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Azimuthal vortex clusters in Bose-Einstein condensates
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We describe, analytically and numerically, topologically nontrivial stationary states with azimuthal modulation
of density in a repulsive Bose-Einstein condensate (BEC) confined in a harmonic trap. We show that, depending
on the number of density peaks and total topological charge, these states can have a sophisticated phase texture
associated with a vortex cluster. For a given topological charge, the form of density distribution and the structure
of phase singularities are uniquely linked, thus simultaneous phase and density modulation enforces the formation
of a vortex cluster both in rotating and in nonrotating BEC clouds.

DOI: 10.1103/PhysRevA.85.013620 PACS number(s): 03.75.Lm

I. INTRODUCTION

The topologically nontrivial collective excitations of Bose-
Einstein condensates (BECs) containing quantized currents
(vortices) are one of the most intensely studied phenomena
in the physics of ultracold atomic gases. The hierarchy of
such states has been thoroughly investigated both theoretically
and experimentally. It includes a single vortex line in a
harmonically confined rotating BEC [1–5]; a vortex cluster,
e.g., a vortex-antivortex dipole [1,5,6], a tripole [7,8], or a
quadrupole [1], in both rotating and nonrotating [7,9] BEC
clouds. On top of this hierarchy are hexagonal (Abrikosov)
vortex lattices forming as a robust steady state in rotating
clouds [10,11] or transient honeycomb lattices forming via
interference of fragmented nonrotating BECs [12–14]. In
contrast to the Kibble-Zurek mechanism of spontaneous vortex
production during the rapid temperature quench through the
BEC transition [15,16], the route that enables one to move,
in a controlled manner, from one to many vortices in a
(near-)zero-temperature BEC cloud is the rotation of the BEC
cloud [17–20]. The number of vortices entering the condensate
above a certain critical velocity of rotation increases with
growing velocity, until, for a sufficiently large number of
vortices, a stationary Abrikosov lattice supported by repulsive
intervortex interactions is formed [10].

Recently, a novel topological state—the azimuthon vortex—
was predicted to exist in BECs with a negative scattering length
in both single- [21] and two-component [22] condensates.
These states were first described theoretically [23–25] and
observed experimentally [26] in the context of optical singular
beams in nonlinear media with a focusing nonlinearity.
The existence of optical azimuthons was also predicted in
azimuthally modulated Bessel lattices induced in a defocusing
Kerr medium [27]. A basic azimuthon is a spatially localized
vortex of a single or multiple topological charge (i.e., phase
winding number around the vortex core) and azimuthal density
modulation [21,23], so that the spatial density profile displays
multiple peaks. As such, an azimuthon represents a natural
link between a single vortex with quantized circulation and
a cluster of solitons [28,29] (with or without a total angular
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momentum). The quirky feature of azimuthons emphasized
in [23] is that, due to the azimuthal modulation of energy flow,
for the same topological charge and number of peaks, they can
display positive, negative, or zero angular velocity.

Here we describe azimuthal vortex clusters: higher-order
multipeaked BEC azimuthons that contain multiple phase sin-
gularities. We construct an analytical theory of such stationary
states both for a noninteracting BEC and for an interacting
(nonlinear) BEC with a positive scattering length confined in
an axisymmetric potential. Our theory comprehensively links
the nonlinear azimuthons with the linear modes of a BEC in the
confining trap (the existence of such a link between nonlinear
and linear states was hinted at in the recent study of optical
azimuthons in weakly nonlinear waveguides [30]). Using our
theory, we demonstrate, both analytically and numerically, that
a density-modulated vortex of a certain topological charge
gives rise to an azimuthal cluster of single-charged vortices
arranged in a strictly deterministic manner. In some ways,
this mechanism is analogous to the formation of gap BEC
vortices in optical lattices [31] and optical multivortex solitons
in photonic lattices [32–34]; there, the density modulation
enforced by the symmetry of the lattice potential enforces
the symmetry of the phase texture. Excitation of a specific
azimuthal cluster in a BEC therefore provides a route for
controlled generation of multiple-vortex states of different
symmetries both with and without collective rotation of the
BEC cloud. Ultimately, azimuthal vortex clusters provide a
smooth transition from a single-vortex state to vortex lattices
with a large number of singularities and provide an additional
means of phase texture control in nonrotating BECs [35].

