
b-Bit Minwise Hashing

Ping Li∗
Department of Statistical Science

Faculty of Computing and Information Science
Cornell University, Ithaca, NY 14853

pingli@cornell.edu

Arnd Christian König
Microsoft Research

Microsoft Corporation
Redmond, WA 98052

chrisko@microsoft.com

ABSTRACT
This paper establishes the theoretical framework of b-bit minwise hashing.
The original minwise hashing method has become a standard technique for
estimating set similarity (e.g., resemblance) with applications in informa-
tion retrieval, data management, computational advertising, etc.

By only storing b bits of each hashed value (e.g., b = 1 or 2), we gain

substantial advantages in terms of storage space. We prove the basic theo-

retical results and provide an unbiased estimator of the resemblance for any

b. We demonstrate that, even in the least favorable scenario, using b = 1

may reduce the storage space at least by a factor of 21.3 (or 10.7) compared

to b = 64 (or b = 32), if one is interested in resemblance ≥ 0.5.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data Mining

General Terms

Algorithms, Performance, Theory

1. INTRODUCTION
Computing the size of set intersections is a fundamental problem

in information retrieval, databases, and machine learning. Given

two sets, S1 and S2, where

S1, S2 ⊆ Ω = {0, 1, 2, ..., D − 1},
a basic task is to compute the joint size a = |S1 ∩ S2|, which

measures the (un-normalized) similarity between S1 and S2. The

resemblance, denoted by R, is a normalized similarity measure:

R =
|S1 ∩ S2|
|S1 ∪ S2|

=
a

f1 + f2 − a
, where f1 = |S1|, f2 = |S2|.

In large datasets encountered in information retrieval and databases,

efficiently computing the joint sizes is often highly challenging

[3,18]. Detecting duplicate web pages is a classical example [4,6].

Typically, each Web document can be processed as “a bag of

shingles,” where a shingle consists of w contiguous words in a doc-

ument. Here w is a tuning parameter and was set to be w = 5
in several studies [4, 6, 12]. Clearly, the total number of possible

shingles is huge. Considering merely 105 unique English words,

the total number of possible 5-shingles should be D = (105)5 =
O(1025). Prior studies used D = 264 [12] and D = 240 [4, 6].

1.1 Minwise Hashing
In their seminal work, Broder and his colleagues developed min-

wise hashing and successfully applied the technique to duplicate

∗Supported by Microsoft, NSF-DMS and ONR-YIP.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

Web page removal [4, 6]. Since then, there have been considerable

theoretical and methodological developments [5, 8, 19, 21–23, 26].

As a general technique for estimating set similarity, minwise

hashing has been applied to a wide range of applications, for ex-

ample, content matching for online advertising [30], detection of

large-scale redundancy in enterprise file systems [14], syntactic

similarity algorithms for enterprise information management [27],

compressing social networks [9], advertising diversification [17],

community extraction and classification in the Web graph [11],

graph sampling [29], wireless sensor networks [25], Web spam

[24,33], Web graph compression [7], and text reuse in the Web [2].

Here, we give a brief introduction to this algorithm. Suppose a

random permutation π is performed on Ω, i.e.,

π : Ω −→ Ω, where Ω = {0, 1, ..., D − 1}.

An elementary probability argument shows that

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|

|S1 ∪ S2|
= R. (1)

After k minwise independent permutations, π1, π2, ..., πk, one

can estimate R without bias, as a binomial:

R̂M =
1

k

k
∑

j=1

1{min(πj(S1)) = min(πj(S2))}, (2)

Var
(

R̂M

)

=
1

k
R(1 − R). (3)

Throughout the paper, we frequently use the terms “sample” and

“sample size” (i.e., k). In minwise hashing, a sample is a hashed

value, min(πj(Si)), which may require e.g., 64 bits to store [12].

1.2 Our Main Contributions
In this paper, we establish a unified theoretical framework for

b-bit minwise hashing. Instead of using b = 64 bits [12] or 40
bits [4, 6], our theoretical results suggest using as few as b = 1 or

b = 2 bits can yield significant improvements.

In b-bit minwise hashing, a sample consists of b bits only, as op-

posed to e.g., 64 bits in the original minwise hashing. Intuitively,

using fewer bits per sample will increase the estimation variance,

compared to (3), at the same sample size k. Thus, we will have to

increase k to maintain the same accuracy. Interestingly, our theo-

retical results will demonstrate that, when resemblance is not too

small (e.g., R ≥ 0.5, the threshold used in [4, 6]), we do not have

to increase k much. This means our proposed b-bit minwise hash-

ing can be used to improve estimation accuracy and significantly

reduce storage requirements at the same time.

For example, when b = 1 and R = 0.5, the estimation variance

will increase at most by a factor of 3. In this case, in order not to

lose accuracy, we have to increase the sample size by a factor of

3. If we originally stored each hashed value using 64 bits [12], the

improvement by using b = 1 will be 64/3 = 21.3.

Algorithm 1 illustrates the procedure of b-bit minwise hashing,

based on the theoretical results in Sec. 2.

Algorithm 1 The b-bit minwise hashing algorithm, applied to esti-

mating pairwise resemblances in a collection of N sets.

Input: Sets Sn ∈ Ω = {0, 1, ..., D − 1}, n = 1 to N .
Pre-processing:

1): Generate k random permutations πj : Ω → Ω, j = 1 to k.
2): For each set Sn and each permutation πj , store the lowest b bits of
min (πj (Sn)), denoted by en,i,j , i = 1 to b.

Estimation: (Use two sets S1 and S2 as an example.)

1): Compute Êb = 1
k

∑k
j=1

{

∏b
i=1 1{e1,i,πj

= e2,i,πj
} = 1

}

.

2): Estimate the resemblance by R̂b =
Êb−C1,b

1−C2,b
, where C1,b and C2,b

are from Theorem 1 in Sec. 2.

1.3 Comparisons with LSH Algorithms
Locality Sensitive Hashing (LSH) [8,20] is a set of techniques for

performing approximate search in high dimensions. In the context

of estimating set intersections, there exist LSH families for estimat-

ing the resemblance, the arccosine and the Hamming distance [1].

In [8, 16], the authors describe LSH hashing schemes that map

objects to {0, 1} (i.e., 1-bit schemes). The algorithms for the con-

struction, however, are problem specific. Two discovered 1-bit

schemes are the sign random projections (also known as simhash)

[8] and the Hamming distance LSH algorithm proposed by [20].

Our b-bit minwise hashing proposes a new construction, which

maps objects to {0, 1, ..., 2b − 1} instead of just {0, 1}. While our

major focus is to compare with the original minwise hashing, we

also conduct comparisons with the other two known 1-bit schemes.

1.3.1 Sign Random Projections

The method of sign (1-bit) random projections estimates the ar-

ccosine, which is cos−1
(

a√
f1f2

)

, using our notation for sets S1

and S2. A separate technical report is devoted to comparing b-bit

minwise hashing with sign (1-bit) random projections. See

www.stat.cornell.edu/~li/hashing/RP_minwise.pdf.

That report demonstrates that, unless the similarity level is very

low, b-bit minwise hashing outperforms sign random projections.

The method of sign random projections has received significant

attention in the context of duplicate detection. According to [28],

a great advantage of simhash over minwise hashing is the smaller

size of the fingerprints required for duplicate detection. The space-

reduction of b-bit minwise hashing overcomes this issue.

1.3.2 The Hamming Distance LSH Algorithm

Sec. 4 will compare b-bit minwise hashing with the Hamming

distance LSH algorithm developed in [20] (and surveyed in [1]):

• When the Hamming distance LSH algorithm is implemented

naively, to achieve the same level of accuracy, its required

storage space will be many magnitudes larger than that of

b-bit minwise hashing in sparse data (i.e., |Si|/D is small).

• If we only store the non-zero locations in the Hamming dis-

tance LSH algorithm, then its required storage space will be

about one magnitude larger (e.g., 10 to 30 times).

2. THE FUNDAMENTAL RESULTS
Consider two sets, S1 and S2,

S1, S2 ⊆ Ω = {0, 1, 2, ..., D − 1},
f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2|

Apply a random permutation π on S1 and S2: π : Ω −→ Ω. Define

the minimum values under π to be z1 and z2:

z1 = min (π (S1)) , z2 = min (π (S2)) .

Define e1,i = ith lowest bit of z1, and e2,i = ith lowest bit of z2.

Theorem 1 derives the main probability formula.

THEOREM 1. Assume D is large.

Eb = Pr

(

b
∏

i=1

1 {e1,i = e2,i} = 1

)

= C1,b + (1 − C2,b) R

where (4)

r1 =
f1

D
, r2 =

f2

D
,

C1,b = A1,b
r2

r1 + r2
+ A2,b

r1

r1 + r2
, (5)

C2,b = A1,b
r1

r1 + r2
+ A2,b

r2

r1 + r2
, (6)

A1,b =
r1 [1 − r1]

2b−1

1 − [1 − r1]
2b

, A2,b =
r2 [1 − r2]

2b−1

1 − [1 − r2]
2b

. (7)

For a fixed rj (where j ∈ {1, 2}), Aj,b is a monotonically de-

creasing function of b = 1, 2, 3,
For a fixed b, Aj,b is a monotonically decreasing function of rj ∈

[0, 1], reaching a limit:

lim
rj→0

Aj,b =
1

2b
. (8)

Proof: See Appendix A.✷

Theorem 1 says that, for a given b, the desired probability (4) is

determined by R and the ratios, r1 = f1
D

and r2 = f2
D

. The only

assumption needed in the proof of Theorem 1 is that D should be

large, which is always satisfied in practice.

Aj,b (j ∈ {1, 2}) is a decreasing function of rj and Aj,b ≤ 1
2b .

As b increases, Aj,b converges to zero very quickly. In fact, when

b ≥ 32, one can essentially view Aj,b = 0.

2.1 An Intuitive (Heuristic) Explanation
A simple heuristic argument may provide a more intuitive expla-

nation of Theorem 1. Consider b = 1. One might expect that

Pr (e1,1 = e2,1) =Pr (e1,1 = e2,1|z1 = z2)Pr (z1 = z2)

+Pr (e1,1 = e2,1|z1 6= z2)Pr (z1 6= z2)

??≈R +
1

2
(1 − R) =

1 + R

2
,

because when z1 and z2 are not equal, the chance that their last bits

are equal “may be” approximately 1
2

. This heuristic argument is

actually consistent with Theorem 1 when r1, r2 → 0. According to

(8), as r1, r2 → 0, we have A1,1, A2,1 → 1
2

, and C1,1, C2,1 → 1
2

also; and hence the probability (4) approaches 1+R
2

.

In practice, when a very accurate estimate is not necessary, one

might actually use this approximate formula to simplify the estima-

tor. The errors, however, could be quite noticeable when r1, r2 are

not negligible; see Sec. 5.2.

2.2 The Unbiased Estimator
Theorem 1 suggests an unbiased estimator R̂b for R:

R̂b =
Êb − C1,b

1 − C2,b
, (9)

Êb =
1

k

k
∑

j=1

{

b
∏

i=1

1{e1,i,πj
= e2,i,πj

} = 1

}

, (10)

where e1,i,πj
(e2,i,πj

) denotes the ith lowest bit of z1 (z2), under

the permutation πj . Following property of binomial distribution,

Var
(

R̂b

)

=
Var

(

Êb

)

[1 − C2,b]
2 =

1

k

Eb(1 − Eb)

[1 − C2,b]
2

=
1

k

[C1,b + (1 − C2,b)R] [1 − C1,b − (1 − C2,b)R]

[1 − C2,b]
2 (11)

For large b, Var
(

R̂b

)

converges to the variance of R̂M , the esti-

mator for the original minwise hashing:

lim
b→∞

Var
(

R̂b

)

=
R(1 − R)

k
= Var

(

R̂M

)

.

In fact, when b ≥ 32, Var
(

R̂b

)

and Var
(

R̂M

)

are numerically

indistinguishable for practical purposes.

2.3 The Variance-Space Trade-off
As we decrease b, the space needed for storing each “sample”

will be smaller; the estimation variance (11) at the same sample

size k, however, will increase. This variance-space trade-off can be

precisely quantified by the storage factor B(b; R, r1, r2):

B(b; R, r1, r2) = b × Var
(

R̂b

)

× k

=
b [C1,b + (1 − C2,b)R] [1 − C1,b − (1 − C2,b)R]

[1 − C2,b]
2 . (12)

Lower B(b) is better. The ratio,
B(b1;R,r1,r2)
B(b2;R,r1,r2)

, measures the im-

provement of using b = b2 (e.g., b2 = 1) over using b = b1 (e.g.,

b1 = 64). Some algebra yields the following Theorem.

THEOREM 2. If r1 = r2 and b1 > b2, then

B(b1; R, r1, r2)

B(b2; R, r1, r2)
=

b1

b2

A1,b1(1 − R) + R

A1,b2(1 − R) + R

1 − A1,b2

1 − A1,b1

, (13)

is a monotonically increasing function of R ∈ [0, 1].
If R → 1 (which implies r1 → r2), then

B(b1; R, r1, r2)

B(b2; R, r1, r2)
→ b1

b2

1 − A1,b2

1 − A1,b1

. (14)

If r1 = r2, b2 = 1, b1 ≥ 32 (hence we treat A1,b = 0), then

B(b1; R, r1, r2)

B(1; R, r1, r2)
= b1

R

R + 1 − r1
(15)

Proof: We omit the proof due to its simplicity.✷

Suppose the original minwise hashing used 64 bits to store each

sample, then the maximum improvement of b-bit minwise hashing

would be 64-fold, attained when r1 = r2 = 1 and R = 1, accord-

ing to (15). In the least favorable situation, i.e., r1, r2 → 0, the

improvement will still be 64
3

= 21.3-fold when R = 0.5.

Fig. 1 plots
B(64)
B(b)

, to directly visualize the relative improve-

ments, which are consistent with what Theorem 2 predicts. The

plots show that, when R is very large (which is the case in many

practical applications), it is always good to use b = 1. However,

when R is small, using larger b may be better. The cut-off point

depends on r1, r2, R. For example, when r1 = r2 and both are

small, it would be better to use b = 2 than b = 1 if R < 0.4, as

shown in Fig. 1.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

Resemblance (R)

Im
pr

ov
em

en
t

r
1
 = r

2
 = 10

−10 b = 1

b = 2

b = 3

b = 4

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

Resemblance (R)

Im
pr

ov
em

en
t

r
1
 = r

2
 = 0.1

b = 1

b = 2

b = 3

b = 4

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Resemblance (R)

Im
pr

ov
em

en
t

r
1
 = r

2
 = 0.5

b = 1

b = 2

b = 3

b = 4

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Resemblance (R)

Im
pr

ov
em

en
t

r
1
 = r

2
 = 0.9

b = 1

b = 2

b = 3

b = 4

Figure 1:
B(64)
B(b)

, the relative storage improvement of using b =

1, 2, 3, 4 bits, compared to using 64 bits. B(b) is defined in (12).

3. EXPERIMENTS
Experiment 1 is a sanity check, to verify: (A) our proposed

estimator R̂b in (9), is indeed unbiased; and (B) its variance follows

the prediction by our formula in (11).

Experiment 2 is a duplicate detection task using a Microsoft

proprietary collection of 1,000,000 news articles.

Experiment 3 is another duplicate detection task using 300,000

UCI NYTimes news articles.

3.1 Experiment 1
The data, extracted from Microsoft Web crawls, consists of 10

pairs of sets (i.e., total 20 words). Each set consists of the document

IDs which contain the word at least once. Thus, this experiment is

for estimating word associations.

Table 1: Ten pairs of words used in Experiment 1. For example,

“KONG” and “HONG” correspond to the two sets of document IDs

which contained word “KONG” and word “HONG” respectively.

Word 1 Word 2 r1 r2 R
B(32)
B(1)

B(64)
B(1)

KONG HONG 0.0145 0.0143 0.925 15.5 31.0

RIGHTS RESERVED 0.187 0.172 0.877 16.6 32.2

OF AND 0.570 0.554 0.771 20.4 40.8

GAMBIA KIRIBATI 0.0031 0.0028 0.712 13.3 26.6

UNITED STATES 0.062 0.061 0.591 12.4 24.8

SAN FRANCISCO 0.049 0.025 0.476 10.7 21.4

CREDIT CARD 0.046 0.041 0.285 7.3 14.6

TIME JOB 0.189 0.05 0.128 4.3 8.6

LOW PAY 0.045 0.043 0.112 3.4 6.8

A TEST 0.596 0.035 0.052 3.1 6.2

Table 1 summarizes the data and also provides the theoretical im-

provements,
B(32)
B(1)

and
B(64)
B(1)

. The words were selected to include

highly frequent word pairs (e.g., “OF-AND”), highly rare word

pairs (e.g., “GAMBIA-KIRIBATI”), highly unbalanced pairs (e.g.,

”A-Test”), highly similar pairs (e.g, “KONG-HONG”), as well as

word pairs that are not quite similar (e.g., “LOW-PAY”).

We estimate the resemblance using the original minwise hashing

estimator R̂M and the b-bit estimator R̂b (b = 1, 2, 3).

3.1.1 Validating the Unbiasedness

Figure 2 presents the estimation biases for the selected 2 word

pairs. Theoretically, both estimators, R̂M and R̂b, are unbiased

(i.e., the y-axis in Figure 2 should be zero, after an infinite number

of repetitions). Figure 2 verifies this fact because the empirical

biases are all very small and no systematic biases can be observed.

10
1

10
2

10
3

−8

−6

−4

−2

0

2

4
x 10

−4

Sample size k

B
ia

s

KONG − HONG

M

b=1
b=1

b=1

Mb=2

b=3

b = 1
b = 2
b = 3
M

10
1

10
2

10
3

−10

−5

0

5

x 10
−4

Sample size k

B
ia

s

A − TEST

b=3

b=2

b=2
M

M

b=1
b = 1
b = 2
b = 3
M

Figure 2: Empirical biases from 25000 simulations at each sam-

ple size k. “M” denotes the original minwise hashing.

3.1.2 Validating the Variance Formula

Figure 3 plots the empirical mean square errors (MSE = variance

+ bias2) in solid lines, and the theoretical variances (11) in dashed

lines, for 6 word pairs (instead of 10 pairs, due to the space limit).

All dashed lines are invisible because they overlap with the cor-

responding solid curves. Thus, this experiment validates that the

variance formula (11) is accurate and R̂b is indeed unbiased (oth-

erwise, MSE will differ from the variance).

10
1

10
2

10
3

10
−4

10
−3

10
−2

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

KONG − HONG

b=1

M

23

b = 1
b = 2
b = 3
M
Theor.

10
1

10
2

10
3

10
−4

10
−3

10
−2

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

RIGHTS − RESERVED

b=1
2

M

b = 1
b = 2
b = 3
M
Theor.

10
1

10
2

10
3

10
−4

10
−3

10
−2

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

OF − AND

b=1

M

2

b = 1
b = 2
b = 3
M
Theor.

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

GAMBIA − KIRIBATI

b=1

M

2

3

b = 1
b = 2
b = 3
M
Theor.

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

LOW − PAY

b=1

M

b=2

3

b = 1
b = 2
b = 3
M
Theor.

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

A − TEST

b=1

M

b=2

b=3

b = 1
b = 2
b = 3
M
Theor.

Figure 3: Mean square errors (MSEs). “M” denotes the orig-

inal minwise hashing. “Theor.” denotes the theoretical vari-

ances of Var(R̂b)(11) and Var(R̂M)(3). The dashed curves,

however, are invisible because the empirical MSEs overlapped

the theoretical variances. At the same k, Var(R̂1) > Var(R̂2) >

Var(R̂3) > Var(R̂M). However, R̂1 (R̂2) only requires 1 bit (2

bits) per sample, while R̂M requires 32 or 64 bits.

3.2 Experiment 2: Microsoft News Data
To illustrate the improvements by the use of b-bit minwise hash-

ing on a real-life application, we conducted a duplicate detection

experiment using a corpus of 106 news documents. The dataset

was crawled as part of the BLEWS project at Microsoft [15]. We

computed pairwise resemblances for all documents and retrieved

documents pairs with resemblance R larger than a threshold R0.

We estimate the resemblances using R̂b with b = 1, 2, 4 bits, and

the original minwise hashing (using 32 bits). Figure 4 presents the

precision & recall curves. The recall values (bottom two panels in

Figure 4) are all very high and do not differentiate the estimators.

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.3

Sample size (k)

P
re

ci
si

on

b=1b=2

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.4

Sample size (k)

P
re

ci
si

on

2

b=1

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.5

Sample size (k)

P
re

ci
si

on

b=1

2

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.6

Sample size (k)

P
re

ci
si

on

2

b=1

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.7

Sample size (k)

P
re

ci
si

on

b=1

2

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.8

Sample size (k)

P
re

ci
si

on

2

b=1

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.3

Sample size (k)

R
ec

al
l

Recall

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Sample size (k)

R
ec

al
l

Recall

R
0
 = 0.8

b=1
b=2
b=4
M

Figure 4: Microsoft collection of news data. The task is to re-

trieve news article pairs with resemblance R ≥ R0. The recall

curves (bottom two panels) indicate all estimators are equally

good (in recalls). The precision curves are more interesting for

differentiating estimators. For example, when R0 = 0.4 (top

right panel), in order to achieve a precision = 0.80, the estima-

tors R̂M , R̂4, R̂2, and R̂1 require k = 50, 50, 75, 145 samples,

respectively, indicating R̂4, R̂2, and R̂1 respectively improve

R̂M by 8-fold, 10.7-fold, and 11-fold.

The precision curves for R̂4 (using 4 bits per sample) and R̂M

(using 32 bits per sample) are almost indistinguishable, suggesting

a 8-fold improvement in space using b = 4.

When using b = 1 or 2, the space improvements are normally

around 10-fold to 20-fold, compared to R̂M , especially for achiev-

ing high precisions (e.g., ≥ 0.9). This experiment again confirms

the significant improvement of the b-bit minwise hashing using

b = 1 (or 2). Table 2 summarizes the relative improvements.

In this experiment, R̂M only used 32 bits per sample. For even

larger applications, however, 64 bits per sample may be necessary

[12]; and the improvements of R̂b will be even more significant.

Note that in the context of (Web) document duplicate detection,

in addition to shingling, a number of specialized hash-signatures

have been proposed, which leverage properties of natural-language

text (such as the placement of stopwords [31]). However, our ap-

proach is not aimed at any specific type of data, but is a general,

domain-independent technique. Also, to the extent that other ap-

proaches rely on minwise hashing for signature computation, these

may be combined with our techniques.

Table 2: Relative improvement (in space) of R̂b (using b bits per sam-

ple) over R̂M (32 bits per sample). For precision = 0.9, 0.95, we find the

required sample sizes (from Figure 4) for R̂M and R̂b and use them to

estimate the required storage in bits. The values in the table are the

ratios of the storage costs. The improvements are consistent with the

theoretical predictions in Figure 1.

R0 Precision = 0.9 Precision = 0.95
b = 1 2 4 b = 1 2 4

0.3 — 5.7 8.8 — — 7.1
0.4 9.2 10.0 8.3 — 10.0 8.2
0.5 10.8 12.7 8.4 8.2 10.1 7.7
0.6 12.9 11.7 8.6 10.5 12.4 8.5
0.7 16.0 14.8 9.6 15.4 12.7 7.6
0.8 17.4 10.3 8.0 18.7 14.2 7.7
0.9 16.6 14.0 10.7 23.0 17.6 9.7

3.3 Experiment 3: UCI NYTimes Data
We conducted another duplicate detection experiment on a pub-

lic (UCI) collection of 300,000 NYTimes articles. The purpose is

to ensure that our experiment will be repeatable by those who can

not access the proprietary data in Experiment 2.

Figure 5 presents the precision curves for representative thresh-

old R0’s. The recall curves are not shown because they could not

differentiate estimators, just like in Experiment 1. The curves con-

firm again that using b = 1 or b = 2 bits, R̂b could improve the

original minwise hashing (using 32 bits per sample) by a factor of

10 or more. The curves for R̂b with b = 4 almost always overlap

with the curves for R̂M , verifying an expected 8-fold improvement.

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.5

Sample size (k)

P
re

ci
si

on

b=1

2

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.6

Sample size (k)

P
re

ci
si

on

2

b=1

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.7

Sample size (k)

P
re

ci
si

on

b=12

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.8

Sample size (k)

P
re

ci
si

on

2

b=1

b=1
b=2
b=4
M

Figure 5: UCI collection of NYTimes data. The task is to re-

trieve news article pairs with resemblance R ≥ R0.

4. COMPARISONS WITH THE HAMMING

DISTANCE LSH ALGORITHM
The Hamming distance LSH algorithm proposed in [20] is an

influential 1-bit LSH scheme. In this algorithm, a set Si, is mapped

into a D-dimensional binary vector, yi:

yit = 1, if t ∈ Si; yit = 0, otherwise.

k coordinates are randomly sampled from Ω = {0, 1, ..., D − 1}.

We denote the samples of yi by hi, where hi = {hij , j = 1 to k}
is a k-dimensional vector. These samples will be used to estimate

the Hamming distance H (using S1, S2 as an example):

H =

D−1
∑

i=0

[y1i 6= y2i] = |S1 ∪ S2| − |S1 ∩ S2| = f1 + f2 − 2a.

Using the samples h1 and h2, an unbiased estimator of H is simply

Ĥ =
D

k

k
∑

j=1

[h1j 6= h2j] , (16)

whose variance would be

Var
(

Ĥ
)

=
D2

k2
k

[

E
(

[h1j 6= h2j]
2) − E2 ([h1j 6= h2j])

]

=
D2

k

[

∑D−1
i=0 [y1i 6= y2i]

2

D
−

(

∑D−1
i=0 [y1i 6= y2i]

D

)2]

=
D2

k

[

H

D
− H2

D2

]

. (17)

The above analysis assumes k ≪ D (which is satisfied in prac-

tice); otherwise one should multiply the Var
(

Ĥ
)

in (17) by D−k
D−1

,

the “finite sample correction factor.” It would be interesting to

compare Ĥ with b-bit minwise hashing. In order to estimate H , we

need to convert the resemblance estimator R̂b (9) to Ĥb:

Ĥb = f1 + f2 − 2
R̂b

1 + R̂b

(f1 + f2) =
1 − R̂b

1 + R̂b

(f1 + f2). (18)

The variance of Ĥb can be computed from Var
(

R̂b

)

(11) using the

“delta method” in statistics (note that
[

1−x
1+x

]′
= −2

(1+x)2
):

Var
(

Ĥb

)

=Var
(

R̂b

)

(f1 + f2)
2

(

−2

(1 + R)2

)2

+ O

(

1

k2

)

=Var
(

R̂b

) 4(r1 + r2)
2

(1 + R)4
D2 + O

(

1

k2

)

. (19)

Recall ri = fi/D. To verify the variances in (17) and (19), we

conduct experiments using the same data as in Experiment 1. This

time, we estimate H instead of R, using both Ĥ (16) and Ĥb (18).

Figure 6 reports the mean square errors, together with the the-

oretical variances (17) and (19). We can see that the theoretical

variance formulas are accurate. When the data is not dense, the

estimator Ĥb (18) given by b-bit minwise hashing is much more

accurate than the estimator Ĥ (16). However, when the data is

dense (e.g., “OF-AND”), Ĥ could still outperform Ĥb.

We now compare the actual storage needed by Ĥb and Ĥ . We

define the following two ratios to make fair comparisons:

Wb =
Var

(

Ĥ
)

× k

Var
(

Ĥb

)

× bk
, Gb =

Var
(

Ĥ
)

× r1+r2
2

64k

Var
(

Ĥb

)

× bk
. (20)

Wb and Gb are defined in the same spirit as the ratio of the storage

factors introduced in Sec. 2.3. Recall each sample of b-bit minwise

hashing requires b bits (i.e., bk bits per set). If we assume each

sample in the Hamming distance LSH requires 1 bit, then Wb in

(20) is a fair indicator and Wb > 1 means Ĥb outperforms Ĥ .

