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ABSTRACT
This paper describes B# (B-sharp), a programmable power supply
that emulates the behavior of a battery. It measures the current load,
calls a battery simulation program to compute the voltage in real
time, and controls a linear regulator to mimic the voltage output of a
battery. This instrument enables validation of battery-aware power-
optimization techniques with accurate, controllable, reproducible
results. This instrument also supports training mode with actual
batteries, and it can even be used for recording and playback of a
solar power source. This design has been prototyped and tested on
hand-held devices with high accuracy and fast response time.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems

General Terms
Measurement, Design, Experimentation

Keywords
Battery emulation, Power profiling instrument

1. INTRODUCTION
Recently, researchers started developing battery aware power

management techniques that exploit non-ideal features of batter-
ies in order to maximize their effective lifetime. It has been shown
that different discharge patterns can make a dramatic difference in
the battery’s life. To validate these battery-aware power manage-
ment techniques, researchers can use either real batteries or battery
simulation.

1.1 Measurement with Real Batteries
The most obvious way to validate the results is to measure the

power with actual batteries. Real batteries are the most accurate,
and they run at full speed. However, this approach has several
drawbacks. If non-rechargeable batteries are used, then they must

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’03, August 25–27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008 ...$5.00.

be replaced and disposed of after each experiment, making this ap-
proach expensive and unfriendly to the environment. Rechargeable
batteries produce less waste and may even contain a smart battery
interface [1] to offer more controllability. However, the results may
not be very reproducible, because the discharge and recharge his-
tory of the battery will affect the total charge level each time. After
each full recharge or as the battery ages, the battery will not nec-
essarily hold the same level of charge each time. Results obtained
from such experimental setups may be misleading.

1.2 Battery Simulation
To achieve full reproducibility, researchers have turned to sim-

ulation. Several simulators have been proposed and implemented
[2]. Dualfoil [3] is an electro-chemical model that solves partial
differential equations in Fortran. It outputs the voltage and temper-
ature response of the battery based on the discharge current load by
the power consumer. It models rate-capacity and rate-recovery ef-
fects, but it is computationally intensive and does not capture aging
effects. Models based on SPICE [4] and discrete-time VHDL [5]
have also been proposed, and they are faster though less accurate.
Researchers also proposed a stochastic model [2] to capture these
effects, though they are designed to estimate battery lifetime rather
than the actual voltage response.

To incorporate a battery simulator, researchers currently must
simulate the system, too, so that the simulated power manager can
close the feedback loop. However, the drawback with this approach
is that, even if the battery simulator were infinitely fast and accu-
rate, detailed, accurate, fast simulation of the entire system would
still remain a challenge.

1.3 Our Approach: Battery Emulator
We propose a battery emulator, called B# (“B-sharp”), for ex-

periments with battery-aware designs. B# is an intelligent power
supply that mimics the behavior of a battery by running a battery
simulator program in real-time. It senses the current load and re-
sponds by controlling the voltage in the same way an actual bat-
tery would. This enables researchers to conduct in-situ experi-
ments on battery-aware designs without having to use actual bat-
teries. Our approach combines the speed and accuracy advantages
of measurement-based approaches with the flexibility and repro-
ducibility of simulation-based approaches. The only other battery
emulator we are aware of is the unpublished work on the Penn State
University Battery Simulator (PSU-BS) [6]. Developed for testing
electric vehicles, the PSU-BS can output up to 600W with a re-
sponse time of 170ms. However, very limited information is pub-
licly available on this project.

B# is potentially much more useful than emulating batteries. In
training mode, the user can connect an actual battery for calibrat-
ing a simulation model. B# can also play back a recorded stream
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Figure 1: Circuit models for (a) a battery + load. (b) a battery
emulator + load.

of voltage values as collected from other sources, including a solar
panel over the course of a day under different weather conditions.
This paper first describes our design of the B# board. Then, we
evaluate our B# implementation through a series of experiments
with PDAs. We show that our emulation results closely match
those with actual batteries. We conclude by outlining some techni-
cal challenges for the next version.

2. PROBLEM STATEMENT
Our goal is to integrate an analog subsystem for power control

with a digital subsystem for simulation and access. Although power
circuits and battery simulation have been studied extensively, their
integration is posing new challenging problems. This section di-
vides the problem statement into power circuitry, timing, and digi-
tal interface.

