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Azospirillum: bene�ts that go far 
beyond biological nitrogen �xation
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Abstract 

The genus Azospirillum comprises plant-growth-promoting bacteria (PGPB), which have been broadly studied. The 
benefits to plants by inoculation with Azospirillum have been primarily attributed to its capacity to fix atmospheric 
nitrogen, but also to its capacity to synthesize phytohormones, in particular indole-3-acetic acid. Recently, an increas-
ing number of studies has attributed an important role of Azospirillum in conferring to plants tolerance of abiotic and 
biotic stresses, which may be mediated by phytohormones acting as signaling molecules. Tolerance of biotic stresses 
is controlled by mechanisms of induced systemic resistance, mediated by increased levels of phytohormones in the 
jasmonic acid/ethylene pathway, independent of salicylic acid (SA), whereas in the systemic acquired resistance—a 
mechanism previously studied with phytopathogens—it is controlled by intermediate levels of SA. Both mechanisms 
are related to the NPR1 protein, acting as a co-activator in the induction of defense genes. Azospirillum can also pro-
mote plant growth by mechanisms of tolerance of abiotic stresses, named as induced systemic tolerance, mediated 
by antioxidants, osmotic adjustment, production of phytohormones, and defense strategies such as the expression of 
pathogenesis-related genes. The study of the mechanisms triggered by Azospirillum in plants can help in the search 
for more-sustainable agricultural practices and possibly reveal the use of PGPB as a major strategy to mitigate the 
effects of biotic and abiotic stresses on agricultural productivity.
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Introduction

Projections of population increases, especially in devel-

oping countries, as well as of life expectancy worldwide, 

imply greater needs for food and feed (FAO 2009). To 

achieve higher productivity, agriculture is being inten-

sified, mainly with monocultures highly dependent on 

increased chemical inputs, including pesticides and fer-

tilizers (McArthur and McCord 2017; Roser and Ritchie 

2017). However, to ensure long-term food production, 

we must develop sustainable agricultural practices, 

based on conservationist practices, to achieve economic 

returns for farmers, but with stability in long-term pro-

duction and minimal adverse impact on the environ-

ment (Sá et al. 2017). In this context, the use of microbial 

inoculants plays a key role, and we may say that we are 

starting a “microgreen revolution.”

�e nomenclature “plant-growth-promoting bacteria 

(PGPBs)” has been increasingly used for bacteria able to 

promote plant growth by a variety of individual or com-

bined mechanisms. By this definition, rhizobia—studied 

and used in commercial inoculants for more than a cen-

tury—are also PGPBs. Undoubtedly, besides rhizobia, the 

most studied and used PGPB is Azospirillum, encom-

passing bacteria with a remarkable capacity to benefit a 

range of plant species (Bashan and de-Bashan 2010; Hun-

gria et al. 2010; Hungria 2011; Fukami et al. 2016; Pereg 

et al. 2016).

�e genus Spirillum was first reported by Beijerinck 

(1925), and decades later reclassified as Azospirillum, 

because of its ability to fix atmospheric nitrogen  (N2), 

discovered and reported by the group of Dr. Johanna 

Döbereiner in Brazil, in the 1970s (Tarrand et al. 1978). 

After the discovery that Azospirillum was diazotrophic, 
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several studies evaluated its capacity to fix  N2 and to 

replace N-fertilizers when associated with grasses (Okon 

et al. 1983), including sugarcane (Saccharum spp.), grain 

crops such as maize (Zea mays L.), wheat (Triticum aes-

tivum L.), and rice (Oryza sativa L.), pastures such as 

Brachiaria (= Uruchloa), among others (Lima et al. 1987; 

Cassán et al. 2015; Marks et al. 2015; Fukami et al. 2016; 

Hungria et al. 2016; Pereg et al. 2016). Twenty species of 

Azospirillum (DSMZ 2018) have been described so far, 

but A. brasilense and A. lipoferum have been the subjects 

of the highest numbers of physiological and genetic stud-

ies (Baldani and Baldani 2005; Fibach-Paldi et al. 2012).

Beneficial results have been obtained consistently with 

Azospirillum applied to a variety of crops (e.g. Okon and 

Labandera-Gonzalez 1994; Bashan et al. 2004; Pereg et al. 

