaling pathway inhibitors NSC668036 and PNU74654
reverse the reduction in intraepidermal nerve fiber density (IENFD) [32,33], used as a clini-
cal marker of chemotherapy-induced peripheral neuropathy [34] and diabetic peripheral
neuropathy [35]. These findings underline the importance of Wnt signaling in mediat-
ing neuropathic pain also at the level of peripheral terminals, although the study of this
phenomenon is only beginning.

In cancer conditions and different models of chronic pain, such as tumor-cell-induced
pain (TCI), chemotherapy-induced neuropathic pain (PTX-induced pain), and chronic con-
striction injury (CCI, a model of neuropathic pain with a strong inflammatory component),
Wnt ligands such as Wnt3a, Wnt5b, and Wnt10a; Wnt receptors such as Fzd8 and Ryk; and
signaling molecules such as β-catenin, GSK-3β, and TCF4 are upregulated in DRGs [29,36].

The increased expression of Wnt ligands in DRG supports their release from the
sensory afferents into the spinal cord in an activity-dependent manner driven by pain
stimuli [29,37]. Indeed, neuronal activity controls both the expression and the secretion of
Wnts (reviewed in [38]).

At the spinal cord level, Wnt signaling can modulate the pain sensation by acting
directly on neurons and regulating synaptic plasticity, or by recruiting non-neuronal cells
such as microglia and astrocytes. Wnt ligands are known to be important modulators
of synaptic plasticity [39], a phenomenon that is well established as a crucial mechanism
underlying chronic pain [40,41]. Activation of Wnt signaling via NMDA-receptor-mediated
synaptic Wnt3a release induces LTP, a form of synaptic plasticity [25]. Moreover, the
inhibition of Wnt signaling blocks LTP. Accordingly, Wnt family members are upregulated
into the spinal cord in several chronic pain conditions and mouse pain models.

Activation of the Wnt/β-catenin canonical pathway leads to the increased production
and secretion of pro-inflammatory cytokines and BDNF, which enhance neuronal excitabil-
ity and synaptic plasticity [28,41,42]. Furthermore, the canonical pathway regulates the
N-methyl-D-aspartate receptor subunit 2B (NR2B)- and Ca2+-dependent signals in the
dorsal horn [29]. In the CCI and spinal nerve ligation (SNL) neuropathic pain models,
Wnt5b/Ryk signaling contributes to the development of neuropathic pain; these proteins
are upregulated in DRGs and the spinal cord after nerve injury [42]. Ror2 plays a relevant
role in CCI-induced neuropathic pain: modulating synaptic plasticity via phosphorylation
of NR2B, protein kinase C (PKC), and Src family kinases in the spinal cord [43]. Furthermore,
in models of nerve injury or inflammatory pain, Wnt5a is secreted in an activity-dependent
manner and mediates chronic pain via modulation of synaptic spines [37]. Importantly,
blocking Wnt pathways is sufficient to reduce neuropathic pain. Indeed, blocking Ryk
signaling decreases neuronal excitability, lowers the enhanced synaptic plasticity between
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C-fibers and dorsal horn neurons, the nerve-injury-induced increased intracellular Ca2+,
and activation of the NR2B receptor [42,44]. Moreover, inhibiting Wnt3a/β-catenin sig-
naling with the Wnt inhibitor IWP-2 reduced CCI-induced neuropathic pain, inhibiting
synaptic plasticity in the spinal cord [45]. These results highlight the contributions of
neuronal Wnt signaling to the CCI-induced neuropathic pain via both canonical and non-
canonical pathways.

Neuronal Wnt signaling in the spinal cord has an important role in HIV-induced
neuralgia. Several Wnt ligands and β-catenin are upregulated in the spinal cord of HIV
patients that experience chronic pain, but not in the pain-free ones [46]. The injection of
the viral protein HIV1-gp120, a model of neuropathic pain associated with HIV infection,
induces Wnt3a upregulation in microglia [47,48], Wnt5a, and pro-inflammatory molecules
IL-1β, IL-6, and TNF-α at the spinal cord level; intrathecal injection of Wnt5a antagonist
Box5 significantly reduces the levels of inflammatory cytokines [46]. Furthermore, the
recombinant protein gp120 activates neurons by directly stimulating their NMDARs [49,50],
leading to the synthesis and secretion of Wnt5a [51]. Indeed, NMDAR is a key mediator
of Wnt5a [52], which plays a critical role in the differentiation and plasticity of excitatory
synapses [53,54]. Recently, it was shown that Wnt5a could mediate HIV-related pain also
via the Ror2/MMP2/IL-1β pathway [55].

In addition, to directly modulate neuronal excitability and synaptic plasticity, Wnt
signaling can induce neuroinflammation and recruit glial cells (see below).

2.3. Wnt Signaling Pathway in Glial Cells in Neuropathic Pain

Neuron–glia crosstalk through Wnt signaling may play a key role in the pathogenesis
of several diseases, such as neurodegenerative conditions and chronic pain. Glial cells
respond to secreted Wnt ligands which induce pro-inflammatory activation of glial cells,
characterized by morphological changes and the release of pro-inflammatory mediators.
The glial response, in turn, modulates neuronal function and the plasticity of neural
circuits [38]. Interestingly, regardless of the type of tissue involved or the kind of injury,
the endogenous β-catenin-dependent Wnt signaling pathway is frequently activated at the
site of tissue damage [56] or along the pain pathway. Despite the experimental evidence
is pointing out a significant role of the Wnt family in the physiological and pathological
functioning of the spinal cord, cell-type-specific information is still lacking [57,58].

2.3.1. Astrocytes

Emerging evidence supports the role of canonical and non-canonical Wnt pathways as
activators of astrocytes [59,60]. Under physiological conditions, astrocytes express a large
panel of Wnt-related proteins. Astroglia are assumed to be the main source of Wnt ligands
in the spinal cord, and harboring a wide variety of Wnt receptors, they are considered the
main actor in the multidirectional astrocyte-neuron-microglia crosstalk [61,62]. Depending
on the kind of injury and on the metabolic state of astroglia when activated, Wnt pathways
modulate cell proliferation, glutamate uptake, the expression of glutamate transporters,
pro-inflammatory cytokines, trophic factors, potassium, and water channels [44,62–67].

Under physiological conditions, Wnt receptors show cell- and spatial-specific expres-
sion patterns [68] that are altered after injury, indicating different cell-specific physiological
roles at the spinal level [58]. For example, after CCI, Fzd1 is transiently upregulated in
spinal neurons, whereas Fzd8 is persistently upregulated in spinal astrocytes and satellite
cells in DRGs [29]. Furthermore, in the SNL model, Ryk is overexpressed on unmyelinated
fibers, promoting the production and release of chemokine (C-C motif) ligand 2 (CCL2),
which activates microglia [44]. CCI-induced nociceptive hypersensitivity is significantly
attenuated by hyperbaric oxygen treatment via suppressing the spinal kindlin-1/Wnt10a
signaling pathway and activation of astrocytes [69]. Kindlin-1 is a β-integrin binding
protein that participates in the induction of inflammation and pain sensitization [70,71].
In CCI-treated rats, kindlin-1 is shown to be upregulated in spinal astrocytes [70]. In
accordance, downregulation of kindlin-1 reduces mechanical allodynia and astrocytic acti-
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vation [72]. This effect could be mediated by the modulation of Wnt expression by kindlin-1,
as demonstrated in keratinocytes [73]. Interestingly, the analgesic effect of dexmedetomi-
dine, an agonist of α2-adrenergic receptors, used to treat a refractory form of neuropathic
pain, administrated at late time points in the STZ-induced diabetic neuropathic pain model,
is mediated by inhibition of the Wnt10a/β-catenin signaling pathway and astrocytic activa-
tion [74]. Moreover, early-time-point dexmedetomidine administration relieves mechanical
and thermal hyperalgesia by impeding microglial activation [75].