II. MODEL

We model a BEC confined in an axisymmetric “pancake”
trap, i.e., we assume a weak harmonic confinement in
(x,y) dimensions and tight confinement in the transverse z

dimension, with the respective trapping frequencies � and �z,
with �z � �. Assuming that the energy of the mean-field
interaction is much lower than the characteristic energy of
the transverse confinement, the condensate wave function is
separable into the transverse, i.e., z dependent, and radial
parts [36], and the mean-field model takes an effectively
two-dimensional (2D) form. The dynamics of the condensate
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is then described by the normalized Gross-Pitaevskii equation
(GPE) for the radial wave function ψ(x,y),

i
∂ψ

∂t
= −∇2

⊥ψ + (x2 + y2)ψ + σ |ψ |2ψ, (1)

where ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2. Here time is measured in units

of 2/�z, length in units of a0 = √
h̄/(m�z), with m being the

atomic mass, and the wave function in units of a
−3/2
0 . The

(dimensionless) wave function in the transverse z dimension
is assumed to be that of a ground state of the quantum
harmonic oscillator normalized to 1. The radial component
of the wave function is scaled as ψ(x,y) → √

g2Dψ(x,y),
where g2D = 4

√
2π (|a|/a0)λ are proportional to the scattering

lengths, a, and λ = �/�z � 1. For the typical aspect ratios
of the 2D trapping achieved in the experiment, λ ∼ 10−1–10−2

[37,38]. The only remaining parameter in Eq. (1) is the sign
of the scattering length, σ . In what follows, we consider both
noninteracting (σ = 0) and nonlinear BEC (σ 	= 0), paying
particular attention to the case of the positive scattering length,
i.e., repulsive interatomic interactions, σ = +1.

Equation (1) conserves the norm of the radial wave function
(the normalized number of particles),

N =
∫

|ψ |2dxdy; (2)

the z component of the angular momentum,

Mz = Im
∫

[ψ∗(r × ∇⊥ψ)]zdxdy; (3)

and the total energy (Hamiltonian),

E =
∫ {

|∇⊥ψ |2 + (x2 + y2)|ψ |2 + σ

2
|ψ |4

}
dxdy. (4)

We seek solutions of Eq. (1) which are stationary in the
frame rotating with the angular velocity ω. In polar coordinates
(r,ϕ), such solutions of the form

ψ(r,ϕ,t) = 
(r,ϕ − ωt) exp(−iμt), (5)

where μ is the chemical potential in the rotating frame, satisfy
the equation

∂2


∂r2
+ 1

r

∂


∂r
+ 1

r2

∂2


∂θ2
− iω

∂


∂θ
− r2
 − σ |
|2
=−μ
,

(6)

where θ = ϕ − ωt . In Cartesian coordinates, Eq. (6) becomes

∇2
⊥
 − iω

(
x

∂

∂y
− y

∂

∂x

)

 − [(x2 + y2) + σ |
|2]


= −μ
. (7)

III. STATIONARY STATES OF NONINTERACTING
BEC (σ = 0)

In the linear limit, σ = 0, Eq. (7) coincides with the
Schrödinger equation for an electron wave function in a ho-
mogeneous magnetic field. The corresponding eigenfunctions
are well known:

Ln,±m(x,y) = e−(x2+y2)/2

(
x ± iy√

2

)m

Lm
n (x2 + y2), (8)

where Lm
n (ξ ) is the generalized Laguerre polynomial, and the

corresponding eigenvalues are

μn,±m = 4n + 2|m| + 2 ∓ mω, (9)

where n and m are non-negative integers. In what follows we
restrict our consideration to the nodeless case n = 0, so that
the eigenfunctions and eigenvalues are


±m = L0,±m(x,y) = e−(x2+y2)/2

(
x ± iy√

2

)m

(10)

and

μ±m = 2|m| + 2 ∓ mω. (11)

As can be seen from the structure of Eq. (10), it describes
stationary vortex states with the topological charge m, or
the ground states m = 0, of a noninteracting BEC in a 2D
harmonic trap. These stationary solutions of GPE are not valid
in the nonlinear case, σ 	= 0, however, the bifurcation from
linear to nonlinear solutions of Eq. (7) is possible above the
critical value μ > μ±m, where μ±m is determined by Eq. (11).
The corresponding nonlinear ground states and vortices can be
found numerically.