2016) in dozens of commercial inoculants worldwide 

(Okon et  al. 2015). Intriguingly, although the Brazilian 

research group headed by Dr. Döbereiner contributed 

to dozens of studies with Azospirillum (Döbereiner and 

Pedrosa 1987; Reis et al. 2000; Baldani and Baldani 2005), 

it was only in 2009 that the first commercial inoculant 

containing A. brasilense started to be commercialized in 

the country (Hungria et al. 2010; Hungria 2011); however, 

more than 3 million doses of inoculants are now applied 

annually by farmers, for inoculation both of non-legumes 

and for co-inoculation of legumes.

Although the most prevalent reported benefit of Azos-

pirillum has been its capacity of fixing  N2, an increasing 

number of studies describes other properties that imply 

growth-promotion. One main property of Azospirillum 

relies on the synthesis of phytohormones and other com-

pounds, including auxins (Spaepen and Vanderleyden 

2015), cytokinins (Tien et al. 1979), gibberellins (Bottini 

et  al. 1989), abscisic acid (Cohen et  al. 2008), ethylene 

(Strzelczyk et  al. 1994), and salicylic acid (Sahoo et  al. 

2014). Phytohormones greatly affect root growth, result-

ing in improvements in uptake of moisture and nutri-

ents (Ardakani and Mafakheri 2011). Some Azospirillum 

strains can solubilize inorganic phosphorus, making 

it more readily available to the plants and resulting in 

higher yields (Turan et  al. 2012). �ere are also reports 

of Azospirillum helping in the mitigation of abiotic 

stresses, such as salinity and drought (Creus et al. 2004; 

Rodríguez-Salazar et al. 2009; Kim et al. 2012), by trigger-

ing induced systemic tolerance (IST) (Yang et  al. 2009). 

Azospirillum has also been reported to help in the miti-

gation of excessive compost and heavy metals (Bacilio 

et  al. 2003; de-Bashan et  al. 2010). Another important 

feature of Azospirillum is related to biological control of 

plant pathogens (Bashan and de-Bashan 2002a, b; Khan 

et al. 2002; Romero et al. 2003; Tortora et al. 2011), ena-

bled by the synthesis of siderophores, and limiting the 

availability of iron (Fe) to phytopathogens (Tortora et al. 

2011), or causing alterations in the metabolism of the 

host plant, including the synthesis of a variety of second-

ary metabolites that increase plant resistance to infec-

tion by pathogens, a mechanism known as induction of 

systemic resistance (ISR) (Sudha and Ravishankar 2002; 

van Loon and Bakker 2005). Due to the several mecha-

nisms reported to promote plant growth, Bashan and 

De-Bashan (2010) proposed the “theory of multiple 

mechanisms” in which the bacterium acts in a cumulative 

or sequential pattern of effects, resulting from mecha-

nisms occurring simultaneously or consecutively. In this 

review we will give emphasis to the mechanisms of Azos-

pirillum that can improve plant tolerance of biotic and 

abiotic stresses (Fig. 1).

Oxidative stress

Abiotic and biotic stresses result in oxidative dam-

age to plants due to an increase in reactive oxygen spe-

cies (ROS), representing an initial mechanism of plant 

response to the attack of pathogens (Finkel 2000; León 

and Montesano 2013), and of defense against abiotic 

stresses (Heidari and Golpayegani 2012; Wang et  al. 

2012).

�e ROS molecules encompass free radicals resulting 

from the oxygen  (O2) metabolism, including superoxide 

radicals  (O2
−), hydroxyl radicals  (OH−), hydrogen perox-

ide  (H2O2), and singlet oxygen (1O2) (Bowler et al. 1992; 

Gill and Tuteja 2010). Under normal conditions, ROS 

are produced via the aerobic metabolism by the interac-

tion between  O2 and electrons escaping from the elec-

tron transport chain in the chloroplast and mitochondria 

(Halilwell and Gutteridge 1989). However, under stress 

conditions, ROS accumulation affects cellular compo-

nents, causing damage to membranes by lipid peroxi-

dation (Smirnoff 1993), and/or by the accumulation of 

solutes, such as proline and betaine, which may protect 

cells against increased levels of ROS (Chen and Murata 

2002).