In the CCI model, Ryk is upregulated in astrocytes and microglia in the SDH, and
in satellite cells in DRGs [42]. Wnt5a, Ryk, and ROR2 are overexpressed in different pain
models, such as SNL, hind-paw injection of capsaicin, and HIV1-gp120 intrathecal in-
jection [76]. Importantly, in a rat neuropathic model of chronic post-thoracotomy pain
(CPTP) and in other mouse models of neuropathic and inflammatory pain, the specific
Wnt5a antagonist Box5 considerably inhibits the activation of astrocytes in the spinal
cord and relieves mechanical allodynia and thermal hyperalgesia [37,77–79]. In the CPTP
model, Liu and colleagues found that Ror2 predominantly co-localizes with astrocytes
and modulates their activation, leading to a pro-inflammatory phenotype named A1 [55].
Indeed, the knockdown of Ror2 promoted the neuroprotective phenotype of astrocytes
(A2) versus the toxic one (A1) and attenuates mechanical hyperalgesia and thermal al-
lodynia. Interestingly, Ror2 downregulation reduces the expression of C3aR in spinal
astrocytes, suggesting that the modulatory effect of Ror2 on astrocytes phenotype can
be mediated via C3aR expression [55]. Wnt5a is upregulated only in pain-positive HIV1
patients [46], whereas recombinant HIV1-gp120 induces Wnt5a neuronal release in an
activity-dependent manner, causing hyperactivation of neurons [80] and astrocytes [81].
The HIV1-gp120-induced astrogliosis is sustained by the neuron to astrocyte Wnt5a-Ror2
signaling, and it is essential for HIV-associated pain sensitization [81]. Both neuronal Wnt5a
knockdown and astrocytic Ror2 knockdown abolish HIV1-gp120-induced astrogliosis and
mechanical hyperalgesia [81].

Taken together, these results indicate that activation of Wnt signaling contributes to the
activation of astrocytes in the spinal cord, leading to neuroinflammation and chronic pain.

2.3.2. Microglia

Primary microglial cells and microglia-like cell lines respond to recombinant Wnt3a
or Wnt5a application thanks to the localization on their membranes of a variety of Wnt
receptors. Wnt3a and Wnt5a induce increased synthesis of pro-inflammatory molecules
such as cytokines, chemokines, and cyclooxygenase 2 (COX2), and exacerbates the release
of de novo synthesized IL-6, IL-12, and TNFα [82,83], leading to neuroinflammation [84].
Interestingly, when applied to cultured lipopolysaccharide (LPS)-primed microglial cells,
recombinant Wnt3a and Wnt5a prompt dose-dependent downregulation of IL-6, COX-2,
and TNFα expression, supporting a dual role of microglia as a pro or anti-inflammatory
player, depending on the surrounding environment [85,86]. Furthermore, Wnt3a applied on
primary microglial cells can induce exosome secretion, without inducing a neurotoxic pro-
inflammatory phenotype [87], underlining the major plasticity of microglia in responding
to Wnt ligands.

Although Wnt pathways can prevent microglial activation and alleviate neuroin-
flammation [84,88–90], most studies indicate the involvement of Wnt pathways in the
polarization of microglia toward a pro-inflammatory phenotype [86,91–93].

In several pain models in rodents, Wnt pathways induction activates microglial cells
through different molecules: fractalkine (FKN) and BDNF, among others. In the HIV-1
gp120-induced pain model, activated microglia mediate synaptic degeneration. Interest-
ingly, HIV infection prompts an increase in FKN [94–96], a neuronal protein that regulates
microglia-dependent synaptic phagocytosis. Since FKN is mainly expressed by neurons,
and its CX3C chemokine receptor 1 (CX3CR1) is specifically present in microglia, the FKN
pathway establishes signaling between neurons and microglia that leads to the regulation
of synaptic pruning [97,98]. Recently, it has been shown that the HIV1-gp120 protein
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leads to the upregulation and release of Wnt3a in an NMDAR activity-dependent manner,
resulting in activation of the β-catenin pathway and induction of FKN transcription in
neurons [99], ultimately resulting in synaptic degeneration of the neural spinal pain cir-
cuit. Furthermore, NMDAR antagonist DL-2-amino-5-phosphonovaleric acid (APV), the
endogenous Wnt antagonist dickkopf-related protein 1 (DKK1), and knockout of CX3CR1,
alleviate HIV1-gp120-induced mechanical allodynia in mice, suggesting a critical contri-
bution of the Wnt/β-catenin/FKN/CX3CR1 pathway to HIV1-gp120-induced pain [99].
Moreover, HIV1-gp120-induced neuropathic pain is mediated by the microglial release of
BDNF, a crucial neuromodulator of pain transmission [100]. Indeed, Wnt inhibitors block
HIV1-gp120-induced BDNF release and subsequent induction of chronic pain, supporting
a strong contribution of the Wnt pathway to spinal microglia activation, BDNF release,
and chronic pain [101,102]. In a chemotherapy-induced neuropathic pain model, DKK1
significantly reduces capsaicin-induced inflammatory pain by blocking BDNF release from
microglia, whereas the tankyrase inhibitor IWR-1-endo attenuates mechanical hyperal-
gesia [103], inhibiting the activation of astrocytes, microglia, and TNF-α, and CCL2 and
MAPK/ERK signaling in the spinal cord [103].

Blocking Wnt signaling shows amelioration of neuropathic pain in other rodent
pain models too. In fact, Zhang et al. showed that intrathecal injection of a Wnt sig-
naling inhibitor, IWP-2, strongly diminishes both mechanical and thermal sensitization
in CCI-operated rats via suppressing microglial reaction in the spinal cord [29]. Mean-
while, targeting the Wnt/β-catenin signaling pathway with a tankyrase inhibitor XAV-939
suppresses the activation of microglia in the spinal cord and alleviates mechanical hyper-
sensitivity in rats that undergo partial sciatic nerve ligation (pSNL) [104]. The inhibition
of β-catenin-independent Wnt pathways has recently been shown to reduce chronic pain
via acting on microglia. For example, in a model of adjuvant-induced arthritis (AIA), the
flavonoid crocin alleviates neuropathic pain by targeting Wnt5a signaling and microglia
activation [105]. Interestingly, astrocytes in the adult mouse brain express high levels of
Wnt5a, which could serve as a novel astroglia–microglia communication pathway to be
targeted in chronic pain conditions.

Recently, it was shown that the activation of the receptor complex DAP12-TREM2
contributes to the development of neuropathic pain. DAP12 signaling is triggered after
nerve injury, whereas the direct activation of TREM2 induces mechanical allodynia in naïve
mice. Moreover, DAP12-deficient mice fail to develop allodynia after nerve injury [106].
DAP12 forms a receptor complex with TREM2 on the microglial membrane. Activation of
this complex is associated with many physiological functions of microglia, and pathological
conditions such as neurodegenerative diseases or chronic pain (summarized in [107,108]).
Furthermore, the DAP12-TREM2 complex is involved in the survival of microglial cells via
activation of Wnt/β-catenin signaling [106,109,110].