Our primary task is to describe nonlinear solutions of Eq. (7)
that are different from fundamental ground states and vortices
(in the nodeless case, n = 0). To this end we first consider
the case σ = 0. It is clear that the only possible candidate for
the solution different from Eq. (10) is a superposition of the
linear modes 
±m with equal corresponding eigenvalues μ

determined by Eq. (11). It can easily be seen from Eq. (11)
that there exists the only way to construct such a superposition.
It has the form


 = c1
−k + c2
l, (12)

where k and l are positive, the coefficients c1 and c2 are
arbitrary, and μ−k = μl . This expression yields the only
possible (for the fixed k and l) value of ωlin and the eigenvalue
μlin corresponding to the linear mode (12):

ωlin = 2(l − k)

l + k
, (13)

μlin = k(ωlin + 2) + 2. (14)

If nonlinear states with similar phase and density structure
exist, then Eqs. (13) and (14) represent the bifurcation points
on the (ω,μ) plane where nonlinear stationary states branch
off the linear modes.

IV. STATIONARY STATES OF INTERACTING BEC (σ = 1)

In the nonlinear case, σ 	= 0, Eq. (7) is not integrable,
and we resort to variational analysis to find approximate
stationary states. Stationary solutions of Eq. (6) in the form of
(5) resolve the variational problem δS = 0 for the functional
S = E − μN − ωMz. Bearing in mind the structure of the
linear stationary state, Eq. (12), we take a trial function in the
form of the superposition of two vortices with the topological
charges −k and l:


 = Ae−ξ 2/2(ξke−ikθ + sξ leilθ ), (15)

where ξ = r/a, k, and l are positive integers; A, a, and s

are unknown parameters to be determined by the variational
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procedure. In the limiting cases s = 0 and s � 1, the ansatz
models a single vortex with charge −k or l, respectively. Note
that a similar ansatz appears in the stability analysis of a vortex
soliton of charge −k, superimposed with the perturbation
mode of charge m = l + k and amplitude s [39]. Instead of
a low amplitude s � 1 in the linear stability analysis, here we
cover the whole range of values s, however, the linearization
allows for a more general superposition that accounts for
modes with both +m and −m.

Substituting Eq. (15) into Eqs. (2), (3), and (4), we arrive
at the following expression for the functional S:

S(A,a,s) = E1 + E2 + E3 − μN − ωMz. (16)

The term E1 corresponds to the kinetic energy,

E1 = πA2[2k2(k − 1)! + 2s2l2(l − 1)! + (k + 1)!

+ s2(l + 1)! − 2kk! − 2s2ll!], (17)

and

E2 = πA2a4[(k + 1)! + s2(l + 1)!] (18)

is the energy due to the harmonic trap. The contribution from
the nonlinear interaction is

E3 = πA4a2

[
(2k)!

22k+1
+ s4(2l)!

22l+1
+ s2(k + l)!

2k+l−1

]
, (19)

the number of particles is

N = πA2a2(k! + s2l!), (20)

and the angular momentum is

Mz = πA2a2(s2ll! − kk!). (21)

The parameters A, a, and s are determined from the system of
equations ∂S/∂A = 0, ∂S/∂a = 0, and ∂S/∂s = 0.

One can find a set of various solutions satisfying the
variational problem. As a general rule, the stationary state
has N = k + l peaks and N + 1 singularities in the phase,
including N singularities with the topological charge +1 on
the periphery and one singularity with the charge −k at the
center, so that the total topological charge is m = N − k = l.
In addition to μ and the rotational frequency ω, we characterize
the stationary states by the two topological charges k = N − m

and l and denote the corresponding structure 〈−k,l〉 (without
loss of generality, we assume l � k). Existence domains for
various 〈−k,l〉 azimuthal clusters on the plane (μ,ω) are
presented in Fig. 1. The bifurcation points (i.e., tips of the
existence domains in Fig. 1) are in perfect agreement with
analytical expressions (13) and (14), which can be rewritten in
terms of N and m:

ωlin = 2(2m − N )

N
, (22)

μlin = (N − m)(2 + ωlin) + 2. (23)

Examples of five-peak states [amplitudes, |
|, and phases,
arg(
)], corresponding to existence domains 4 and 6 in Fig. 1,
are shown in Fig. 2. As can be seen, the two states with the
same number of peaks differ by the total topological charge,
which results in a different structure of singularities. This
structure can be viewed as a cluster of six individual vortices
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FIG. 1. (Color online) Existence regions for azimuthal clusters
〈−k,l〉 with N peaks in the density profile in the parameter space
{ω,μ}. Azimuthal clusters exist within the angular sectors bordered
from below by the numbered curves. For k = 1, existence domains for
the two-peak azimuthon 〈−1,1〉 (curve 1; N = 2) and clusters 〈−1,2〉
(curve 3; N = 3), 〈−1,3〉 (curve 5; N = 4), and 〈−1,4〉 (curve 6;
N = 5) are shown. For k = 2, existence domains for clusters 〈−2,2〉
(curve 2; N = 4) and 〈−2,3〉 (curve 4; N = 5) are shown. Dashed
lines show the dependences μlin(ωlin) in the linear limit (σ = 0) for
k = 1,2.