Oxidative stress is relieved in plants by antioxidant 

enzymes, such as superoxide dismutase (EC 1.15.1.1; 

SOD), catalase (EC 1.11.1.6; CAT), and ascorbate per-

oxidase (EC 1.11.1.11; APX) (Wisniewski-Dyé et al. 2012; 

Ozyigit et  al. 2016). �e enzyme SOD is the first in the 

defense against ROS, converting the radical superox-

ide  (O2
−) to  H2O2, which is then removed by CAT and 

APX by the conversion of  H2O2 to water  (H2O) and  (O2) 

(Lamb and Dixon 1997; Asada 1999). In general, ROS 

detoxification systems vary with plant species, genotypes, 

and age, as well as with the type and duration of stress 

(Hodges et al. 1996).

�e genes that encode the detoxification enzymes are 

found in different compartments of plant cells, varying 

in number and location, depending on the plant species. 
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SOD enzymes are divided into three groups, based on 

the cofactor metal: the copper/zinc (Cu/ZnSOD), iron 

(FeSOD), and manganese (MnSOD) classes (Jozefczak 

et al. 2015). �e SOD system in maize consists of several 

isoenzymes; SOD2, SOD4, SOD4A, and SOD5 are found 

in the cytosol (Cu/ZnSOD), while SOD3 (MnSOD) is 

encoded by the sod3 multigene family and located in the 

mitochondria (Jung et al. 2001).

APX isoenzymes in superior plants are encoded by 

a multigenic family (Ozyigit et  al. 2016); the APX1 and 

APX2 cytosolic isoforms are the most important in 

the APX family in providing antioxidant protection 

(Shigeoka and Maruta 2014), induced mainly under 

extreme light conditions or heat stress (Davletova et  al. 

2005). In relation to the CAT isoenzymes, CAT1 and 

CAT2 are found in peroxisomes, glyoxysomes, and also 

in the cytosol (Scandalios et al. 1997), and CAT3 in the 

mitochondria (Jung et al. 2001).

Although early studies have focused on plant response 

to phytopathogens, there are indications that PGPBs 

may induce plant oxidative stress as an initial defense 

response, probably because plants perceive these 

microorganisms as potential threats. What is now known 

is that PGPB, including Azospirillum, are capable of 

inducing the synthesis of antioxidant enzymes in plants, 

reducing the deleterious effects of ROS (Han and Lee 

2005; Heidari and Golpayegani 2012; Upadhyay et  al. 

2012; Fukami et al. 2017, 2018).

Although Azospirillum appears to lack host specific-

ity in the promotion of plant growth (Pereg et al. 2016), 

there are also indications that strains may vary in deter-

minants that will contribute to the adaptation to the 

rhizospheric niche, affecting plant-bacterial interactions 

(Wisniewski-Dyé et al. 2012). �erefore, mechanisms of 

oxidative stress may contribute to the success of plant 

colonization. For example, Drogue and collaborators 

(2014) reported that colonization of A. lipoferum strain 

4B in the rice rhizosphere seems to involve genes related 

to the detoxification of ROS, and similar results were 

reported for A. brasilense strain Sp245 in Arabidopsis 

thaliana (Spaepen et  al. 2014), wheat (Méndez-Gómez 

et al. 2015), and also for A. brasilense strains Ab-V5 and 

Ab-V6 in maize (Fukami et al. 2017, 2018).

Fig. 1 Mechanisms of tolerance of biotic and abiotic stresses induced by Azospirillum in plants. Tolerance to biotic stress include induced systemic 
resistance (ISR), mediated by increased levels of phytohormones in the jasmonic acid (JA)/ethylene (ET) pathway independent of salicylic acid (SA), 
and systemic acquired resistance (SAR)—a mechanism previously studied with phytopathogens—controlled by intermediate levels of SA. Tolerance 
of abiotic stresses, named as induced systemic tolerance (IST), is mediated by antioxidants, osmotic adjustment, production of phytohormones, and 
defense strategies such as the expression of pathogenesis-related (PR) genes
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Plant defense mechanisms to biotic stresses

Induced systemic resistance

Plants have several inducible mechanisms against patho-

gens attack. A classic example is the acquired systemic 

resistance (SAR), which is activated after infection by a 

necrotrophic pathogen, and confers resistance to plants 

against a broad spectrum of pathogens, as well as against 

secondary infections for weeks or months (Fu and Dong 

2013).