Despite both Wnt signaling and microgliosis mediating maladaptive processes such as
chronic pain, they are necessary for positive effects such as adult neurogenesis and synaptic
plasticity [111]. Thus, strict control of the balance between activation and inhibition of
these phenomena is necessary for the maintenance of tissue homeostasis and proper
physiological functions of the body. Interestingly, a recent paper demonstrated the need
for early inflammation to reduce the risk of developing chronic pain later. The use of
steroids or non-steroidal anti-inflammatory drugs (NSAIDs) and neutrophil depletion
delayed the resolution of pain in animal models [112]. Therefore, correct balance and
timing between activation and inhibition of certain cell types are necessary for a positive
physiological outcome.

3. Eph–Ephrin Signaling in Chronic Pain

Eph receptors constitute the largest family of RTKs. So far, 14 Eph receptors have been
identified in mammals. They are all transmembrane proteins and have been divided into
two classes according to the similarity of their extracellular domains. Whereas the intracel-
lular domains are highly conserved, the differences at the extracellular level determine the
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affinity to different membrane-associated ligands, the ephrins. Ephrins are divided into two
major classes according to the way they bind to the cytoplasmic membrane: class A (ephri-
nAs) ones associate with the membrane via a GPI-tail and bind promiscuously with class A
Eph receptors (EphAs), and class B (ephrinBs) ones have a transmembrane segment and a
cytoplasmic tail and bind promiscuously the class B receptors (EphBs). Exceptions are the
EphA4 and EphB6 receptors which bind ephrins of both classes. Whereas the not-activated
ephrins are localized and concentrated in membrane microdomains called lipid rafts [8], the
Eph receptors are distributed across the cell membrane. Following the binding to ephrin,
the Eph receptor activates its kinase domain and undergoes auto-phosphorylation, forming
a hetero-tetramer consisting of two ligands and two receptors. More tetramers can clus-
ter, forming bigger signaling complexes [8,113,114]. The degree of clustering determines
specific outcomes by regulating differential downstream pathways [7,115].

The Eph–ephrin system controls many cellular processes that depend on rapid changes
in morphology or mobility. Indeed, when this system is activated, it mediates alterations
in the cytoskeleton and the phenomena of cell attraction and repulsion [116]. Eph–ephrin
binding triggers a bidirectional signal. In the forward signaling, the signal is activated in the
cell expressing the receptor and depends on the auto-phosphorylation of the cytoplasmic
kinase domain of the Eph receptor. The signal activated in the ligand-expressing cell is
called reverse signaling. The ephrinB-mediated reverse signal depends on phosphorylation
of the cytoplasmic domain mediated by src kinases. In the case of ephrinA, the reverse
signaling seems to involve other transmembrane proteins, such as the low-affinity receptor
for nerve growth factor p75. While the forward signal mediates mostly repulsion, the
reverse signal mediates both repulsion and attraction, or adhesion, depending on the
affinity of receptor–ligand binding. In addition to in trans (between two different cells), the
interaction between Eph receptor and ephrin can also occur in cis (on the same cell). In
general, cis interactions are inhibitory concerning signal activation [117].

Furthermore, the Eph–ephrin system recruits and cross-activates other signaling
pathways in an intricate network capable of governing complex biological responses and
processes. The final output depends on the cellular context in which the signaling is
activated (reviewed in [118]). The Eph–ephrin system can interact physically or through
signaling molecules with other membrane receptors, such as fibroblast growth factor
receptors (FGFR), Ryk, and the cytokine receptor CXCR4. This system interacts with
adhesion molecules such as integrins [119–122], chaderins [123,124], or claudins [125,126];
synaptic proteins [127–129]; and channels and pores, for which connexins and NMDAR
receptors are the most relevant [130]. Eph receptors and ephrins also interact with proteases
on the cell surface, such as ADAM10, that can cut ephrins at the membrane level, thus
ending ephrin signaling [131]. Importantly, many of these signaling pathways are activated
simultaneously to achieve a given output, and the outcome can be either agonistic or
antagonistic, depending on the cellular context.

3.1. Neuronal Eph–Ephrin System and Pain

In the last 30 years, increasing evidence has confirmed the involvement of the Eph–ephrin
signal pathway in the modulation of pain. Several ephrin ligands and receptors are
expressed by sensory neurons in the superficial laminae of the spinal cord and the DRGs,
mostly in the small and medium neurons, and by glial cells.

They localize mainly at synapses, at both pre- and postsynaptic levels, where they
regulate numerous developmental and functional processes. Since EphB–ephrinB signaling
regulates spinal sensory connectivity, it was suggested to modulate pain [132]. Interestingly,
it has been hypothesized that they mediate or contribute to activity-dependent alterations
at the synapses.

Synaptic plasticity is well recognized as a mechanism underlying chronic pain. Synapses
along the nociceptive pathway can alter their strength in an activity-dependent man-
ner; these changes are both structural and functional and occur at both pre-synaptic and
post-synaptic levels [133]. Involvement of the NMDAR, specifically when the NR2B sub-
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unit is altered, is considered a critical mechanism underlying synaptic plasticity at the
SDH in the context of chronic pain, as it orchestrates the development of LTP. Interest-
ingly, EphB2–ephrinB2 signaling has been shown to modulate synaptic plasticity in the
hippocampus via interacting with the NMDAR [134]. Furthermore, Battaglia and col-
leagues demonstrated that EphB1–ephrinB1 signaling modulates synaptic efficacy in an
NMDAR-dependent manner in the spinal cord [132]. In particular, EphBs phosphorylate
NMDARs via the src family [135], and the application of an src kinase inhibitor blocks
EphB1-dependent phosphorylation of the NR2B subunit and thermal hyperalgesia [135].
Moreover, a binding assay shows that the interaction site between the EphBs and NM-
DARs is extracellular [130]. The extracellular domain of EphBs 1–3 interacts directly with
NMDARs via the specific tyrosine residue Y504, which is important for targeting and
retention of NMDARs at synapses [130,136]. Injury-dependent phosphorylation of Y504
seems necessary and sufficient to bind NMDAR, increasing the receptor’s affinity [136].
EphB-dependent phosphorylation of NMDAR leads to an increased calcium influx through
NMDARs, activation of Ca2+-dependent kinases, and alteration of gene expression [134].
This first evidence suggests the key role of the Eph–ephrin system in the physiology of the
spinal cord and its contribution to pain modulation.

EphBs are involved in the development and plasticity of excitatory synapses, also
through interaction with AMPA glutamatergic receptors and NMDARs [127,130,134,137].
Song et al. showed that EphB–ephrinB signaling is required for LTP of synapses between
DRG neurons and dorsal horn neurons, pointing out the importance of this signal pathway
in the synaptic plasticity of pain pathways [138]. Indeed, blocking the EphB receptor
suppresses the hyperexcitability and abnormal spontaneous activity of both DRG neurons,
the wide dynamic range of SDH neurons produced by neuronal damage [139–141]), and
thermal hyperalgesia and mechanical allodynia [138,142].