However, as can be verified in Fig. 6 and Fig 7, when r1 and r2

are small (which is usually the case in practice), Wb tends to be very

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
) KONG − HONG

b=1

b=2

H

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

OF − AND

b=1

b=2

H

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

UNITED−STATES

b=2

b=1

H

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

LOW − PAY

b=1

H

b=2

Figure 6: MSEs (normalized by H2), for comparing Ĥ (16)

with Ĥb (18). In each panel, three solid curves stand for Ĥ (la-

beled by “H”), Ĥ1 (by ”b=1”), and Ĥ2 (by ”b=2”), respectively.

The dashed lines are the corresponding theoretical variances

(17) and (19), which are largely overlapped by the solid lines.

When the sample size k is not large, the empirical MSEs of Ĥb

deviate from the theoretical variances, due to the bias caused

by the nonlinear transformation of Ĥb from R̂b in (18).

large, indicating a highly significant improvement of b-bit minwise

hashing over the Hamming distance LSH algorithm in [20].

We consider in practice one will most likely implement the al-

gorithm by only storing non-zero locations. In other words, for set

Si, only ri × k locations need to be stored (each is assumed to use

64 bits). Thus, the total bits on average will be r1+r2
2

64k (per set).

In fact, we have the following Theorem for Gb when r1, r2 → 0.

THEOREM 3. Consider r1, r2 → 0, and Gb as defined in (20).

If R → 0, then Gb → 8

b

(

2b − 1
)

. (21)

If R → 1, then Gb → 64

b

2b − 1

2b
. (22)

Proof: We omit the proof due to its simplicity. ✷

Figure 7 plots W1 and G1, for r1 = r2 = 10−6, 10−4, 0.001,

0.01, 0,1 (which are probably reasonable in practice), as well as

r1 = r2 = 0.9 (as a sanity check). Note that, not all combinations

of r1, r2, R are possible. For example, when r1 = r2 = 1, then R
has to be 1.

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Resemblance (R)

W
1

W
1
, r

2
 = r

1

r
1
 = 1e−6

1e−4

0.001

0.01

0.1

r
1
 = 0.9

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Resemblance (R)

G
1

r
1
 = 0.9

G
1
, r

2
 = r

1

r
1
 = 1e−6 to 0.1

Figure 7: W1 and G1 as defined in (20). We consider r1 =
10−6, 10−4, 0.001, 0.01, 0.1, 0.9. Note that not all combinations

of (r1, r2, R) are possible. The plot for G1 also verifies the the-

oretical limits proved in Theorem 3.

Figure 7 confirms our theoretical results. W1 will be extremely

large, when r1, r2 are small. However, when r1 is very large (e.g.,

0.9), it is possible that W1 < 1, meaning that the Hamming dis-

tance LSH could still outperform b-bit minwise in dense data.

By only storing the non-zero locations, Figure 7 illustrates that

b-bit minwise hashing will outperform the Hamming distance LSH

algorithm, usually by a factor of 10 (for small R) to 30 (for large R
and r1 ≈ r2).

5. DISCUSSIONS

5.1 Computational Overhead
The previous results establish the significant reduction in storage

requirements possible using b-bit minwise hashing. This section

demonstrates that these also translate into significant improvements

in computational overhead in the estimation phrase. The compu-

tational cost in the preprocessing phrase, however, will increase.

5.1.1 Preprocessing Phrase

In the preprocessing phrase, we need to generate minwise hash-

ing functions and apply them to all the sets for creating fingerprints.

This phrase is actually fairly fast [4] and is usually done off-line,

incurring a one-time cost. Also, sets can be individually processed,

meaning that this step is easy to parallelize.

The computation required for b-bit minwise hashes differs from

the computation of traditional minwise hashes in two respects: (A)

we require a larger number of (smaller-sized) samples, in turn re-

quiring more hashing and (B) the packing of b-bit samples into 64-

bit (or 32-bit) words requires additional bit-manipulation.

It turns out the overhead for (B) is small and the overall compu-

tation time scales nearly linearly with k; see Fig. 8. As we have

analyzed, b-bit minwise hashing only requires increasing k by a

small factor such as 3. Therefore, we consider the overhead in the

preprocessing stage not to be a major issue. Also, it is important to

note that b-bit minwise hashing provides the flexibility of trading

storage with preprocessing time by using b > 1.

50 100 150 200 250 300
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
x 10

4

Sample size k (# hashing)

T
im

e
(s

ec
)

2−U
4−U

FP

32 bits
1 bit

Figure 8: Running time in the preprocessing phrase on 100K

news articles. 3 hashing functions were used: 2-universal hash-

ing (labeled by “2-U”), 4-universal hashing (labeled by “4-U”),

and full permutations (labeled by “FP”). Experiments with

1-bit hashing are reported in 3 dashed lines, which are only

slightly higher (due to additional bit-packing) than their corre-

sponding solid lines (the original minwise hashing using 32-bit).

The experiment in Fig. 8 was conducted on 100K articles from

the BLEWS project [15]. We considered 3 hashing functions: first,

2-universal hash functions (computed using the fast universal hash-

ing scheme described [10]); second, 4-universal hash-functions (com-

puted using the CWtrick algorithm of [32]); and finally full ran-

dom permutations (computed using the Fisher-Yates shuffle [13]).

5.1.2 Estimation Phrase

We have shown earlier that, when R ≥ 0.5 and b = 1, we expect

a storage reduction of at least a factor of 21.3, compared to using

64 bits. In the following, we will analyze how this impacts the

computational overhead of the estimation.

Here, the key operation is the computation of the number of iden-

tical b-bit samples. While standard hash signatures that are multi-

ples of 16-bit can easily be compared using a single machine in-

struction, efficiently computing the overlap between b-bit samples

for small b is less straightforward. In the following, we will de-

scribe techniques for computing the number of identical b-bit sam-

ples when these are stored in a compact manner, meaning that in-

dividual b-bit samples e1,i,j and e2,i,j , i = 1, . . . , b, j = 1, . . . k
are packed into arrays Al[1, . . . , k·b

w
], l = 1, 2 of w-bit words. To

compute the number of identical b-bit samples, we iterate through

the arrays; for an each offset h, we first compute v = A1[h] ⊕
A2[h], where ⊕ denotes the bitwise-XOR. Subsequently, the h-th

bit of v will be set if and only if the h-th bits in A1[h] and A2[h] are

different. Hence, to compute the number of overlapping b-bit sam-

ples encoded in A1[h] and A2[h], we need to compute the number

of b-bit blocks ending at offsets divisible by b that only contain 0s.

The case of b = 1 corresponds to the problem of counting the

number of 0-bits in a word. We tested different methods suggested

in [34] and found the fastest approach to be pre-computing an array

bits[1, . . . , 216], such that bits[t] corresponds to the number of 0-

bits in the binary representation of t. Then we can compute the

number of 0-bits in v (in case of w = 32) as

c = bits[v & 0xffffu] + bits[(v ≫ 16) & 0xffffu].

Interestingly, we can use the same method for the cases where

b > 1, as we only need to modify the values stored in bits, set-

ting bits[i] to the number of b-bit blocks that only contain 0-bits in

the binary representation of i.
We evaluated this approach using a loop computing the number

of identical samples in two signatures covering a total of 1.8 billion

32-bit words (using a 64-bit Intel 6600 Processor). Here, the 1-

bit hashing requires 1.67x the time that the 32-bit minwise hashing

requires.The results were essentially identical for b = 2.

Combined with the reduction in overall storage (for a given ac-

curacy level), this means a significant speed improvement in the

estimation phase: suppose in the original minwise hashing, each

sample is stored using 64 bits. If we use 1-bit minwise hashing and

consider R > 0.5, our previous analysis has shown that we could

gain a storage reduction at least by a factor of 64/3 = 21.3 fold.

The improvement in computational efficiency would be 21.3/1.67

= 12.8 fold, which is still significant.

5.2 Reducing Storage Overhead for r1 and r2

The unbiased estimator R̂b (9) requires knowing r1 = f1
D

and

r2 = f1
D

. The storage cost could be a concern if r1 (r2) must be

represented with a high accuracy (e.g., 64 bits).

This section illustrates that we only need to quantize r1 and r2

into Q levels, where Q = 24 is probably good enough and Q = 28

is more than sufficient. In other words, for each set, we only need

to increase the total storage by 4 bits or 8 bits, which are negligible.

For simplicity, we carry out the analysis for b = 1 and r1 =
r2 = r. In this case, A1,1 = A2,1 = C1,1 = C2,1 = 1−r

2−r
, and the

correct estimator, denoted by R̂1,r would be

R̂1,r = (2 − r)Ê1 − (1 − r),

Bias
(

R̂1,r

)

= E
(

R̂1,r

)

− R = 0,

Var
(

R̂1,r

)

=
(1 − r + R)(1 − R)

k
.

See the definition of Ê1 in (10). Now, suppose we only store an

approximate value of r, denoted by r̃. The corresponding (approx-

imate) estimator is denoted by R̂1,r̃:

R̂1,r̃ = (2 − r̃)Ê1 − (1 − r̃),

Bias
(

R̂1,r̃

)

= E
(

R̂1,r̃

)

− R =
(r̃ − r)(1 − R)

2 − r
,

Var
(

R̂1,r̃

)

=
(1 − r + R)(1 − R)

k

(2 − r̃)2

(2 − r)2
.

Thus, the (absolute) bias is upper bounded by |r̃−r| (in the worst

case, i.e., R = 0 and r = 1). Using Q = 24 levels of quantization,

the bias is bounded by 1/16 = 0.0625. In a reasonable situation,

e.g., R ≥ 0.5, the bias will be much smaller than 0.0625. Of

course, if we increase the quantization levels to Q = 28, the bias

(< 1/256 = 0.0039) will be negligible, even in the worst case.

Similarly, by examining the difference of the variances,
∣

∣

∣
Var

(

R̂1,r

)

− Var
(

R̂1,r̃

)
∣

∣

∣

=
|r̃ − r|

k
(1 − r + R)(1 − R)

(4 − r̃ − r)

(2 − r)2
,

we can see that Q = 28 would be more than sufficient.

5.3 Combining Bits for Enhancing Performance
Our theoretical and empirical results have confirmed that, when

the resemblance R is reasonably high, each bit per sample may con-

tain strong information for estimating the similarity. This naturally

leads to the conjecture that, when R is close to 1, one might further

improve the performance by looking at a combination of multiple

bits (i.e., “b < 1”). One simple approach is to combine two bits

from two permutations using XOR (⊕) operations.

Recall e1,1,π denotes the lowest bit of the hashed value under π.

Theorem 1 has proved that

E1 = Pr (e1,1,π = e2,1,π) = C1,1 + (1 − C2,1) R

Consider two permutations π1 and π2. We store

x1 = e1,1,π1 ⊕ e1,1,π2 , x2 = e2,1,π1 ⊕ e2,1,π2

Then x1 = x2 either when e1,1,π1 = e2,1,π1 and e1,1,π2 = e2,1,π2 ,

or, when e1,1,π1 6= e2,1,π1 and e1,1,π2 6= e2,1,π2 . Thus

T = Pr (x1 = x2) = E2
1 + (1 − E1)

2, (23)

which is a quadratic equation with a solution

R =

√
2T − 1 + 1 − 2C1,1

2 − 2C2,1
. (24)

We can estimate T without bias as a binomial. The resultant es-

timator for R will be biased, at small sample size k, due to the

nonlinearity. We will recommend the following estimator

R̂1/2 =

√

max{2T̂ − 1, 0} + 1 − 2C1,1

2 − 2C2,1
. (25)

The truncation max{ . , 0} will introduce further bias; but it is nec-

essary and is usually a good bias-variance trade-off. We use R̂1/2

to indicate that two bits are combined into one. The asymptotic

variance of R̂1/2 can be derived using the “delta method”

Var
(

R̂1/2

)

=
1

k

T (1 − T)

4(1 − C2,1)2(2T − 1)
+ O

(

1

k2

)

. (26)

Note that each sample is still stored using 1 bit, despite that we use

“b = 1/2” to denote this estimator.

Interestingly, as R → 1, R̂1/2 does twice as well as R̂1:

lim
R→1

Var
(

R̂1

)

Var
(

R̂1/2

) = lim
R→1

2(1 − 2E1)
2

(1 − E1)2 + E2
1

= 2. (27)

(Recall, if R = 1, then r1 = r2, C1,1 = C2,1, and E1 = C1,1 +

1−C2,1 = 1.) On the other hand, R̂1/2 may not be good when R
is not too large. For example, one can numerically show that

Var
(

R̂1

)

< Var
(

R̂1/2

)

, if R < 0.5774, r1, r2 → 0

Figure 9 plots the empirical MSEs for four word pairs in Ex-

periment 1, for R̂1/2, R̂1, and R̂M . For the highly similar pair,

“KONG-HONG,” R̂1/2 exhibits superior performance compared to

R̂1. For the fairly similar pair, “OF-AND,” R̂1/2 is still consid-

erably better. For “UNITED-STATES,” whose R = 0.591, R̂1/2

performs similarly to R̂1. For “LOW-PAY,” whose R = 0.112
only, the theoretical variance of R̂1/2 is very large. However, ow-

ing to the truncation in (25) (i.e., the variance-bias trade-off), the

empirical performance of R̂1/2 is not too bad.

10
1

10
2

10
3

10
−4

10
−3

10
−2

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

KONG − HONG

b=1
M

1/2

b = 1
b = 1/2
M
Theor.

10
1

10
2

10
3

10
−4

10
−3

10
−2

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

OF − AND

b = 1/2

M

b = 1

1/2

b = 1
b = 1/2
M
Theor.

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

UNITED − STATES

M

b = 1/2

b=1

b = 1
b = 1/2
M
Theor.

10
1

10
2

10
3

10
−4

10
−2

10
0

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

LOW − PAY

b = 1/2

b = 1/2

b=1M

b = 1
b = 1/2
M
Theor.

Figure 9: MSEs for comparing R̂1/2 (25) with R̂1 and R̂M . Due

to the bias of R̂1/2, the theoretical variances Var
(

R̂1/2

)

, i.e.,

(26), deviate from the empirical MSEs when k is small.

In a summary, for applications which care about very high simi-

larities, combining bits can reduce storage even further.

6. CONCLUSION
The minwise hashing technique has been widely used as a stan-

dard duplicate detection approach in the context of information re-

trieval, for efficiently computing set similarity in massive data sets.

Prior studies commonly used 64 bits to store each hashed value.

This study proposes b-bit minwise hashing, by only storing the

lowest b bits of each hashed value. We theoretically prove that,

when the similarity is reasonably high (e.g., resemblance ≥ 0.5),

using b = 1 bit per hashed value can, even in the worst case, gain a

21.3-fold improvement in storage space, compared to storing each

hashed value using 64 bits. We also discussed the idea of com-

bining 2 bits from different hashed values, to further enhance the

improvement, when the target similarity is very high.

Our proposed method is simple and requires only minimal mod-

ification to the original minwise hashing algorithm. We expect our

method will be adopted in practice.

7. REFERENCES
[1] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms

for approximate nearest neighbor in high dimensions. In Commun.

ACM, volume 51, pages 117–122, 2009.

[2] Michael Bendersky and W. Bruce Croft. Finding text reuse on the
web. In WSDM, pages 262–271, 2009.

[3] Sergey Brin, James Davis, and Hector Garcia-Molina. Copy
detection mechanisms for digital documents. In SIGMOD, pages
398–409, 1995.

[4] Andrei Z. Broder. On the resemblance and containment of
documents. In Sequences, pages 21–29, 1997.

[5] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael
Mitzenmacher. Min-wise independent permutations. Journal of

Computer Systems and Sciences, 60(3):630–659, 2000.

[6] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and
Geoffrey Zweig. Syntactic clustering of the web. In WWW, pages
1157 – 1166, 1997.

[7] Gregory Buehrer and Kumar Chellapilla. A scalable pattern mining
approach to web graph compression with communities. In WSDM,
pages 95–106, 2008.

[8] Moses S. Charikar. Similarity estimation techniques from rounding
algorithms. In STOC, pages 380–388, 2002.

[9] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael
Mitzenmacher, Alessandro Panconesi, and Prabhakar Raghavan. On
compressing social networks. In KDD, pages 219–228, 2009.

[10] Dietzfelbinger, Martin and Hagerup, Torben and Katajainen, Jyrki
and Penttonen, Martti A reliable randomized algorithm for the
closest-pair problem. Journal of Algorithms, 25(1):19–51, 1997.

[11] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. Extraction
and classification of dense implicit communities in the web graph.
ACM Trans. Web, 3(2):1–36, 2009.

[12] D. Fetterly, M. Manasse, M. Najork, and J. Wiener. A large-scale
study of the evolution of web pages. In WWW, pages 669–678, 2003.

[13] R.A. Fisher and F. Yates. Statistical Tables for Biological,

Agricultural and Medical Research. Oliver & Boyd, 1948.

[14] George Forman, Kave Eshghi, and Jaap Suermondt. Efficient
detection of large-scale redundancy in enterprise file systems.
SIGOPS Oper. Syst. Rev., 43(1):84–91, 2009.

[15] Michael Gamon, Sumit Basu, Dmitriy Belenko, Danyel Fisher,
Matthew Hurst, and Arnd Christian König. Blews: Using blogs to
provide context for news articles. In AAAI, 2008.

[16] Aristides Gionis and Dimitrios Gunopulos and Nick Koudas.
Efficient and Tunable Similar Set Retrieval. In SIGMOD, pages
247-258, 2001.

[17] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for
result diversification. In WWW, pages 381–390, 2009.

[18] Monika .R. Henzinge. Algorithmic challenges in web search engines.
Internet Mathematics, 1(1):115–123, 2004.

[19] Piotr Indyk. A small approximately min-wise independent family of
hash functions. Journal of Algorithm, 38(1):84–90, 2001.

[20] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In STOC, 1998.

[21] Toshiya Itoh, Yoshinori Takei, and Jun Tarui. On the sample size of
k-restricted min-wise independent permutations and other k-wise
distributions. In STOC, pages 710–718, 2003.

[22] P. Li and K. Church. A Sketch Algorithm for Estimating Two-way
and Multi-way Associations Computational Linguistics, pages
305–354, 2007. (Preliminary results appeared in HLT/EMNLP 2005.)

[23] P. Li, K. Church and T. Hastie. One Sketch For All: Theory and
Applications of Conditional Random Sampling. In NIPS, 2008.

[24] Nitin Jindal and Bing Liu. Opinion spam and analysis. In WSDM,
pages 219–230, 2008.

[25] Konstantinos Kalpakis and Shilang Tang. Collaborative data
gathering in wireless sensor networks using measurement
co-occurrence. Computer Commu., 31(10):1979–1992, 2008.

[26] Eyal Kaplan, Moni Naor, and Omer Reingold. Derandomized
constructions of k-wise (almost) independent permutations.
Algorithmica, 55(1):113–133, 2009.

[27] Ludmila, Kave Eshghi, Charles B. Morrey III, Joseph Tucek, and
Alistair Veitch. Probabilistic frequent itemset mining in uncertain
databases. In KDD, pages 1087–1096, 2009.

[28] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma.
Detecting Near-Duplicates for Web-Crawling. In WWW, 2007.

[29] Marc Najork, Sreenivas Gollapudi, and Rina Panigrahy. Less is
more: sampling the neighborhood graph makes salsa better and
faster. In WSDM, pages 242–251, 2009.

[30] Sandeep Pandey, Andrei Broder, Flavio Chierichetti, Vanja
Josifovski, Ravi Kumar, and Sergei Vassilvitskii. Nearest-neighbor
caching for content-match applications. In WWW, 441–450, 2009.

[31] Martin Theobald, Jonathan Siddharth, and Andreas Paepcke.
Spotsigs: robust and efficient near duplicate detection in large web
collections. In SIGIR, pages 563–570, 2008.

[32] Mikkel Thorup and Yin Zhang. Tabulation based 4-universal hashing
with applications to second moment estimation. In SODA, 2004.

[33] Tanguy Urvoy, Emmanuel Chauveau, Pascal Filoche, and Thomas
Lavergne. Tracking web spam with html style similarities. ACM

Trans. Web, 2(1):1–28, 2008.

[34] Henry S. Warren. Hacker’s Delight. Addison-Wesley, 2002.

APPENDIX

A. PROOF OF THEOREM 1
Consider two sets, S1, S2 ⊆ Ω = {0, 1, 2, ..., D − 1}. Denote

f1 = |S1|, f2 = |S2|, and a = |S1 ∩ S2|. Apply a random

permutation π on S1 and S2: π : Ω −→ Ω. Define the minimum

values under π to be z1 and z2:

z1 = min (π (S1)) , z2 = min (π (S2)) .

Define e1,i = ith lowest bit of z1, and e2,i = ith lowest bit of z2.

The task is to derive Pr

(

∏b
i=1 1{e1,i = e2,i} = 1

)

,

which can be decomposed to be

Pr

(

b
∏

i=1

1{e1,i = e2,i} = 1, z1 = z2

)

+Pr

(

b
∏

i=1

1{e1,i = e2,i} = 1, z1 6= z2

)

=Pr (z1 = z2) + Pr

(

b
∏

i=1

1{e1,i = e2,i} = 1, z1 6= z2

)

=R + Pr

(

b
∏

i=1

1{e1,i = e2,i} = 1, z1 6= z2

)

.

where R = |S1∩S2|
|S1∪S2| = Pr (z1 = z2) is the resemblance.

When b = 1, the task boils down to estimating

Pr (e1,1 = e2,1, z1 6= z2)

=
∑

i=0,2,4,...

∑

j 6=i,j=0,2,4,...

Pr (z1 = i, z2 = j)

+
∑

i=1,3,5,...

∑

j 6=i,j=1,3,5,...

Pr (z1 = i, z2 = j)

.

Therefore, we need the following basic probability formula:

Pr (z1 = i, z2 = j, i 6= j) .

We start with

Pr (z1 = i, z2 = j, i < j) =
P1 + P2

P3
, where

P3 =
(D

a

)(D − a

f1 − a

)(D − f1

f2 − a

)

,

P1 =
(D − j − 1

a

)(D − j − 1 − a

f2 − a − 1

)(D − i − 1 − f2

f1 − a − 1

)

,

P2 =
(D − j − 1

a − 1

)(D − j − a

f2 − a

)(D − i − 1 − f2

f1 − a − 1

)

.

The expressions for P1, P2, and P3 can be understood by the

experiment of randomly throwing f1+f2−a balls into D locations,

labeled 0, 1, 2, ..., D − 1. Those f1 + f2 − a balls belong to three

disjoint sets: S1 − S1 ∩ S2, S2 − S1 ∩ S2, and S1 ∩ S2. Without

any restriction, the total number of combinations should be P3.

To understand P1 and P2, we need to consider two cases:

1. The jth element is not in S1 ∩ S2: =⇒ P1.

We first allocate the a = |S1 ∩S2| overlapping elements ran-

domly in [j +1, D− 1], resulting in
(

D−j−1
a

)

combinations.

Then we allocate the remaining f2−a−1 elements in S2 also

randomly in the unoccupied locations in [j + 1, D − 1], re-

sulting in
(

D−j−1−a
f2−a−1

)

combinations. Finally, we allocate the

remaining elements in S1 randomly in the unoccupied loca-

tions in [i + 1, D− 1], which has
(

D−i−1−f2
f1−a−1

)

combinations.

2. The jth element is in S1 ∩ S2: =⇒ P2.

After conducing expansions and cancelations, we obtain

Pr (z1 = i, z2 = j, i < j) =
P1 + P2

P3

=

(

1
a

+ 1
f2−a

)

(D−j−1)!(D−i−1−f2)!
(a−1)!(f1−a−1)!(f2−a−1)!(D−j−f2)!(D−i−f1−f2+a)!

D!
a!(f1−a)!(f2−a)!(D−f1−f2+a)!

=
f2(f1 − a)(D − j − 1)!(D − f2 − i − 1)!(D − f1 − f2 + a)!

D!(D − f2 − j)!(D − f1 − f2 + a − i)!

=
f2(f1 − a)

∏j−i−2
t=0 (D − f2 − i − 1 − t)

∏i−1
t=0(D − f1 − f2 + a − t)

∏j
t=0(D − t)

=
f2

D

f1 − a

D − 1

j−i−2
∏

t=0

D − f2 − i − 1 − t

D − 2 − t

i−1
∏

t=0

D − f1 − f2 + a − t

D + i − j − 1 − t

For convenience, we introduce the following notation:

r1 =
f1

D
, r2 =

f2

D
, s =

a

D
.

Also, we assume D is large (which is always satisfied in practice).

Thus, we can obtain a reasonable approximation:

Pr (z1 = i, z2 = j, i < j)

=r2(r1 − s) [1 − r2]
j−i−1 [1 − (r1 + r2 − s)]i

Similarly, we obtain, for large D,

Pr (z1 = i, z2 = j, i > j)

=r1(r2 − s) [1 − r1]
i−j−1 [1 − (r1 + r2 − s)]j

Now we have the tool to calculate the probability

Pr (e1,1 = e2,1, z1 6= z2)

=
∑

i=0,2,4,...

∑

j 6=i,j=0,2,4,...

Pr (z1 = i, z2 = j)

+
∑

i=1,3,5,...

∑

j 6=i,j=1,3,5,...

Pr (z1 = i, z2 = j)

For example, (again, assuming D is large)

Pr (z1 = 0, z2 = 2, 4, 6, ...)

=r2(r1 − s)
(

[1 − r2] + [1 − r2]
3 + [1 − r2]

5 + ...
)

=r2(r1 − s)
1 − r2

1 − [1 − r2]2

Pr (z1 = 1, z2 = 3, 5, 7, ...) = r2(r1 − s)[1 − (r1 + r2 − s)]

×
(

[1 − r2] + [1 − r2]
3 + [1 − r2]

5 + ...
)

=r2(r1 − s)[1 − (r1 + r2 − s)]
1 − r2

1 − [1 − r2]2
.

Therefore,

∑

i=0,2,4,...

{

∑

i<j,j=0,2,4,...

Pr (z1 = i, z2 = j)

}

+
∑

i=1,3,5,...

{

∑

i<j,j=1,3,5,...

Pr (z1 = i, z2 = j)

}

=r2(r1 − s)
1 − r2

1 − [1 − r2]2
×

(

1 + [1 − (r1 + r2 − s)] + [1 − (r1 + r2 − s)]2 + ...
)

=r2(r1 − s)
1 − r2

1 − [1 − r2]2
1

r1 + r2 − s
.

By symmetry, we know

∑

j=0,2,4,...

{

∑

i>j,i=0,2,4,...

Pr (z1 = i, z2 = j)

}

+
∑

j=1,3,5,...

{

∑

i>j,i=1,3,5,...

Pr (z1 = i, z2 = j)

}

=r1(r2 − s)
1 − r1

1 − [1 − r1]2
1

r1 + r2 − s
.

Combining the probabilities, we obtain

Pr (e1,1 = e2,1, z1 6= z2)

=
r2(1 − r2)

1 − [1 − r2]2
r1 − s

r1 + r2 − s
+

r1(1 − r1)

1 − [1 − r1]2
r2 − s

r1 + r2 − s

=A1,1
r2 − s

r1 + r2 − s
+ A2,1

r1 − s

r1 + r2 − s
,

where

A1,b =
r1 [1 − r1]

2b−1

1 − [1 − r1]
2b

, A2,b =
r2 [1 − r2]

2b−1

1 − [1 − r2]
2b

.

Therefore, we can obtain the desired probability, for b = 1,

Pr

(

b=1
∏

i=1

1{e1,i = e2,i} = 1

)

=R + A1,1
r2 − s

r1 + r2 − s
+ A2,1

r1 − s

r1 + r2 − s

=R + A1,1
f2 − a

f1 + f2 − a
+ A2,1

f1 − a

f1 + f2 − a

=R + A1,1

f2 − R
1+R

(f1 + f2)

f1 + f2 − R
1+R

(f1 + f2)
+ A2,1

f1 − a

f1 + f2 − a

=R + A1,1
f2 − Rf1

f1 + f2
+ A2,1

f1 − Rf2

f1 + f2

=C1,1 + (1 − C2,1)R

where

C1,b = A1,b
r2

r1 + r2
+ A2,b

r1

r1 + r2

C2,b = A1,b
r1

r1 + r2
+ A2,b

r2

r1 + r2
.