with positive and negative topological charges. All the single-
quantized vortices on the periphery have charge +1, however,
the central vortex in the cluster has charge −k = m − N ,
which is determined by both the total topological charge and
the density modulation.
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FIG. 2. (Color online) Amplitude, |
|, and phase structure of
stationary five-peak azimuthal clusters from the existence domains
in Fig. (1) bordered by curves 5 (top row) and 6 (bottom row).
Top row: five-peak cluster 〈−2,3〉 (μ = 10, ω = 0.45) containing
six singularities: five on the periphery, with charge +1, and one
at the center, with charge −2. The total charge is m = l = 3.
Bottom row: five-peak azimuthal cluster 〈−1,4〉 (μ = 7, ω = 1.12)
containing six singularities: five on the periphery, with charge +1,
and one singularity at the center, with charge −1. The total charge
is m = l = 4. The phase changes from 0 (blue) to 2π (red); vortex
positions are shown by circles.
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FIG. 3. (Color online) Dependence of the angular velocity ω

of the two-peak azimuthally modulated single-charge vortex (az-
imuthon) 〈−1,1〉 on the modulational depth p for two values of μ.
Results of the variational analysis (solid lines) and numerical solution
of the model equation (dashed lines) are presented.

The variational ansatz, when used as an initial guess, allows
us to find exact numerical solutions of Eq. (7) by a method
similar to the one described in [21], with a high accuracy [40].
To quantify the agreement between the variational and the
numerical solutions, we consider azimuthal clusters with k = l

(i.e., N = 2m) and introduce the modulation depth parameter
in the following way: p = (s − 1)/(s + 1). This parameters
defines azimuthal (θ ) modulation in the variational ansatz
previously introduced for azimuthons (see, e.g., [21]), 
(θ ) ∼
cos mθ + ip sin mθ , and can be extracted directly from the
numerical results p = max |Im 
|/ max |Re 
|. For a given
cluster 〈−k,l〉 within the existence domain (Fig. 1), the depth
of the density modulation quantifies the extent to which the
internal flow of particles within the localized structure affects
its collective rotation [23] and, therefore, determines the value
of the angular velocity. As can be seen from Fig. 1, the latter can
be positive, negative, or 0. Figure 3 shows the dependences of
the angular velocity ω on the modulational depth p (for k = 1,
l = 1) which were obtained from variational and exact numer-
ical solutions of Eq. (7). A very good agreement is evident.

V. STABILITY AND GENERATION OF
AZIMUTHAL CLUSTERS

Numerical stability analysis shows that most of the az-
imuthal clusters are unstable. However, both nonrotating (ω =
0) and rotating two-peak single-charge vortices (azimuthons)
〈−1,1〉 have a large stability region in the parameter space
(see Fig. 4). Such stable states can be found in other physical
systems, for example, in nematic liquid crystals, where they
were recently observed experimentally [41]. Other types of
clusters can survive (provided the norm, N , is not too large)
over long times, comparable to the lifetime of the condensate
(i.e., several seconds). Examples of the stable evolution of
five-peak states are shown in Fig. 5.

The longevity of azimuthal clusters in certain parameter
regions (i.e., for a certain normalized number of atoms N
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FIG. 4. (Color online) Top: Amplitude, |
|, and phase structure
of the two-peak azimuthon 〈−1,1〉 from the existence domains in
Fig. (1) bordered by curve 1 (μ = 5, ω = 0.2). The phase changes
from 0 (blue) to 2π (red); the vortex position is shown by the circle.
Bottom: Stability region for the 〈−1,1〉 azimuthon for ω > 0. For
ω < 0, the corresponding stability region is a mirror image of the one
shown here.