To date, the importance of EphB–ephrinB signaling as a mechanism to mediate phys-
iological pain and chronic pain, including neuropathic pain, is quite well demonstrated
(Figure 2). Alterations in the receptors and ligands expression at the level of the spinal
cord and/or DRGs have been described in several mouse models of pain and in patients,
and stimulations of Eph receptors expressed by spinal neurons via the ephrinB2-Fc frag-
ment is sufficient to induce thermal hyperalgesia in an src kinases-dependent manner by
phosphorylation of NMDAR [132,135]. Mice with deleted ephrin-B2 in Nav1.8 positive
nociceptive sensory neurons in DRGs show reduced pain behavior in the complete Fre-
und’s adjuvant (CFA)-induced inflammatory pain model, formalin-induced pain, and in
a model of neuropathic pain, without affecting acute pain behavior and motor coordina-
tion [143]. Furthermore, these transgenic mice show diminished tyrosine phosphorylation
of NMDA receptors in the dorsal horn, along with reduced c-fos expression after CFA
injection, suggesting that ephrinB2 signaling plays a crucial role in regulating pain thresh-
olds after pain induction [143]. In a model of neuropathic pain, the level of ephrinB2 was
upregulated in the DRG and spinal cord in a time-dependent way, and its knockdown
was sufficient to reduce injury-induced mechanical allodynia [144], pointing out a new
role for the EphB2–ephrinB2 system as a modulator of the neuronal network underlying
chronic pain. Indeed, in DRG, the ephrinB1 gene is upregulated after activation of the
lysophosphatidic acid receptor 1 (LPA1) receptor and downstream Ras homolog gene
family member A (RhoA) [145]. Along the same lines, downregulation of ephrinB1 by
antisense oligodeoxynucleotide abolishes LPA-induced pain behavior, whereas activation
of EphB with ephrinB1-Fc induces pain behavior resembling neuropathic pain [146]. It has
been suggested that the contribution of EphB–ephrinB signaling to the development of
neuropathic pain following neuronal damage is mediated by synaptic plasticity modulation
between sensory neurons of the DRGs and dorsal horn nociceptors [142].



Cells 2022, 11, 3143 11 of 30Cells 2022, 11, 3143 11 of 34 
 

 

 

Figure 2. Eph/ephrin signaling in nerve injury causes overactivation of nociceptors, glial cells, 

and synaptic plasticity. EphB receptors belong to a family of RTKs and bind the membrane-bound 

ligand ephrinB. In pain states, this interaction helps the polymerization of the receptor and amplifi-

cation of the forward signal towards overexcitability of sensory neurons (via NMDAR) and modifi-

cation of synapses. In chronic inflammatory pain, the dendritic EphA4 is upregulated following 

neuronal damage, interacts with ephrinA3 (astrocytic), and activates its cascade involving ERK and 

activation (phosphorylation) of MAPK. After injury, Erk5 and CREB are activated, possibly due to 

EphB1 triggering. TK, tyrosin kinase; Erk, extracellular signal-regulated kinase; MAPK, mitogen-

activated protein kinase; CREB, cAMP response element-binding protein; NMDAR, N-methyl-D-

aspartate receptor; PKA, protein kinase A; PKC γ, protein kinase C gamma; PI3K, phosphatidylin-

ositol 3-kinases. 

EphB–ephrinB signaling is also involved in various models of inflammatory pain. 

Persistent inflammatory pain can be efficiently prevented and treated by blocking spinal 

EphB–ephrinB signaling [132]. Inflammatory pain is partially mediated by induction of 

COX-2 expression in the spinal cord [147]. Interestingly, intrathecal injection of ephrinB2-

Fc increases Cox-2 levels and pain behavior, whereas inhibition of Cox-2 prevents pain 

behavior induced by ephrinB2-Fc. In agreement, EphB-Fc injection reduces CFA inflam-

matory pain and decreases Cox-2 expression [148]. EphB2 and ephrinB2 are upregulated 

in the enteric nervous system, especially in the colonic nerves in patients with irritable 

bowel syndrome (IBS) [149], and in a rat model of IBS where the intensity of visceral hy-

persensitivity characteristic of IBS correlated positively with the upregulation of ephrin 

signaling [149]. The immediate early genes c-fos and arc are considered markers of synap-

tic rearrangement [150], as they correlate with neuronal activity [151] and with cytoskele-

ton rearrangement at the postsynaptic level [152], respectively. Their upregulation in the 

colons of IBS patients and rats suggests increased synaptic plasticity at the colonic enteric-

nervous-system level. In support of this hypothesis, increased synaptic densities and ex-

pression of associated proteins such as PSD-95 are observed. As a mechanism of action, it 

Figure 2. Eph/ephrin signaling in nerve injury causes overactivation of nociceptors, glial cells,
and synaptic plasticity. EphB receptors belong to a family of RTKs and bind the membrane-bound
ligand ephrinB. In pain states, this interaction helps the polymerization of the receptor and amplifica-
tion of the forward signal towards overexcitability of sensory neurons (via NMDAR) and modification
of synapses. In chronic inflammatory pain, the dendritic EphA4 is upregulated following neuronal
damage, interacts with ephrinA3 (astrocytic), and activates its cascade involving ERK and activation
(phosphorylation) of MAPK. After injury, Erk5 and CREB are activated, possibly due to EphB1 trigger-
ing. TK, tyrosin kinase; Erk, extracellular signal-regulated kinase; MAPK, mitogen-activated protein
kinase; CREB, cAMP response element-binding protein; NMDAR, N-methyl-D-aspartate receptor;
PKA, protein kinase A; PKC γ, protein kinase C gamma; PI3K, phosphatidylinositol 3-kinases.

EphB–ephrinB signaling is also involved in various models of inflammatory pain.
Persistent inflammatory pain can be efficiently prevented and treated by blocking spinal
EphB–ephrinB signaling [132]. Inflammatory pain is partially mediated by induction of
COX-2 expression in the spinal cord [147]. Interestingly, intrathecal injection of ephrinB2-
Fc increases Cox-2 levels and pain behavior, whereas inhibition of Cox-2 prevents pain
behavior induced by ephrinB2-Fc. In agreement, EphB-Fc injection reduces CFA inflam-
matory pain and decreases Cox-2 expression [148]. EphB2 and ephrinB2 are upregulated
in the enteric nervous system, especially in the colonic nerves in patients with irritable
bowel syndrome (IBS) [149], and in a rat model of IBS where the intensity of visceral
hypersensitivity characteristic of IBS correlated positively with the upregulation of ephrin
signaling [149]. The immediate early genes c-fos and arc are considered markers of synaptic
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rearrangement [150], as they correlate with neuronal activity [151] and with cytoskeleton
rearrangement at the postsynaptic level [152], respectively. Their upregulation in the colons
of IBS patients and rats suggests increased synaptic plasticity at the colonic enteric-nervous-
system level. In support of this hypothesis, increased synaptic densities and expression of
associated proteins such as PSD-95 are observed. As a mechanism of action, it has been
proposed that EphB2 induces src-dependent phosphorylation of NR2B, increasing Ca2+

permeability of the channel, thereby inducing upregulation of c-fos and arc. This hypothesis
was supported by the observation that blockading of the NMDARs-dependent Ca2+ influx
reduces IBS-dependent hypersensitivity [149]. In another model of IBS, EphB2–ephrinB2
signaling was held responsible for myenteric synaptic plasticity and subsequent visceral
hypersensitivity, since it mediates neurite outgrowth and sprouting [153,154]. Interestingly,
downregulation of the EphB6 receptor has been reported in a model of colitis [155]. The
kinase domain of this receptor is non-functional, so its function is to sequester the ligands
and reduce forward signaling. Therefore, its decrease results in an increase in the forward
signal’s strength.