To this end, we have proved the main result for b = 1.

Next, we consider b > 1. Due to the space limit, we only provide

a sketch of the proof. When b = 2, we need

Pr (e1,1 = e2,1, e1,2 = e2,2, z1 6= z2)

=
∑

i=0,4,8,...

∑

j 6=i,j=0,4,8,...

Pr (z1 = i, z2 = j)

+
∑

i=1,5,9,...

∑

j 6=i,j=1,5,9,...

Pr (z1 = i, z2 = j)

+
∑

i=2,6,10,...

∑

j 6=i,j=2,6,10,...

Pr (z1 = i, z2 = j)

+
∑

i=3,7,11,...

∑

j 6=i,j=3,7,11,...

Pr (z1 = i, z2 = j)

We again use the basic probability formula Pr (z1 = i, z2 = j, i < j)
and the sum of (different) geometric series, for example,

[1 − r2]
3 + [1 − r2]

7 + [1 − r2]
11 + ... =

[1 − r2]
22−1

1 − [1 − r2]2
2 .

Similarly, for general b, we will need

[1 − r2]
2b−1 + [1 − r2]

2×2b−1 + [1 − r2]
3×2b−1 + ... =

[1 − r2]
2b−1

1 − [1 − r2]2
b
.

After more algebra, we prove the general case:

Pr

(

b
∏

i=1

1{e1,i = e2,i} = 1

)

=R + A1,b
r2 − s

r1 + r2 − s
+ A2,b

r1 − s

r1 + r2 − s

=C1,b + (1 − C2,b)R,

It remains to show some useful properties of A1,b (same for

A2,b). The first derivative of A1,b with respect to b is

∂A1,b

∂b
=

r1[1 − r1]
2b−1 log(1 − r1) log 2

(

1 − [1 − r1]
2b

)

(

1 − [1 − r1]2
b
)2

−
−[1 − r1]

2b

log(1 − r1) log 2 r1

(

1 − [1 − r1]
2b−1

)

(

1 − [1 − r1]2
b
)2

≤0 (Note that log(1 − r1) ≤ 0)

Thus, A1,b is a monotonically decreasing function of b. Also,

lim
r1→0

A1,b = lim
r1→0

[1 − r1]
2b−1 − r1

(

2b − 1
)

[1 − r1]
2b−2

2b[1 − r1]2
b−1

=
1

2b
,

∂A1,b

∂r1
=

[1 − r1]
2b−1 − r1

(

2b − 1
)

[1 − r1]
2b−2

(

1 − [1 − r1]2
b
)

− 2b[1 − r1]
2b−1r1 [1 − r1]

2b−1

(

1 − [1 − r1]2
b
)2

=
[1 − r1]

2b−2

(

1 − [1 − r1]2
b
)2

(

1 − 2br1 − [1 − r1]
2b

)

≤ 0.

Note that (1− x)c ≥ 1− cx, for c ≥ 1 and x ≤ 1. Therefore A1,b

is a monotonically decreasing function of r1.

b-Bit Minwise Hashing for Estimating Three-Way Similarities

Ping Li
Dept. of Statistical Science

Cornell University

Arnd Christian König
Microsoft Research

Microsoft Corporation

Wenhao Gui
Dept. of Statistical Science

Cornell University

Abstract
Computing1 two-way and multi-way set similarities is a fundamental problem.
This study focuses on estimating 3-way resemblance (Jaccard similarity) using
b-bit minwise hashing. While traditional minwise hashing methods store each
hashed value using 64 bits, b-bit minwise hashing only stores the lowest b bits
(where b ≥ 2 for 3-way). The extension to 3-way similarity from the prior work
on 2-way similarity is technically non-trivial. We develop the precise estimator
which is accurate and very complicated; and we recommend a much simplified
estimator suitable for sparse data. Our analysis shows that b-bit minwise hashing
can normally achieve a 10 to 25-fold improvement in the storage space required
for a given estimator accuracy of the 3-way resemblance.

1 Introduction

The efficient computation of the similarity (or overlap) between sets is a central operation in a variety
of applications, such as word associations (e.g., [13]), data cleaning (e.g., [40, 9]), data mining
(e.g., [14]), selectivity estimation (e.g., [30]) or duplicate document detection [3, 4]. In machine
learning applications, binary (0/1) vectors can be naturally viewed as sets. For scenarios where the
underlying data size is sufficiently large to make storing them (in main memory) or processing them
in their entirety impractical, probabilistic techniques have been proposed for this task.

Word associations (collocations, co-occurrences) If one inputs a query NIPS machine learning,
all major search engines will report the number of pagehits (e.g., one reports 829,003), in addition to
the top ranked URLs. Although no search engines have revealed how they estimate the numbers of
pagehits, one natural approach is to treat this as a set intersection estimation problem. Each word can
be represented as a set of document IDs; and each set belongs to a very large space Ω. It is expected
that |Ω| > 1010. Word associations have many other applications in Computational Linguistics [13,
38], and were recently used for Web search query reformulation and query suggestions [42, 12].

Here is another example. Commercial search engines display various form of “vertical” content
(e.g., images, news, products) as part of Web search. In order to determine from which “vertical”
to display information, there exist various techniques to select verticals. Some of these (e.g., [29,
15]) use the number of documents the words in a search query occur in for different text corpora
representing various verticals as features. Because this selection is invoked for all search queries
(and the tight latency bounds for search), the computation of these features has to be very fast.
Moreover, the accuracy of vertical selection depends on the number/size of document corpora that
can be processed within the allotted time [29], i.e., the processing speed can directly impact quality.

Now, because of the large number of word-combinations in even medium-sized text corpora (e.g.,
the Wikipedia corpus contains > 107 distinct terms), it is impossible to pre-compute and store the
associations for all possible multi-term combinations (e.g., > 1014 for 2-way and > 1021 for 3-way);
instead the techniques described in this paper can be used for fast estimates of the co-occurrences.

Database query optimization Set intersection is a routine operation in databases, employed for
example during the evaluation of conjunctive selection conditions in the presence of single-column
indexes. Before conducting intersections, a critical task is to (quickly) estimate the sizes of the
intermediate results to plan the optimal intersection order [20, 8, 25]. For example, consider the task
of intersecting four sets of record identifiers: A ∩ B ∩ C ∩ D. Even though the final outcome will
be the same, the order of the join operations, e.g., (A ∩ B) ∩ (C ∩ D) or ((A ∩ B) ∩ C) ∩ D, can
significantly affect the performance, in particular if the intermediate results, e.g., A∩B∩C, become
too large for main memory and need to be spilled to disk. A good query plan aims to minimize

1This work is supported by NSF (DMS-0808864), ONR (YIP-N000140910911) and Microsoft.

the total size of intermediate results. Thus, it is highly desirable to have a mechanism which can
estimate join sizes very efficiently, especially for the lower-order (2-way and 3-way) intersections,
which could potentially result in much larger intermediate results than higher-order intersections.

Duplicate Detection in Data Cleaning: A common task in data cleaning is the identification of
duplicates (e.g., duplicate names, organizations, etc.) among a set of items. Now, despite the fact
that there is considerable evidence (e.g., [10]) that reliable duplicate-detection should be based on
local properties of groups of duplicates, most current approaches base their decisions on pairwise
similarities between items only. This is in part due to the computational overhead associated with
more complex interactions, which our approach may help to overcome.

Clustering Most clustering techniques are based on pair-wise distances between the items to be
clustered. However, there are a number of natural scenarios where the affinity relations are not
pairwise, but rather triadic, tetradic or higher (e.g. [1, 43]). Again, our approach may improve the
performance in these scenarios if the distance measures can be expressed in the form of set-overlap.

Data mining A lot of work in data mining has focused on efficient candidate pruning in the
context of pairwise associations (e.g., [14]), a number of such pruning techniques leverage minwise
hashing to prune pairs of items, but in many contexts (e.g., association rules with more than 2 items)
multi-way associations are relevant; here, pruning based on pairwise interactions may perform much
less well than multi-way pruning.

1.1 Ultra-high dimensional data are often binary

For duplicate detection in the context of Web crawling/search, each document can be represented as
a set of w-shingles (w contiguous words); w = 5 or 7 in several studies [3, 4, 17]. Normally only the
abscence/presence (0/1) information is used, as a w-shingle rarely occurs more than once in a page
if w ≥ 5. The total number of shingles is commonly set to be |Ω| = 264; and thus the set intersection
corresponds to computing the inner product in binary data vectors of 264 dimensions. Interestingly,
even when the data are not too high-dimensional (e.g., only thousands), empirical studies [6, 23, 26]
achieved good performance using SVM with binary-quantized (text or image) data.

1.2 Minwise Hashing and SimHash

Two of the most widely adopted approaches for estimating set intersections are minwise hashing [3,
4] and sign (1-bit) random projections (also known as simhash) [7, 34], which are both special
instances of the general techniques proposed in the context of locality-sensitive hashing [7, 24].
These techniques have been successfully applied to many tasks in machine learning, databases, data
mining, and information retrieval [18, 36, 11, 22, 16, 39, 28, 41, 27, 5, 2, 37, 7, 24, 21].

Limitations of random projections The method of random projections (including simhash) is
limited to estimating pairwise similarities. Random projections convert any data distributions to
(zero-mean) multivariate normals, whose density functions are determined by the covariance matrix
which contains only the pairwise information of the original data. This is a serious limitation.

1.3 Prior work on b-Bit Minwise Hashing

Instead of storing each hashed value using 64 bits as in prior studies, e.g., [17], [35] suggested to
store only the lowest b bits. [35] demonstrated that using b = 1 reduces the storage space at least
by a factor of 21.3 (for a given accuracy) compared to b = 64, if one is interested in resemblance
≥ 0.5, the threshold used in prior studies [3, 4]. Moreover, by choosing the value b of bits to be
retained, it becomes possible to systematically adjust the degree to which the estimator is “tuned”
towards higher similarities as well as the amount of hashing (random permutations) required.

[35] concerned only the pairwise resemblance. To extend it to the multi-way case, we have to solve
new and challenging probability problems. Compared to the pairwise case, our new estimator is
significantly different. In fact, as we will show later, estimating 3-way resemblance requires b ≥ 2.

1.4 Notation

a
12

f
1 a

a
23

f
3

a
13

f
2

r
1

r
3

s
12

s
s
23

r
2

s
13

Figure 1: Notation for 2-way and 3-way set intersections.

Fig. 1 describes the notation used in 3-way intersections for three sets S1, S2, S3 ∈ Ω, |Ω| = D.

• f1 = |S1|, f2 = |S2|, f3 = |S3|.

• a12 = |S1 ∩ S2|, a13 = |S1 ∩ S3|, a23 = |S2 ∩ S3|, a = a123 = |S1 ∩ S2 ∩ S3|.

• r1 = f1

D
, r2 = f2

D
, r3 = f3

D
. s12 = a12

D
, s13 = a13

D
, s23 = a23

D
, s = s123 = a

D
.

• u = r1 + r2 + r3 − s12 − s13 − s23 + s.

We define three 2-way resemblances (R12, R13, R23) and one 3-way resemblance (R) as:

R12 =
|S1 ∩ S2|

|S1 ∪ S2|
, R13 =

|S1 ∩ S3|

|S1 ∪ S3|
, R23 =

|S2 ∩ S3|

|S2 ∪ S3|
, R = R123 =

|S1 ∩ S2 ∩ S3|

|S1 ∪ S2 ∪ S3|
. (1)

which, using our notation, can be expressed in various forms:

Rij =
aij

fi + fj − aij

=
sij

ri + rj − sij

, i 6= j, (2)

R =
a

f1 + f2 + f3 − a12 − a23 − a13 + a
=

s

r1 + r2 + r3 − s12 − s23 − s13 + s
=

s

u
. (3)

Note that, instead of a123, s123, R123, we simply use a, s, R. When the set sizes, fi = |Si|, can be
assumed to be known, we can compute resemblances from intersections and vice versa:

aij =
Rij

1 + Rij

(fi + fj), a =
R

1 − R
(f1 + f2 + f3 − a12 − a13 − a23) .

Thus, estimating resemblances and estimating intersection sizes are two closely related problems.

1.5 Our Main Contributions

• We derive the basic probability formula for estimating 3-way resemblance using b-bit hash-
ing. The derivation turns out to be significantly much more complex than the 2-way case.
This basic probability formula naturally leads to a (complicated) estimator of resemblance.

• We leverage the observation that many real applications involve sparse data (i.e., ri = fi

D
≈

0, but fi/fj = ri/rj may be still significant) to develop a much simplified estimator, which
is desired in practical applications. This assumption of fi/D → 0 significantly simplifies
the estimator and frees us from having to know the cardinalities fi.

• We analyze the theoretical variance of the simplified estimator and compare it with the
original minwise hashing method (using 64 bits). Our theoretical analysis shows that b-
bit minwise hashing can normally achieve a 10 to 25-fold improvement in storage space
(for a given estimator accuracy of the 3-way resemblance) when the set similarities are not
extremely low (e.g., when the 3-way resemblance > 0.02). These results are particularly
important for applications in which only detecting high resemblance/overlap is relevant,
such as many data cleaning scenarios or duplicate detection.

The recommended procedure for estimating 3-way resemblances (in sparse data) is shown as Alg. 1.

Algorithm 1 The b-bit minwise hashing algorithm, applied to estimating 3-way resemblances in a
collection of N sets. This procedure is suitable for sparse data, i.e., ri = fi/D ≈ 0.

Input: Sets Sn ∈ Ω = {0, 1, ..., D − 1}, n = 1 to N .
Pre-processing phrase:
1) Generate k random permutations πj : Ω → Ω, j = 1 to k.
2) For each set Sn and permutation πj , store the lowest b bits of min (πj (Sn)), denoted by en,t,πj

, t = 1 to b.

Estimation phrase: (Use three sets S1, S2, and S3 as an example.)

1) Compute P̂12,b = 1
k

∑k

j=1

{

∏b

t=1 1{e1,t,πj
= e2,t,πj

}
}

. Similarly, compute P̂13,b and P̂23,b.

2) Compute P̂b = 1
k

∑k

j=1

{

∏b

t=1 1{e1,t,πj
= e2,t,πj

= e3,t,πj
}
}

.

3) Estimate R by R̂b =
4bP̂b−2b(P̂12,b+P̂13,b+P̂23,b)+2

(2b
−1)(2b

−2)
.

4) If needed, the 2-way resemblances Rij,b can be estimated as R̂ij,b =
2bP̂ij,b−1

2b
−1

.

2 The Precise Theoretical Probability Analysis

Minwise hashing applies k random permutations πj : Ω −→ Ω, Ω = {0, 1, ..., D − 1}, and then
estimates R12 (and similarly other 2-way resemblances) using the following probability:

Pr (min(πj(S1)) = min(πj(S2))) =
|S1 ∩ S2|

|S1 ∪ S2|
= R12. (4)

This method naturally extends to estimating 3-way resemblances for three sets S1, S2, S3 ∈ Ω:

Pr (min(πj(S1)) = min(πj(S2)) = min(πj(S3))) =
|S1 ∩ S2 ∩ S3|

|S1 ∪ S2 ∪ S3|
= R. (5)

To describe b-bit hashing, we define the minimum values under π and their lowest b bits to be:

zi = min (π (Si)) , ei,t = t-th lowest bit of zi.

To estimate R, we need to computes the empirical estimates of the probabilities Pij,b and Pb, where

Pij,b = Pr

(

b
∏

t=1

1{ei,t = ej,t} = 1

)

, Pb = P123,b = Pr

(

b
∏

t=1

1{e1,t = e2,t = e3,t} = 1

)

.

The main theoretical task is to derive Pb. The prior work[35] already derived Pij,b; see Appendix A.
To simplify the algebra, we assume that D is large, which is virtually always satisfied in practice.

Theorem 1 Assume D is large.

Pb = Pr

(

b
∏

i=1

1{e1,i = e2,i = e3,i} = 1

)

=
Z

u
+ R =

Z + s

u
, (6)

where u = r1 + r2 + r3 − s12 − s13 − s23 + s, and

Z =(s12 − s)A3,b +
(r3 − s13 − s23 + s)

r1 + r2 − s12

s12G12,b + (s13 − s)A2,b +
(r2 − s12 − s23 + s)

r1 + r3 − s13

s13G13,b

+(s23 − s)A1,b +
(r1 − s12 − s13 + s)

r2 + r3 − s23

s23G23,b + [(r2 − s23)A3,b + (r3 − s23)A2,b]
(r1 − s12 − s13 + s)

r2 + r3 − s23

G23,b

+ [(r1 − s13)A3,b + (r3 − s13)A1,b]
(r2 − s12 − s23 + s)

r1 + r3 − s13

G13,b

+ [(r1 − s12)A2,b + (r2 − s12)A1,b]
(r3 − s13 − s23 + s)

r1 + r2 − s12

G12,b,

Aj,b =
rj(1 − rj)

2
b
−1

1 − (1 − rj)2
b

, Gij,b =
(ri + rj − sij)(1 − ri − rj + sij)

2
b
−1

1 − (1 − ri − rj + sij)2
b

, i, j ∈ {1, 2, 3}, i 6= j.

Theorem 1 naturally suggests an iterative estimation procedure, by writing Eq. (6) as s = Pbu−Z.

0 100 200 300 400 500
0.46

0.48

0.5

0.52

0.54

0.56

0.58

Sample size k

P
b

D = 2
16

b = 2

b = 3

b = 4

2 bits
3 bits
4 bits
Theoretical

0 100 200 300 400 500
0.46

0.48

0.5

0.52

0.54

0.56

0.58

Sample size k

P
b

D = 2
20

b = 2

b = 3

b = 4

2 bits
3 bits
4 bits
Theoretical

Figure 2: Pb, for verifying the probability formula in Theorem 1. The empirical estimates and the
theoretical predictions essentially overlap regardless of the sparsity measure ri = fi/D.

A Simulation Study For the purpose of verifying Theorem 1, we use three sets corresponding
to the occurrences of three common words (“OF”, “AND”, and “OR”) in a chunk of real world Web
crawl data. Each (word) set is a set of document (Web page) IDs which contained that word at least

once. The three sets are not too sparse and D = 216 suffices to represent their elements. The ri = fi

D
values are 0.5697, 0.5537, and 0.3564, respectively. The true 3-way resemblance is R = 0.47.

We can also increase D by mapping these sets into a larger space using a random mapping, with
D = 216, 218, 220, or 222. When D = 222, the ri values are 0.0089, 0.0087, 0.0056.

Fig. 2 presents the empirical estimates of the probability Pb, together with the theoretical predictions
by Theorem 1. The empirical estimates essentially overlap the theoretical predictions. Even though
the proof assumes D → ∞, D does not have to be too large for Theorem 1 to be accurate.

3 The Much Simplified Estimator for Sparse Data

The basic probability formula (Theorem 1) we derive could be too complicated for practical use. To

obtain a simpler formula, we leverage the observation that in practice we often have ri = fi

D
≈ 0,

even though both fi and D can be very large. For example, consider web duplicate detection [17].
Here, D = 264, which means that even for a web page with fi = 254 shingles (corresponding to the

text of a small novel), we still have fi

D
≈ 0.001. Note that, even when ri → 0, the ratios, e.g., r2

r1

,

can be still large. Recall the resemblances (2) and (3) are only determined by these ratios.

We analyzed the distribution of fi

D
using two real-life datasets: the UCI dataset containing 3 × 105

NYTimes articles; and a Microsoft proprietary dataset with 106 news articles [19]. For the UCI-
NYTimes dataset, each document was already processed as a set of single words. For the anonymous
dataset, we report results using three different representations: single words (1-shingle), 2-shingles

(two contiguous words), and 3-shingles. Table 1 reports the summary statistics of the fi

D
values.

Table 1: Summary statistics of the fi

D
values in two datasets

Data Median Mean Std.

3 × 105 UCI-NYTimes articles 0.0021 0.0022 0.0011

106 Microsoft articles (1-shingle) 0.00027 0.00032 0.00023

106 Microsoft articles (2-shingle) 0.00003 0.00004 0.00005

106 Microsoft articles (3-shingle) 0.00002 0.00002 0.00002

For truly large-scale applications, prior studies [3, 4, 17] commonly used 5-shingles. This means
that real world data may be significantly more sparse than the values reported in Table 1.

3.1 The Simplified Probability Formula and the Practical Estimator

Theorem 2 Assume D is large. Let T = R12 + R13 + R23. As r1, r2, r3 → 0,

Pb = Pr

(

b
∏

i=1

1{e1,i = e2,i = e3,i} = 1

)

=
1

4b

{

(2b − 1)(2b − 2)R + (2b − 1)T + 1
}

. (7)

Interestingly, if b = 1, then P1 = 1
4 (1 + T), i.e., no information about the 3-way resemblance R is

contained. Hence, it is necessary to use b ≥ 2 to estimate 3-way similarities.

Alg. 1 uses P̂b and P̂ij,b to respectively denote the empirical estimates of the theoretical probabilities

Pb and Pij,b. Assuming r1, r2, r3 → 0, the proposed estimator of R, denoted by R̂b, is

R̂b =
4bP̂b − 2b

(

P̂12,b + P̂13,b + P̂23,b

)

+ 2

(2b − 1)(2b − 2)
. (8)

Theorem 3 Assume D is large and r1, r2, r3 → 0. Then R̂b in (8) is unbiased with the variance

V ar
(

R̂b

)

=
1

k

1

(2b − 1)(2b − 2)

{

1 + (2b − 3)T +
(

4b − 6 × 2b + 10
)

R − (2b − 1)(2b − 2)R2
}

.

(9)

It is interesting to examine several special cases:

• b = 1: V ar(R̂1) = ∞, i.e., one must use b ≥ 2.

• b = 2: V ar(R̂2) = 1
6k

(

1 + T + 2R − 6R2
)

.

• b = ∞: V ar(R̂∞) = 1
k
R(1 − R) = V ar(R̂M). R̂M is the original minwise hashing esti-

mator for 3-way resemblance. In principle, the estimator R̂M requires an infinite precision

(i.e., b = ∞). Numerically, V ar(R̂M) and V ar(R̂64) are indistinguishable.

3.2 Simulations for Validating Theorem 3

We now present a simulation study for verifying Theorem 3, using the same three sets used in Fig. 2.

Fig. 3 presents the resulting empirical biases: E(R̂b)−Rb. Fig. 4 presents the empirical mean square

errors (MSE = bias2+variance) together with the theoretical variances V ar(R̂b) in Theorem 3.

0 100 200 300 400 500
−0.1

−0.05

0

0.05

Sample size k

B
ia

s

D = 2
16

b = 2

b = 3

b = 4

M

0 100 200 300 400 500
−0.03

−0.02

−0.01

0

0.01

Sample size k
B

ia
s

b = 4

M

b = 3

b = 2

D = 2
18

0 100 200 300 400 500
−10

−5

0

5
x 10

−3

Sample size k

B
ia

s

D = 2
20

M

M

4

b = 2

3

0 100 200 300 400 500
−10

−5

0

5
x 10

−3

Sample size k

B
ia

s

D = 2
22

M

b = 2

b = 4
3

Figure 3: Bias of R̂b (8). We used 3 (word) sets: “OF”, “AND”, and “OR” and four D values: 216,
218, 220, and 222. We conducted experiments using b = 2, 3, and 4 as well as the original minwise
hashing (denoted by “M”). The plots verify that as ri decreases (to zero), the biases vanish. Note

that the set sizes fi remain the same, but the relative values ri = fi

D
decrease as D increases.

10 100 500

10
−3

10
−2

10
−1

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

D = 2
16

b = 2

b = 3

b = 4

M

2 bits
3 bits
4 bits
minwise
Theoretical

10 100 500

10
−3

10
−2

10
−1

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

D = 2
18

b = 2

M

3

34

2 bits
3 bits
4 bits
minwise
Theoretical

10 100 500

10
−3

10
−2

10
−1

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

D = 2
20

b = 2

M

3

4

2 bits
3 bits
4 bits
minwise
Theoretical

10 100 500

10
−3

10
−2

10
−1

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

D = 2
22

b = 2
3

M

4

2 bits
3 bits
4 bits
minwise
Theoretical

Figure 4: MSE of R̂b (8). The solid curves are the empirical MSEs (=var+bias2) and the dashed
lines are the theoretical variances (9), under the assumption of ri → 0. Ideally, we would like to see
the solid and dashed lines overlap. When D = 220 and D = 222, even though the ri values are not
too small, the solid and dashed lines almost overlap. Note that, at the same sample size k, we always

have V ar(R̂2) > V ar(R̂3) > V ar(R̂4) > V ar(R̂M), where R̂M is the original minwise hashing

estimator. We can see that, V ar(R̂3) and V ar(R̂4) are very close to V ar(R̂M).

We can summarize the results in Fig. 3 and Fig. 4 as follows:

• When the ri = fi

D
values are large (e.g., ri ≈ 0.5 when D = 216), the estimates using

(8) can be noticeably biased. The estimation biases diminish as the ri values decrease. In
fact, even when the ri values are not small (e.g., ri ≈ 0.05 when D = 220), the biases are
already very small (roughly 0.005 when D = 220).

• The variance formula (9) becomes accurate when the ri values are not too large. For exam-
ple, when D = 218 (ri ≈ 0.1), the empirical MSEs largely overlap the theoretical variances
which assumed ri → 0, unless the sample size k is large. When D = 220 (and D = 222),
the empirical MSEs and theoretical variances overlap.

• For real applications, as we expect D will be very large (e.g., 264) and the ri values (fi/D)
will be very small, our proposed simple estimator (8) will be very useful in practice, be-
cause it becomes unbiased and the variance can be reliably predicted by (9).

4 Improving Estimates for Dense Data Using Theorem 1

While we believe the simple estimator in (8) and Alg. 1 should suffice in most applications, we
demonstrate here that the sparsity assumption of ri → 0 is not essential if one is willing to use the
more sophisticated estimation procedure provided by Theorem 1.

By Eq. (6), s = Pbu − Z, where Z contains s, sij , ri etc. We first estimate sij (from the estimated
Rij) using the precise formula for the two-way case; see Appendix A. We then iteratively solve for

s using the initial guess provided by the estimator R̂b in (8). Usually a few iterations suffice.

Fig. 5 reports the bias (left most panel, only for D = 216) and MSE, corresponding to Fig. 3 and
Fig. 4. In Fig. 5, the solid curves are obtained using the precise estimation procedure by Theorem 1.

The dashed curves are the estimates using the simplified estimator R̂b which assumes ri → 0.

Even when the data are not sparse, the precise estimation procedure provides unbiased estimates
as verified by the leftmost panel of Fig. 5. Using the precise procedure results in noticeably more
accurate estimates in non-sparse data, as verified by the second panel of Fig. 5. However, as long as

the data are reasonably sparse (the right two panels), the simple estimator R̂b in (8) is accurate.

0 100 200 300 400 500
−1

−0.5

0

0.5

1
x 10

−3

Sample size k

B
ia

s

D = 2
16

Bias

b = 3

b = 2

10 100 500

10
−3

10
−2

10
−1

Sample size k
M

ea
n

sq
ua

re
 e

rr
or

 (
M

S
E

)

D = 2
16

b = 2

b = 3

b = 3

b = 2

10 100 500

10
−3

10
−2

10
−1

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

D = 2
18

b = 2

b = 3
b = 2

b = 3

10 100 500

10
−3

10
−2

10
−1

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

b = 3

b = 2

D = 2
20

Figure 5: The bias (leftmost panel) and MSE of the precise estimation procedure, using the same
data used in Fig. 3 and Fig. 4. The dashed curves correspond to the estimates using the simplified

estimator R̂b in (8) which assumes ri → 0.

