New drugs that are under investiga-
tion to treat bone-resorbtion diseases
include inhibitors of a3 integrin, an
adhesion receptor that mediates
attachment of osteoclasts to bone sur-
face (5, 19), and OPG. Indeed, in dose-
response studies lasting for two to
three months, single doses of OPG,
which inhibits both differentiation
and activation of osteoclasts, were
shown to profoundly inhibit bone
resorption in postmenopausal women
(23) and in patients with multiple
myeloma or skeletal metastases caused
by breast cancer (24).

Despite the breadth and depth of
these seminal discoveries, there is
still much more to be learned about
basic bone biology and the mecha-
nisms by which estrogen modulates
bone metabolism.
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A knowledge of the biochemical loci of
action of 6-MP in the inbibition of
nucleic acid synthesis is not sufficient to
explain the effects of the thiopurines on
the immune system.

—Gertrude B. Elion (Winner of
1988 Nobel Prize in Medicine for
“important principals of drug
development”; codiscovered 6-MP
and azathioprine with George
Hitchings) (1)

Azathioprine is among the oldest
pharmacologic immunosuppressive
agents in use today. Initially developed
as a long-lived prodrug of 6-mercap-
topurine (6-MP), it was quickly found
to have a more favorable therapeutic
index. It was soon found that 6-MP
could produce remissions in child-
hood acute leukemia (1), and later,
that azathioprine could prolong renal
allograft survival (2). Over the past 50
years, azathioprine has been used in
the treatment of hematologic malig-
nancies, rheumatologic diseases, solid
organ transplantation, and inflamma-
tory bowel disease.

The drug is a purine analog, and the
accepted mechanism of action is at the
level of DNA (1, 3). Both in vitro and in
vivo, azathioprine is metabolized to
6-MP through reduction by glu-
tathione and other sulphydryl-con-
taining compounds and then enzy-
matically converted into 6-thiouric
acid, 6-methyl-MP, and 6-thioguanine
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Schematic of extracellular and intracellular T cell-signaling pathways targeted by immuno-
suppressive medications. The IL-2 receptor (IL-2R) and CD28 molecules are shown; daclizum-
ab and CTLA4-Ig, respectively, block interaction of these cell-surface receptors with their lig-
ands. OKT3 interacts with the TCR-associated CD3 complex. Rapamycin inhibits cell cycle
progression through its interaction with mTOR. Cyclosporin A and tacrolimus inhibit cal-
cineurin, thereby inhibiting NFAT and IL-2 synthesis. Azathioprine, through its 6-ThioGTP

metabolite, inhibits CD28 signals.

(6-TG) (1, 3). Ultimately, azathioprine
can then become incorporated into
replicating DNA and can also block
the de novo pathway of purine synthe-
sis. It is this action that is thought to
contribute to its relative specificity to
lymphocytes due to their lack of a sal-
vage pathway. However, the effects on
the blockade of DNA replication have
never fully explained all of the labora-
tory and clinical findings of azathio-
prine-induced immunosuppression.

Optimal T cell activation requires

a costimulatory signal

T lymphocytes play a primary role in
many autoimmune disorders and in
allograft rejection. Optimal activation
of T lymphocytes requires two signals:
ligation of the T cell receptor (TCR) as
well as a second costimulatory signal
(4-6). Anergy, or T cell unresponsive-
ness to antigen encounter (7), can be
induced by stimulation through the
TCR in the absence of costimulation
(8). TCR stimulation without a costim-
ulatory signal can also result in apop-
tosis or programmed cell death (9).
Apoptosis has been shown to be impor-
tant for induction of peripheral toler-
ance in a model of transplant rejection
(10). During the past decade, it has
become clear that ligation of the CD28
transmembrane protein can induce this
costimulatory signal (9, 11).