EphBs–ephrinBs signaling has also been associated with cancer pain. In a model
of bone cancer pain, Eph–ephrin was associated with the maintenance of mechanical
hypersensitivity through modulation of the expression of pro-inflammatory cytokines such
as IL-6, IL-1β, and TNF-α at the level of the spinal cord [156]. The analgesic effect of
the compound Z-360 was evaluated using another model of pancreatic-cancer-induced
pain [157]. At the level of DRGs, this molecule blocks the release of IL-1β from the
inoculated tumor, preventing ephrinB1 upregulation and failing to phosphorylate NR2B.
Liu et al., using a bone cancer pain model, demonstrated the importance of the EphB1
receptor in cancer-dependent hypersensitivity and the development of morphine tolerance.
Indeed, blocking or genetic deletion of EphB1 prevents and reverses cancer pain and
morphine tolerance [158,159]. Indeed, the IL-1β/ephrinB1/NR2B axis has been proposed
to underlie the development of opioid resistance [160].

Other forms of pain have been associated with activation of the EphB–ephrinB sig-
naling pathway. In the context of diabetes, EphB1 seems to be more involved in the
maintenance of pain than in its development [161]. In the STZ model, upregulation of
the phosphorylated form of EphB1 is associated with the activation of astrocytes and mi-
croglia [161]. Moreover, the repetitive blockade of EphB1 receptor by infusion of EphB1-Fc
reduces DNP, gliosis, and pro-inflammatory cytokine release. In addition, EphBs have
been associated with opioid-induced analgesia. The drug Remifentanil, a synthetic opi-
oid analgesic drug, induces ephrinB, EphB1, and c-fos in dorsal horn neurons, and leads
to the development of opioid-induced hypersensitivity, which is prevented by blocking
EphB–ephrinB signaling [162].

Since the EphB–ephrinB system is recruited in different models of chronic pain, ranging
from inflammation to cancer-associated pain and neuropathic pain, the activation of the
Eph–ephrin signal seems to be a crucial mechanism that is common to multiple forms
of pathologic pain. Cibert-Goton et al. showed how this system is activated by stimuli
of different origins (inflammation or neuronal damage), but leads to the same result,
i.e., the involvement of the EphB–ephrinB system. In EphB1-KO mice, while acute pain is
unchanged, chronic pain of different origins is impaired. Specifically, the lack of activation
of the EphBs system leads to decreased phosphorylation of NR2B, resulting in reduced
Ca2+ entry and neuronal activity [163]. Surprisingly, EphB1-KO mice show also decreased
microglial activation, most likely due to the reduction of neuronal activity [164].

In the context of pain transmission, the forward signal has been better characterized.
EphBs activation induces the activation of several downstream signal pathways involved
in increasing nociceptor excitability at the level of the dorsal horn, and synaptic plasticity—
crucial mechanisms underlying chronic pain (reviewed in [165]). MAPKs, phosphoinositide
3-kinase (PI3K), PKCγ, and PKA are all involved in different chronic pain models in an
NMDAR-dependent manner [166–171]. Activation of the EphB receptor by intraplantar
or intrathecal injection of ephrinB1-Fc induces hyperalgesia and activation of MAPKs,
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including p38, JNK, ERK, the PI3K-AKT pathway, PKCγ, and the PKA pathway, both
peripherally and/or centrally, depending on NMDAR activity [166–168,170–174]. Fur-
thermore, blocking Eph–ephrin signaling in different contexts of chronic, inflammatory,
neuropathic, and cancer-associated pain by injection of EphB1-Fc attenuates, not only
thermal hypersensitivity and mechanical allodynia, but also the activation of p38, JNK,
and ERK [167,175], the PI3K-Akt pathway [168], and PKCγ and PKA [172,174]. Inter-
estingly, inhibition of PI3K upon stimulation of EphB counteracts EphB-dependent pain
behavior and activation of ERK [168,173], indicating crosstalk between the two-kinase
systems [169]. Importantly, PKCγ-KO mice develop less pain following spinal activation
of the EphB receptor [172]. The exact mechanism of PKA activation is still unclear, but it
was suggested that upon EphB activation, PKA may be activated through a mechanism
involving the NMDA-dependent increase in Ca2+ transients increasing cAMP [172,174], or
through a more complex mechanism involving the release of pro-inflammatory cytokines
by glial cells [176].

Even if the involvement of all these signaling pathways is well established, the specific
contribution of each effector to the outcome in the different pain conditions and whether
there is a diverse signaling contribution of each pathway in different forms of chronic pain
are not well understood and need further study.

3.2. Eph-Ephrin System and Glia in Pain

The contribution of the Eph–ephrin system to the development and maintenance of
chronic pain has been well studied at the neuronal level; however, little is known about the
involvement of the glia’s ephrin system in pain transmission (Figure 2).

Astrocytes express a wide variety of ephrins and Eph receptors [177,178], which
are regulated following neuronal damage [179,180]. EphrinA5 is considered a marker
of astrogliosis, and EphA3 is selectively upregulated in reactive astrocytes after brain in-
jury [181]. While in neurons the communication between EphBs and ephrinBs is most often
studied, the focus of astrocyte–neuron crosstalk is on the interaction of class A receptor-
ligands. Indeed, the EphA–ephrinA signaling strongly regulates the neuron–astrocyte
interaction modulating functional and structural plasticity [178]. The interaction between
the EphA4 receptor localized on dendritic spines and ephrinA3 on astrocytes modulates
the development of certain forms of LTP in the hippocampus through the regulation of
glutamate transporters on astrocytes, consequently regulating the concentration of glu-
tamate [182,183]. This interaction between dendritic EphA4 and astrocytic ephrinA3 is
also involved in chronic inflammatory pain in mice [184], emphasizing how LTP and pain-
related central sensitization share basic mechanisms [185]. EphA4 is upregulated following
inflammatory stimuli [184] and neuronal damage [186], and blocking EphA4 impairs the
development of chronic inflammatory pain [184] or neuropathic pain [186]. Interestingly, in
a model of trigeminal neuropathy, EphA4 increases in reactive astrocytes, and its blockad-
ing leads to pain relief, whereas in a model of spinal cord injury (SCI), EphA4 increases in
both neurons and astrocytes, and its blockade increases pain, indicating the complementary
role of forward and reverse signaling in different cell types. Furthermore, it was suggested
that in SCI conditions, EphA4 has a protective role in blocking the sprouting of sensory
fibers, working as an inhibitor of axon growth [187].

The glial EphB–ephrinB system has also been implicated in pain transmission. Several
studies report activation of microglia and astrocytes as a result of the EphB–ephrinB signal-
ing activation in chronic pain conditions. For example, Liu et al., in a cancer-associated pain
model (TCI), showed increases in EphB1 and toll-like receptor 4 (TLR4) on glia, along with
gliosis and enhanced release of pro-inflammatory cytokines [176]. Individual blockading of
each receptor reduced gliosis, the concentrations of IL-1β and TNF-α, and cancer-associated
hypersensitivity; the activation of the EphB1 receptor itself induced both gliosis and ther-
mal hypersensitivity. In another study, Erk5 and cAMP response-element-binding protein
(CREB) activation were mostly found in microglia following neuronal damage [188]. Fur-
thermore, in the STZ-induced diabetes model, while increased phosphorylation of EphB1
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expressed by glia positively correlates with gliosis and neuropathic pain [161], the blockade
of EphB1 leads to decreased astrocytosis and cytokine release.