Some PGPB also show the capacity of inducing plant 

defense mechanisms, conferring resistance to pathogenic 

bacteria, viruses, and fungi, termed ISR (induced sys-

temic resistance) (Lugtenberg and Kamilova 2009). �e 

ISR triggered by non-pathogenic microorganisms begins 

in the infected primary tissues and is systemically spread 

throughout the plant, increasing the defensive capacity of 

distant tissues against infection of pathogenic agents (van 

Loon and Bakker 2005; Dutta et al. 2008). Once induced, 

plants can remain protected for prolonged periods (van 

Loon 2007). �is mechanism was first described by van 

Peer et  al. (1991) in carnation (Dianthus caryophyllus 

L.), with protection against Fusarium oxysporum f. sp. 

dianthi via the synthesis and accumulation of phyto-

alexins resulting from inoculation with Pseudomonas sp. 

WCS417r. �e mechanism was also described by Wei 

et al. (1991) in cucumber (Cucumis sativus L.), in which 

six out of the 94 strains of PGPB evaluated, encompass-

ing five species of Pseudomonas and one of Serratia, 

protected the leaves against anthracnose caused by Colle-

totrichum orbiculare.

van Loon (2007) defined four main mechanisms by 

which PGPB may induce ISR in plants: (i) developmen-

tal, escape: related to plant-growth promotion; (ii) physi-

ological, tolerance: reduction of symptom expression; (iii) 

environmental: associated with microbial antagonism in 

the rhizosphere; (iv) biochemical resistance: by induc-

tion of cell-wall reinforcement, of phytoalexins synthe-

sis, of pathogenesis-related (PR) proteins, and “priming” 

of defense responses (resistance), enabling the plants to 

rapidly and effectively activate cellular defense responses 

that are induced by contact with the pathogen.

�e ISR is also characterized by specific plant-PGPB 

interactions, implying that a PGPB that is capable of trig-

gering ISR in a particular plant species may not be effec-

tive in another (van Loon 2007). �e main group of PGPB 

that triggers ISR includes strains of the genera Azospiril-

lum, Pseudomonas and Bacillus (Pérez-Montaño et  al. 

2014). A transcriptomic study of Azospirillum sp. strain 

B510 (isolated from cultivar Nipponbare) inoculated in 

rice induced one and repressed five PR-genes, whereas 

A. lipoferum strain 4B (isolated from cultivar Cigalon) 

induced more defense-related genes in Nipponbare than 

in Cigalon (Drogue et  al. 2014). In another study with 

A. thaliana, PR-genes were induced when the plant was 

inoculated with A. brasilense strain Sp245 (Spaepen et al. 

2014). PR-genes were also induced in maize inoculated 

with A. brasilense strains Ab-V5 and Ab-V6 (Fukami 

et al. 2017, 2018).

�e SAR is associated with the synthesis and accu-

mulation of salicylic acid (SA) in the plant, activat-

ing a coordinated expression of genes that encode 

PR-proteins (Kawagoe et  al. 2015). One study demon-

strated that NPR1 (“nonexpressor of PR-gene1", related 

to the plant’s defense system) is an essential regulator in 

the SAR mechanism; it is transported to the cell nucleus 

in response to SA, where it acts as a transcriptional co-

activator of a set of PR-genes (Pajerowska-Mukhtar et al. 

2013; Pieterse et al. 2012, 2014), with an emphasis on PR-

1, PR-2, and PR-5 (Malamy et al. 1990; Uknes et al. 1992). 

�e PR-proteins have different functions, some still 

unknown. We may cite as an example PR-1 (a member 

of a multigene family) (Morris et al. 1998) with unknown 

biochemical function (van Loon et  al. 2006), and PR-2, 

related to the synthesis of a β-1-3-glucanase (Kauffmann 

et  al. 1987), which inhibits pathogenic fungal growth, 

since the main structural components of the cell wall of 

these microorganisms are chitin and β-glucan.