Since the identification of CD28 as a
costimulatory molecule, intense effort
has been focused on understanding the
signal transduction pathways that are
induced following its crosslinking.
Despite this effort, controversy still
exists as to whether CD28 merely aug-
ments TCR-generated signals or induces
aseparate set of signals. AYMNM motif
in the cytoplasmic tail of CD28 allows
the recruitment of PI3K and the down-
stream activation of the protein kinase
Atk/PKB (12). This same YMNM motif
also mediates CD28 interaction with
the adaptor protein Grb2 (12). Recent-
ly, the interaction with Grb2 has been
proposed to link CD28 to the activa-
tion of the small GTPase Rac1 via the
guanine nuclear exchange factor Vav
and the adaptor protein SLP-76 (12,
13). Ligation of CD28 results in
increased activity of the transcription
factors NF-kB and nuclear factor of
activated T cells (NFAT) via this second
pathway (13, 14). Once translocated to
the nucleus, NF-kB can take partin the
upregulation of the antiapoptotic
Bcl-xL gene (9, 15). Transgenic and
retroviral reconstitution of CD287/~
mice has shown that the YMNM
motif is required for upregulation of
Bcl-xL and for survival following
TCR/CD28 stimulation (16, 17).
These studies suggest that pharma-
cologic inhibitors that specifically

interfere with CD28 signaling with-
out affecting antigen-specific signals
from the TCR may be found.

Azathioprine and CD28 signaling
The report by Tiede et al. (18) in this
issue of the JCI brings together these
two areas of research and may help
explain Elion’s observation. The au-
thors show that in vitro stimulation of’
primary human T lymphocytes in the
presence of azathioprine or 6-MP
results in an increased percentage of
apoptotic cells. They go on to investi-
gate the molecular mechanisms re-
sponsible and find that 6-MP interacts
directly with the small GTP-binding
protein Racl, thus blocking upreg-
ulation of Bcl-xL mRNA and protein.
Specifically, 6-thioguanine triphos-
phate (6-ThioGTP) binds to Racl but
does not bind to another small GTP
binding protein, Ras. The authors
also present in vivo data indicating
that inflammatory bowel disease
patients treated with azathioprine
have more apoptotic mononuclear
cells than untreated controls, indicat-
ing that this mechanism may be
responsible for the in vivo response to
the drug in this disease.
Antigen-specific tolerance has been
shown in experimental systems using
azathioprine and 6-MP dating back
to 1958 (ref. 1 and references therein).
In these early experiments, 6-MP
administration was shown to prevent
an anti-BSA-antibody response in
rabbits. Not only was the primary
response suppressed, but the animals
then showed long-term antigen-spe-
cific tolerance to reexposure to the
antigen after the drug was discontin-
ued. The mechanism of this tolerance
now has a potential explanation.
In retrospect, it is likely that CD28
costimulation was blocked — thus
inducing either T cell anergy or apop-
tosis. Unfortunately, the tolerizing
effect of azathioprine has been less
robust in human solid organ trans-
plants, resulting in movement toward
newer, more potent immunosuppres-
sive agents such as calcineurin in-
hibitors (cyclosporin A and tacro-
limus) and the antiproliferative agents
mycophenylate mophetil and rapa-
mycin. While the clinical trend has been
to increase global immunosuppression,
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the goal of solid organ transplanta-
tion remains long-term, allograft-spe-
cific tolerance.

Bench back to bedside?

The findings of Tiede et al. reopen the
possibility that an old drug, azathio-
prine, holds promise for the develop-
ment of drugs that could induce allo-
graft-specific tolerance (18). Blockade
of TCR-induced or costimulatory sig-
nals are among current strategies of
immunosuppression (Figure 1). CD28
inhibition using the fusion protein
CTLAA4-Ig s currently undergoing clin-
ical trials. However, the findings of
Tiede et al. provide a potential adjunc-
tive or alternative therapeutic approach
to block the costimulatory signals that
result from CD28 ligation (18). Cer-
tainly, targeting of intracellular signal
transduction is not a new idea (19). In
fact, the targeting of another signal
transduction pathway has already been
successfully translated from bench to
bedside with the development of ima-
tinib in the treatment of chronic myel-
ogenous leukemia (20). As more effec-
tive immunosuppressive medications
have become available, azathioprine
haslostits place as first-line therapy in
solid organ transplantation. With the

knowledge that an azathioprine meta-
bolite can block CD28 signaling via
Racl, one could envision that chemical
modifications may result in a more spe-
cific compound that alone, or in com-
bination with others, could induce
long-lived antigen-specific tolerance.
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