5 Quantifying the Improvements Using b-Bit Hashing

This section is devoted to analyzing the improvements of b-bit minwise hashing, compared to using
64 bits for each hashed value. Throughout the paper, we use the terms “sample” and “sample size”
(denoted by k). The original minwise hashing stores each “sample” using 64 bits (as in [17]). For

b-bit minwise hashing, we store each “sample” using b bits only. Note that V ar(R̂64) and V ar(R̂M)
(the variance of the original minwise hashing) are numerically indistinguishable.

As we decrease b, the space needed for each sample will be smaller; the estimation variance at
the same sample size k, however, will increase. This variance-space trade-off can be quantified by

B(b) = b × Var
(

R̂b

)

× k, which is called the storage factor. Lower B(b) is more desirable. The

ratio
B(64)
B(b) precisely characterizes the improvements of b-bit hashing compared to using 64 bits.

Fig. 6 confirms the substantial improvements of b-bit hashing over the original minwise hashing
using 64 bits. The improvements in terms of the storage space are usually 10 (or 15) to 25-fold
when the sets are reasonably similar (i.e., when the 3-way resemblance > 0.1). When the three sets
are very similar (e.g., the top left panel), the improvement will be even 25 to 30-fold.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

R

S
to

ra
ge

 r
at

io
 (

 B
(6

4)
 /

B
(b

)
)

T = 3R

b = 2

b = 4

b = 3

b = 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

R

S
to

ra
ge

 r
at

io
 B

(6
4)

 /
B

(b
)

T = 4R

b = 2

b = 3

b = 4

b = 6

b = 2

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

R

S
to

ra
ge

 r
at

io
 B

(6
4)

 /
B

(b
)

T = 6R

b = 3

b = 2

b = 4
4

b = 2

b = 6

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

R

S
to

ra
ge

 r
at

io
 B

(6
4)

 /
B

(b
)

T = 10R

b = 3

b = 2

b = 4

b = 6

0 0.05 0.1 0.15
0

2

4

6

8

10

R

S
to

ra
ge

 r
at

io
 (

 B
(6

4)
 /

B
(b

)
)

T = 20R

b = 4

b = 3

b = 2

b = 6

0 0.01 0.02 0.03 0.04 0.05 0.06
0

1

2

3

4

5

6

7

R

S
to

ra
ge

 r
at

io
 (

 B
(6

4)
 /

B
(b

)
)

T = 50R

b = 4

b = 3

b = 2

b = 6

Figure 6:
B(64)
B(b) , the relative storage improvement of using b = 2, 3, 4, 6 bits, compared to using 64

bits. Since the variance (9) contains both R and T = R12 +R13 +R23, we compare variances using
different T/R ratios. As 3R ≤ T always, we let T = αR, for some α ≥ 3. Since T ≤ 3, we know
R ≤ 3/α. Practical applications are often interested in cases with reasonably large R values.

6 Evaluation of Accuracy

We conducted a duplicate detection experiment on a public (UCI) collection of 300,000 NYTimes
news articles. The task is to identify 3-groups with 3-way resemblance R exceeding a threshold R0.
We used a subset of the data; the total number of 3-groups is about one billion. We experimented
with b = 2, 4 and the original minwise hashing. Fig. 7 presents the precision curves for a represen-
tative set of thresholds R0’s. Just like in [35], the recall curves are not shown because they could not
differentiate estimators. These curves confirm the significant improvement of using b-bit minwise
hashing when the threshold R0 is quite high (e.g., 0.3). In fact, when R0 = 0.3, using b = 4 re-
sulted in similar precisions as using the original minwise hashing (i.e., a 64/4=16-fold reduction in
storage). Even when R0 = 0.1, using b = 4 can still achieve similar precisions as using the original
minwise hashing by only slightly increasing the sample size k.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Sample size k

P
re

ci
si

on

R
0
 = 0.1

b=2

b=4

M

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Sample size k

P
re

ci
si

on

R
0
 = 0.2

b=2

M

b=4

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Sample size k

P
re

ci
si

on

R
0
 = 0.3

b=2

M

M

4

Figure 7: Precision curves on the UCI collection of news data. The task is to retrieve news article
3-groups with resemblance R ≥ R0. For example, consider R0 = 0.2. To achieve a precision of
at least 0.8, 2-bit hashing and 4-bit hashing require about k = 500 samples and k = 260 samples
respectively, while the original minwise hashing (denoted by M) requires about 170 samples.

7 Conclusion

Computing set similarities is fundamental in many applications. In machine learning, high-
dimensional binary data are common and are equivalent to sets. This study is devoted to simul-
taneously estimating 2-way and 3-way similarities using b-bit minwise hashing. Compared to the
prior work on estimating 2-way resemblance [35], the extension to 3-way is important for many
application scenarios (as described in Sec. 1) and is technically non-trivial.

For estimating 3-way resemblance, our analysis shows that b-bit minwise hashing can normally
achieve a 10 to 25-fold improvement in the storage space required for a given estimator accuracy,
when the set similarities are not extremely low (e.g., 3-way resemblance > 0.02). Many applications
such as data cleaning and de-duplication are mainly concerned with relatively high set similarities.

For many practical applications, the reductions in storage directly translate to improvements in pro-
cessing speed as well, especially when memory latency is the main bottleneck, which, with the
advent of many-core processors, is more and more common.

Future work: We are interested in developing a b-bit version for Conditional Random Sampling
(CRS) [31, 32, 33], which requires only one permutation (instead of k permutations) and naturally
extends to non-binary data. CRS is also provably more accurate than minwise hashing for binary
data. However, the analysis for developing the b-bit version of CRS appears to be very difficult.

A Review of b-Bit Minwise Hashing for 2-Way Resemblance

Theorem 4 ([35]) Assume D is large.

P12,b = Pr

(

b
∏

i=1

1 {e1,i = e2,i} = 1

)

= C1,b + (1 − C2,b) R12

where C1,b = A1,b

r2

r1 + r2
+ A2,b

r1

r1 + r2
, C2,b = A1,b

r1

r1 + r2
+ A2,b

r2

r1 + r2
,

A1,b =
r1 [1 − r1]

2b
−1

1 − [1 − r1]
2b

, A2,b =
r2 [1 − r2]

2b
−1

1 − [1 − r2]
2b

.

If r1, r2 → 0, P12,b = 1+(2b−1)R12

2b and one can estimate R12 by
2bP̂12,b−1

2b−1
, where P̂12,b is the

empirical observation of P12,b. If r1, r2 are not small, R12 is estimated by (P̂12,b−C1,b)/(1−C2,b).

References

[1] S. Agarwal, J. Lim, L. Zelnik-Manor, P. Perona, D. Kriegman, and S. Belongie. Beyond pairwise clustering. In CVPR, 2005.

[2] M. Bendersky and W. B. Croft. Finding text reuse on the web. In WSDM, pages 262–271, Barcelona, Spain, 2009.

[3] A. Z. Broder. On the resemblance and containment of documents. In the Compression and Complexity of Sequences, pages 21–29,

Positano, Italy, 1997.

[4] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering of the web. In WWW, pages 1157 – 1166, Santa Clara,

CA, 1997.

[5] G. Buehrer and K. Chellapilla. A scalable pattern mining approach to web graph compression with communities. In WSDM, pages

95–106, Stanford, CA, 2008.

[6] O. Chapelle, P. Haffner, and V. N. Vapnik. Support vector machines for histogram-based image classification. 10(5):1055–1064, 1999.

[7] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In STOC, pages 380–388, Montreal, Quebec, Canada, 2002.

[8] S. Chaudhuri. An Overview of Query Optimization in Relational Systems. In PODS, pages 34–43, 1998.

[9] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operatior for similarity joins in data cleaning. In ICDE, 2006.

[10] S. Chaudhuri, V. Ganti, and R. Motwani. Robust identification of fuzzy duplicates. In ICDE, pages 865–876, Tokyo, Japan, 2005.

[11] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and P. Raghavan. On compressing social networks. In KDD,

pages 219–228, Paris, France, 2009.

[12] K. Church. Approximate lexicography and web search. International Journal of Lexicography, 21(3):325–336, 2008.

[13] K. Church and P. Hanks. Word association norms, mutual information and lexicography. Computational Linguistics, 16(1):22–29, 1991.

[14] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. D. Ullman, and C. Yang. Finding interesting associations without

support pruning. IEEE Trans. on Knowl. and Data Eng., 13(1), 2001.

[15] F. Diaz. Integration of News Content into Web Results. In WSDM, 2009.

[16] Y. Dourisboure, F. Geraci, and M. Pellegrini. Extraction and classification of dense implicit communities in the web graph. ACM Trans.

Web, 3(2):1–36, 2009.

[17] D. Fetterly, M. Manasse, M. Najork, and J. L. Wiener. A large-scale study of the evolution of web pages. In WWW, pages 669–678,

Budapest, Hungary, 2003.

[18] G. Forman, K. Eshghi, and J. Suermondt. Efficient detection of large-scale redundancy in enterprise file systems. SIGOPS Oper. Syst.

Rev., 43(1):84–91, 2009.

[19] M. Gamon, S. Basu, D. Belenko, D. Fisher, M. Hurst, and A. C. König. Blews: Using blogs to provide context for news articles. In AAAI

Conference on Weblogs and Social Media, 2008.

[20] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: the Complete Book. Prentice Hall, New York, NY, 2002.

[21] A. Gionis, D. Gunopulos, and N. Koudas. Efficient and tunable similar set retrieval. In SIGMOD, pages 247–258, CA, 2001.

[22] S. Gollapudi and A. Sharma. An axiomatic approach for result diversification. In WWW, pages 381–390, Madrid, Spain, 2009.

[23] M. Hein and O. Bousquet. Hilbertian metrics and positive definite kernels on probability measures. In AISTATS, pages 136–143,

Barbados, 2005.

[24] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In STOC, pages 604–613,

Dallas, TX, 1998.

[25] Y. E. Ioannidis. The history of histograms (abridged). In VLDB, 2003.

[26] Y. Jiang, C. Ngo, and J. Yang. Towards optimal bag-of-features for object categorization and semantic video retrieval. In CIVR, pages

494–501, Amsterdam, Netherlands, 2007.

[27] N. Jindal and B. Liu. Opinion spam and analysis. In WSDM, pages 219–230, Palo Alto, California, USA, 2008.

[28] K. Kalpakis and S. Tang. Collaborative data gathering in wireless sensor networks using measurement co-occurrence. Computer

Communications, 31(10):1979–1992, 2008.

[29] A. C. König, M. Gamon, and Q. Wu. Click-Through Prediction for News Queries. In SIGIR, 2009.

[30] H. Lee, R. T. Ng, and K. Shim. Power-law based estimation of set similarity join size. In PVLDB, 2009.

[31] P. Li and K. W. Church. A sketch algorithm for estimating two-way and multi-way associations. Computational Linguistics, 33(3):305–

354, 2007 (Preliminary results appeared in HLT/EMNLP 2005).

[32] P. Li, K. W. Church, and T. J. Hastie. Conditional random sampling: A sketch-based sampling technique for sparse data. In NIPS, pages

873–880, Vancouver, BC, Canada, 2006.

[33] P. Li, K. W. Church, and T. J. Hastie. One sketch for all: Theory and applications of conditional random sampling. In NIPS, Vancouver,

BC, Canada, 2008.

[34] P. Li, T. J. Hastie, and K. W. Church. Improving random projections using marginal information. In COLT, pages 635–649, Pittsburgh,

PA, 2006.

[35] P. Li and A. C. König. b-bit minwise hashing. In WWW, pages 671–680, Raleigh, NC, 2010.

[36] Ludmila, K. Eshghi, C. B. M. III, J. Tucek, and A. Veitch. Probabilistic frequent itemset mining in uncertain databases. In KDD, pages

1087–1096, Paris, France, 2009.

[37] G. S. Manku, A. Jain, and A. D. Sarma. Detecting Near-Duplicates for Web-Crawling. In WWW, Banff, Alberta, Canada, 2007.

[38] C. D. Manning and H. Schutze. Foundations of Statistical Natural Language Processing. The MIT Press, Cambridge, MA, 1999.

[39] M. Najork, S. Gollapudi, and R. Panigrahy. Less is more: sampling the neighborhood graph makes salsa better and faster. In WSDM,

pages 242–251, Barcelona, Spain, 2009.

[40] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates. In SIGMOD, pages 743–754, 2004.

[41] T. Urvoy, E. Chauveau, P. Filoche, and T. Lavergne. Tracking web spam with html style similarities. ACM Trans. Web, 2(1):1–28, 2008.

[42] X. Wang and C. Zhai. Mining term association patterns from search logs for effective query reformulation. In CIKM, pages 479–488,

Napa Valley, California, USA, 2008.

[43] D. Zhou, J. Huang, and B. Schölkopf. Beyond pairwise classification and clustering using hypergraphs. 2006.

Hashing Algorithms for Large-Scale Learning

Ping Li
Cornell University

pingli@cornell.edu

Anshumali Shrivastava
Cornell University

anshu@cs.cornell.edu

Joshua Moore
Cornell University

jlmo@cs.cornell.edu

Arnd Christian König
Microsoft Research

chrisko@microsoft.com

Abstract
Minwise hashing is a standard technique in the context of search for efficiently
computing set similarities. The recent development of b-bit minwise hashing pro-
vides a substantial improvement by storing only the lowest b bits of each hashed
value. In this paper, we demonstrate that b-bit minwise hashing can be natu-
rally integrated with linear learning algorithms such as linear SVM and logistic
regression, to solve large-scale and high-dimensional statistical learning tasks, es-
pecially when the data do not fit in memory. We compare b-bit minwise hashing
with the Count-Min (CM) and Vowpal Wabbit (VW) algorithms, which have es-
sentially the same variances as random projections. Our theoretical and empirical
comparisons illustrate that b-bit minwise hashing is significantly more accurate (at
the same storage cost) than VW (and random projections) for binary data.

1 Introduction

With the advent of the Internet, many machine learning applications are faced with very large and
inherently high-dimensional datasets, resulting in challenges in scaling up training algorithms and
storing the data. Especially in the context of search and machine translation, corpus sizes used in
industrial practice have long exceeded the main memory capacity of single machine. For example,
[33] discusses training sets with 1011 items and 109 distinct features, requiring novel algorithmic
approaches and architectures. As a consequence, there has been a renewed emphasis on scaling up
machine learning techniques by using massively parallel architectures; however, methods relying
solely on parallelism can be expensive (both with regards to hardware requirements and energy
costs) and often induce significant additional communication and data distribution overhead.

This work approaches the challenges posed by large datasets by leveraging techniques from the area
of similarity search [2], where similar increases in data sizes have made the storage and computa-
tional requirements for computing exact distances prohibitive, thus making data representations that
allow compact storage and efficient approximate similarity computation necessary.

The method of b-bit minwise hashing [26–28] is a recent progress for efficiently (in both time and
space) computing resemblances among extremely high-dimensional (e.g., 264) binary vectors. In
this paper, we show that b-bit minwise hashing can be seamlessly integrated with linear Support
Vector Machine (SVM) [13, 18, 20, 31, 35] and logistic regression solvers.

1.1 Ultra High-Dimensional Large Datasets and Memory Bottlenecks

In the context of search, a standard procedure to represent documents (e.g., Web pages) is to use
w-shingles (i.e., w contiguous words), where w ≥ 5 in several studies [6,7,14]. This procedure can
generate datasets of extremely high dimensions. For example, suppose we only consider 105 com-
mon English words. Using w = 5 may require the size of dictionary Ω to be D = |Ω| = 1025 = 283.
In practice, D = 264 often suffices, as the number of available documents may not be large enough
to exhaust the dictionary. For w-shingle data, normally only abscence/presence (0/1) information
is used, as it is known that word frequency distributions within documents approximately follow
a power-law [3], meaning that most single terms occur rarely, thereby making a w-shingle is un-
likely to occur more than once in a document. Interestingly, even when the data are not too high-
dimensional, empirical studies [8, 17, 19] achieved good performance with binary-quantized data.

When the data can fit in memory, linear SVM training is often extremely efficient after the data are
loaded into the memory. It is however often the case that, for very large datasets, the data loading

1

time dominates the computing time for solving the SVM problem [35]. A more severe problem
arises when the data can not fit in memory. This situation can be common in practice. The publicly
available webspam dataset (in LIBSVM format) needs about 24GB disk space, which exceeds the
memory capacity of many desktop PCs. Note that webspam, which contains only 350,000 docu-
ments represented by 3-shingles, is still very small compared to industry applications [33].

1.2 Our Proposal

We propose a solution which leverages b-bit minwise hashing. Our approach assumes the data
vectors are binary, high-dimensional, and relatively sparse, which is generally true of text documents
represented via shingles. We apply b-bit minwise hashing to obtain a compact representation of the
original data. In order to use the technique for efficient learning, we have to address several issues:

• We need to prove that the matrices generated by b-bit minwise hashing are positive definite,
which will provide the solid foundation for our proposed solution.

• If we use b-bit minwise hashing to estimate the resemblance, which is nonlinear, how can
we effectively convert this nonlinear problem into a linear problem?

• Compared to other hashing techniques such as random projections, Count-Min (CM)
sketch [11], or Vowpal Wabbit (VW) [32, 34], does our approach exhibits advantages?

It turns out that our proof in the next section that b-bit hashing matrices are positive definite naturally
provides the construction for converting the otherwise nonlinear SVM problem into linear SVM.

2 Review of Minwise Hashing and b-Bit Minwise Hashing

Minwise hashing [6,7] has been successfully applied to a wide range of real-world problems [4,6,7,
9, 10, 12, 15, 16, 30], for efficiently computing set similarities. Minwise hashing mainly works well
with binary data, which can be viewed either as 0/1 vectors or as sets. Given two sets, S1, S2 ⊆
Ω = {0, 1, 2, ..., D − 1}, a widely used measure of similarity is the resemblance R:

R =
|S1 ∩ S2|

|S1 ∪ S2|
=

a

f1 + f2 − a
, where f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2|. (1)

Applying a random permutation π : Ω → Ω on S1 and S2, the collision probability is simply

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|

|S1 ∪ S2|
= R. (2)

One can repeat the permutation k times: π1, π2, ..., πk to estimate R without bias. The common
practice is to store each hashed value, e.g., min(π(S1)) and min(π(S2)), using 64 bits [14]. The
storage (and computational) cost will be prohibitive in truly large-scale (industry) applications [29].
b-bit minwise hashing [27] provides a strikingly simple solution to this (storage and computational)
problem by storing only the lowest b bits (instead of 64 bits) of each hashed value.

For convenience, denote z1 = min (π (S1)) and z2 = min (π (S2)), and denote z
(b)
1 (z

(b)
2) the

integer value corresponding to the lowest b bits of of z1 (z2). For example, if z1 = 7, then z
(2)
1 = 3.

Theorem 1 [27] Assume D is large.

Pb = Pr

(

z
(b)
1 = z

(b)
2

)

= C1,b + (1 − C2,b) R (3)

r1 =
f1

D
, r2 =

f2

D
, f1 = |S1|, f2 = |S2|

C1,b = A1,b

r2

r1 + r2
+ A2,b

r1

r1 + r2
, C2,b = A1,b

r1

r1 + r2
+ A2,b

r2

r1 + r2
,

A1,b =
r1 [1 − r1]

2b
−1

1 − [1 − r1]
2b

, A2,b =
r2 [1 − r2]

2b
−1

1 − [1 − r2]
2b

.¤

This (approximate) formula (3) is remarkably accurate, even for very small D; see Figure 1 in [25].

We can then estimate Pb (and R) from k independent permutations:

R̂b =
P̂b − C1,b

1 − C2,b

, Var
(

R̂b

)

=
Var

(

P̂b

)

[1 − C2,b]
2 =

1

k

[C1,b + (1 − C2,b)R] [1 − C1,b − (1 − C2,b)R]

[1 − C2,b]
2 (4)

It turns out that our method only needs P̂b for linear learning, i.e., no need to explicitly estimate R.

2

3 Kernels from Minwise Hashing b-Bit Minwise Hashing

Definition: A symmetric n×n matrix K satisfying
∑

ij cicjKij ≥ 0, for all real vectors c is called

positive definite (PD). Note that here we do not differentiate PD from nonnegative definite.

Theorem 2 Consider n sets S1, ..., Sn ⊆ Ω = {0, 1, ..., D − 1}. Apply one permutation π to each

set. Define zi = min{π(Si)} and z
(b)
i the lowest b bits of zi. The following three matrices are PD.

1. The resemblance matrix R ∈ R
n×n, whose (i, j)-th entry is the resemblance between set

Si and set Sj: Rij =
|Si∩Sj |
|Si∪Sj |

=
|Si∩Sj |

|Si|+|Sj |−|Si∩Sj |
.

2. The minwise hashing matrix M ∈ R
n×n: Mij = 1{zi = zj}.

3. The b-bit minwise hashing matrix M
(b) ∈ R

n×n: M
(b)
ij = 1

{

z
(b)
i = z

(b)
j

}

.

Consequently, consider k independent permutations and denote M
(b)
(s) the b-bit minwise hashing

matrix generated by the s-th permutation. Then the summation
∑k

s=1 M
(b)
(s) is also PD.

Proof: A matrix A is PD if it can be written as an inner product BT
B. Because

Mij = 1{zi = zj} =

D−1
∑

t=0

1{zi = t} × 1{zj = t}, (5)

Mij is the inner product of two D-dim vectors. Thus, M is PD. Similarly, M
(b) is PD because

M
(b)
ij =

∑2b
−1

t=0 1{z
(b)
i = t} × 1{z

(b)
j = t}. R is PD because Rij = Pr{Mij = 1} = E (Mij) and

Mij is the (i, j)-th element of the PD matrix M. Note that the expectation is a linear operation. ¤

4 Integrating b-Bit Minwise Hashing with (Linear) Learning Algorithms

Linear algorithms such as linear SVM and logistic regression have become very powerful and ex-

tremely popular. Representative software packages include SVMperf [20], Pegasos [31], Bottou’s

SGD SVM [5], and LIBLINEAR [13]. Given a dataset {(xi, yi)}n
i=1, xi ∈ R

D, yi ∈ {−1, 1}. The
L2-regularized linear SVM solves the following optimization problem):

min
w

1

2
w

T
w + C

n
∑

i=1

max
{

1 − yiw
T
xi, 0

}

, (6)

and the L2-regularized logistic regression solves a similar problem:

min
w

1

2
w

T
w + C

n
∑

i=1

log
(

1 + e
−yiw

T
xi

)

. (7)

Here C > 0 is a regularization parameter. Since our purpose is to demonstrate the effectiveness of
our proposed scheme using b-bit hashing, we simply provide results for a wide range of C values
and assume that the best performance is achievable if we conduct cross-validations.

In our approach, we apply k random permutations on each feature vector xi and store the lowest b
bits of each hashed value. This way, we obtain a new dataset which can be stored using merely nbk
bits. At run-time, we expand each new data point into a 2b × k-length vector with exactly k 1’s.

For example, suppose k = 3 and the hashed values are originally {12013, 25964, 20191}, whose bi-
nary digits are {010111011101101, 110010101101100, 100111011011111}. Consider b = 2. Then
the binary digits are stored as {01, 00, 11} (which corresponds to {1, 0, 3} in decimals). At run-time,
we need to expand them into a vector of length 2bk = 12, to be {0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0},
which will be the new feature vector fed to a solver such as LIBLINEAR. Clearly, this expansion is
directly inspired by the proof that the b-bit minwise hashing matrix is PD in Theorem 2.

5 Experimental Results on Webspam Dataset

Our experiment settings closely follow the work in [35]. They conducted experiments on three
datasets, of which only the webspam dataset is public and reasonably high-dimensional (n =
350000, D = 16609143). Therefore, our experiments focus on webspam. Following [35], we
randomly selected 20% of samples for testing and used the remaining 80% samples for training.

We chose LIBLINEAR as the workhorse to demonstrate the effectiveness of our algorithm. All
experiments were conducted on workstations with Xeon(R) CPU (W5590@3.33GHz) and 48GB

3

RAM, under Windows 7 System. Thus, in our case, the original data (about 24GB in LIBSVM
format) fit in memory. In applications when the data do not fit in memory, we expect that b-bit
hashing will be even more substantially advantageous, because the hashed data are relatively very
small. In fact, our experimental results will show that for this dataset, using k = 200 and b = 8 can
achieve similar testing accuracies as using the original data. The effective storage for the reduced
dataset (with 350K examples, using k = 200 and b = 8) would be merely about 70MB.

5.1 Experimental Results on Nonlinear (Kernel) SVM

We implemented a new resemblance kernel function and tried to use LIBSVM to train an SVM using
the webspam dataset. The training time well exceeded 24 hours. Fortunately, using b-bit minswise
hashing to estimate the resemblance kernels provides a substantial improvement. For example, with
k = 150, b = 4, and C = 1, the training time is about 5185 seconds and the testing accuracy is quite
close to the best results given by LIBLINEAR on the original webspam data.

5.2 Experimental Results on Linear SVM

There is an important tuning parameter C. To capture the best performance and ensure repeatability,
we experimented with a wide range of C values (from 10−3 to 102) with fine spacings in [0.1, 10].

We experimented with k = 10 to k = 500, and b = 1, 2, 4, 6, 8, 10, and 16. Figure 1 (average)
and Figure 2 (std, standard deviation) provide the test accuracies. Figure 1 demonstrates that using
b ≥ 8 and k ≥ 200 achieves similar test accuracies as using the original data. Since our method
is randomized, we repeated every experiment 50 times. We report both the mean and std values.
Figure 2 illustrates that the stds are very small, especially with b ≥ 4. In other words, our algorithm
produces stable predictions. For this dataset, the best performances were usually achieved at C ≥ 1.

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

8
b = 10,16

svm: k = 30
Spam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6
b = 8,10,16

svm: k = 50
Spam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

Spam: Accuracy

svm: k = 100

b = 1

b = 2

b = 4

b = 8,10,16

4

6

6

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

svm: k = 150

Spam: Accuracy

b = 1

b = 2

b = 4
b = 6,8,10,16

4

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 6,8,10,16

b = 1

svm: k = 200

b = 24

b = 4

Spam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

Spam: Accuracy

svm: k = 300

b = 1

b = 2
4

b = 4
b = 6,8,10,16

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

svm: k = 400

Spam: Accuracy

b = 1

b = 2

4

b = 4b = 6,8,10,16

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

b = 1

b = 2

4

b = 6,8,10,16

C

A
cc

ur
ac

y
(%

)

svm: k = 500

Spam: Accuracy

b = 4

Figure 1: SVM test accuracy (averaged over 50 repetitions). With k ≥ 200 and b ≥ 8. b-bit
hashing achieves very similar accuracies as using the original data (dashed, red if color is available).

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

C

A
cc

ur
ac

y
(s

td
 %

)

b = 1

b = 2

b = 4

b = 6

b = 8

b = 16

10

svm: k = 50
Spam accuracy (std)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

C

A
cc

ur
ac

y
(s

td
 %

)

b = 1

b = 2

b = 4

b = 6

b = 8

b = 10,16svm: k = 100

Spam accuracy (std)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

C

A
cc

ur
ac

y
(s

td
 %

)

b = 1

b = 2

b = 4

b = 6

b = 8,10,16
svm: k = 200

Spam accuracy (std)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

b = 1

b = 2

b = 4

b = 6,8,10,16
Spam accuracy (std)

C

A
cc

ur
ac

y
(s

td
 %

)

svm: k = 500

Figure 2: SVM test accuracy (std). The standard deviations are computed from 50 repetitions.
When b ≥ 8, the standard deviations become extremely small (e.g., 0.02%).

Compared with the original training time (about 100 seconds), Figure 3 (upper panels) shows that
our method only needs about 3 seconds (near C = 1). Note that our reported training time did not
include data loading (about 12 minutes for the original data and 10 seconds for the hashed data).

Compared with the original testing time (about 150 seconds), Figure 3 (bottom panels) shows that
our method needs merely about 2 seconds. Note that the testing time includes both the data loading
time, as designed by LIBLINEAR. The efficiency of testing may be very important in practice, for
example, when the classifier is deployed in a user-facing application (such as search), while the cost
of training or preprocessing may be less critical and can be conducted off-line.