�e activation/repression of PR-genes, mediated by 

NPR1, is tightly related to the levels of SA in plants. NPR1 

assists in the activation of programmed cell death, act-

ing as a negative regulator (Caarls et al. 2015). When the 

levels of SA are low, NPR4 (a paralog of NPR1) interacts 

with NPR1, leading to its degradation. Likewise, when 

the levels of SA are high, the binding between NPR1 and 

NPR3 (a paralog of NPR1) is promoted, and also results 

in the removal of NPR1 (Fu et  al. 2012). When the SA 

level is intermediate, the interaction between NPR1 

and NPR3 is suppressed, leading to the accumulation of 

NPR1, and activating the SA-dependent defense genes 

(Caarls et al. 2015).

In the case of ISR, studies on different species of PGPB 

and plants have established that the nature of the induced 

resistance, in most cases, is independent of SA (Yan et al. 

2002; De Vleesschauwer et al. 2008; Segarra et al. 2009) 

and, in general, is associated with signaling molecules, 

such as jasmonic acid (JA) and its derivatives (such as 

jasmonate), and ethylene (ET) (Glick 2012; Ahemad and 

Kibret 2014), involving the induction of PR-proteins, 

such as PR-3 and PR-4 (chitinase family), and PDF1.2 

(a plant defensin) (van Loon and van Strien 1999; Gond 

et al. 2015). In a study with strawberry (Fragaria anana-

ssa) inoculated with A. brasilense REC3, Elias et al. (2018) 

reported increased ET synthesis and up-regulation 
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of genes associated with ET signaling (Faetr1, Faers1, 

Faein4, Factr1, Faein2 and Faaco1), supporting the 

hypothesis of priming activation characteristic of ISR 

mediated by this PGPB.

�ere is evidence that the mechanisms of ISR, with 

signaling by JA/ET, are different from SAR, mediated 

by NPR1 (Spoel 2003; Stein et  al. 2008; Pieterse et  al. 

2012; Pieterse and Van Wees 2015). �e evidence cor-

roborates the results of Yasuda et al. (2009), in which rice 

plants inoculated with Azospirillum sp. B510 increased 

the plant resistance to the pathogenic fungus Magnopo-

rthe oryzae and to the bacterium Xanthomonas oryzae, 

through mechanisms independent of SA-signaling, with 

no accumulation of SA or PR-proteins. Similar results 

were described by De Vleesschauwer and collaborators 

(2008) for P. fluorescens WCS374r. However, other stud-

ies using cells and metabolites of A. brasilense Ab-V5 

and Ab-V6 applied by different methods resulted in the 

induction of PR-1 SAR-related and PRP-4 ISR-related 

genes (Fukami et al. 2017).

Several studies have demonstrated that the exogenous 

applications of SA (Bari and Jones 2009) and JA (Lorenzo 

and Solano 2005; Wasternack 2007; Bari and Jones 2009) 

in plants induce PR-genes, resulting in increased resist-

ance to various phytopathogens. Agrawal and collabo-

rators (2000) reported the first evidence of exogenous 

application of JA as an effective inducer of the PR1 family 

in rice. �ere are also reports of the application of ISR-

inducing chemicals, such as JA or SA, in reducing the 

incidence of diseases in rice. However, the application of 

purified exopolysaccharides (EPS) of Azospirillum also 

conferred resistance against the fungus Pyricularia ory-

zae (Sankari et al. 2011), suggesting that EPS may repre-

sent another alternative for increasing ISR.

Plant defense mechanisms to abiotic stresses

Plants are commonly exposed to several environmen-

tal stresses such as high and low temperatures, drought, 

salinity, alkalinity, UV-rays (Sharma et al. 2012); estimates 

are that about 30% of the global crop production is lost 

as a result of abiotic stresses (Goswami et al. 2016), and 

PGPB can play a strategic role in reducing these losses, 

by activating several physiological and biochemical toler-

ance mechanisms in plants (Yang et al. 2009; Kim et al. 

2012; Sarma et al. 2012), named induced systemic toler-

ance (IST). �e mechanisms related to IST include anti-

oxidant defense (Heidari and Golpayegani 2012; Wang 

et al. 2012), osmotic adjustment (Sarma and Saikia 2014), 

production of phytohormones such as indole-3-acetic-

acid (IAA) (Spaepen and Vanderleyden 2015), defense 

strategies such as the expression of PR-genes (Kim et al. 