2.1 Power Circuitry
A battery-powered system can be modeled with an equivalent

circuit shown in Fig. 1(a). The shaded region corresponds to the
battery, where Voc and Ri are the open-circuit voltage and inter-
nal resistance. The unshaded region corresponds to the load, with
capacitance Cl and resistance Rl . The load may vary over time
based on the activities and power management policies. If the cir-
cuit sources current I, then the observed voltage of the battery, Vb,
is

Vb = Voc − I ×Ri (1)

As the battery discharges, Voc decreases while Ri increases, and
both are based on the state of the battery and its internal tempera-
ture. The state of the battery is maintained by the simulation model,
while the ambient temperature and current can be measured. Based
on this circuit model, one possible circuit for a battery emulator is
shown in Fig. 1(b). It would

1. measure the current (I) and temperature (T ),

2. call the simulator to compute Voc and Ri, and

3. set the Voc and Ri values.

The ambient temperature T is used for setting the simulator’s
initial condition and can affect the battery’s internal temperature.
Most existing simulators including dualfoil compute Vb directly
without explicitly computing Ri or Voc. We will address this prob-
lem in the experimental results section.

2.2 Timing
The timing constraints on the battery emulator include the sam-

pling period and the response time. The sampling period p is de-
fined to be the time between successive samplings of the current
load by the emulator. The response time δ is defined to be the la-
tency from the time the current is sampled to the time the output
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Figure 2: Block diagram for the Battery Emulator.

Figure 3: Battery emulator board.

voltage is observed. We assume 0 < δ≤ p. Both p and δ are lim-
ited by a number of factors:

• the load capacitance Cl , which has the effect of a low-pass
filter,

• the data acquisition time, which is limited by the sampling
speed and communication time to the computer, and

• the computation and communication time of running one it-
eration of the simulator.

We have observed that the dualfoil simulator is not sensitive to load
frequencies higher than 1KHz. We measured an actual Li-ion bat-
tery whose voltage response is plotted in Fig. 9 (to be discussed
further in the results section). For this battery type, we choose the
value p = δ = 100ms.

2.3 Digital Interface
The digital interface of the instrument can be divided into data

acquisition, simulation, and instrument control. The data acquisi-
tion interface defines a format for the current and temperature data
to be streamed to another computer. The receiving computer can
save the data to a file or feed it to a simulator. The simulator can
potentially reside in two places: it can run locally inside the instru-
ment itself, or it can run on a separate computer externally. The
instrument control interface defines a format for the end user to
control and configure the instrument.

3. EMULATOR DESIGN

3.1 Battery Emulator Board
The picture of our B# board is shown in Fig. 3. It consists of the

power circuitry, the measurement circuitry and the digital subsys-
tem. The firmware handles control and communication with a host
computer.
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3.1.1 Power Circuitry
The power circuitry essentially implements the equivalent circuit

in Fig. 1(b). It is implemented with a 10-bit DAC and an adjustable
linear regulator. The DAC is controlled by the microcontroller over
the SPI(3-wire) interface and controls an adjustable linear regula-
tor. For this implementation, the output voltage range is 1.0V-4.5V.
The lower-bound voltage is actually variable, and it can certainly
be set to 0V. The reason we can choose a higher lower-bound volt-
age is that most battery-powered devices have a cut-off voltage that
is actually higher than 1V. By setting a higher lower-bound voltage,
we are able to control the output voltage with a higher resolution.

Our choice of linear regulator has a maximum current rating of
800mA. If this is not sufficient, we could choose another compo-
nent with higher current or compose several regulators in parallel.
Note that we do not include an explicit resistor to model Ri be-
cause the linear regulator already has its own internal resistance R′

i
that is actually higher than the battery’s Ri. Therefore, adding a
passive resistor will not be able to correctly model it; instead, we
accomplish this through voltage adjustment to be discussed in the
measurement section.

3.1.2 Measurement Circuits
The emulator contains three measurement circuits for the current

(I), temperature (T ), and voltage (Vb). These are implemented by
sampling the voltage values of the three respective measurement
circuits. We convert current into voltage by measuring the volt-
age drop across a very small resistor (35mΩ) in series with the
power supply, and then use an ADC to digitize the voltage. We
convert temperature into voltage by using a temperature sensor IC.
The PIC16F877 microcontroller already has eight built-in channels
of 10-bit ADCs with an acquisition time of 19.72µs. We use three
channels for measuring I, T , and Vb.

3.1.3 Digital Subsystem
The digital subsystem consists of a PIC microcontroller and the

battery simulator. The PIC is responsible for controlling the power
circuitry and configuration. The simulator can run either locally on
the PIC or externally on a workstation.

The B# board uses the PIC16F877 microcontroller, which has
256K words of flash programming memory. This PIC also contains
eight built-in ADC channels and a UART for serial communication.
The B# board has an RS-232 serial port, an Ethernet port, and an
optional USB port to communicate with a host computer. The baud
rate of the serial port is set to 19,200bps for firmware download,
but it is not fast enough for communicating with the simulation
program. Instead, the Ethernet interface, with a sustained band-
width of 2.5Mbps, is used to transfer the measured or simulated
data between the B# board and the host computer.