4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

svm: k = 50
Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

svm: k =100

Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

b = 16

svm: k = 200
Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Spam: Training time

b = 10

b = 16

C

T
ra

in
in

g
tim

e
(s

ec
)

svm: k = 500

10
−3

10
−2

10
−1

10
0

10
1

10
2

1
2

10

100

1000

C

T
es

tin
g

tim
e

(s
ec

)

svm: k = 50
Spam: Testing time

10
−3

10
−2

10
−1

10
0

10
1

10
2

1
2

10

100

1000

C

T
es

tin
g

tim
e

(s
ec

)

svm: k = 100
Spam: Testing time

10
−3

10
−2

10
−1

10
0

10
1

10
2

1
2

10

100

1000

C

T
es

tin
g

tim
e

(s
ec

)

svm: k = 200
Spam: Testing time

10
−3

10
−2

10
−1

10
0

10
1

10
2

1
2

10

100

1000

C

T
es

tin
g

tim
e

(s
ec

)

svm: k = 500
Spam: Testing time

Figure 3: SVM training time (upper panels) and testing time (bottom panels). The original costs
are plotted using dashed (red, if color is available) curves.

5.3 Experimental Results on Logistic Regression

Figure 4 presents the test accuracies and training time using logistic regression. Again, with k ≥ 200
and b ≥ 8, b-bit minwise hashing can achieve similar test accuracies as using the original data. The
training time is substantially reduced, from about 1000 seconds to about 30 seconds only.

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

logit: k = 50
Spam: Accuracy

b = 1

b = 2

b = 4

b = 6b = 8,10,16

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

logit: k = 100

Spam: Accuracy

b = 1

b = 2

b = 4

b = 6
b = 8,10,16

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

Spam: Accuracy

logit: k = 200

b = 6,8,10,16

b = 1

b = 2

b = 4

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

logit: k = 500

Spam: Accuracy

b = 1

b = 2

b = 4

4

b = 6,8,10,16

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

logit: k = 50

Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

logit: k = 100

Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
)

logit: k = 200

Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g
tim

e
(s

ec
) b = 16

logit: k = 500

Spam: Training time

Figure 4: Logistic regression test accuracy (upper panels) and training time (bottom panels).

In summary, it appears b-bit hashing is highly effective in reducing the data size and speeding up the
training (and testing), for both SVM and logistic regression. We notice that when using b = 16, the
training time can be much larger than using b ≤ 8. Interestingly, we find that b-bit hashing can be
easily combined with Vowpal Wabbit (VW) [34] to further reduce the training time when b is large.

6 Random Projections, Count-Min (CM) Sketch, and Vowpal Wabbit (VW)

Random projections [1, 24], Count-Min (CM) sketch [11], and Vowpal Wabbit (VW) [32, 34], as
popular hashing algorithms for estimating inner products for high-dimensional datasets, are naturally
applicable in large-scale learning. In fact, those methods are not limited to binary data. Interestingly,
the three methods all have essentially the same variances. Note that in this paper, we use ”VW“
particularly for the hashing algorithm in [34], not the influential “VW” online learning platform.

6.1 Random Projections

Denote the first two rows of a data matrix by u1, u2 ∈ R
D. The task is to estimate the inner

product a =
∑D

i=1 u1,iu2,i. The general idea is to multiply the data vectors by a random matrix

{rij} ∈ R
D×k, where rij is sampled i.i.d. from the following generic distribution with [24]

E(rij) = 0, V ar(rij) = 1, E(r3
ij) = 0, E(r4

ij) = s, s ≥ 1. (8)

Note that V ar(r2
ij) = E(r4

ij)−E2(r2
ij) = s− 1 ≥ 0. This generates two k-dim vectors, v1 and v2:

v1,j =

D
∑

i=1

u1,irij , v2,j =

D
∑

i=1

u2,irij , j = 1, 2, ..., k (9)

5

The general family of distributions (8) includes the standard normal distribution (in this case, s = 3)

and the “sparse projection” distribution specified as rij =
√

s ×

1 with prob. 1
2s

0 with prob. 1 − 1
s

−1 with prob. 1
2s

[24] provided the following unbiased estimator ârp,s of a and the general variance formula:

ârp,s =
1

k

k
∑

j=1

v1,jv2,j , E(ârp,s) = a =

D
∑

i=1

u1,iu2,i, (10)

V ar(ârp,s) =
1

k

[

D
∑

i=1

u2
1,i

D
∑

i=1

u2
2,i + a2 + (s − 3)

D
∑

i=1

u2
1,iu

2
2,i

]

(11)

which means s = 1 achieves the smallest variance. The only elementary distribution we know that
satisfies (8) with s = 1 is the two point distribution in {−1, 1} with equal probabilities.

[23] proposed an improved estimator for random projections as the solution to a cubic equation.
Because it can not be written as an inner product, that estimator can not be used for linear learning.

6.2 Count-Min (CM) Sketch and Vowpal Wabbit (VW)

Again, in this paper, “VW” always refers to the hashing algorithm in [34]. VW may be viewed as
a “bias-corrected” version of the Count-Min (CM) sketch [11]. In the original CM algorithm, the
key step is to independently and uniformly hash elements of the data vectors to k buckets and the
hashed value is the sum of the elements in the bucket. That is h(i) = j with probability 1

k
, where

j ∈ {1, 2, ..., k}. By writing Iij =

{

1 if h(i) = j
0 otherwise

, we can write the hashed data as

w1,j =

D
∑

i=1

u1,iIij , w2,j =

D
∑

i=1

u2,iIij (12)

The estimate âcm =
∑k

j=1 w1,jw2,j is (severely) biased for estimating inner products. The original

paper [11] suggested a “count-min” step for positive data, by generating multiple independent esti-
mates âcm and taking the minimum as the final estimate. That step can reduce but can not remove

the bias. Note that the bias can be easily removed by using k
k−1

(

âcm − 1
k

∑D

i=1 u1,i

∑D

i=1 u2,i

)

.

[34] proposed a creative method for bias-correction, which consists of pre-multiplying (element-
wise) the original data vectors with a random vector whose entries are sampled i.i.d. from the two-
point distribution in {−1, 1} with equal probabilities. Here, we consider the general distribution (8).
After applying multiplication and hashing on u1 and u2, the resultant vectors g1 and g2 are

g1,j =

D
∑

i=1

u1,iriIij , g2,j =

D
∑

i=1

u2,iriIij , j = 1, 2, ..., k (13)

where E(ri) = 0, E(r2
i) = 1, E(r3

i) = 0, E(r4
i) = s. We have the following Lemma.

Theorem 3

âvw,s =

k
∑

j=1

g1,jg2,j , E(âvw,s) =

D
∑

i=1

u1,iu2,i = a, (14)

V ar(âvw,s) = (s − 1)

D
∑

i=1

u2
1,iu

2
2,i +

1

k

[

D
∑

i=1

u2
1,i

D
∑

i=1

u2
2,i + a2 − 2

D
∑

i=1

u2
1,iu

2
2,i

]

¤ (15)

Interestingly, the variance (15) says we do need s = 1, otherwise the additional term (s −
1)

∑D

i=1 u2
1,iu

2
2,i will not vanish even as the sample size k → ∞. In other words, the choice of

random distribution in VW is essentially the only option if we want to remove the bias by pre-
multiplying the data vectors (element-wise) with a vector of random variables. Of course, once we
let s = 1, the variance (15) becomes identical to the variance of random projections (11).

6

7 Comparing b-Bit Minwise Hashing with VW (and Random Projections)

We implemented VW and experimented it on the same webspam dataset. Figure 5 shows that b-bit
minwise hashing is substantially more accurate (at the same sample size k) and requires significantly
less training time (to achieve the same accuracy). Basically, for 8-bit minwise hashing with k = 200
achieves similar test accuracies as VW with k = 104 ∼ 106 (note that we only stored the non-zeros).

10
1

10
2

10
3

10
4

10
5

10
6

80
82
84
86
88
90
92
94
96
98

100

C = 0.01

1,10,100

0.1

k

A
cc

ur
ac

y
(%

)

svm: VW vs b = 8 hashing

C = 0.01

C = 0.1

C = 1
10,100

Spam: Accuracy

10
1

10
2

10
3

10
4

10
5

10
6

80
82
84
86
88
90
92
94
96
98

100

k

A
cc

ur
ac

y
(%

)

1

C = 0.01

C = 0.1

C = 1
10

C = 0.01

C = 0.1

10,100

logit: VW vs b = 8 hashing

Spam: Accuracy

100

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

k

T
ra

in
in

g
tim

e
(s

ec
)

C = 100

C = 10

C = 1,0.1,0.01
C = 100

C = 10

C = 1,0.1,0.01

Spam: Training time

svm: VW vs b = 8 hashing

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

k

T
ra

in
in

g
tim

e
(s

ec
)

C = 0.01

10,1.0,0.1

100

logit: VW vs b = 8 hashing
Spam: Training time

C = 0.1,0.01

C = 100,10,1

Figure 5: The dashed (red if color is available) curves represent b-bit minwise hashing results (only
for k ≤ 500) while solid curves for VW. We display results for C = 0.01, 0.1, 1, 10, 100.

This empirical finding is not surprising, because the variance of b-bit hashing is usually substantially
smaller than the variance of VW (and random projections). In the technical report (arXiv:1106.0967,
which also includes the complete proofs of the theorems presented in this paper), we show that, at
the same storage cost, b-bit hashing usually improves VW by 10- to 100-fold, by assuming each
sample of VW needs 32 bits to store. Of course, even if VW only stores each sample using 16 bits,
an improvement of 5- to 50-fold would still be very substantial.

There is one interesting issue here. Unlike random projections (and minwise hashing), VW is a
sparsity-preserving algorithm, meaning that in the resultant sample vector of length k, the number
of non-zeros will not exceed the number of non-zeros in the original vector. In fact, it is easy to see

that the fraction of zeros in the resultant vector would be (at least)
(

1 − 1
k

)c ≈ exp
(

− c
k

)

, where c
is the number of non-zeros in the original data vector. In this paper, we mainly focus on the scenario
in which c ≫ k, i.e., we use b-bit minwise hashing or VW for the purpose of data reduction.

However, in some cases, we care about c ≪ k, because VW is also an excellent tool for compact
indexing. In fact, our b-bit minwise hashing scheme for linear learning may face such an issue.

8 Combining b-Bit Minwise Hashing with VW

In Figures 3 and 4, when b = 16, the training time becomes substantially larger than b ≤ 8. Recall
that in the run-time, we expand the b-bit minwise hashed data to sparse binary vectors of length 2bk
with exactly k 1’s. When b = 16, the vectors are very sparse. On the other hand, once we have
expanded the vectors, the task is merely computing inner products, for which we can use VW.

Therefore, in the run-time, after we have generated the sparse binary vectors of length 2bk, we hash
them using VW with sample size m (to differentiate from k). How large should m be? Theorem 4

may provide an insight. Recall Section 2 provides the estimator, denoted by R̂b, of the resemblance
R, using b-bit minwise hashing. Now, suppose we first apply VW hashing with size m on the binary
vector of length 2bk before estimating R, which will introduce some additional randomness. We

denote the new estimator by R̂b,vw. Theorem 4 provides its theoretical variance.

10
−3

10
−2

10
−1

10
0

10
1

10
2

85

90

95

100

0

1

2
3

8

C

A
cc

ur
ac

y
(%

)

SVM: 16−bit hashing + VW, k = 200

Spam:Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

85

90

95

100

C

A
cc

ur
ac

y
(%

)

1

2
3

8

0

Logit: 16−bit hashing +VW, k = 200

Spam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

0

1 8

C

T
ra

in
in

g
tim

e
(s

ec
)

Spam:Training Time

SVM: 16−bit hashing + VW, k = 200

1

2

8

3

0

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

C

T
ra

in
in

g
tim

e
(s

ec
)

1

8

Logit: 16−bit hashing +VW, k = 200

Spam: Training Time

8

0

0

Figure 6: We apply VW hashing on top of the binary vectors (of length 2bk) generated by b-bit
hashing, with size m = 20k, 21k, 22k, 23k, 28k, for k = 200 and b = 16. The numbers on the solid
curves (0, 1, 2, 3, 8) are the exponents. The dashed (red if color if available) curves are the results
from only using b-bit hashing. When m = 28k, this method achieves similar test accuracies (left
panels) while substantially reducing the training time (right panels).

7

Theorem 4

Var
(

R̂b,vw

)

= V ar
(

R̂b

)

+
1

m

1

[1 − C2,b]
2

(

1 + P 2
b − Pb(1 + Pb)

k

)

, (16)

where V ar
(

R̂b

)

= 1
k

Pb(1−Pb)

[1−C2,b]
2 is given by (4) and C2,b is the constant defined in Theorem 1. ¤

Compared to the original variance V ar
(

R̂b

)

, the additional term in (16) can be relatively large, if

m is small. Therefore, we should choose m ≫ k and m ≪ 2bk. If b = 16, then m = 28k may be a
good trade-off. Figure 8 provides an empirical study to verify this intuition.

9 Limitations

While using b-bit minwise hashing for training linear algorithms is successful on the webspam
dataset, it is important to understand the following three major limitations of the algorithm:

(A): Our method is designed for binary (0/1) sparse data. (B): Our method requires an expensive
preprocessing step for generating k permutations of the data. For most applications, we expect the
preprocessing cost is not a major issue because the preprocessing can be conducted off-line (or com-
bined with the data-collection step) and is easily parallelizable. However, even if the speed is not a
concern, the energy consumption might be an issue, especially considering (b-bit) minwise hashing
is mainly used for industry applications. In addition, testing an new unprocessed data vector (e.g.,
a new document) will be expensive. (C): Our method performs only reasonably well in terms of
dimension reduction. The processed data need to be mapped into binary vectors in 2b × k dimen-
sions, which is usually not small. (Note that the storage cost is just bk bits.) For example, for the
webspam dataset, using b = 8 and k = 200 seems to suffice and 28 × 200 = 51200 is quite large,
although it is much smaller than the original dimension of 16 million. It would be desirable if we
can further reduce the dimension, because the dimension determines the storage cost of the model
and (moderately) increases the training time for batch learning algorithms such as LIBLINEAR.

In hopes of fixing the above limitations, we experimented with an implementation using another
hashing technique named Conditional Random Sampling (CRS) [21, 22], which is not limited to
binary data and requires only one permutation of the original data (i.e., no expensive preprocessing).
We achieved some limited success. For example, CRS compares favorably to VW in terms of stor-
age (to achieve the same accuracy) on the webspam dataset. However, so far CRS can not compete
with b-bit minwise hashing for linear learning (in terms of training speed, storage cost, and model
size). The reason is because even though the estimator of CRS is an inner product, the normaliza-
tion factors (i.e, the effective sample size of CRS) to ensure unbiased estimates substantially differ
pairwise (which is a significant advantage in other applications). In our implementation, we could
not use fully correct normalization factors, which lead to severe bias of the inner product estimates
and less than satisfactory performance of linear learning compared to b-bit minwise hashing.

10 Conclusion

As data sizes continue to grow faster than the memory and computational power, statistical learning
tasks in industrial practice are increasingly faced with training datasets that exceed the resources on
a single server. A number of approaches have been proposed that address this by either scaling out
the training process or partitioning the data, but both solutions can be expensive.

In this paper, we propose a compact representation of sparse, binary data sets based on b-bit minwise
hashing, which can be naturally integrated with linear learning algorithms such as linear SVM and
logistic regression, leading to dramatic improvements in training time and/or resource requirements.
We also compare b-bit minwise hashing with the Count-Min (CM) sketch and Vowpal Wabbit (VW)
algorithms, which, according to our analysis, all have (essentially) the same variances as random
projections [24]. Our theoretical and empirical comparisons illustrate that b-bit minwise hashing is
significantly more accurate (at the same storage) for binary data. There are various limitations (e.g.,
expensive preprocessing) in our proposed method, leaving ample room for future research.

Acknowledgement

This work is supported by NSF (DMS-0808864), ONR (YIP-N000140910911), and a grant from
Microsoft. We thank John Langford and Tong Zhang for helping us better understand the VW hash-
ing algorithm, and Chih-Jen Lin for his patient explanation of LIBLINEAR package and datasets.

8

References

[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of Computer and System

Sciences, 66(4):671–687, 2003.

[2] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In Commun.

ACM, volume 51, pages 117–122, 2008.

[3] Harald Baayen. Word Frequency Distributions, volume 18 of Text, Speech and Language Technology. Kulver Academic Publishers,

2001.

[4] Michael Bendersky and W. Bruce Croft. Finding text reuse on the web. In WSDM, pages 262–271, Barcelona, Spain, 2009.

[5] Leon Bottou. http://leon.bottou.org/projects/sgd.

[6] Andrei Z. Broder. On the resemblance and containment of documents. In the Compression and Complexity of Sequences, pages 21–29,

Positano, Italy, 1997.

[7] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syntactic clustering of the web. In WWW, pages 1157 –

1166, Santa Clara, CA, 1997.

[8] Olivier Chapelle, Patrick Haffner, and Vladimir N. Vapnik. Support vector machines for histogram-based image classification. IEEE

Trans. Neural Networks, 10(5):1055–1064, 1999.

[9] Ludmila Cherkasova, Kave Eshghi, Charles B. Morrey III, Joseph Tucek, and Alistair C. Veitch. Applying syntactic similarity algorithms

for enterprise information management. In KDD, pages 1087–1096, Paris, France, 2009.

[10] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessandro Panconesi, and Prabhakar Raghavan. On com-

pressing social networks. In KDD, pages 219–228, Paris, France, 2009.

[11] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and its applications. Journal of

Algorithm, 55(1):58–75, 2005.

[12] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. Extraction and classification of dense implicit communities in the web graph.

ACM Trans. Web, 3(2):1–36, 2009.

[13] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A library for large linear classification.

Journal of Machine Learning Research, 9:1871–1874, 2008.

[14] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet L. Wiener. A large-scale study of the evolution of web pages. In WWW, pages

669–678, Budapest, Hungary, 2003.

[15] George Forman, Kave Eshghi, and Jaap Suermondt. Efficient detection of large-scale redundancy in enterprise file systems. SIGOPS

Oper. Syst. Rev., 43(1):84–91, 2009.

[16] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result diversification. In WWW, pages 381–390, Madrid, Spain,

2009.

[17] Matthias Hein and Olivier Bousquet. Hilbertian metrics and positive definite kernels on probability measures. In AISTATS, pages

136–143, Barbados, 2005.

[18] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and S. Sundararajan. A dual coordinate descent method for large-scale

linear svm. In Proceedings of the 25th international conference on Machine learning, ICML, pages 408–415, 2008.

[19] Yugang Jiang, Chongwah Ngo, and Jun Yang. Towards optimal bag-of-features for object categorization and semantic video retrieval. In

CIVR, pages 494–501, Amsterdam, Netherlands, 2007.

[20] Thorsten Joachims. Training linear svms in linear time. In KDD, pages 217–226, Pittsburgh, PA, 2006.

[21] Ping Li and Kenneth W. Church. Using sketches to estimate associations. In HLT/EMNLP, pages 708–715, Vancouver, BC, Canada,

2005 (The full paper appeared in Commputational Linguistics in 2007).

[22] Ping Li, Kenneth W. Church, and Trevor J. Hastie. Conditional random sampling: A sketch-based sampling technique for sparse data. In

NIPS, pages 873–880, Vancouver, BC, Canada, 2006 (Newer results appeared in NIPS 2008.

[23] Ping Li, Trevor J. Hastie, and Kenneth W. Church. Improving random projections using marginal information. In COLT, pages 635–649,

Pittsburgh, PA, 2006.

[24] Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very sparse random projections. In KDD, pages 287–296, Philadelphia, PA, 2006.

[25] Ping Li and Arnd Christian König. Theory and applications b-bit minwise hashing. In Commun. ACM, 2011.

[26] Ping Li and Arnd Christian König. Accurate estimators for improving minwise hashing and b-bit minwise hashing. Technical report,

2011 (arXiv:1108.0895).

[27] Ping Li and Arnd Christian König. b-bit minwise hashing. In WWW, pages 671–680, Raleigh, NC, 2010.

[28] Ping Li, Arnd Christian König, and Wenhao Gui. b-bit minwise hashing for estimating three-way similarities. In NIPS, Vancouver, BC,

2010.

[29] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. Detecting Near-Duplicates for Web-Crawling. In WWW, Banff, Alberta,

Canada, 2007.

[30] Marc Najork, Sreenivas Gollapudi, and Rina Panigrahy. Less is more: sampling the neighborhood graph makes salsa better and faster.

In WSDM, pages 242–251, Barcelona, Spain, 2009.

[31] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In ICML, pages

807–814, Corvalis, Oregon, 2007.

[32] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, and S.V.N. Vishwanathan. Hash kernels for structured data.

Journal of Machine Learning Research, 10:2615–2637, 2009.

[33] Simon Tong. Lessons learned developing a practical large scale machine learning system.

http://googleresearch.blogspot.com/2010/04/lessons-learned-developing-practical.html, 2008.

[34] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature hashing for large scale multitask

learning. In ICML, pages 1113–1120, 2009.

[35] Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin. Large linear classification when data cannot fit in memory. In KDD,

pages 833–842, 2010.

9

One Permutation Hashing

Ping Li
Department of Statistical Science

Cornell University

Art B Owen
Department of Statistics

Stanford University

Cun-Hui Zhang
Department of Statistics

Rutgers University

Abstract
Minwise hashing is a standard procedure in the context of search, for efficiently
estimating set similarities in massive binary data such as text. Recently, b-bit
minwise hashing has been applied to large-scale learning and sublinear time near-
neighbor search. The major drawback of minwise hashing is the expensive pre-
processing, as the method requires applying (e.g.,) k = 200 to 500 permutations
on the data. This paper presents a simple solution called one permutation hashing.
Conceptually, given a binary data matrix, we permute the columns once and divide
the permuted columns evenly into k bins; and we store, for each data vector, the
smallest nonzero location in each bin. The probability analysis illustrates that this
one permutation scheme should perform similarly to the original (k-permutation)
minwise hashing. Our experiments with training SVM and logistic regression con-
firm that one permutation hashing can achieve similar (or even better) accuracies
compared to the k-permutation scheme. See more details in arXiv:1208.1259.

1 Introduction

Minwise hashing [4, 3] is a standard technique in the context of search, for efficiently computing
set similarities. Recently, b-bit minwise hashing [18, 19], which stores only the lowest b bits of
each hashed value, has been applied to sublinear time near neighbor search [22] and learning [16],
on large-scale high-dimensional binary data (e.g., text). A drawback of minwise hashing is that it
requires a costly preprocessing step, for conducting (e.g.,) k = 200 ∼ 500 permutations on the data.

1.1 Massive High-Dimensional Binary Data

In the context of search, text data are often processed to be binary in extremely high dimensions. A
standard procedure is to represent documents (e.g., Web pages) using w-shingles (i.e., w contiguous
words), where w ≥ 5 in several studies [4, 8]. This means the size of the dictionary needs to be
substantially increased, from (e.g.,) 105 common English words to 105w “super-words”. In current
practice, it appears sufficient to set the total dimensionality to be D = 264, for convenience. Text
data generated by w-shingles are often treated as binary. The concept of shingling can be naturally
extended to Computer Vision, either at pixel level (for aligned images) or at Visual feature level [23].

In machine learning practice, the use of extremely high-dimensional data has become common. For
example, [24] discusses training datasets with (on average) n = 1011 items and D = 109 distinct
features. [25] experimented with a dataset of potentially D = 16 trillion (1.6×1013) unique features.

1.2 Minwise Hashing and b-Bit Minwise Hashing

Minwise hashing was mainly designed for binary data. A binary (0/1) data vector can be viewed as
a set (locations of the nonzeros). Consider sets Si ⊆ Ω = {0, 1, 2, ..., D − 1}, where D, the size of
the space, is often set as D = 264 in industrial applications. The similarity between two sets, S1 and
S2, is commonly measured by the resemblance, which is a version of the normalized inner product:

R =
|S1 ∩ S2|

|S1 ∪ S2|
=

a

f1 + f2 − a
, where f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2| (1)

For large-scale applications, the cost of computing resemblances exactly can be prohibitive in time,
space, and energy-consumption. The minwise hashing method was proposed for efficient computing
resemblances. The method requires applying k independent random permutations on the data.

Denote π a random permutation: π : Ω → Ω. The hashed values are the two minimums of π(S1)
and π(S2). The probability at which the two hashed values are equal is

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|

|S1 ∪ S2|
= R (2)

1

One can then estimate R from k independent permutations, π1, ..., πk:

R̂M =
1

k

k
∑

j=1

1{min(πj(S1)) = min(πj(S2))}, Var
(

R̂M

)

=
1

k
R(1 − R) (3)

Because the indicator function 1{min(πj(S1)) = min(πj(S2))} can be written as an inner product
between two binary vectors (each having only one 1) in D dimensions [16]:

1{min(πj(S1)) = min(πj(S2))} =

D−1
∑

i=0

1{min(πj(S1)) = i} × 1{min(πj(S2)) = i} (4)

we know that minwise hashing can be potentially used for training linear SVM and logistic regres-
sion on high-dimensional binary data by converting the permuted data into a new data matrix in
D × k dimensions. This of course would not be realistic if D = 264.

The method of b-bit minwise hashing [18, 19] provides a simple solution by storing only the lowest
b bits of each hashed data, reducing the dimensionality of the (expanded) hashed data matrix to just
2b × k. [16] applied this idea to large-scale learning on the webspam dataset and demonstrated that
using b = 8 and k = 200 to 500 could achieve very similar accuracies as using the original data.

1.3 The Cost of Preprocessing and Testing

Clearly, the preprocessing of minwise hashing can be very costly. In our experiments, loading the
webspam dataset (350,000 samples, about 16 million features, and about 24GB in Libsvm/svmlight
(text) format) used in [16] took about 1000 seconds when the data were stored in text format, and
took about 150 seconds after we converted the data into binary. In contrast, the preprocessing cost for
k = 500 was about 6000 seconds. Note that, compared to industrial applications [24], the webspam
dataset is very small. For larger datasets, the preprocessing step will be much more expensive.

In the testing phrase (in search or learning), if a new data point (e.g., a new document or a new
image) has not been processed, then the total cost will be expensive if it includes the preprocessing.
This may raise significant issues in user-facing applications where the testing efficiency is crucial.

Intuitively, the standard practice of minwise hashing ought to be very “wasteful” in that all the
nonzero elements in one set are scanned (permuted) but only the smallest one will be used.

1.4 Our Proposal: One Permutation Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

1

0

0

1

1

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

1 2 3 4

π(S
1
):

π(S
2
):

π(S
3
):

Figure 1: Consider S1, S2, S3 ⊆ Ω = {0, 1, ..., 15} (i.e., D = 16). We apply one permutation π on the
sets and present π(S1), π(S2), and π(S3) as binary (0/1) vectors, where π(S1) = {2, 4, 7, 13}, π(S2) =
{0, 6, 13}, and π(S3) = {0, 1, 10, 12}. We divide the space Ω evenly into k = 4 bins, select the smallest
nonzero in each bin, and re-index the selected elements as: [2, 0, ∗, 1], [0, 2, ∗, 1], and [0, ∗, 2, 0]. For
now, we use ‘*’ for empty bins, which occur rarely unless the number of nonzeros is small compared to k.

As illustrated in Figure 1, the idea of one permutation hashing is simple. We view sets as 0/1 vectors
in D dimensions so that we can treat a collection of sets as a binary data matrix in D dimensions.
After we permute the columns (features) of the data matrix, we divide the columns evenly into k
parts (bins) and we simply take, for each data vector, the smallest nonzero element in each bin.

In the example in Figure 1 (which concerns 3 sets), the sample selected from π(S1) is [2, 4, ∗, 13],
where we use ’*’ to denote an empty bin, for the time being. Since only want to compare elements
with the same bin number (so that we can obtain an inner product), we can actually re-index the
elements of each bin to use the smallest possible representations. For example, for π(S1), after
re-indexing, the sample [2, 4, ∗, 13] becomes [2 − 4 × 0, 4 − 4 × 1, ∗, 13 − 4 × 3] = [2, 0, ∗, 1].