2014), and the induction of heat-shock proteins (HSP) 

(Lim and Kim 2013).

Saline stress

Salinity is considered one of the most critical abiotic 

stresses, impacting agricultural productivity and sus-

tainability due to reductions in photosynthesis, respira-

tion, and protein synthesis (Ahmad and Prasad 2012; 

Dwivedi et al. 2015). Salinity also causes nutritional dis-

turbances in plants that lead to the deficiency of various 

nutrients and the increase in sodium  (Na+) levels (Zahedi 

et  al. 2012). First, the high concentration of salt in the 

rhizosphere affects water absorption by the plants; sub-

sequently, toxic ionic concentrations inside the plants 

result in inhibition of many physiological and biochemi-

cal processes, such as the absorption and assimilation of 

nutrients (Hasegawa et al. 2000; Munns and Tester 2008).

Plants use many important adaptive mechanisms to 

deal with the adverse effects of salinity, one of them being 

the accumulation of solutes, including amino acids (pro-

line), sugars (mannitol), and quaternary ammonium (gly-

cine betaine), which help to maintain the water within 

the cells, combating dehydration (Nuccio et  al. 1999). 

Another mechanism is the increase in ROS synthesis 

in cells (Gururani et al. 2013), as well as of the cytosolic 

expression of APX (Torsethaugen et al. 1997).

Among the PGPB, the genus Azospirillum—with an 

emphasis on A. brasilense—is probably the most stud-

ied microorganism for the mitigation of salinity stress 

in various cultures (Creus et al. 2004; Barassi et al. 2006; 

Rodríguez-Salazar et  al. 2009; Carrozzi et  al. 2012; Fas-

ciglione et  al. 2015). Example of effects of Azospirillum 

include the study by Hamdia and collaborators (2004), 

that reported that the inoculation of Azospirillum spp. in 

cultivars of maize altered the selectivity of  Na+,  K+, and 

 Ca++ ions, by restricting  Na+ absorption and increasing 

 K+ and  Ca++ uptake; the protective role of the bacterium 

was verified by the reduction in proline content, and 

also by plant-growth promotion. Likewise, plant-growth 

promotion and lower accumulation of solutes were also 

reported by Fukami et al. (2017) in maize inoculated with 

A. brasilense Ab-V6, but not with Ab-V5, indicating dif-

ferences between strains. In addition, Fukami et al. (2017) 

observed that inoculation with strain Ab-V6 induced the 

expression of genes related to antioxidant enzymes, and 

similar results were reported when different species of 

Azospirillum were used in inoculants applied to canola 

(Brassica napus L.) (Baniaghil et al. 2013).

In another study, inoculation with A. brasilense strain 

NH, but not with Sp7 (Nabti et al. 2009), was very effec-

tive in restoring the vegetative growth and seed yield of 

durum wheat (Triticum durum var. Waha) grown with 

160 and 200  mM NaCl, reducing the accumulation of 

proline and total sugars (Alamri and Mostafa 2009). 

Other studies reported beneficial effects of inoculation 

of A. brasilense on sweet pepper (Capsicum annuum L.) 
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(Amor and Cuadra-Crespo 2012), and white clover (Tri-

folium repens) (Khalid et al. 2017).

It is worth mentioning that several rhizobial strains 

can also help to increase plant tolerance of salinity, as 

has been reported for pea (Pisum sativum L.), fava beans 

(Vicia faba L.) (del Cordovilla et al. 1999), common bean 

(Phaseolus vulgaris L.) (Dardanelli et  al. 2008; Fukami 

et al. 2018), and also in non-legumes as lettuce (Lactuca 

sativa L.) (Han and Lee 2005). �is may be due, at least 

partially, to the ability of some rhizobial strains to synthe-

size phytohormones (Yanni and Dazzo 2015; Imada et al. 

2017), increasing root growth, a property that is expand-

ing their use as PGPB also in non-legumes (Askary et al. 

2009; García-Fraile et  al. 2012; Hasan et  al. 2014; Yanni 

and Dazzo 2015).