This evidence points out the Eph–ephrin system as a new potential target for develop-
ing new pain therapies.

4. Semaphorin–Plexin System

Semaphorins (Semas) constitute a large family of highly conserved signaling proteins
expressed in the majority of tissues. Five classes of Semas have been identified in verte-
brates. Semas belonging to class 3 are secreted; the members of class 7 are anchored to the
membrane by a GPI-tail; and the members of classes 4, 5, and 6 are transmembrane proteins
and are released extracellularly [189]. Though discovered as important axon guidance
molecules during development, now we know that Semas play an essential role in several
different physiologic systems, participating in a wide amount of processes spanning from
embryogenesis to adult tissue homeostasis [190]. Indeed, they contribute to cardiomyoge-
nesis [191,192]; osteoclastogenesis [193]; angiogenesis [194–196]; functioning of nervous,
endocrine, respiratory, and musculoskeletal systems; and immunomodulation [197–199],
among others. Furthermore, they are involved in diseases affecting these systems and in
cancer progression, specifically in tumor neovascularization and metastasis [200–202].

Semas can bind several different protein families that function as receptors and trans-
mit their signals. The most known Sema receptors are plexins (Plxns). Plxns are large
single-pass transmembrane proteins subdivided into four classes (A–D). They show a vari-
ety of activation mechanisms, such as ligand-dependent dimerization and conformational
changes. They are characterized by an extracellular sema domain that binds Semas by
a highly conserved intracellular domain containing a GTPase activating protein (GAP)
homology domain. Interestingly, each Plxn shows a preferential affinity with a given Sema
subclass [203]. In different cell types, activation of the Sema/Plxn signaling leads to mor-
phologic changes (affecting actin and microtubule cytoskeletons) and reduced cell adhesion.
The most important mediators of Sema/Plxn signaling are the small GTPases, well-known
regulators of the cytoskeleton and cellular adhesion promoting integrin functions [204].
All Plxns can directly activate the GTPase activity of the Ras and Rap family thanks to
a highly conserved intracellular GAP homology domain [205]. Activation of Plxns and
its GAP activity leads to reduced integrin activation towards lower levels of active R-Ras
(GTP-bound form). Plxns, through a Rho binding domain (RDB), interact also with Rho
family GTPases [206], crucial elements for the control of cell shape and movement.

Neuropilins (Nrp1/2) are transmembrane proteins that serve as co-receptors for the
secreted class 3 Semas (Sema3s). Nrp1/2 has a short cytoplasmatic domain that is not
required for signal transduction. Frequently, Nrps only stabilize the interactions between
Semas and the receptors. Indeed, to transduce the intracellular signal, Nrps are associ-
ated with other proteins, such as Plxns. Interestingly, other membrane proteins, such as
CD72 [207], Tim2 [208], integrins [209], and proteoglycans [210], can directly bind Semas.

Further complexity in Semas signaling is given by their co-receptors and associated
proteins. A large variety of molecules associated with Sema–Plxn complexes, working
as co-receptors, profoundly influence the signaling outcomes. In addition, several RTKs
and cytoplasmatic tyrosine kinases, such as vascular endothelial growth factor receptor 2
(VEGFR2), Met, ErbB2, Src, and Fyn, among others, associate with Plxns or Nrps, and can
dramatically alter the outcomes of signaling, becoming transactivated while being phos-
phorylated in a ligand-independent manner upon Sema binding [211]. Specific plexins can
associate with different tyrosine kinase receptors, eliciting divergent functional outcomes.
Moreover, transmembrane Semas can also act as receptors [212], starting reverse signaling
in Semas-expressing cells, as seen for Ephrins.

Therefore, depending on the cellular context, semaphorins might trigger multiple
signaling pathways, mediating different and occasionally opposing functional effects.
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Semaphorin–Plexin Signaling in Pain

Sema–Plnx signaling was originally discovered as repulsive axon guidance molecules [213].
However, over the past few years, Semas have been shown to be involved in many other
developmental processes that shape the CNS and PNS (reviewed in [214]).

Less is known about the role of this system in the physiology of the adult nervous
system. Many Semas have been seen to play a crucial role in different aspects and functions
of the adult CNS. In particular, they are implicated in the inhibition of neurogenesis
(Sema3A and Sema7A) [215,216], re-innervation of taste receptors (Sema3A, Sema7A) [217],
maintenance of hippocampal synaptic connectivity, retention of fear memories (Sema3G,
Sema4C) [218,219], and the functioning of corticostriatal circuits (Sema3F) [220]. In addition,
Semas play a crucial role in maintaining homeostatic synaptic plasticity and controlling
hippocampal synaptic transmission (Sema3F) [221,222]. Therefore, these new findings
point out a role for semaphorin signaling in the regulation of neuroplasticity.

As synaptic plasticity is a well-recognized mechanism underlying chronic pain [133],
it is tempting to speculate that the Sema–Plxn signaling pathway may contribute to the
development and maintenance of chronic pain. Compared to the other signaling systems
involved in neuronal development, little is known about the role of Semas in chronic pain,
but evidence has been recently reported on the involvement of these guidance molecules in
pain (Figure 3).
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Figure 3. Semaphorin–plexin signaling in mice model of pain. Schematic representation of known
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Neuropilin-1; Sema, Semaphorin; IL-1β, Interleukin-1β; TNF-α, Tumor necrosis factor alpha.

During the development of the nervous system, Sema3A prevents axons from inner-
vating inappropriate territories [223,224]. In particular, it has been shown that Sema3A
repels axons from a subset of small diameter, nerve growth factor (NGF)-responsive em-
bryonic DRG neurons that are involved in thermoreception and nociception [225–227].
The expression and secretion of Sema3A and the expression of Nrp persist in the adult
nervous system [228] and are upregulated at the injury site of the sectioned spinal cord,
where it inhibits regeneration of nerve fibers and restoration of neural circuitry [229,230].
Inhibition of Sema3A induces re-connection of transected axons of the spinal cord and re-
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stores motor function [231]. Moreover, overexpression of Sema3A prevents the sprouting of
unmyelinated sensory nerve endings and attenuates hyperalgesia in the spinal cord of the
NGF-induced neuropathic pain model [232] and in the injured cornea [233]. Interestingly,
in the CCI model of neuropathic pain, intrathecal injection of Sema3A reduces mechanical
allodynia and thermal hyperalgesia, and partially restores the decrease in IB4-positive
non-peptidergic unmyelinated sensory nerve terminals in lamina II of the dorsal horn.
Furthermore, Sema3A does not alter the sprouting of myelinated nerve terminals [234],
suggesting an anti-nociceptive effect of Sema3A.

Altered semaphorin levels have been detected in several chronic inflammatory diseases
associated with reduced noradrenergic innervation, such as endometriosis or rheumatoid
arthritis (RA); psoriasis; Crohn’s disease; and immunometabolic diseases such as obesity,
diabetes, and atherosclerosis, characterized by chronic tissue inflammation [235]. In chronic
inflammatory diseases, noradrenergic hypo-innervation correlates with the progress and
severity of the disease [236], whereas peptidergic innervation is significantly increased in
peritoneal endometriosis and RA. These alterations lead to an imbalance in anti- or pro-
inflammatory neurotransmitters thought to maintain a chronic inflammatory milieu [237].