We will show that empty bins occur rarely unless the total number of nonzeros for some set is small
compared to k, and we will present strategies on how to deal with empty bins should they occur.

2

1.5 Advantages of One Permutation Hashing

Reducing k (e.g., 500) permutations to just one permutation (or a few) is much more computationally
efficient. From the perspective of energy consumption, this scheme is desirable, especially consid-
ering that minwise hashing is deployed in the search industry. Parallel solutions (e.g., GPU [17]),
which require additional hardware and software implementation, will not be energy-efficient.

In the testing phase, if a new data point (e.g., a new document or a new image) has to be first pro-
cessed with k permutations, then the testing performance may not meet the demand in, for example,
user-facing applications such as search or interactive visual analytics.

One permutation hashing should be easier to implement, from the perspective of random number
generation. For example, if a dataset has one billion features (D = 109), we can simply generate a
“permutation vector” of length D = 109, the memory cost of which (i.e., 4GB) is not significant.
On the other hand, it would not be realistic to store a “permutation matrix” of size D×k if D = 109

and k = 500; instead, one usually has to resort to approximations such as universal hashing [5].
Universal hashing often works well in practice although theoretically there are always worst cases.

One permutation hashing is a better matrix sparsification scheme. In terms of the original binary data
matrix, the one permutation scheme simply makes many nonzero entries be zero, without further
“damaging” the matrix. Using the k-permutation scheme, we store, for each permutation and each
row, only the first nonzero and make all the other nonzero entries be zero; and then we have to
concatenate k such data matrices. This significantly changes the structure of the original data matrix.

1.6 Related Work

One of the authors worked on another “one permutation” scheme named Conditional Random Sam-
pling (CRS) [13, 14] since 2005. Basically, CRS continuously takes the bottom-k nonzeros after
applying one permutation on the data, then it uses a simple “trick” to construct a random sample for
each pair with the effective sample size determined at the estimation stage. By taking the nonzeros
continuously, however, the samples are no longer “aligned” and hence we can not write the esti-
mator as an inner product in a unified fashion. [16] commented that using CRS for linear learning
does not produce as good results compared to using b-bit minwise hashing. Interestingly, in the
original “minwise hashing” paper [4] (we use quotes because the scheme was not called “minwise
hashing” at that time), only one permutation was used and a sample was the first k nonzeros after
the permutation. Then they quickly moved to the k-permutation minwise hashing scheme [3].

We are also inspired by the work on very sparse random projections [15] and very sparse stable
random projections [12]. The regular random projection method also has the expensive prepro-
cessing cost as it needs a large number of projections. [15, 12] showed that one can substan-
tially reduce the preprocessing cost by using an extremely sparse projection matrix. The pre-
processing cost of very sparse random projections can be as small as merely doing one projec-
tion. See www.stanford.edu/group/mmds/slides2012/s-pli.pdf for the experi-
mental results on clustering/classification/regression using very sparse random projections.

This paper focuses on the “fixed-length” scheme as shown in Figure 1. The technical report
(arXiv:1208.1259) also describes a “variable-length” scheme. Two schemes are more or less equiv-
alent, although the fixed-length scheme is more convenient to implement (and it is slightly more
accurate). The variable-length hashing scheme is to some extent related to the Count-Min (CM)
sketch [6] and the Vowpal Wabbit (VW) [21, 25] hashing algorithms.

2 Applications of Minwise Hashing on Efficient Search and Learning

In this section, we will briefly review two important applications of the k-permutation b-bit minwise
hashing: (i) sublinear time near neighbor search [22], and (ii) large-scale linear learning [16].

2.1 Sublinear Time Near Neighbor Search

The task of near neighbor search is to identify a set of data points which are “most similar” to
a query data point. Developing efficient algorithms for near neighbor search has been an active
research topic since the early days of modern computing (e.g, [9]). In current practice, methods
for approximate near neighbor search often fall into the general framework of Locality Sensitive
Hashing (LSH) [10, 1]. The performance of LSH largely depends on its underlying implementation.
The idea in [22] is to directly use the bits from b-bit minwise hashing to construct hash tables.

3

Specifically, we hash the data points using k random permutations and store each hash value using
b bits. For each data point, we concatenate the resultant B = bk bits as a signature (e.g., bk = 16).
This way, we create a table of 2B buckets and each bucket stores the pointers of the data points
whose signatures match the bucket number. In the testing phrase, we apply the same k permutations
to a query data point to generate a bk-bit signature and only search data points in the corresponding
bucket. Since using only one table will likely miss many true near neighbors, as a remedy, we
independently generate L tables. The query result is the union of data points retrieved in L tables.

00 10

11 10
11 11

00 00
00 01

Index Data Points

11 01

(empty)

6, 110, 143
 3, 38, 217

 5, 14, 206
31, 74, 153
 21, 142, 329

00 10

11 10
11 11

00 00
00 01

Index Data Points

11 01

6 ,15, 26, 79
33, 489

7, 49, 208

3, 14, 32, 97
11, 25, 99
8, 159, 331

Figure 2: An example of hash tables, with b = 2, k = 2, and L = 2.

Figure 2 provides an example with b = 2 bits, k = 2 permutations, and L = 2 tables. The size of
each hash table is 24. Given n data points, we apply k = 2 permutations and store b = 2 bits of
each hashed value to generate n (4-bit) signatures L times. Consider data point 6. For Table 1 (left
panel of Figure 2), the lowest b-bits of its two hashed values are 00 and 00 and thus its signature
is 0000 in binary; hence we place a pointer to data point 6 in bucket number 0. For Table 2 (right
panel of Figure 2), we apply another k = 2 permutations. This time, the signature of data point 6
becomes 1111 in binary and hence we place it in the last bucket. Suppose in the testing phrase, the
two (4-bit) signatures of a new data point are 0000 and 1111, respectively. We then only search for
the near neighbors in the set {6, 15, 26, 79, 110, 143}, instead of the original set of n data points.

2.2 Large-Scale Linear Learning

The recent development of highly efficient linear learning algorithms is a major breakthrough. Pop-
ular packages include SVMperf [11], Pegasos [20], Bottou’s SGD SVM [2], and LIBLINEAR [7].

Given a dataset {(xi, yi)}
n
i=1, xi ∈ R

D, yi ∈ {−1, 1}, the L2-regularized logistic regression solves
the following optimization problem (where C > 0 is the regularization parameter):

min
w

1

2
w

T
w + C

n
∑

i=1

log
(

1 + e−yiw
T
xi

)

, (5)

The L2-regularized linear SVM solves a similar problem:

min
w

1

2
w

T
w + C

n
∑

i=1

max
{

1 − yiw
T
xi, 0

}

, (6)

In [16], they apply k random permutations on each (binary) feature vector xi and store the lowest
b bits of each hashed value, to obtain a new dataset which can be stored using merely nbk bits. At
run-time, each new data point has to be expanded into a 2b × k-length vector with exactly k 1’s.

To illustrate this simple procedure, [16] provided a toy example with k = 3 permutations. Sup-
pose for one data vector, the hashed values are {12013, 25964, 20191}, whose binary digits
are respectively {010111011101101, 110010101101100, 100111011011111}. Using b = 2 bits,
the binary digits are stored as {01, 00, 11} (which corresponds to {1, 0, 3} in decimals). At
run-time, the (b-bit) hashed data are expanded into a new feature vector of length 2bk = 12:
{0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0}. The same procedure is then applied to all n feature vectors.

Clearly, in both applications (near neighbor search and linear learning), the hashed data have to be
“aligned” in that only the hashed data generated from the same permutation are interacted. Note
that, with our one permutation scheme as in Figure 1, the hashed data are indeed aligned.

3 Theoretical Analysis of the One Permutation Scheme

This section presents the probability analysis to provide a rigorous foundation for one permutation
hashing as illustrated in Figure 1. Consider two sets S1 and S2. We first introduce two definitions,

4

for the number of “jointly empty bins” and the number of “matched bins,” respectively:

Nemp =

k
∑

j=1

Iemp,j , Nmat =

k
∑

j=1

Imat,j (7)

where Iemp,j and Imat,j are defined for the j-th bin, as

Iemp,j =

{

1 if both π(S1) and π(S2) are empty in the j-th bin
0 otherwise

(8)

Imat,j =

{

1 if both π(S1) and π(S1) are not empty and the smallest element of π(S1)
matches the smallest element of π(S2), in the j-th bin

0 otherwise
(9)

Recall the notation: f1 = |S1|, f2 = |S2|, a = |S1∩S2|. We also use f = |S1∪S2| = f1 +f2−a.

Lemma 1

Pr (Nemp = j) =

k−j
∑

s=0

(−1)s k!

j!s!(k − j − s)!

f−1
∏

t=0

D
(

1 − j+s
k

)

− t

D − t
, 0 ≤ j ≤ k − 1 (10)

Assume D
(

1 − 1
k

)

≥ f = f1 + f2 − a.

E (Nemp)

k
=

f−1
∏

j=0

D
(

1 − 1
k

)

− j

D − j
≤

(

1 −
1

k

)f

(11)

E (Nmat)

k
= R

(

1 −
E (Nemp)

k

)

= R

1 −

f−1
∏

j=0

D
(

1 − 1
k

)

− j

D − j

 (12)

Cov (Nmat, Nemp) ≤ 0 ¤ (13)

In practical scenarios, the data are often sparse, i.e., f = f1 + f2 − a ≪ D. In this case, the upper

bound (11)
(

1 − 1
k

)f
is a good approximation to the true value of

E(Nemp)
k . Since

(

1 − 1
k

)f
≈

e−f/k, we know that the chance of empty bins is small when f ≫ k. For example, if f/k = 5 then
(

1 − 1
k

)f
≈ 0.0067. For practical applications, we would expect that f ≫ k (for most data pairs),

otherwise hashing probably would not be too useful anyway. This is why we do not expect empty
bins will significantly impact (if at all) the performance in practical settings.

Lemma 2 shows the following estimator R̂mat of the resemblance is unbiased:

Lemma 2

R̂mat =
Nmat

k − Nemp
, E

(

R̂mat

)

= R (14)

V ar
(

R̂mat

)

= R(1 − R)

(

E

(

1

k − Nemp

)(

1 +
1

f − 1

)

−
1

f − 1

)

(15)

E

(

1

k − Nemp

)

=

k−1
∑

j=0

Pr (Nemp = j)

k − j
≥

1

k − E(Nemp)
¤ (16)

The fact that E
(

R̂mat

)

= R may seem surprising as in general ratio estimators are not unbiased.

Note that k−Nemp > 0, because we assume the original data vectors are not completely empty (all-

zero). As expected, when k ≪ f = f1 + f2 − a, Nemp is essentially zero and hence V ar
(

R̂mat

)

≈
R(1−R)

k
. In fact, V ar

(

R̂mat

)

is a bit smaller than R(1−R)
k

, especially for large k.

It is probably not surprising that our one permutation scheme (slightly) outperforms the original
k-permutation scheme (at merely 1/k of the preprocessing cost), because one permutation hashing,
which is “sampling-without-replacement”, provides a better strategy for matrix sparsification.

5

4 Strategies for Dealing with Empty Bins

In general, we expect that empty bins should not occur often because E(Nemp)/k ≈ e−f/k, which
is very close to zero if f/k > 5. (Recall f = |S1 ∪ S2|.) If the goal of using minwise hashing is for
data reduction, i.e., reducing the number of nonzeros, then we would expect that f ≫ k anyway.

Nevertheless, in applications where we need the estimators to be inner products, we need strategies
to deal with empty bins in case they occur. Fortunately, we realize a (in retrospect) simple strategy
which can be nicely integrated with linear learning algorithms and performs well.

0 2000 4000 6000 8000 10000
0

1

2

3

4
x 10

4

nonzeros

F
re

qu
en

cy

Webspam

Figure 3: Histogram of the numbers of nonzeros
in the webspam dataset (350,000 samples).

Figure 3 plots the histogram of the numbers of
nonzeros in the webspam dataset, which has 350,000
samples. The average number of nonzeros is about
4000 which should be much larger than k (e.g., 500)
for the hashing procedure. On the other hand, about
10% (or 2.8%) of the samples have < 500 (or <
200) nonzeros. Thus, we must deal with empty bins
if we do not want to exclude those data points. For

example, if f = k = 500, then Nemp ≈ e−f/k =
0.3679, which is not small.

The strategy we recommend for linear learning is zero coding, which is tightly coupled with the
strategy of hashed data expansion [16] as reviewed in Sec. 2.2. More details will be elaborated in
Sec. 4.2. Basically, we can encode “*” as “zero” in the expanded space, which means Nmat will
remain the same (after taking the inner product in the expanded space). This strategy, which is
sparsity-preserving, essentially corresponds to the following modified estimator:

R̂
(0)
mat =

Nmat
√

k − N
(1)
emp

√

k − N
(2)
emp

(17)

where N
(1)
emp =

∑k
j=1 I

(1)
emp,j and N

(2)
emp =

∑k
j=1 I

(2)
emp,j are the numbers of empty bins in π(S1)

and π(S2), respectively. This modified estimator makes sense for a number of reasons.

Basically, since each data vector is processed and coded separately, we actually do not know Nemp

(the number of jointly empty bins) until we see both π(S1) and π(S2). In other words, we can not

really compute Nemp if we want to use linear estimators. On the other hand, N
(1)
emp and N

(2)
emp are

always available. In fact, the use of

√

k − N
(1)
emp

√

k − N
(2)
emp in the denominator corresponds to the

normalizing step which is needed before feeding the data to a solver for SVM or logistic regression.

When N
(1)
emp = N

(2)
emp = Nemp, (17) is equivalent to the original R̂mat. When two original vectors

are very similar (e.g., large R), N
(1)
emp and N

(2)
emp will be close to Nemp. When two sets are highly

unbalanced, using (17) will overestimate R; however, in this case, Nmat will be so small that the
absolute error will not be large.

4.1 The m-Permutation Scheme with 1 < m ≪ k

If one would like to further (significantly) reduce the chance of the occurrences of empty bins,
here we shall mention that one does not really have to strictly follow “one permutation,” since one
can always conduct m permutations with k′ = k/m and concatenate the hashed data. Once the
preprocessing is no longer the bottleneck, it matters less whether we use 1 permutation or (e.g.,)
m = 3 permutations. The chance of having empty bins decreases exponentially with increasing m.

4.2 An Example of The “Zero Coding” Strategy for Linear Learning

Sec. 2.2 reviewed the data-expansion strategy used by [16] for integrating b-bit minwise hashing
with linear learning. We will adopt a similar strategy with modifications for considering empty bins.

We use a similar example as in Sec. 2.2. Suppose we apply our one permutation hashing scheme and
use k = 4 bins. For the first data vector, the hashed values are [12013, 25964, 20191, ∗] (i.e., the
4-th bin is empty). Suppose again we use b = 2 bits. With the “zero coding” strategy, our procedure

6

is summarized as follows:

Original hashed values (k = 4) : 12013 25964 20191 ∗
Original binary representations : 010111011101101 110010101101100 100111011011111 ∗
Lowest b = 2 binary digits : 01 00 11 ∗
Expanded 2b = 4 binary digits : 0010 0001 1000 0000

New feature vector fed to a solver :
1√

4 − 1
× [0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0]

We apply the same procedure to all feature vectors in the data matrix to generate a new data matrix.
The normalization factor 1

√

k−N
(i)
emp

varies, depending on the number of empty bins in the i-th vector.

5 Experimental Results on the Webspam Dataset

The webspam dataset has 350,000 samples and 16,609,143 features. Each feature vector has on
average about 4000 nonzeros; see Figure 3. Following [16], we use 80% of samples for training
and the remaining 20% for testing. We conduct extensive experiments on linear SVM and logistic
regression, using our proposed one permutation hashing scheme with k ∈ {26, 27, 28, 29} and b ∈
{1, 2, 4, 6, 8}. For convenience, we use D = 224 = 16, 777, 216, which is divisible by k.

There is one regularization parameter C in linear SVM and logistic regression. Since our purpose
is to demonstrate the effectiveness of our proposed hashing scheme, we simply provide the results
for a wide range of C values and assume that the best performance is achievable if we conduct
cross-validations. This way, interested readers may be able to easily reproduce our experiments.

Figure 4 presents the test accuracies for both linear SVM (upper panels) and logistic regression (bot-
tom panels). Clearly, when k = 512 (or even 256) and b = 8, b-bit one permutation hashing achieves
similar test accuracies as using the original data. Also, compared to the original k-permutation
scheme as in [16], our one permutation scheme achieves similar (or even slightly better) accuracies.

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4
b = 6b = 8

SVM: k = 64

Webspam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4
b = 6,8

SVM: k = 128

Webspam: Accuracy

Original
1 Perm
k Perm

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4b = 6,8

SVM: k = 256

Webspam: Accuracy

Original
1 Perm
k Perm

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2
b = 4,6,8

SVM: k = 512

Webspam: Accuracy

Original
1 Perm
k Perm

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6b = 8

logit: k = 64
Webspam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4
b = 6,8

logit: k = 128
Webspam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4b = 6,8

logit: k = 256
Webspam: Accuracy

Original
1 Perm
k Perm

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1
b = 2

b = 4,6,8

logit: k = 512
Webspam: Accuracy

Original
1 Perm
k Perm

Figure 4: Test accuracies of SVM (upper panels) and logistic regression (bottom panels), averaged
over 50 repetitions. The accuracies of using the original data are plotted as dashed (red, if color is
available) curves with “diamond” markers. C is the regularization parameter. Compared with the
original k-permutation minwise hashing (dashed and blue if color is available), the one permutation
hashing scheme achieves similar accuracies, or even slightly better accuracies when k is large.

The empirical results on the webspam datasets are encouraging because they verify that our proposed
one permutation hashing scheme performs as well as (or even slightly better than) the original k-
permutation scheme, at merely 1/k of the original preprocessing cost. On the other hand, it would
be more interesting, from the perspective of testing the robustness of our algorithm, to conduct
experiments on a dataset (e.g., news20) where the empty bins will occur much more frequently.

6 Experimental Results on the News20 Dataset

The news20 dataset (with 20,000 samples and 1,355,191 features) is a very small dataset in not-too-
high dimensions. The average number of nonzeros per feature vector is about 500, which is also
small. Therefore, this is more like a contrived example and we use it just to verify that our one
permutation scheme (with the zero coding strategy) still works very well even when we let k be

7

as large as 4096 (i.e., most of the bins are empty). In fact, the one permutation schemes achieves
noticeably better accuracies than the original k-permutation scheme. We believe this is because the
one permutation scheme is “sample-without-replacement” and provides a better matrix sparsification
strategy without “contaminating” the original data matrix too much.

We experiment with k ∈ {25, 26, 27, 28, 29, 210, 211, 212} and b ∈ {1, 2, 4, 6, 8}, for both one per-
mutation scheme and k-permutation scheme. We use 10,000 samples for training and the other
10,000 samples for testing. For convenience, we let D = 221 (which is larger than 1,355,191).

Figure 5 and Figure 6 present the test accuracies for linear SVM and logistic regression, respectively.
When k is small (e.g., k ≤ 64) both the one permutation scheme and the original k-permutation
scheme perform similarly. For larger k values (especially as k ≥ 256), however, our one permu-
tation scheme noticeably outperforms the k-permutation scheme. Using the original data, the test
accuracies are about 98%. Our one permutation scheme with k ≥ 512 and b = 8 essentially achieves
the original test accuracies, while the k-permutation scheme could only reach about 97.5%.

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

SVM: k = 32
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

SVM: k = 64
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C
A

cc
ur

ac
y

(%
)

b = 1

b = 2

b = 4

b = 6
b = 8

SVM: k = 128
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6
b = 8

SVM: k = 256
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

SVM: k = 512
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1
b = 2

b = 4

b = 6,8

SVM: k = 1024
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1
b = 2

b = 4
b = 6,8

SVM: k = 2048
News20: Accuracy

Original
1 Perm
k Perm

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1 b = 2

b = 4,6,8

SVM: k = 4096
News20: Accuracy

Original
1 Perm
k Perm

Figure 5: Test accuracies of linear SVM averaged over 100 repetitions. The one permutation scheme
noticeably outperforms the original k-permutation scheme especially when k is not small.

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 32
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 64

News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 128
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 256
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6
b = 8

logit: k = 512
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4
b = 6,8

logit: k = 1024
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2
b = 4b = 6,8

logit: k = 2048
News20: Accuracy

Original
1 Perm
k Perm

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2b = 4,6,8

logit: k = 4096
News20: Accuracy

Original
1 Perm
k Perm

Figure 6: Test accuracies of logistic regression averaged over 100 repetitions. The one permutation
scheme noticeably outperforms the original k-permutation scheme especially when k is not small.

7 Conclusion

A new hashing algorithm is developed for large-scale search and learning in massive binary data.
Compared with the original k-permutation (e.g., k = 500) minwise hashing (which is a standard
procedure in the context of search), our method requires only one permutation and can achieve
similar or even better accuracies at merely 1/k of the original preprocessing cost. We expect that one
permutation hashing (or its variant) will be adopted in practice. See more details in arXiv:1208.1259.

Acknowledgement: The research of Ping Li is partially supported by NSF-IIS-1249316, NSF-
DMS-0808864, NSF-SES-1131848, and ONR-YIP-N000140910911. The research of Art B Owen
is partially supported by NSF-0906056. The research of Cun-Hui Zhang is partially supported by
NSF-DMS-0906420, NSF-DMS-1106753, NSF-DMS-1209014, and NSA-H98230-11-1-0205.

8

References

[1] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in
high dimensions. In Commun. ACM, volume 51, pages 117–122, 2008.

[2] Leon Bottou. http://leon.bottou.org/projects/sgd.

[3] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-wise independent
permutations (extended abstract). In STOC, pages 327–336, Dallas, TX, 1998.

[4] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syntactic clustering of
the web. In WWW, pages 1157 – 1166, Santa Clara, CA, 1997.

[5] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions (extended abstract). In
STOC, pages 106–112, 1977.

[6] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and
its applications. Journal of Algorithm, 55(1):58–75, 2005.

[7] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A library
for large linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.

[8] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet L. Wiener. A large-scale study of the evolution
of web pages. In WWW, pages 669–678, Budapest, Hungary, 2003.

[9] Jerome H. Friedman, F. Baskett, and L. Shustek. An algorithm for finding nearest neighbors. IEEE
Transactions on Computers, 24:1000–1006, 1975.

[10] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of dimen-
sionality. In STOC, pages 604–613, Dallas, TX, 1998.

[11] Thorsten Joachims. Training linear svms in linear time. In KDD, pages 217–226, Pittsburgh, PA, 2006.

[12] Ping Li. Very sparse stable random projections for dimension reduction in lα (0 < α ≤ 2) norm. In
KDD, San Jose, CA, 2007.

[13] Ping Li and Kenneth W. Church. Using sketches to estimate associations. In HLT/EMNLP, pages 708–
715, Vancouver, BC, Canada, 2005 (The full paper appeared in Commputational Linguistics in 2007).

[14] Ping Li, Kenneth W. Church, and Trevor J. Hastie. One sketch for all: Theory and applications of
conditional random sampling. In NIPS, Vancouver, BC, Canada, 2008 (Preliminary results appeared
in NIPS 2006).

[15] Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very sparse random projections. In KDD, pages
287–296, Philadelphia, PA, 2006.

[16] Ping Li, Anshumali Shrivastava, Joshua Moore, and Arnd Christian König. Hashing algorithms for large-
scale learning. In NIPS, Granada, Spain, 2011.

[17] Ping Li, Anshumali Shrivastava, and Arnd Christian König. b-bit minwise hashing in practice: Large-
scale batch and online learning and using GPUs for fast preprocessing with simple hash functions. Tech-
nical report.

[18] Ping Li and Arnd Christian König. b-bit minwise hashing. In WWW, pages 671–680, Raleigh, NC, 2010.

[19] Ping Li, Arnd Christian König, and Wenhao Gui. b-bit minwise hashing for estimating three-way simi-
larities. In NIPS, Vancouver, BC, 2010.

[20] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal estimated sub-gradient solver
for svm. In ICML, pages 807–814, Corvalis, Oregon, 2007.

[21] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, and S.V.N. Vishwanathan. Hash
kernels for structured data. Journal of Machine Learning Research, 10:2615–2637, 2009.

[22] Anshumali Shrivastava and Ping Li. Fast near neighbor search in high-dimensional binary data. In ECML,
2012.

[23] Josef Sivic and Andrew Zisserman. Video google: a text retrieval approach to object matching in videos.
In ICCV, 2003.

[24] Simon Tong. Lessons learned developing a practical large scale machine learning system.
http://googleresearch.blogspot.com/2010/04/lessons-learned-developing-practical.html, 2008.

[25] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature hashing
for large scale multitask learning. In ICML, pages 1113–1120, 2009.

9

ar
X

iv
:s

u
b
m

it
/0

5
2
7
9
0
3

[c

s.
L

G
]

 6
 A

u
g
 2

0
1
2

One Permutation Hashing for Efficient Search and Learning

Ping Li

Dept. of Statistical Science

Cornell University

Ithaca, NY 14853

pingli@cornell.edu

Art Owen

Dept. of Statistics

Stanford University

Stanford, CA 94305

owen@stanford.edu

Cun-Hui Zhang

Dept. of Statistics

Rutgers University

New Brunswick, NJ 08901

czhang@stat.rutgers.edu

Abstract

Minwise hashing is a standard procedure in the context of search, for efficiently estimating set similari-

ties in massive binary data such as text. Recently, the method of b-bit minwise hashing has been applied

to large-scale linear learning (e.g., linear SVM or logistic regression) and sublinear time near-neighbor

search. The major drawback of minwise hashing is the expensive preprocessing cost, as the method re-

quires applying (e.g.,) k = 200 to 500 permutations on the data. The testing time can also be expensive

if a new data point (e.g., a new document or image) has not been processed, which might be a significant

issue in user-facing applications. While it is true that the preprocessing step can be parallelized, it comes

at the cost of additional hardware & implementation and is not an energy-efficient solution.

We develop a very simple solution based on one permutation hashing. Conceptually, given a mas-

sive binary data matrix, we permute the columns only once and divide the permuted columns evenly

into k bins; and we simply store, for each data vector, the smallest nonzero location in each bin. The

interesting probability analysis (which is validated by experiments) reveals that our one permutation

scheme should perform very similarly to the original (k-permutation) minwise hashing. In fact, the one

permutation scheme can be even slightly more accurate, due to the “sample-without-replacement” effect.

Our experiments with training linear SVM and logistic regression on the webspam dataset demonstrate

that this one permutation hashing scheme can achieve the same (or even slightly better) accuracies com-

pared to the original k-permutation scheme. To test the robustness of our method, we also experiment

with the small news20 dataset which is very sparse and has merely on average 500 nonzeros in each data

vector. Interestingly, our one permutation scheme noticeably outperforms the k-permutation scheme

when k is not too small on the news20 dataset. In summary, our method can achieve at least the same

accuracy as the original k-permutation scheme, at merely 1/k of the original preprocessing cost.

1 Introduction

Minwise hashing [4, 3] is a standard technique for efficiently computing set similarities, especially in the

context of search. Recently, b-bit minwise hashing [17], which stores only the lowest b bits of each hashed

value, has been applied to sublinear time near neighbor search [21] and linear learning (linear SVM and

logistic regression) [18], on large-scale high-dimensional binary data (e.g., text), which are common in

practice. The major drawback of minwise hashing and b-bit minwise hashing is that they require an expen-

sive preprocessing step, by conducting k (e.g., 200 to 500) permutations on the entire dataset.

1.1 Massive High-Dimensional Binary Data

In the context of search, text data are often processed to be binary in extremely high dimensions. A standard

procedure is to represent documents (e.g., Web pages) using w-shingles (i.e., w contiguous words), where

1

http://arxiv.org/submit/0527903/pdf

w ≥ 5 in several studies [4, 8]. This means the size of the dictionary needs to be substantially increased,

from (e.g.,) 105 common English words to 105w “super-words”. In current practice, it seems sufficient to

set the total dimensionality to be D = 264, for convenience. Text data generated by w-shingles are often

treated as binary. In fact, for w ≥ 3, it is expected that most of the w-shingles will occur at most one time in

a document. Also, note that the idea of shingling can be naturally extended to images in Computer Vision,

either at the pixel level (for simple aligned images) or at the Vision feature level [22].