Drought stress

Drought is another major limitation to crop production 

worldwide (Lesk et al. 2016), and global climate changes 

are increasing the frequency of negative reports. Many 

mathematical models predict reductions in rainfall and 

increases in temperatures by 2050 (IPCC 2014; Shanker 

et al. 2014), resulting in agricultural losses for economi-

cally important crops, and impacting food security (Foley 

et  al. 2011; IPCC 2014). �us, there is need to increase 

drought tolerance in crops and increase yields under con-

ditions of depleted moisture availability (Ngumbi and 

Kloepper 2016).

Moisture shortage in plants affects stomatal function, 

which reduces the leaf  CO2/O2 ratio, inhibiting photo-

synthesis with concomitant reduction of biomass pro-

duction (Gilbert et  al. 2011; Lopes et  al. 2011; Mutava 

et  al. 2015). Under severe conditions, drought induces 

oxidative stress in plants, resulting from the accumu-

lation of ROS (Souza et  al. 2013; Silva et  al. 2014). �e 

plant responds with the synthesis and activity of several 

antioxidant enzymes, such as CAT, peroxides (POX), 

SOD, glutathione peroxidase (GPX), and APX (Simova-

Stoilova et al. 2008). In addition, other strategies such as 

osmotic adjustment, maintenance of root viability, mem-

brane stability, and accumulation of proteins and other 

metabolites—including proline, glycine betaine, and tre-

halose—help, directly or indirectly, in the maintenance 

of plant metabolism under drought stress (Huang et  al. 

2014; Cohen et al. 2015; Ngumbi and Kloepper 2016).

Inoculation with PGPB may be strategic to increase 

drought tolerance (Marulanda et  al. 2007), since these 

microorganisms can elicit IST (Yang et  al. 2009). In 

addition, PGPB may help plant-drought tolerance by 

the production of EPS (Sandhya et  al. 2010), phyto-

hormones (Dodd et  al. 2010; Fibach-Paldi et  al. 2012), 

1-aminocyclopropane-1-carboxylate (ACC) deaminase 

(Lim and Kim 2013), volatile compounds, inducing the 

accumulation of osmolytes (Cohen et  al. 2015), antioxi-

dants, up- or down-regulation of stress-responsive genes 

(Ngumbi and Kloepper 2016; Vurukonda et al. 2016), and 

changes in root morphology (Rodríguez-Salazar et  al. 

2009; Cohen et al. 2015).

In a pioneer study of the effects of PGPB in plant-gene 

expression, Timmusk and Wagner (1999) reported that 

the inoculation of A. thaliana with Paenibacillus poly-

myxa induced the drought-responsive gene ERD15 (early 

response to dehydration). In another study, inoculation 

with Pseudomonas spp. compensated the drought effects 

with an enhanced synthesis of proline, amino acids, 

and soluble sugars, which resulted in better absorption 

of moisture and nutrients and enhanced plant growth 

(Sandhya et al. 2010). Furthermore, Pseudomonas strains 

produced abundant EPS under stress, providing a micro-

environment that favored water maintenance, and pro-

tected both the microorganism and the plant against 

dehydration (Alami et al. 2000; Sandhya et al. 2010).

In various studies, the role of Azospirillum in mediat-

ing drought tolerance has been documented (Bano et al. 

2013; Cohen et al. 2015; Hungria et al. 2015; Saeed et al. 

2016; Curá et  al. 2017). Noteworthy, drought tolerance 

of Azospirillum was reported even in drastic conditions 

of deserts (Bashan et al. 2012). Positive effects have been 

attributed to the synthesis of abscisic acid (ABA), induc-

ing stomatal closure (Cohen et al. 2015), as well as to the 

accumulation of solutes such as free amino acids and sol-

uble sugars, which help mitigate dehydration. Azospiril-

lum also improves plant traits that can help tolerance of 

water deficit, such as root branching, increased root bio-

mass, increased density of root hairs (Cassán and García 

de Salamone 2008; Lopes et al. 2011; Hungria et al. 2015), 

which foster exploration of the water in the soil; improve-

ments in plant-root activity have been explained in terms 

of the action of phytohormones synthesized by PGPB, 

such as IAA (Saharan and Nehra 2011).