The PIC software runs a command interpreter, which parses in-
strumental commands and responds to query or configuration com-
mands, including software calibration of the ADCs. Each com-
mand is acknowledged according to a protocol. It also supports
simple scripting for conditional and iterative sampling and con-
trol without having to rely on explicit communication with the host
each time.

3.2 Simulation Software
B# can simulate batteries two ways: external simulation and

local simulation. With external simulation, B#’s microcontroller
sends the load current level to another computer running the bat-
tery simulation software to compute the voltage response; with lo-
cal simulation, B# computes it itself.

3.2.1 External Simulation
Currently B# is set up with an external host computer running a

modified version of dualfoil [3] . The Fortran source code for dual-
foil is freely available. It performs simulation in batch rather than
interactively. We modified dualfoil to enable the simulator to run
for a period of time before reading the new inputs for the next pe-
riod. The new simulation program is also customized to exchange
data with the B# board by making Ethernet communication calls.

To simulate the chemical reactions inside a battery in detail, du-
alfoil requires significant amount of computation resources. In gen-
eral, it is challenging to provide the B# board with the software
simulation results in real-time. We define a simulation period to
be 80ms. Ethernet adds 1–2ms to the total latency. This latency
is rather negligible when the entire simulation is to be performed
for a much longer period (e.g., a few minutes). We observe that
the current variance during this period is insignificant and has little
impact on the overall battery life. If necessary, the length of the
simulation period can be shortened by using a faster host computer.

3.2.2 Local Simulation
Local simulation means executing the battery simulator on the

instrument itself. If simplified simulators are acceptable, and they
are simple enough, then they can run locally on B#’s microcon-
troller, which runs at 20MHz. We implemented a version that re-
sembles a Mealy machine with 256 charge states, except the state
transitions are probabilistic. The ideas are borrowed from [2]. Each
state has an output function that maps the 256 (8-bit) I levels to Vb.
In the most general case we need 256×256 = 64K entries, depend-
ing on the battery type and capabilities. We filled the entries of the
table using B#’s data acquisition mode to collect many samples of
real battery data, so that we could process the data in batch. Once
the table is built, the simulator can start from any arbitrary state.
It uses the measured current (I) to index into the table for the next
charge state and the voltage output, by interpolation if necessary.
State transition probabilities are updated over time to prevent the
battery from looping back to the same charge state indefinitely.

4. EVALUATIONS
This section evaluates the current implementation of B# by ac-

tual measurements with handheld devices and real batteries. Fig. 4
shows an experimental setup with the B# board measuring the cur-
rent and voltage values of a Compaq iPaq’s battery, and a host com-
puter collecting the measured data and running dualfoil simulation.
The issues are to validate

1. Ri as shown in Fig. 1(b);
2. response time of the battery; and
3. accuracy of emulated battery life

4.1 Data Acquisition on PDA Platforms
We tried B# on a number of devices, including a Palm IIIe or-

ganizer, a Compaq iPaq, a Casiopeia PDA, and several others. The
Palm takes two AAA batteries for a 3.0V power source. The Palm
PDA has a relatively small range of current draw, which varies be-
tween 20mA to 40mA in its heaviest use. The Palm has a cut-
off voltage around Vb = 1.5V , at or below which the system shuts
down. The rest of this paper reports results with the iPaq and the
Casio PDA, which consume about two orders of magnitude more
power than the Palm. To vary the load, we controlled combinations
of backlight settings and video/audio activities.

Fig. 5 shows the voltage and current data collected on the Casio
PDA over 3 minutes. Data for additional voltage/current profiles
were collected but not shown due to paper length limitations.
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Figure 4: Experimental setup.

Figure 5: 3 minutes of the Voltage (navy) and current (ma-
genta) data collected from the Casio PDA.

Figure 6: 27 minutes of voltage (blue) and current (red) data
collected from an iPaq running on its own battery. On battery
depletion, the voltage goes back up but the current goes to 0.

Figure 7: Voltage and current profile of a measured Li-ion bat-
tery (Vb in navy, I in red) and the measured playback version
(V ′

b in green, I′ in magenta) by setting V ′
oc(t) = Vb(t)+0.1V .

The Compaq iPaq is another hand-held device we evaluated with
our battery emulator. We chose it to experiment with a larger dy-
namic range of load. Its processor consumes a minimum of 150mW
alone, and the backlit color display consumes even more power.
Unlike the Palm IIIe, this particular model of iPaq uses a recharge-
able battery and is sealed without any externally replaceable bat-
teries. We tested the load by varying the brightness of the LCD
backlight. The voltage data we collected from the iPaq running on
its own battery is shown in Fig. 6. It lasts 27 minutes, and on de-
pletion, the voltage shoots back to the fully charged level but the
current is nearly 0A.