In machine learning practice, the use of extremely high-dimensional data has become common. For

example, [23] discusses training datasets with (on average) n = 1011 items and D = 109 distinct features.

[24] experimented with a dataset of potentially D = 16 trillion (1.6 × 1013) unique features.

1.2 Minwise Hashing

Minwise hashing is mainly designed for binary data. A binary (0/1) data vector can be equivalently viewed

as a set (locations of the nonzeros). Consider sets Si ⊆ Ω = {0, 1, 2, ...,D − 1}, where D, the size of the

space, is often set to be D = 264 in industrial applications. The similarity between two sets S1 and S2 is

commonly measured by the resemblance, which is a normalized version of the inner product:

R =
|S1 ∩ S2|
|S1 ∪ S2|

=
a

f1 + f2 − a
, where f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2| (1)

For large-scale applications, the cost of computing resemblances exactly can be prohibitive in time,

space, and energy-consumption. The minwise hashing method was proposed for efficient computing resem-

blances. The method requires applying k independent random permutations on the data.

Denote π a random permutation: π : Ω → Ω. The hashed values are the two minimums of the sets after

applying the permutation π on S1 and S2. The probability at which the two hashed values are equal is

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|
|S1 ∪ S2|

= R (2)

One can then estimate R from k independent permutations, π1, ..., πk:

R̂M =
1

k

k
∑

j=1

1{min(πj(S1)) = min(πj(S2))}, Var
(

R̂M

)

=
1

k
R(1−R) (3)

Because the indicator function 1{min(πj(S1)) = min(πj(S2))} can be written as an inner product

between two binary vectors (each having only one 1) in D dimensions [18]:

1{min(πj(S1)) = min(πj(S2))} =
D−1
∑

i=0

1{min(πj(S1)) = i} × 1{min(πj(S2)) = i} (4)

we know that minwise hashing can be potentially used for training linear SVM and logistic regression on

high-dimensional binary data by converting the permuted data into a new data matrix in D × k dimensions.

This of course would not be realistic if D = 264.

The method of b-bit minwise hashing [17] provides a simple solution by storing only the lowest b bits

of each hashed data. This way, the dimensionality of the expanded data matrix from the hashed data would

be only 2b × k as opposed to 264 × k. [18] applied this idea to large-scale learning on the webspam dataset

(with about 16 million features) and demonstrated that using b = 8 and k = 200 to 500 could achieve very

similar accuracies as using the original data. More recently, [21] directly used the bits generated by b-bit

minwise hashing for building hash tables to achieve sublinear time near neighbor search. We will briefly

review these two important applications in Sec. 2. Note that both applications require the hashed data to be

“aligned” in that only the hashed data generated by the same permutation are interacted. For example, when

computing the inner products, we simply concatenate the results from k permutations.

2

1.3 The Cost of Preprocessing and Testing

Clearly, the preprocessing step of minwise hashing can be very costly. For example, in our experiments,

loading the webspam dataset (350,000 samples, about 16 million features, and about 24GB in Libsvm/svmlight

format) used in [18] took about 1000 seconds when the data are stored in Libsvm/svmlight (text) format,

and took about 150 seconds after we converted the data into binary. In contrast, the preprocessing cost for

k = 500 was about 6000 seconds (which is ≫ 150). Note that, compared to industrial applications [23], the

webspam dataset is very small. For larger datasets, the preprocessing step will be much more expensive.

In the testing phrase (in search or learning), if a new data point (e.g., a new document or a new image)

has not processed, then the cost will be expensive if it includes the preprocessing cost. This may raise sig-

nificant issues in user-facing applications where the testing efficiency is crucial.

Intuitively, the standard practice of minwise hashing ought to be very “wasteful” in that all the nonzero

elements in one set are scanned (permuted) but only the smallest one will be used.

1.4 Our Proposal: One Permutation Hashing

As illustrated in Figure 1, the idea of one permutation hashing is very simple. We view sets as 0/1 vectors

in D dimensions so that we can treat a collection of sets as a binary data matrix in D dimensions. After we

permute the columns (features) of the data matrix, we divide the columns evenly into k parts (bins) and we

simply take, for each data vector, the smallest nonzero element in each bin.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

1

0

0

1

1

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

1 2 3 4

π(S
1
):

π(S
2
):

π(S
3
):

Figure 1: Fixed-length hashing scheme. Consider S1, S2, S3 ⊆ Ω = {0, 1, ..., 15} (i.e., D = 16). We

apply one permutation π on the three sets and present π(S1), π(S2), and π(S3) as binary (0/1) vectors,

where π(S1) = {2, 4, 7, 13}, π(S2) = {0, 6, 13}, and π(S3) = {0, 1, 10, 12}. We divide the space Ω evenly

into k = 4 bins, select the smallest nonzero in each bin, and re-index the selected elements as three samples:

[2, 0, ∗, 1], [0, 2, ∗, 1], and [0, ∗, 2, 0]. For now, we use ‘*’ for empty bins, which occur rarely unless

the number of nonzeros is small compared to k.

In the example in Figure 1 (which concerns 3 sets), the sample selected from π(S1) is [2, 4, ∗, 13], where

we use ’*’ to denote an empty bin, for the time being. Since only want to compare elements with the same

bin number (so that we can obtain an inner product), we can actually re-index the elements of each bin to

use the smallest possible representations. For example, for π(S1), after re-indexing, the sample [2, 4, ∗, 13]
becomes [2−4×0, 4−4×1, ∗, 13−4×3] = [2, 0, ∗, 1]. Similarly, for π(S2), the original sample [0, 6, ∗, 13]
becomes [0, 6 − 4× 1, ∗, 13 − 4× 3] = [0, 2, ∗, 1], etc.

Note that, when there are no empty bins, similarity estimation is equivalent to computing an inner

product, which is crucial for taking advantage of the modern linear learning algorithms [13, 19, 7, 11]. We

will show that empty bins occur rarely unless the total number of nonzeros for some set is small compared

to k, and we will present strategies on how to deal with empty bins should they occur.

3

1.5 Summary of the Advantages of One Permutation Hashing

• Reducing k (e.g., 500) permutations to just one permutation (or a few) is much more computationally

efficient. From the perspective of energy consumption, this scheme is highly desirable, especially

considering that minwise hashing is deployed in the search industry.

• While it is true that the preprocessing can be parallelized, it comes at the cost of additional hardware

and software implementation.

• In the testing phase, if a new data point (e.g., a new document or a new image) has to be first processed

with k permutations, then the testing performance may not meet the demand in for example user-

facing applications such as search or interactive visual analytics.

• It should be much easier to implement the one permutation hashing than the original k-permutation

scheme, from the perspective of random number generation. For example, if a dataset has one billion

features (D = 109), we can simply generate a “permutation vector” of length D = 109, the memory

cost of which (i.e., 4GB) is not significant. On the other hand, it would not be realistic to store a

“permutation matrix” of size D × k if D = 109 and k = 500; instead, one usually has to resort to

approximations such as using universal hashing [5] to approximate permutations. Universal hashing

often works well in practice although theoretically there are always worst cases. Of course, when D =
264, we have to use universal hashing, but it is always much easier to generate just one permutation.

• One permutation hashing is a better matrix sparsification scheme than the original k-permutation. In

terms of the original binary data matrix, the one permutation scheme simply makes many nonzero

entries be zero, without further “damaging” the original data matrix. With the original k-permutation

scheme, we store, for each permutation and each row, only the first nonzero and make all the other

nonzero entries be zero; and then we have to concatenate k such data matrices. This will significantly

change the structure of the original data matrix. As a consequence, we expect that our one permutation

scheme will produce at least the same or even more accurate results, as later verified by experiments.

1.6 Related Work

One of the authors worked on another “one permutation” scheme named Conditional Random Sampling
(CRS) [14, 15] since 2005. Basically, CRS works by continuously taking the first k nonzeros after applying

one permutation on the data, then it uses a simple “trick” to construct a random sample for each pair with

the effective sample size determined at the estimation stage. By taking the nonzeros continuously, however,

the samples are no longer “aligned” and hence we can not write the estimator as an inner product in a unified

fashion. In comparison, our new one permutation scheme works by first breaking the columns evenly into k
bins and then taking the first nonzero in each bin, so that the hashed data can be nicely aligned.

Interestingly, in the original “minwise hashing” paper [4] (we use quotes because the scheme was not

called “minwise hashing” at that time), only one permutation was used and a sample was the first k nonzeros

after the permutation. After the authors of [4] realized that the estimators could not be written as an inner

product and hence the scheme was not suitable for many applications such as sublinear time near neighbor

search using hash tables, they quickly moved to the k-permutation minwise hashing scheme [3]. In the

context of large-scale linear learning, the importance of having estimators which are inner products should

become more obvious after [18] introduced the idea of using (b-bit) minwise hashing for linear learning.

We are also inspired by the work on “very sparse random projections” [16]. The regular random projec-

tion method also has the expensive preprocessing cost as it needs k projections. The work of [16] showed

4

that one can substantially reduce the preprocessing cost by using an extremely sparse projection matrix. The

preprocessing cost of “very sparse random projections” can be as small as merely doing one projection.1

Figure 1 presents the “fixed-length” scheme, while in Sec. 7 we will also develop a “variable-length”

scheme. Two schemes are more or less equivalent, although we believe the fixed-length scheme is more

convenient to implement (and it is slightly more accurate). The variable-length hashing scheme is to some

extent related to the Count-Min (CM) sketch [6] and the Vowpal Wabbit (VW) [20, 24] hashing algorithms.

2 Applications of Minwise Hashing on Efficient Search and Learning

In this section, we will briefly review two important applications of the original (k-permutation) minwise

hashing: (i) sublinear time near neighbor search [21], and (ii) large-scale linear learning [18].

2.1 Sublinear Time Near Neighbor Search

The task of near neighbor search is to identify a set of data points which are “most similar” to a query data

point. Efficient algorithms for near neighbor search have numerous applications in the context of search,

databases, machine learning, recommending systems, computer vision, etc. It has been an active research

topic since the early days of modern computing (e.g, [9]).

In current practice, methods for approximate near neighbor search often fall into the general framework

of Locality Sensitive Hashing (LSH) [12, 1]. The performance of LSH solely depends on its underlying

implementation. The idea in [21] is to directly use the bits generated by (b-bit) minwise hashing to construct

hash tables, which allow us to search near neighbors in sublinear time (i.e., no need to scan all data points).

Specifically, we hash the data points using k random permutations and store each hash value using b bits

(e.g., b ≤ 4). For each data point, we concatenate the resultant B = b × k bits as a signature. The size of

the space is 2B = 2b×k, which is not too large for small b and k (e.g., bk = 16). This way, we create a table

of 2B buckets, numbered from 0 to 2B − 1; and each bucket stores the pointers of the data points whose

signatures match the bucket number. In the testing phrase, we apply the same k permutations to a query data

point to generate a bk-bit signature and only search data points in the corresponding bucket. Since using

only one hash table will likely miss many true near neighbors, as a remedy, we generate (using independent

random permutations) L hash tables. The query result is the union of the data points retrieved in L tables.

00 10

11 10
11 11

00 00
00 01

Index Data Points

11 01

(empty)

6, 110, 143
 3, 38, 217

 5, 14, 206
31, 74, 153
 21, 142, 329

00 10

11 10
11 11

00 00
00 01

Index Data Points

11 01

6 ,15, 26, 79
33, 489

7, 49, 208

3, 14, 32, 97
11, 25, 99
8, 159, 331

Figure 2: An example of hash tables, with b = 2, k = 2, and L = 2.

Figure 2 provides an example with b = 2 bits, k = 2 permutations, and L = 2 tables. The size of each

hash table is 24. Given n data points, we apply k = 2 permutations and store b = 2 bits of each hashed

value to generate n (4-bit) signatures L times. Consider data point 6. For Table 1 (left panel of Figure 2),

the lowest b-bits of its two hashed values are 00 and 00 and thus its signature is 0000 in binary; hence we

1See http://www.stanford.edu/group/mmds/slides2012/s-pli.pdf for the experimental results on cluster-

ing/classification/regression using very sparse random projections [16].

5

http://www.stanford.edu/group/mmds/slides2012/s-pli.pdf

place a pointer to data point 6 in bucket number 0. For Table 2 (right panel of Figure 2), we apply another

k = 2 permutations. This time, the signature of data point 6 becomes 1111 in binary and hence we place it

in the last bucket. Suppose in the testing phrase, the two (4-bit) signatures of a new data point are 0000 and

1111, respectively. We then only search for the near neighbors in the set {6, 15, 26, 79, 110, 143}, which is

much smaller than the set of n data points.

The experiments in [21] confirmed that this very simple strategy performed well.

2.2 Large-Scale Linear Learning

The recent development of highly efficient linear learning algorithms (such as linear SVM and logistic

regression) is a major breakthrough in machine learning. Popular software packages include SVMperf [13],

Pegasos [19], Bottou’s SGD SVM [2], and LIBLINEAR [7].

Given a dataset {(xi, yi)}ni=1, xi ∈ R
D, yi ∈ {−1, 1}, the L2-regularized logistic regression solves the

following optimization problem:

min
w

1

2
w

T
w + C

n
∑

i=1

log
(

1 + e−yiw
T
xi

)

, (5)

where C > 0 is the regularization parameter. The L2-regularized linear SVM solves a similar problem:

min
w

1

2
w

T
w + C

n
∑

i=1

max
{

1− yiw
T
xi, 0

}

, (6)

In their approach [18], they apply k random permutations on each (binary) feature vector xi and store

the lowest b bits of each hashed value, to obtain a new dataset which can be stored using merely nbk bits.

At run-time, each new data point has to be expanded into a 2b × k-length vector with exactly k 1’s.

To illustrate this simple procedure, [18] provided a toy example with k = 3 permutations. Suppose for

one data vector, the hashed values are {12013, 25964, 20191}, whose binary digits are respectively

{010111011101101, 110010101101100, 100111011011111}. Using b = 2 bits, the binary digits are stored

as {01, 00, 11} (which corresponds to {1, 0, 3} in decimals). At run-time, the (b-bit) hashed data are ex-

panded into a vector of length 2bk = 12, to be {0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0}, which will be the new

feature vector fed to a solver such as LIBLINEAR. The procedure for this feature vector is summarized as

follows:

Original hashed values (k = 3) : 12013 25964 20191
Original binary representations : 010111011101101 110010101101100 100111011011111
Lowest b = 2 binary digits : 01 00 11
Expanded 2b = 4 binary digits : 0010 0001 1000
New feature vector fed to a solver : [0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0] × 1√

k

The same procedure (with the same k = 3 permutations) is then applied to all n feature vectors. Very

interestingly, we notice that the all-zero vector (0000 in this example) is never used when expanding the

data. In our one permutation hashing scheme, we will actually take advantage of the all-zero vector to

conveniently encode empty bins, a strategy which we will later refer to as the “zero coding” strategy.

The experiments in [18] confirmed that this simple procedure performed well.

Clearly, in both applications (near neighbor search and linear learning), the hashed data have to be

“aligned” in that only the hashed data generated from the same permutation are compared with each other.

With our one permutation scheme as presented in Figure 1, the hashed data are indeed aligned according to

the bin numbers. The only caveat is that we need a practical strategy to deal with empty bins, although they

occur rarely unless the number of nonzeros in one data vector is small compared to k, the number of bins.

6

3 Theoretical Analysis of the Fixed-Length One Permutation Scheme

While the one permutation hashing scheme, as demonstrated in Figure 1, is intuitive, we present in this

section some interesting probability analysis to provide a rigorous theoretical foundation for this method.

Without loss of generality, we consider two sets S1 and S2. We first introduce two definitions, for the number

of “jointly empty bins” and the number of “matched bins,” respectively:

Nemp =

k
∑

j=1

Iemp,j, Nmat =

k
∑

j=1

Imat,j (7)

where Iemp,j and Imat,j are defined for the j-th bin, as

Iemp,j =

{

1 if both π(S1) and π(S2) are empty in the j-th bin

0 otherwise
(8)

Imat,j =

1 if both π(S1) and π(S1) are not empty and the smallest element of π(S1)
matches the smallest element of π(S2), in the j-th bin

0 otherwise

(9)

Later we will also use I
(1)
emp,j (or I

(2)
emp,j) to indicate whether π(S1) (or π(S2)) is empty in the j-th bin.

3.1 Expectation, Variance, and Distribution of the Number of Jointly Empty Bins

Recall the notation: f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2|. We also use f = |S1 ∪ S2| = f1 + f2 − a.

Lemma 1 Assume D
(

1− 1
k

)

≥ f = f1 + f2 − a,

E (Nemp)

k
=

f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
≤
(

1− 1

k

)f

(10)

Assume D
(

1− 2
k

)

≥ f = f1 + f2 − a,

V ar (Nemp)

k2
=
1

k

(

E(Nemp)

k

)(

1− E(Nemp)

k

)

(11)

−
(

1− 1

k

)

f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

2

−
f−1
∏

j=0

D
(

1− 2
k

)

− j

D − j

<
1

k

(

E(Nemp)

k

)(

1− E(Nemp)

k

)

(12)

Proof: See Appendix A. �

The inequality (12) says that the variance of
Nemp

k is smaller than its “binomial analog.”

In practical scenarios, the data are often sparse, i.e., f = f1 + f2 − a ≪ D. In this case, Lemma 2

illustrates that in (10) the upper bound
(

1− 1
k

)f
is a good approximation to the true value of

E(Nemp)
k . Since

(

1− 1
k

)f ≈ e−f/k, we know that the chance of empty bins is small when f ≫ k. For example, if f/k = 5

then
(

1− 1
k

)f ≈ 0.0067; if f/k = 1, then
(

1− 1
k

)f ≈ 0.3679. For practical applications, we would expect

that f ≫ k (for most data pairs), otherwise hashing probably would not be too useful anyway. This is why

we do not expect empty bins will significantly impact (if at all) the performance in practical settings.

7

Lemma 2 Assume D
(

1− 1
k

)

≥ f = f1 + f2 − a.

E (Nemp)

k
=

(

1− 1

k

)f

exp

−D log D+1
D−f+1 + f

(

1− 1
2(D−f+1)

)

k − 1
+ ...

 (13)

Under the reasonable assumption that the data are sparse, i.e., f1 + f2 − a = f ≪ D, we obtain

E (Nemp)

k
=

(

1− 1

k

)f (

1−O

(

f2

kD

))

(14)

V ar (Nemp)

k2
=
1

k

(

1− 1

k

)f
(

1−
(

1− 1

k

)f
)

(15)

−
(

1− 1

k

)f+1
(

(

1− 1

k

)f

−
(

1− 1

k − 1

)f
)

+O

(

f2

kD

)

Proof: See Appendix B. �

In addition to its mean and variance, we can also write down the distribution of Nemp.

Lemma 3

Pr (Nemp = j) =

k−j
∑

s=0

(−1)s
k!

j!s!(k − j − s)!

f−1
∏

t=0

D
(

1− j+s
k

)

− t

D − t
(16)

Proof: See Appendix C. �

Because E (Nemp) =
∑k−1

j=0 jPr (Nemp = j), this yields an interesting combinatorial identity:

k

f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
=

k−1
∑

j=0

j

k−j
∑

s=0

(−1)s
k!

j!s!(k − j − s)!

f−1
∏

t=0

D
(

1− j+s
k

)

− t

D − t
(17)

3.2 Expectation and Variance of the Number of Matched Bins

Lemma 4 Assume D
(

1− 1
k

)

≥ f = f1 + f2 − a.

E (Nmat)

k
= R

(

1− E (Nemp)

k

)

= R

1−
f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

 (18)

Assume D
(

1− 2
k

)

≥ f = f1 + f2 − a.

V ar(Nmat)

k2
=
1

k

(

E(Nmat)

k

)(

1− E(Nmat)

k

)

(19)

+

(

1− 1

k

)

R
a− 1

f − 1

1− 2

f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
+

f−1
∏

j=0

D
(

1− 2
k

)

− j

D − j

−
(

1− 1

k

)

R2

1−
f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

2

<
1

k

(

E(Nmat)

k

)(

1− E(Nmat)

k

)

(20)

Proof: See Appendix D. �

8

3.3 Covariance of Nmat and Nemp

Intuitively, Nmat and Nemp should be negatively correlated, as confirmed by the following Lemma:

Lemma 5 Assume D
(

1− 2
k

)

≥ f = f1 + f2 − a.

Cov (Nmat, Nemp)

k2
=R

f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
−

f−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j

− 1

k
R

1−
f−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j

f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

 (21)

and

Cov (Nmat, Nemp) ≤ 0 (22)

Proof: See Appendix E. �

3.4 An Unbiased Estimator of R and the Variance

Lemma 6 shows the following estimator R̂mat of the resemblance is unbiased:

Lemma 6

R̂mat =
Nmat

k −Nemp
, E

(

R̂mat

)

= R (23)

V ar
(

R̂mat

)

= R(1−R)

(

E

(

1

k −Nemp

)(

1 +
1

f − 1

)

− 1

f − 1

)

(24)

E

(

1

k −Nemp

)

=
k−1
∑

j=0

Pr (Nemp = j)

k − j
≥ 1

k − E(Nemp)
(25)

Proof: See Appendix F. The right-hand side of the inequality (25) is actually a very good approximation
(see Figure 8). The exact expression for Pr (Nemp = j) is already derived in Lemma 3. �

The fact that E
(

R̂mat

)

= R may seem surprising as in general ratio estimators are not unbiased. Note

that k−Nemp > 0 always because we assume the original data vectors are not completely empty (all-zero).

As expected, when k ≪ f = f1 + f2 − a, Nemp is essentially zero and hence V ar
(

R̂mat

)

≈ R(1−R)
k

. In

fact, V ar
(

R̂mat

)

is somewhat smaller than R(1−R)
k

, which can be seen from the approximation:

V ar
(

R̂mat

)

R(1−R)/k
≈ g(f ; k) =

1

1−
(

1− 1
k

)f

(

1 +
1

f − 1

)

− k

f − 1
(26)

Lemma 7

g(f ; k) ≤ 1 (27)

Proof: See Appendix G. �

It is probably not surprising that our one permutation scheme may (slightly) outperform the original

k-permutation scheme (at merely 1/k of its preprocessing cost), because one permutation hashing can be

viewed as a “sample-without-replacement” scheme.

9

3.5 Experiments for Validating the Theoretical Results

This set of experiments is for validating the theoretical results. The Web crawl dataset (in Table 1) consists of

15 (essentially randomly selected) pairs of word vectors (in D = 216 dimensions) of a range of similarities

and sparsities. For each word vector, the j-th element is whether the word appeared in the j-th Web page.

Table 1: 15 pairs of English words. For example, “RIGHTS” and “RESERVED” correspond to the two sets

of document IDs which contained word “RIGHTS” and word “RESERVED” respectively.

Word 1 Word 2 f1 f2 f = f1 + f2 − a R

RIGHTS RESERVED 12234 11272 12526 0.877

OF AND 37339 36289 41572 0.771

THIS HAVE 27695 17522 31647 0.429

ALL MORE 26668 17909 31638 0.409

CONTACT INFORMATION 16836 16339 24974 0.328

MAY ONLY 12067 11006 17953 0.285

CREDIT CARD 2999 2697 4433 0.285

SEARCH WEB 1402 12718 21770 0.229

RESEARCH UNIVERSITY 4353 4241 7017 0.225

FREE USE 12406 11744 19782 0.221

TOP BUSINESS 9151 8284 14992 0.163

BOOK TRAVEL 5153 4608 8542 0.143

TIME JOB 12386 3263 13874 0.128

REVIEW PAPER 3197 1944 4769 0.078

A TEST 39063 2278 2060 0.052

We vary k from 23 to 215. Although k = 215 is probably way too large in practice, we use it for the

purpose of thorough validations. Figures 3 to 8 present the empirical results based on 105 repetitions.

3.5.1 E(Nemp) and V ar(Nemp)

Figure 3 and Figure 4 respectively verify E(Nemp) and V ar(Nemp) as derived in Lemma 1. Clearly, the

theoretical curves overlap the empirical curves.

Note that Nemp is essentially 0 when k is not large. Roughly when k/f > 1/5, the number of empty

bins becomes noticeable, which is expected because E(Nemp)/k ≈
(

1− 1
k

)f ≈ e−f/k and e−5 = 0.0067.

Practically speaking, as we often use minwise hashing to substantially reduce the number of nonzeros in

massive datasets, we would expect that usually f ≫ k anyway. See Sec. 4 for more discussion about

strategies for dealing with empty bins.

3.5.2 E(Nmat) and V ar(Nmat)

Figure 5 and Figure 6 respectively verify E(Nmat) and V ar(Nmat) as derived in Lemma 4. Again, the

theoretical curves match the empirical ones and the curves start to change shapes at the point where the

occurrences of empty bins are more noticeable.

10

10
1

10
2

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

k

E
(N

em
p)

RIGHTS−−RESERVED

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

k

E
(N

em
p)

OF−−AND

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

k

E
(N

em
p)

THIS−−HAVE

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

k

E
(N

em
p)

ALL−−MORE

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

k

E
(N

em
p)

CONTACT−−INFORMATION

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

k

E
(N

em
p)

MAY−−ONLY

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

k

E
(N

em
p)

CREDIT−−CARD

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

k

E
(N

em
p)

SEARCH−−WEB

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

k

E
(N

em
p)

RESEARCH−−UNIVERSITY

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

k

E
(N

em
p)

FREE−−USE

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

k

E
(N

em
p)

TOP−−BUSINESS

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

k

E
(N

em
p)

BOOK−−TRAVEL

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

k

E
(N

em
p)

TIME−−JOB

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

k

E
(N

em
p)

REVIEW−−PAPER

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

k

E
(N

em
p)

A−−TEST

Empirical
Theoretical

Figure 3: E(Nemp)/k. The empirical curves essentially overlap the theoretical curves as derived in

Lemma 1, i.e., (10). The occurrences of empty bins become noticeable only at relatively large sample

size k.

10
1

10
2

10
3

10
4

10
5

10
−300

10
−200

10
−100

10
0

V
ar

(N
em

p)

RIGHTS−−RESERVED

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−300

10
−200

10
−100

10
0

V
ar

(N
em

p)

OF−−AND

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−300

10
−200

10
−100

10
0

V
ar

(N
em

p)

THIS−−HAVE

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−300

10
−200

10
−100

10
0

V
ar

(N
em

p)

ALL−−MORE

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−300

10
−200

10
−100

10
0

V
ar

(N
em

p)

CONTACT−−INFORMATION

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−300

10
−200

10
−100

10
0

V
ar

(N
em

p)

MAY−−ONLY

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−200

10
−100

10
0

k

V
ar

(N
em

p)

CREDIT−−CARD

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−300

10
−200

10
−100

10
0

V
ar

(N
em

p)

SEARCH−−WEB

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−300

10
−200

10
−100

10
0

V
ar

(N
em

p)

RESEARCH−−UNIVERSITY

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−300

10
−200

10
−100

10
0

V
ar

(N
em

p)

FREE−−USE

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−300

10
−200

10
−100

10
0

V
ar

(N
em

p)

TOP−−BUSINESS

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−300

10
−200

10
−100

10
0

V
ar

(N
em

p)

BOOK−−TRAVEL

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−300

10
−200

10
−100

10
0

V
ar

(N
em

p)

TIME−−JOB

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−200

10
−100

10
0

V
ar

(N
em

p)

REVIEW−−PAPER

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−300

10
−200

10
−100

10
0

V
ar

(N
em

p)

A−−TEST

Empirical
Theoretical

Figure 4: V ar(Nemp)/k
2. The empirical curves essentially overlap the theoretical curves as derived in

Lemma 1, i.e., (11).