In a study performed by Saeed and collaborators (2016), 

when canola seeds were inoculated with A. lipoferum, 

there were increases in percentage germination, in root-

surface area and in chlorophyll content, and improve-

ment in water potential under drought conditions. 

In another study, A. brasilense increased Arabidopsis 

growth, proline levels, photosynthetic and photoprotec-

tive pigments, and decreased stomatal conductance and 

water losses under drought, attributes that were corre-

lated with increases in ABA levels (Cohen et  al. 2015). 

More recently, Curá et  al. (2017) demonstrated that 

inoculation of maize with A. brasilense or Herbaspiril-

lum seropedicae improved plant tolerance to desicca-

tion, effects correlated with ABA and ethylene contents. 

�erefore, the use of PGPB strains—especially Azospiril-

lum—is promising for the mitigation of drought effects 



Page 7 of 12Fukami et al. AMB Expr            (2018) 8:73 

on crop plants. However, it is important to consider that 

strains of Azospirillum may differ in their properties the 

confer tolerance of drought, justifying a selection of the 

most effective ones (García et al. 2017).

Remarkably, inoculation with Azospirillum, a typical 

rhizospheric bacterium, via foliar spray can also increase 

plant growth (Fukami et  al. 2016), attributable to the 

synthesis of IAA by the bacterium, i.e. a plant-signaling 

process mediated by the bacterium, far stronger than 

when synthetic IAA was applied (Puente et  al. 2017). 

Intriguingly, in maize, foliar application of Azospiril-

lum also elicited genes related to tolerance of abiotic 

stresses (APX1, APX2, SOD4), as well as defense genes 

(PR-genes), which has also been attributed to phytohor-

mones signaling (Fukami et al. 2017). Also in brachiaria 

(U. ruziziensis), foliar application of Azospirillum Ab-V5 

and Ab-V6 increased the tolerance of water stress, by 

increasing the activity of enzymes related to the removal 

of reactive oxygen species, protecting chlorophyll a (Bul-

egon et al. 2016).

We may also consider that different microorganisms 

and microbial processes can be combined to make agri-

culture more sustainable and productive, helping to 

mitigate the impacts of abiotic stresses. One important 

example relies on the co-inoculation of rhizobial and 

non-rhizobial PGPB, with several reports of increased 

yields, for example, with soybean (Hungria et  al. 2013; 

Pérez-Montaño et al. 2014; Chibeba et al. 2015; Cerezini 

et al. 2016; Puente et al. 2017), and common bean (Pha-

seolus vulgaris L.) (Hungria et  al. 2013). In the co-inoc-

ulation with rhizobia, Azospirillum usually contributes 

with root-growth promotion (Cassán et  al. 2009; Juge 

et al. 2012), allowing precocity and increased nodulation 

by the rhizobia (Chibeba et al. 2015). Most importantly, 

Cerezini et al. (2016) have shown that soybean co-inoc-

ulation with Azospirillum and Bradyrhizobium increased 

grain yield under moderate water restriction (Cerezini 

et al. 2016), representing a promising technology for the 

mitigation of abiotic stresses.

Final remarks

Azospirillum is currently one of the most broadly studied 

and commercially employed PGPB. Previous studies with 

Azospirillum emphasize its capacity of fixing atmospheric 

 N2, followed by benefits in promoting plant growth via 

synthesis of phytohormones. More recently, it has been 

shown that the benefits should be extended to the capac-

ity of some Azospirillum strains to protect plants from 

biotic stresses, triggering ISR defense mechanisms, and 

from abiotic stresses, through IST. Figure 1 summarizes 

the mechanisms discussed in this review of tolerance of 

abiotic and biotic stresses promoted by inoculation of 

Azospirillum in plants, encompassing detoxification of 

oxidative stress, ISR and IST. �e mechanisms that PGPB 

use to cope with biotic and abiotic stresses vary with the 

plant species and cultivar and with the bacterial spe-

cies and strains, and also depend on the phytopathogen 

and the intensity of the abiotic stress. Further studies to 

elucidate the mechanisms of action of PGPB—as well 

as of the response of plants to stresses—are of funda-

mental importance for understanding the potential and 

increasing the use of PGPB as an important and sustain-

able strategy to mitigate the effects of biotic and abiotic 

stresses in agriculture.
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