Reduced noradrenergic innervation associated with increased expression of Sema3C
and Sema3F has been found in tissues from patients with pelvic endometriosis, whose main
symptom is pain. Significantly increased content of macrophages is found in peritoneal
fluid and tissue of endometriosis patients [238,239]. Interestingly, Semas are expressed
by lesion-associated macrophages and fibroblasts while Nrp and PlexinA receptors are
present in nerve fibers [237]. Different studies have revealed a role of semaphorins in the
innervation changes observed during the progress of diseases such as RA and Morbus
Crohn [240], suggesting that neuroimmunomodulatory processes might be responsible for
such changes in endometriosis since it is known that innervation can be modulated by
immune cells [241].

Pathological innervation associated with altered expression of class 3 Semas including
Sema3A, Sema3C, and Sema3D has been suggested as a mechanism underlying chronic
low back pain [242]. In particular, Sema3A has been proposed as a candidate target against
low back pain as a potential mechanism for its pathogenesis [243,244]. Low back pain is
often associated with degeneration of intervertebral discs. Under physiological conditions,
innervation does not penetrate the discs leaving the intravertebral discs avascular and
aneural. On the contrary, in degenerated discs has been observed a strong growth of
nociceptive nerve fibers and blood vessels, which may contribute to pain [245,246]. In
the healthy disc, Sema3A is highly expressed and localized in the outer annulus fibrosus,
whereas in degenerated specimens Sema3A expression is significantly decreased in this
region, and it appears as a good candidate for low back pain treatment.

Recently, the signaling Sema3B/PlxnA1 and Sema3B/PlxnA2/Nrp2 have been in-
volved in the pathophysiology of RA, both in patients and in a mouse model [247,248].
Sema3B amount was reduced in the synovium of patients with early RA and its expres-
sion level correlates inversely with the expression of inflammatory mediators and clinical
manifestations [247]. Furthermore, genetic knockdown of Sema3B induces higher arthritis
severity together with higher expression of cytokines, chemokines, and matrix metallopro-
teinase. This effect is mainly due to fibroblast-like synoviocytes that also have an increased
migratory capacity, consistent with the invasive and aggressive phenotype of RA. Inter-
estingly, arthritic mice show also a reduced expression of PlexinA2 and the co-receptor
Nrp-1, a receptor complex that binds Sema3B, Sema3A, and Sema3F which are known
to have a protective role in the pathogenesis of RA [248]. The protective role of Sema3B
is likely mediated by inhibition of the ERK pathway. In fact, ERK is overactivated in the
joints of Sema3B-/- arthritic mice [248] and synovial tissue from patients with RA and from
patients with early arthritis who develop erosive RA [247]. In contrast, a reduction in ERK
activation has been found in Sema3B-stimulated RA fibroblast-like synoviocytes [247]. All
these reports support a protective role of class 3 semaphorin in the pathogenesis of RA.
Since the clinical parameters of patients correlate positively with Sema3B expression we
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speculate that also RA-related pain behavior will be improved by Sema3B; however, a
direct experimental proof of a direct link is still missing.

Interestingly, while in neuropathic pain models Sema3A has an analgesic role, in a
bone tumor-associated pain model it has a pro-nociceptive effect [249]. Indeed, using a
model of bone metastasis where tumor cells are inoculated into the femoral bone, they
demonstrated an increase in Sema3A presumably produced by the inoculated cells. Knock-
ing down Sema3A results in a decelerating of cancer cell proliferation and improved pain
behavior [249]. Normally, bone metastases induce the sprouting of sensory nerves innervat-
ing the bone [250,251] associated with pain [252]. Since Sema3A has a repulsive effect on
sensory fibers, one would expect that blocking this signal would have a beneficial effect on
pain. However, considering tumor cell proliferation with increased intraosseous pressure
and bone resorption resulting in cytokine release [253,254], predisposes the final effect of
Sema4C toward a pro-nociceptive action [249].

Class 3 Semas and the Sema3s/PlexinA/Nrp signaling have been frequently associ-
ated with anti-nociceptive function. However, more recently our laboratory demonstrated
the involvement of Sema4C-PlexinB2 signaling in modulating inflammatory nociceptive
hypersensitivity. Indeed, we showed, using an inflammatory pain model, that a develop-
mental important system is rekindled in adult life to mediate nociceptive hypersensitivity
by promoting both acute and long-lasting plasticity of sensory neurons [255]. We found
that CFA injection into the paw induces upregulation of PlexinB2 and Sema4C into the DRG
neurons and of Sema4C by keratinocytes and immune cells infiltrating the inflamed skin
(macrophages and T-cell) pointing out the importance of the crosstalk between neurons
and immune cells in inflammatory pain transmission. PlexinB can mediate very complex
intracellular signaling, activating different molecular pathways depending on cell type,
developmental stage, or cellular context. Accordingly, in early embryonic developmental
PlexinB2 functions are entirely mediated by the Ras GAP domain [256], whereas in adult
neurons the receptor recruits RhoA-ROCK signaling to promote the increase in TRPA1 ion
channels in the cell membrane, thus sensitizing DRG sensory neurons [255]. It is tempting
to speculate that this system could participate also in other forms of chronic pain such as
neuropathic or cancer pain. Indeed, several kinds of cancer cells express and can release
Semas, and some neuropathic pain conditions have a strong inflammatory component.

PlexinC1-Sema7a signaling mediates an acute inflammatory response [257]. PLXNC1
genetic depletion (PLXNC1−/− mice) or anti-PlexinC1 antibody treatment results in a
reduced inflammatory response and lower cytokine and chemokine production in vivo,
letting us hypothesize a modulation of inflammation-associated pain as well, highlighting
the importance of the awakening of a developmental crucial system in pain transmission.

More recently it was shown the involvement of PlexinD1 in neuropathic pain transmis-
sion. Specific autoantibodies against antigens in the somatosensory pathway are recognized
as novel mediators of neuropathic pain [258,259]. Anti-PlexinD1 antibodies were discov-
ered during a serum screening which aimed to identify autoantibodies that specifically
bound sensory neurons in the DRG and SDH [260]. Anti-PlexinD1 antibodies are found
in a small portion of patients with neuropathic pain and underlying neuroinflammatory
diseases [260], painful trigeminal neuropathy [261], and small fiber neuropathy [262]. Inter-
estingly, immunotherapies ameliorate neuropathic pain in patients´ anti-plexinD1 positive
and passive transfer of IgG purified from these patients to mice induces mechanical and
thermal hypersensitivity [261,262].

Anti-PlexinD1 antibodies bind mainly with IB4- and P2X3-positive neurons, in the
DRG and lamina I and II of the dorsal horn, and VIP-positive parasympathetic nerve fibers
in the skin. In vitro studies show that the binding of anti-PlexinD1 antibodies increases the
membrane permeability of DRG neurons and induces cellular swelling without complement
activation [260]. As mechanism, it is alleged that anti-PlexinD1 antibodies may induce DRG
neurons´ cytotoxicity through the dysregulation of cytoskeleton stability. Nevertheless,
the causal link between anti-PlexinD1 antibodies and neuropathic pain needs further
experimental proof.
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Semaphorins as guide molecules during development are known to play a dual
role in both axon repulsion and attraction. Interestingly, a duality is also maintained in
their function in the adult organism, particularly in the context of chronic pain. Indeed,
depending on the cellular context in which they are activated, they can exert both a pro-
nociceptive function and mediate analgesia.