4.2 Internal Resistance
In this experiment, we use the playback feature to test B# abil-

ity to emulate the internal resistance of the battery. In our circuit,
the linear regulator can correctly produce the proper open-circuit
voltage value. However, the measured V ′

b is actually slightly lower
than Voc for I > 0. This is because the linear regulator has its own
internal resistance R′

i, which is actually a function of I.
To compare the internal resistance, we first set B# to data acqui-

sition mode. The measured V ′
b and I are shown in navy and red

lines in Fig. 7. Then, we playback the recorded voltage, and add a
constant ∆ voltage of 0.1V to drive the V ′

oc output. The measured V ′
b

and I′ are shown in green and magenta, respectively 1. We observe
that I (measured on battery) and I′ (measured on playback) match
each other exactly, but Vb ≥ V ′

b. The reason is due to the internal
resistance Rr of the linear regulator. Furthermore, since the linear
regulator is an active circuit, its internal resistance actually varies
as a function of I. Real Li-ion batteries have an Ri around 0.2Ω
on a full charge, and rises to around 0.7Ω near depletion [7]. In
contrast, the linear regulator has a variable internal resistance Rr as
shown in Fig. 8.

From this we can conclude that adding a programmable resistor
to model Ri would not be a feasible approach for several reasons.
First, programmable resistors do not come in such small value in-
crements. Second, since the linear regulator’s internal resistance is
already higher than that of the battery, adding a passive resistor in
series will not reduce the resistance. As a result, Ri must be imple-
mented by means of adding a ∆(I) voltage to Voc. The adjustment

1For monochrome copies of this paper, green and navy are the two
top curves that are stacked on top of each other when high, and the
green curve dips lower than navy when low. Magenta and pink are
the two stacked curves below.
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Figure 8: Internal resistance Rr (yellow) of B#’s linear regulator
as computed from (V ′

oc(set)−V ′
b(measured))/I over 21 minutes.
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Figure 9: Measured response time of Li-ion battery to changes
in current load.

value ∆(I) = V ′
oc +Rr(V ′

b, I)× I.

4.3 Response time
The response time of real batteries can be measured using our

circuit. Fig. 9 shows a change in current load (red curve) causes a
change in Vb (blue curve). The current starts to increase at 30.18s
and the voltage finishes decreasing at 31.26s. If we change the
range of the current swing, the response time would be different,
but in this experiment, the range of the current swing is the largest
expected. Therefore, we can consider this response time as the
shortest expected of the iPaq’s DLP305590 battery.

4.4 Simulation Accuracy
Given that the power circuitry can output the desired voltage with

calibrated internal resistance, the question now is whether the cho-
sen simulation granularity can accurately emulate a battery. To re-
call, we have a maximum latency of 100ms, and in practice this is
due to 80ms simulation latency plus 1–2ms Ethernet. We noticed
that the simulation latency of dualfoil is dependent on the amount
of fluctuations in the load: it could produce the simulation results
more quickly if the load current does not change for a certain pe-
riod of time. On a Pentium-III 500MHz PC running Linux, if the
load current remains constant within 100ms, the simulator is able to
produce the results in less than 80ms. However, if the load current
fluctuates a few times during this 100ms interval, the simulation
software may need a longer time to compute the voltage response.

On a 2GHz Athlon PC running Linux, the simulation latency is
around 30ms.

Our metric is somewhat qualitative. We compare the power pro-
files as shown in Fig. 10. Given the same current load (bottom
curve, green), the top curve (blue) shows the voltage response of
dualfoil, and the middle (red) shows that of the real battery. Note
that the simulated voltage is the open-circuit voltage, which will be
higher than the measured voltage when internal resistance is con-
sidered. In terms of the simulated battery life, B# tracks the real
battery almost exactly.

5. CONCLUSIONS
We present the B# battery emulator for batteries whose behavior

can be modeled in software. B# can interface with state-of-the-art
battery simulators running remotely as well as simple, table-driven
battery simulation locally. Moreover, its data acquisition and replay
features makes B# a versatile research tool. It can be used to collect
power profiles on actual computers and replay the power profile on
another device. It is also useful for training battery models. It
enables in-situ experiments with various charge level and voltages.
It not saves the cost of buying and disposing of batteries, but more
importantly, it makes these experiments reproducible.

Future work includes model refinement and recharge emulation.
Refinement will continue for modeling the internal resistance as
well as high-current load and other exceptional conditions. Improv-
ing and more precisely controlling the response time of the voltage
will also make B# applicable to devices that are ultra sensitive to
the fluctuations in the supply voltage. To emulate recharge, we
plan to design new hardware features that not only support reverse
current flow but also incorporate smart battery chips for charge op-
timization.
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Figure 10: A screen shot of the battery simulation graphical user interface showing the simulated voltage profile, measured voltage
profile, and the current load to drive both.
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