and angular velocity ω) enables us to suggest a scheme for
their dynamical excitation via phase imprinting [42]. More
specifically, we employ a phase imprinting scheme which is
similar to that used for excitation of azimuthons in optical
experiments [26] and mimics the straircase-like azimuthal
phase winding structure. In our numerical simulations, we start
with a variationally determined Gaussian density distribution,
which is close to the ground-state wave function of a BEC
with norm N in the 2D harmonic trap. We take the initial
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FIG. 5. (Color online) Initial amplitude structures and results of
temporal evolution of a dynamically stable azimuthal cluster with
N = 5. Top row: total charge m = 3, μ = 7, ω = 0.4. Bottom row:
total charge m = 4, μ = 5.5, ω = 1.19. Evolution time, t , is measured
in units of 2/�z (see text).
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FIG. 6. (Color online) Dynamical generation of azimuthal vortex
clusters after the evolution time t = 0.8, where time is measured in
units of 2/�z (see text). Top row: a cluster with N = 4 and total
charge m = 3; Bottom row: a cluster with N = 8 and total charge
m = 5. The instantaneous amplitude |ψ | of the BEC wave function
(left) and the phase structure, arg(ψ), in the core area (right). The
phase changes from 0 (blue) to 2π (red); vortex positions are marked
by circles.

states with N ≈ 50. The actual number of atoms in the
condensate is proportional to N (a0/as) and, depending on
the atomic species and trapping frequencies, can take values
of the order of 105–106. We then multiply the Gaussian wave
function by a phase factor with stepwise phase dependence on
the azimuthal angle: φ(θ ) = 2πmcnN/N for 2πnN/N < θ <

2π (n + 1)/N , where nN = 0 . . . N − 1. We fix the number
of peaks N targeted by the excitation process and the central
charge mc < 0 such that |mc| � N/2, thus the total phase
winding is split into N segments. Indeed, the subsequent
time evolution of the BEC cloud results in the formation
of an azimuthal cluster with N peaks, central charge mc, a
total of N + 1 singularities, and total charge (including N

periphery singularities with the charge +1 each) m = N + mc

(m = N − |mc|). An example of the dynamically excited
azimuthal cluster with N = 4 is shown in Fig. 6 (top row)
for a short evolution time after excitation (for the trapping
setup in [37] this time corresponds to ≈4 ms). In this case
the total charge of the cluster is m = 3, the cluster displays
the topological charge of the central singularity mc = −1, and
there are four singularities on the periphery with topological
charge +1. In general, for longer evolution times, azimuthal
vortex clusters display oscillatory, recurrent dynamics while
preserving the singularity texture. In the case of a higher charge

of the central singularity, it can split into single-charge vortices.
However, these vortices also form a robust regular pattern in
the central area of the cluster which is preserved with time. An
example of such a structure, an eight-lobe cluster with m = 5,
is shown in the bottom row in Fig. 6. The charge of the central
singularity is mc = −3, and eight singularities on the periphery
with topological charge +1 have been generated in the process
of dynamical excitation. The central singularity has split into
three vortices, forming a stable pattern at the core of the cluster.

The extremely robust excitation scheme numerically tested
here would be quite involved experimentally [26], since it
requires the transfer of a complex phase state from photons
to atomic cloud. However, our proof-of-principle simulations
clearly demonstrate one-to-one correspondence between the
phase texture of the azimuthon and its density structure,
which can be controlled in a deterministic fashion via phase
imprinting. Other possible excitation schemes can be pro-
posed. The experimental phase imprinting techniques achieved
via angular momentum transfer from optical fields to atoms
[43] can enable us to imprint an arbitary total topological
charge onto a condensate cloud using superposition of vortex
states [44]. Likewise, a laser-illuminated mask can be used
to impose a density modulation onto a 2D BEC cloud [12].
Therefore, experimental schemes of azimuthon excitation via
simultaneous phase and density imprinting can, in principle,
be investigated and tested. However, our preliminary results on
this excitation method show that it suffers from interference-
induced instabilities of the azimuthal vortex cluster [14],
and although the targeted phase texture is reproduced, the
amplitude structure of the azimuthal cluster is easily destroyed.

VI. CONCLUSIONS

The azimuthal vortex clusters in BECs that are described
here represent a broad class of spatially localized station-
ary and rotating states containing multiple vortices. These
stationary states exist in both rotating and nonrotating BEC
clouds with repulsive interatomic interaction confined by a
harmonic trap. The remarkable feature of these states is the
one-to-one correspondence between phase texture and density
modulation, which makes them analogous to other globally
linked multivortex states, such as H clusters [45]. Finally, we
have demonstrated numerically that the robust dynamics of
these states may enable their dynamical excitation via phase
imprinting by the transfer of a nontrivial angular momentum
state from photons to atoms.
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