5. ncRNAs and Axon Guidance Molecules in Pain

Recent literature has investigated the role of non-coding RNAs (ncRNAs) in pain.
Many studies identified changes in the expression of various ncRNAs in patients affected
by chronic pain and in chronic pain models, demonstrating that the dysregulation of differ-
ent ncRNAs promotes or inhibits the occurrence and development of chronic pain [263].
Among ncRNAs, microRNAs (miRNAs), small non-coding RNAs 21–23 nucleotides in
length that play key roles in modulating gene expression at the post-transcriptional
level [264], are widely reported to be involved in neuropathic pain. Interestingly ncR-
NAs are shown to regulate also Wnt, semaphorin, or ephrin pathways in the contest of
pain. Using the CCI model of neuropathic pain, it is demonstrated the importance of
miRNAs in regulating Wnt pathway and pain. Indeed, the downregulation of different
miRNAs is correlated to activation of the Wnt pathway and increased mechanical and
thermal hyperalgesia [265–267]. Overexpression of miR24-3p, miR216-5p, miR146a-5p, or
miR30b-5p attenuates inflammatory cytokines release, mechanical allodynia, and thermal
hyperalgesia [265,266], and reduces the level of the Wnt pathway-related gene (β-catenin,
c-myc, and cyclin D1 [266] inactivating the Wnt/β-catenin signaling pathway [265], or
negatively regulating Wnt5a [268].

Interestingly, the miRNA miR-30b-5p is also reported to target SEMA3A in the model
of traumatic brain injury (TBI) [269] and spinal cord injury (SCI) [270]. The agomir of
miR-30b (a double-stranded RNA that mimics the endogenous miRNA) can regulate
Sema3A/NnpP-1/PlexinA1/RhoA/ROCK axis in vivo and restore spinal cord sensory
conductive function [270]. It is tempting to speculate a role of the miR-30b-5p as a regulator
of SEMA3A also in chronic pain models.

MiRNAs can be regulated by other ncRNAs, such as the long non-coding RNAs (lncR-
NAs) that can bind miRNAs suppressing their action. The lncRNA colorectal neoplasia
differentially expressed gene (CRNDE) has been shown to mediate neuropathic pain pro-
gression in the CCI model of pain serving as a sponge for miR-146a-5p thus increasing
Wnt5a pathway [268]. Whereas the silencing of CRNDE attenuates mechanical allody-
nia, thermal hypersensibility, and the inflammatory response in vivo, showing a lncRNA
CRNDE/miR-146a-5p/Wnt5a axis [268]. It has been shown that the Eph–ephrin signaling
pathway is regulated by lncRNAs. In CCI rats, the ultraconserved lncRNA uc.153 level
is increased in the spinal cord and its knockdown prevents CCI-induced pain behaviors.
Uc.153 negatively modulates Dicer-mediated pre-miR-182-5p processing and inhibits its
maturation [271]. Moreover, spinal miR-182-5p downregulation increases the expression of
EphB1 and p-NR2B (phosphorylated NR2B), facilitating hyperalgesia [271,272].

Interconnection between Wnt and Semas pathways has been demonstrated also at
the level of ncRNAs. Intervertebral disc degeneration (IDD) is considered a significant
contributor to low back pain. In IDD specimens the expression level of circular RNA
SEMA4B (circSEMA4B) is reduced in nucleus pulposus cells (NPCs). One of the targets of
circSEM4B is miR-431, which negatively regulates the secreted frizzled-related protein 1
(SFRP1) and GSK-3β, two inhibitors of Wnt signaling [273]. CircSEMA4B acts as a sponge
for miR-431 and thus regulates the level of SFRP1 or GSK-3β, which in turn inhibit Wnt
signaling, reducing the IL-1β-induced degenerative process in NPCs. Therefore, rescuing
circSEMA4B expression in NPCs may be a prospective approach for improving IDD [273].

Despite recent progress in studying the regulation of Wnt, Eph–ephrin, and Sema-Plxn
signaling pathways by ncRNAs [274–276] and their contribution to pain modulation, this
area deserves further investigation.
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6. Conclusions

Despite the attempts by many laboratories, the precise spatiotemporal sequence of
activation of the different pathways in the context of pain is not entirely clear. The knowl-
edge of which pathway is activated at a precise moment in a particular cell type will help
to develop a target-oriented pharmaceutical approach against pain more specific and thus
with fewer side effects. As we have seen, each class of axon guidance molecules described
in this review is capable of activating a plethora of intracellular cascades often overlapping
or leading to opposite effects. For example, Sema3A mediates nociception in the context of
cancer-associated pain [249] while it has an analgesic effect in the context of neuropathic
pain [234]. Similarly, identifying the downstream effectors supports the possibility of
reducing the side effects of new drugs and making them more effective. Indeed, one must
consider that these pathways interact with others that are activated at the same time by
other mediators and are modulated by them. Thus, targeting a pathway too far upstream
may give dangerous effects or none at all. Indeed, axon guidance molecule signaling often
regulates tissue homeostasis. Moreover, different mediators can activate the same effector
using different pathways. Wnt3a and Sema4C mediate mechanical hyperalgesia in contexts
of cancer-associated or inflammatory pain respectively. In both cases, the downstream
effector is an increased membrane availability of TRPA1 expressed by sensory neurons in
DRGs. Interestingly, this is achieved by different pathways: Wnt activates the Rac-JNK
pathway, whereas Sema4C engages the RhoA-ROCK pathway.

The interaction of guidance molecules with other pain mediators must also be consid-
ered from a therapeutic perspective. For example, several Wnt ligands have been shown
to induce the release of pro-inflammatory cytokines in the spinal cord [28]. In particular,
Wnt5a in the context of HIV-associated pain induces the release of BDNF [277], a factor that
induces the disinhibition of spinal GABAergic neurons [48,278].

Pro-inflammatory processes modulate the expression of axon guidance molecules and
these changes regulate the onset and resolution of neuroinflammation. Different families of
axon guidance molecules have been shown to regulate neuroinflammation modulating glia
functions, but the precise mechanisms underlying cell-to-cell interactions or intracellular
signaling are not well understood [279]. Understanding the ligand-receptor combinations
present and their specific roles will be the key to figure out the regulatory functions of axon
guidance molecules in the context of neuroinflammation and may help to discover new
molecular targets to treat chronic pain.

Interestingly, both Wnt and Eph signaling have been implicated in side effects due
to opioid administration. In particular, inhibition of Wnt5a ameliorates the exacerbation
of HIV-related neuropathic pain, induced by continuous morphine administration [46].
Furthermore, the blockade of EphB1 upregulation prevents the development of tolerance
to opioids in a cancer pain model [158]. This suggests that the combined therapies tar-
geting more than one molecule will be more successful than drugs focusing only on one
signaling pathway.

Despite many approaches and molecules developed to target axon guidance molecules-
activated pathways appear to be efficient in pre-clinical models of pain, very few of them
succeed in phase 1 or 2 of the clinical tests. This underlies that a lot of work has still
to be performed to deeply understand this complex and paradoxical signaling system.
To develop more efficient and safe drugs or therapies, many questions lack a complete
answer: (i) Do these molecules and their interaction play the same role in mice and humans?
(ii) Although the pre-clinical studies mainly focus on the spinal effect, what is the role of
these molecules at the brain level? (iii) Seen the strong involvement of microglia, what role
do these axonal guidance molecules take regarding the sex and gender differences?

In conclusion, attention should be directed towards reinforcing the resolution process
by increasing the expression of anti-inflammatory endogenous regulators such as anti-
inflammatory cytokines, resolvins, protectins, and maresins, and modulating the interaction
at the level of ncRNAs.
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