11

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

k

E
(N

m
at

)

RIGHTS−−RESERVED

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

k
E

(N
m

at
)

OF−−AND

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

k

E
(N

m
at

)

THIS−−HAVE

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

k

E
(N

m
at

)

ALL−−MORE

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

k

E
(N

m
at

)

CONTACT−−INFORMATION

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

k

E
(N

m
at

)

MAY−−ONLY

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

k

E
(N

m
at

)

CREDIT−−CARD

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

k

E
(N

m
at

)

SEARCH−−WEB

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

k

E
(N

m
at

)

RESEARCH−−UNIVERSITY

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

k

E
(N

m
at

)

FREE−−USE

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

k

E
(N

m
at

)

TOP−−BUSINESS

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

k

E
(N

m
at

)

BOOK−−TRAVEL

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

k

E
(N

m
at

)

TIME−−JOB

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

k

E
(N

m
at

)

REVIEW−−PAPER

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

k

E
(N

m
at

)

A−−TEST Empirical
Theoretical

Figure 5: E(Nmat)/k. The empirical curves essentially overlap the theoretical curves as derived in

Lemma 4, i.e., (18).

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

k

V
ar

(N
m

at
)

RIGHTS−−RESERVED

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

k

V
ar

(N
m

at
)

OF−−AND

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

k

V
ar

(N
m

at
)

THIS−−HAVE

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

k

V
ar

(N
m

at
)

ALL−−MORE

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

k

V
ar

(N
m

at
)

CONTACT−−INFORMATION

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

k

V
ar

(N
m

at
)

MAY−−ONLY

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

k

V
ar

(N
m

at
)

CREDIT−−CARD

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

k

V
ar

(N
m

at
)

SEARCH−−WEB

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

k

V
ar

(N
m

at
)

RESEARCH−−UNIVERSITY

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

k

V
ar

(N
m

at
)

FREE−−USE

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

k

V
ar

(N
m

at
)

TOP−−BUSINESS

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

k

V
ar

(N
m

at
)

BOOK−−TRAVEL

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

k

V
ar

(N
m

at
)

TIME−−JOB

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

k

V
ar

(N
m

at
)

REVIEW−−PAPER

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

k

V
ar

(N
m

at
)

A−−TEST

Empirical
Theoretical

Figure 6: V ar(Nmat)/k
2. The empirical curves essentially overlap the theoretical curves as derived in

Lemma 4, i.e., (19).

12

3.5.3 Cov(Nemp, Nmat)

To verify Lemma 5, Figure 7 presents the theoretical and empirical covariances of Nemp and Nmat. Note

that Cov (Nemp, Nmat) ≤ 0 as shown in Lemma 5.

10
1

10
2

10
3

10
4

10
5

−10

−8

−6

−4

−2

0

x 10
−6

k

C
ov

(N
em

p, N
m

at
)

RIGHTS−−RESERVED

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

−2

−1

0

1
x 10

−6

k

C
ov

(N
em

p, N
m

at
)

OF−−AND

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

−10

−8

−6

−4

−2

0

x 10
−6

k

C
ov

(N
em

p, N
m

at
)

THIS−−HAVE

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

−10

−8

−6

−4

−2

0

x 10
−6

k

C
ov

(N
em

p, N
m

at
)

ALL−−MORE

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

−10

−8

−6

−4

−2

0

x 10
−6

k

C
ov

(N
em

p, N
m

at
)

CONTACT−−INFORMATION

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

−10

−8

−6

−4

−2

0

x 10
−6

k

C
ov

(N
em

p, N
m

at
)

MAY−−ONLY

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

−10

−8

−6

−4

−2

0

x 10
−6

k

C
ov

(N
em

p, N
m

at
)

CREDIT−−CARD

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

−10

−8

−6

−4

−2

0

x 10
−6

k

C
ov

(N
em

p, N
m

at
)

SEARCH−−WEB

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

−10

−8

−6

−4

−2

0

x 10
−6

k

C
ov

(N
em

p, N
m

at
)

RESEARCH−−UNIVERSITY

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

−10

−8

−6

−4

−2

0

x 10
−6

k

C
ov

(N
em

p, N
m

at
)

FREE−−USE

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

−10

−8

−6

−4

−2

0

x 10
−6

k

C
ov

(N
em

p, N
m

at
)

TOP−−BUSINESS

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

−10

−8

−6

−4

−2

0

x 10
−6

k

C
ov

(N
em

p, N
m

at
)

BOOK−−TRAVEL

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

−2

−1

0

1
x 10

−6

k

C
ov

(N
em

p, N
m

at
)

TIME−−JOB

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

−10

−8

−6

−4

−2

0

x 10
−6

k

C
ov

(N
em

p, N
m

at
)

REVIEW−−PAPER

Empirical
Theoretical

10
1

10
2

10
3

10
4

10
5

−10

−8

−6

−4

−2

0

x 10
−6

k

C
ov

(N
em

p, N
m

at
)

A−−TEST

Empirical
Theoretical

Figure 7: Cov(Nemp, Nmat)/k
2. The empirical curves essentially overlap the theoretical curves as de-

rived in Lemma 5, i.e., (21). The experimental results also confirm that the covariance is non-positive as

theoretically shown in Lemma 5.

3.5.4 E(R̂mat) and V ar(R̂mat)

Finally, Figure 8 plots the empirical MSEs (MSE = bias2 + variance) and the theoretical variances (24),

where the term E
(

1
k−Nemp

)

is approximated by 1
k−E(Nemp)

as in (25).

The experimental results confirm Lemma 6: (i) the estimator R̂mat is unbiased; (ii) the variance formula

(24) and the approximation (25) are accurate; (iii) the variance of R̂mat is somewhat smaller than R(1 −
R)/k, which is the variance of the original k-permutation minwise hashing, due to the “sample-without-

replacement” effect.

Remark: The empirical results presented in Figures 3 to 8 have clearly validated the theoretical results

for our one permutation hashing scheme. Note that we did not add the empirical results of the original

k-permutation minwise hashing scheme because they would simply overlap the theoretical curves. The fact

that the original k-permutation scheme provides the unbiased estimate of R with variance
R(1−R)

k has been

well-validated in prior literature, for example [17].

13

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E
(R

m
at

)

RIGHTS−−RESERVED

Empirical
Theoretical
Minwise

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E
(R

m
at

)

OF−−AND

Empirical
Theoretical
Minwise

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E
(R

m
at

)

THIS−−HAVE

Empirical
Theoretical
Minwise

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E
(R

m
at

)

ALL−−MORE

Empirical
Theoretical
Minwise

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E
(R

m
at

)

CONTACT−−INFORMATION

Empirical
Theoretical
Minwise

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E
(R

m
at

)

MAY−−ONLY

Empirical
Theoretical
Minwise

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E
(R

m
at

)

CREDIT−−CARD

Empirical
Theoretical
Minwise

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E
(R

m
at

)

SEARCH−−WEB

Empirical
Theoretical
Minwise

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E
(R

m
at

)

RESEARCH−−UNIVERSITY

Empirical
Theoretical
Minwise

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E
(R

m
at

)

FREE−−USE

Empirical
Theoretical
Minwise

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E
(R

m
at

)

TOP−−BUSINESS

Empirical
Theoretical
Minwise

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E
(R

m
at

)

BOOK−−TRAVEL

Empirical
Theoretical
Minwise

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E
(R

m
at

)

TIME−−JOB

Empirical
Theoretical
Minwise

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E
(R

m
at

)

REVIEW−−PAPER

Empirical
Theoretical
Minwise

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E
(R

m
at

)

A−−TEST

Empirical
Theoretical
Minwise

Figure 8: MSE(R̂mat), to verify the theoretical results of Lemma 6. Note that the theoretical variance

curves use the approximation (25), for convenience. The experimental results confirm that: (i) the estimator

R̂mat is unbiased, (ii) the variance formula (24) and the approximation (25) are accurate; (iii) the variance

of R̂mat is somewhat smaller than R(1−R)/k, the variance of the original k-permutation minwise hashing.

4 Strategies for Dealing with Empty Bins

In general, we expect that empty bins should not occur often because E(Nemp)/k ≈ e−f/k, which is very

close to zero if f/k > 5. (Recall f = |S1 ∪ S2|.) If the goal of using minwise hashing is for data reduction,

i.e., reducing the number of nonzeros, then we would expect that f ≫ k anyway.

Nevertheless, in applications where we need the estimators to be inner products, we need strategies to

deal with empty bins in case they occur. Fortunately, we realize a (in retrospect) simple strategy which can

be very nicely integrated with linear learning algorithms and performs very well.

0 2000 4000 6000 8000 10000
0

1

2

3

4
x 10

4

nonzeros

F
re

qu
en

cy

Webspam

Figure 9: Histogram of the numbers of nonzeros in

the webspam dataset (350,000 samples).

Figure 9 plots the histogram of the numbers

of nonzeros in the webspam dataset, which has

350,000 samples. The average number of nonzeros

is about 4000 which should be much larger than the

k (e.g., 200 to 500) for the hashing procedure. On

the other hand, about 10% (or 2.8%) of the samples

have < 500 (or < 200) nonzeros. Thus, we must

deal with empty bins if we do not want to exclude

those data points. For example, if f = k = 500,

then Nemp ≈ e−f/k = 0.3679, which is not small.

The first (obvious) idea is random coding. That is, we simply replace an empty bin (i.e., “*” as in

Figure 1) with a random number. In terms of the original unbiased estimator R̂mat = Nmat

k−Nemp
, the ran-

dom coding scheme will almost not change the numerator Nmat. The drawback of random coding is that the

denominator will effectively become k. Of course, in most practical scenarios, we expect Nemp ≈ 0 anyway.

14

The strategy we recommend for linear learning is zero coding, which is tightly coupled with the strategy

of hashed data expansion [18] as reviewed in Sec. 2.2. More details will be elaborated in Sec. 4.2. Basically,

we can encode “*” as “zero” in the expanded space, which means Nmat will remain the same (after taking the

inner product in the expanded space). A very nice property of this strategy is that it is sparsity-preserving.

This strategy essentially corresponds to the following modified estimator:

R̂
(0)
mat =

Nmat
√

k −N
(1)
emp

√

k −N
(2)
emp

(28)

where N
(1)
emp =

∑k
j=1 I

(1)
emp,j and N

(2)
emp =

∑k
j=1 I

(2)
emp,j are the numbers of empty bins in π(S1) and π(S2),

respectively. This modified estimator actually makes a lot of sense, after some careful thinking.

Basically, since each data vector is processed and coded separately, we actually do not know Nemp (the

number of jointly empty bins) until we see both π(S1) and π(S2). In other words, we can not really com-

pute Nemp if we want to use linear estimators. On the other hand, N
(1)
emp and N

(2)
emp are always available.

In fact, the use of

√

k −N
(1)
emp

√

k −N
(2)
emp in the denominator corresponds to the normalizing step which

is usually needed before feeding the data to a solver. This point will probably become more clear in Sec. 4.2.

When N
(1)
emp = N

(2)
emp = Nemp, (28) is equivalent to the original R̂mat. When two original vectors are

very similar (e.g., large R), N
(1)
emp and N

(2)
emp will be close to Nemp. When two sets are highly unbalanced,

using (28) will likely overestimate R; however, in this case, Nmat will be so small that the absolute error

will not be large. In any case, we do not expect the existence of empty bins will significantly affect the

performance in practical settings.

4.1 The m-Permutation Scheme with 1 < m ≪ k

In case some readers would like to further (significantly) reduce the chance of the occurrences of empty

bins, here we shall mention that one does not really have to strictly follow “one permutation,” since one can

always conduct m permutations with k′ = k/m and concatenate the hashed data. Once the preprocessing is

no longer the bottleneck, it matters less whether we use 1 permutation or (e.g.,) m = 3 permutations. The

chance of having empty bins decreases exponentially with increasing m.

4.2 An Example of The “Zero Coding” Strategy for Linear Learning

Sec. 2.2 has already reviewed the data-expansion strategy used by [18] for integrating (b-bit) minwise hash-

ing with linear learning. We will adopt a similar strategy with modifications for considering empty bins.

We use a similar example as in Sec. 2.2. Suppose we apply our one permutation hashing scheme and

use k = 4 bins. For the first data vector, the hashed values are [12013, 25964, 20191, ∗] (i.e., the 4-th bin

is empty). Suppose again we use b = 2 bits. With the “zero coding” strategy, our procedure is summarized

as follows:

Original hashed values (k = 4) : 12013 25964 20191 ∗
Original binary representations : 010111011101101 110010101101100 100111011011111 ∗
Lowest b = 2 binary digits : 01 00 11 ∗
Expanded 2b = 4 binary digits : 0010 0001 1000 0000

New feature vector fed to a solver :
1√
4− 1

× [0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0]

15

We apply the same procedure to all feature vectors in the data matrix to generate a new data matrix. The

normalization factor 1
√

k−N
(i)
emp

varies, depending on the number of empty bins in the i-th feature vector.

We believe zero coding is an ideal strategy for dealing with empty bins in the context of linear learning as

it is very convenient and produces accurate results (as we will show by experiments). If we use the “random

coding” strategy (i.e., replacing a “*” by a random number in [0, 2b−1]), we need to add artificial nonzeros

(in the expanded space) and the normalizing factor is always 1√
k

(i.e., no longer “sparsity-preserving”).

We apply both the zero coding and random coding strategies on the webspam dataset, as presented in

Sec. 5 Basically, both strategies produce similar results even when k = 512, although the zero coding

strategy is slightly better. We also compare the results with the original k-permutation scheme. On the

webspam dataset, our one permutation scheme achieves similar (or even slightly better) accuracies compared

to the k-permutation scheme.

To test the robustness of one permutation hashing, we also experiment with the news20 dataset, which

has only 20,000 samples and 1,355,191 features, with merely about 500 nonzeros per feature vector on

average. We purposely let k be as large as 4096. Interestingly, the experimental results show that the zero

coding strategy can perform extremely well. The test accuracies consistently improve as k increases. In

comparisons, the random coding strategy performs badly unless k is small (e.g., k ≤ 256).

On the news20 dataset, our one permutation scheme actually outperforms the original k-permutation

scheme, quite noticeably when k is large. This should be due to the benefits from the “sample-without-

replacement” effect. One permutation hashing provides a good matrix sparsification scheme without “dam-

aging” the original data matrix too much.

5 Experimental Results on the Webspam Dataset

The webspam dataset has 350,000 samples and 16,609,143 features. Each feature vector has on average

about 4000 nonzeros; see Figure 9. Following [18], we use 80% of samples for training and the remain-

ing 20% for testing. We conduct extensive experiments on linear SVM and logistic regression, using our

proposed one permutation hashing scheme with k ∈ {25, 26, 27, 28, 29} and b ∈ {1, 2, 4, 6, 8}. For conve-

nience, we use D = 224, which is divisible by k and is slightly larger than 16,609,143.

There is one regularization parameter C in linear SVM and logistic regression. Since our purpose is

to demonstrate the effectiveness of our proposed hashing scheme, we simply provide the results for a wide

range of C values and assume that the best performance is achievable if we conduct cross-validations. This

way, interested readers may be able to easily reproduce our experiments.

5.1 One Permutation v.s. k-Permutation

Figure 10 presents the test accuracies for both linear SVM (upper panels) and logistic regression (bottom

panels). Clearly, when k = 512 (or even 256) and b = 8, b-bit one permutation hashing achieves similar test

accuracies as using the original data. Also, compared to the original k-permutation scheme as in [18], our

one permutation scheme achieves similar (or even very slightly better) accuracies.

5.2 Preprocessing Time and Training Time

The preprocessing cost for processing the data using k = 512 independent permutations is about 6,000

seconds. In contrast, the processing cost for the proposed one permutation scheme is only 1/k of the

original cost, i.e., about 10 seconds. Note that webspam is merely a small dataset compared to industrial

applications. We expect the (absolute) improvement will be even more substantial in much larger datasets.

16

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

SVM: k = 32
Webspam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4
b = 6b = 8

SVM: k = 64

Webspam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4
b = 6,8

SVM: k = 128

Webspam: Accuracy

Original
1 Perm
k Perm

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4b = 6,8

SVM: k = 256

Webspam: Accuracy

Original
1 Perm
k Perm

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2
b = 4,6,8

SVM: k = 512

Webspam: Accuracy

Original
1 Perm
k Perm

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 32

Webspam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6b = 8

logit: k = 64
Webspam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4
b = 6,8

logit: k = 128
Webspam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4b = 6,8

logit: k = 256
Webspam: Accuracy

Original
1 Perm
k Perm

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1
b = 2

b = 4,6,8

logit: k = 512
Webspam: Accuracy

Original
1 Perm
k Perm

Figure 10: Test accuracies of SVM (upper panels) and logistic regression (bottom panels), averaged over 50

repetitions. The accuracies of using the original data are plotted as dashed (red, if color is available) curves

with “diamond” markers. C is the regularization parameter. Compared with the original k-permutation

minwise hashing scheme (dashed and blue if color is available), the proposed one permutation hashing

scheme achieves very similar accuracies, or even slightly better accuracies when k is large.

The prior work [18] already presented the training time using the k-permutation hashing scheme. With

one permutation hashing, the training time remains essentially the same (for the same k and b) on the

webspam dataset. Note that, with the zero coding strategy, the new data matrix generated by one permutation

hashing has potentially less nonzeros than the original minwise hashing scheme, due to the occurrences of

empty bins. This phenomenon in theory may bring additional advantages such as slightly reducing the

training time. Nevertheless, the most significant advantage of one permutation hashing lies in the dramatic

reduction of the preprocessing cost, which is what we focus on in this study.

5.3 Zero Coding v.s. Random Coding for Empty Bins

The experimental results as shown in Figure 10 are based on the “zero coding” strategy for dealing with

empty bins. Figure 11 plots the results for comparing zero coding with the random coding. When k is large,

zero coding is superior to random coding, although the differences remain small in this dataset. This is not

surprising, of course. Random coding adds artificial nonzeros to the new (expanded) data matrix, which

would not be desirable for learning algorithms.

Remark: The empirical results on the webspam datasets are highly encouraging because they verify that

our proposed one permutation hashing scheme works as well as (or even slightly better than) the original

k-permutation scheme, at merely 1/k of the original preprocessing cost. On the other hand, it would be

more interesting, from the perspective of testing the robustness of our algorithm, to conduct experiments on

a dataset where the empty bins will occur much more frequently.

6 Experimental Results on the News20 Dataset

The news20 dataset (with 20,000 samples and 1,355,191 features) is a very small dataset in not-too-high

dimensions. The average number of nonzeros per feature vector is about 500, which is also small. There-

fore, this is more like a contrived example and we use it just to verify that our one permutation scheme

(with the zero coding strategy) still works very well even when we let k be as large as 4096 (i.e., most of

the bins are empty). In fact, the one permutation schemes achieves noticeably better accuracies than the

17

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

SVM: k = 32
Webspam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6b = 8

SVM: k = 64

Webspam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4
b = 6,8

SVM: k = 128

Webspam: Accuracy

Zero Code
Rand Code

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4
b = 6,8

SVM: k = 256

Webspam: Accuracy

Zero Code
Rand Code

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2
b = 4,6,8

SVM: k = 512

Webspam: Accuracy

Zero Code
Rand Code

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 32
Webspam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6
b = 8

logit: k = 64

Webspam: Accuracy

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4b = 6,8

logit: k = 128
Webspam: Accuracy

Zero Code
Rand Code

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4b = 6,8

logit: k = 256

Webspam: Accuracy

Zero Code
Rand Code

10
−3

10
−2

10
−1

10
0

10
1

10
2

80
82
84
86
88
90
92
94
96
98

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2b = 4,6,8

logit: k = 512

Webspam: Accuracy

Zero Code
Rand Code

Figure 11: Test accuracies of SVM (upper panels) and logistic regression (bottom panels), averaged over 50

repetitions, for comparing the (recommended) zero coding strategy with the random coding strategy to deal

with empty bins. We can see that the differences only become noticeable at k = 512.

original k-permutation scheme. We believe this is because the one permutation scheme is “sample-without-

replacement” and provides a much better matrix sparsification strategy without “contaminating” the original

data matrix too much.

6.1 One Permutation v.s. k-Permutation

We experiment with k ∈ {23, 24, 25, 26, 27, 28, 29, 210, 211, 212} and b ∈ {1, 2, 4, 6, 8}, for both one permu-

tation scheme and k-permutation scheme. We use 10,000 samples for training and the other 10,000 samples

for testing. For convenience, we let D = 221 (which is larger than 1,355,191).

Figure 12 and Figure 13 present the test accuracies for linear SVM and logistic regression, respectively.

When k is small (e.g., k ≤ 64) both the one permutation scheme and the original k-permutation scheme

perform similarly. For larger k values (especially as k ≥ 256), however, our one permutation scheme

noticeably outperforms the k-permutation scheme. Using the original data, the test accuracies are about

98%. Our one permutation scheme with k ≥ 512 and b = 8 essentially achieves the original test accuracies,

while the k-permutation scheme could only reach about 97.5% even with k = 4096.

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

SVM: k = 8

News20: Accuracy

Original
1 Perm
k Perm

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

SVM: k = 16
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

SVM: k = 32
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

SVM: k = 64
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6
b = 8

SVM: k = 128
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6
b = 8

SVM: k = 256
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

SVM: k = 512
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1
b = 2

b = 4

b = 6,8

SVM: k = 1024
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1
b = 2

b = 4
b = 6,8

SVM: k = 2048
News20: Accuracy

Original
1 Perm
k Perm

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1 b = 2

b = 4,6,8

SVM: k = 4096
News20: Accuracy

Original
1 Perm
k Perm

Figure 12: Test accuracies of linear SVM averaged over 100 repetitions. The proposed one permutation

scheme noticeably outperforms the original k-permutation scheme especially when k is not small.

18

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 8
News20: Accuracy

Original
1 Perm
k Perm

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 16

News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 32
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 64

News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 128
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 256
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6
b = 8

logit: k = 512
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4
b = 6,8

logit: k = 1024
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2
b = 4b = 6,8

logit: k = 2048
News20: Accuracy

Original
1 Perm
k Perm

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2b = 4,6,8

logit: k = 4096
News20: Accuracy

Original
1 Perm
k Perm

Figure 13: Test accuracies of logistic regression averaged over 100 repetitions. The proposed one permuta-

tion scheme noticeably outperforms the original k-permutation scheme especially when k is not small.

6.2 Zero Coding v.s. Random Coding for Empty Bins

Figure 14 and Figure 15 plot the results for comparing two coding strategies to deal with empty bins,

respectively for linear SVM and logistic regression. Again, when k is small (e.g., k ≤ 64), both strategies

perform similarly. However, when k is large, using the random coding scheme may be disastrous, which is

of course also expected. When k = 4096, most of the nonzero entries in the new expanded data matrix fed

to the solver are artificial, since the original news20 dataset has merely about 500 nonzero on average.

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8
SVM: k = 8
News20: Accuracy

Zero Code
Rand Code

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

SVM: k = 16
News20: Accuracy

Zero Code
Rand Code

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

SVM: k = 32

News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

SVM: k = 64
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

SVM: k = 128
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

SVM: k = 256
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6
b = 8

SVM: k = 512

News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4
b = 6,8

SVM: k = 1024

News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2
b = 4

b = 6,8

SVM: k = 2048

News20: Accuracy

Zero Code
Rand Code

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1
b = 2

b = 4,6,8

SVM: k = 4096

News20: Accuracy

Zero Code
Rand Code

Figure 14: Test accuracies of linear SVM averaged over 100 repetitions, for comparing the (recommended)

zero coding strategy with the random coding strategy to deal with empty bins. On this dataset, the perfor-

mance of the random coding strategy can be bad.

Remark: We should re-iterate that the news20 dataset is more like a contrived example, merely for testing

the robustness of the one permutation scheme with the zero coding strategy. In more realistic industrial

applications, we expect that numbers of nonzeros in many datasets should be significantly higher, and hence

the performance differences between the one permutation scheme and the k-permutation scheme and the

differences between the two strategies for empty bins should be small.

19

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 8

News20: Accuracy

Zero Code
Rand Code

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 16

News20: Accuracy

Zero Code
Rand Code

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 32
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 64
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

50
55
60
65
70
75
80
85
90
95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 128
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4

b = 6

b = 8

logit: k = 256
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2

b = 4
b = 6

b = 8

logit: k = 512

News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2
b = 4b = 6,8

logit: k = 1024
News20: Accuracy

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2
b = 4b = 6,8

logit: k = 2048
News20: Accuracy

Zero Code
Rand Code

10
−1

10
0

10
1

10
2

10
3

65

70

75

80

85

90

95

100

C

A
cc

ur
ac

y
(%

)

b = 1

b = 2b = 4,6,8

logit: k = 4096
News20: Accuracy

Zero Code
Rand Code

Figure 15: Test accuracies of logistic regression averaged over 100 repetitions, for comparing the zero

coding strategy (recommended) with the random coding strategy to deal with empty bins. On this dataset,

the performance of the random coding strategy can be bad.

7 The Variable Length One Permutation Hashing Scheme

While the fixed-length one permutation scheme we have presented and analyzed should be simple to

implement and easy to understand, we would like to present a variable-length scheme which may more

obviously connect with other known hashing methods such as the Count-Min (CM) sketch [6].

As in the fixed-length scheme, we first conduct a permutation π : Ω → Ω. Instead of dividing the space

evenly, we vary the bin lengths according to a multinomial distribution mult
(

D, 1k ,
1
k , ...,

1
k

)

.

This variable-length scheme is equivalent to first uniformly grouping the original data entries into k bins

and then applying permutations independently within each bin. The latter explanation connects our method

with the Count-Min (CM) sketch [6] (but without the “count-min” step), which also hashes the elements

uniformly to k bins and the final (stored) hashed value in each bin is the sum of all the elements in the bin.

The bias of the CM estimate can be removed by subtracting a term. [20] adopted the CM sketch for linear

learning. Later, [24] proposed a novel idea (named “VW”) to remove the bias, by pre-multiplying (element-

wise) the original data vectors with a random vector whose entries are sampled i.i.d. from the two-point

distribution in {−1, 1} with equal probabilities. In a recent paper, [18] showed that the variance of the CM

sketch and variants are equivalent to the variance of random projections [16], which is substantially larger

than the variance of the minwise hashing when the data are binary.

Since [18] has already conducted (theoretical and empirical) comparisons with CM and VW methods,

we do not include more comparisons in this paper. Instead, we have simply showed that with one permuta-

tion only, we are able to achieve essentially the same accuracy as using k permutations.

We believe the fixed-length scheme is more convenient to implement. Nevertheless, we would like to

present some theoretical results for the variable-length scheme, for better understanding the differences. The

major difference is the distribution of Nemp, the number of jointly empty bins.

Lemma 8 Under the variable-length scheme,

E (Nemp)

k
=

(

1− 1

k

)f1+f2−a

(29)

20

V ar (Nemp)

k2
=
1

k

(

E(Nemp)

k

)(

1− E(Nemp)

k

)

(30)

−
(

1− 1

k

)

(

(

1− 1

k

)2(f1+f2−a)

−
(

1− 2

k

)f1+f2−a
)

<
1

k

(

E(Nemp)

k

)(

1− E(Nemp)

k

)

(31)

Proof: See Appendix H. �

The other theoretical results for the fixed-length scheme which are expressed in terms Nemp essentially

hold for the variable-length scheme. For example, Nmat

k−Nemp
is still an unbiased estimator of R and its vari-

ance is in the same form as (24) in terms of Nemp.

Remark: The number of empty bins for the variable-length scheme as presented in (29) is actually an upper

bound of the number of empty bins for the fixed length scheme as shown in (10). The difference between
∏f−1

j=0

D(1− 1
k)−j

D−j and
(

1− 1
k

)f
(recall f = f1 + f2 − a) is small when the data are sparse, as shown in

Lemma 2, although it is possible that
∏f−1

j=0

D(1− 1
k)−j

D−j ≪
(

1− 1
k

)f
in corner cases. Because smaller Nemp

implies potentially better performance, we conclude that the fixed-length scheme should be sufficient and

there are perhaps no practical needs to use the variable-length scheme.

8 Conclusion

A new hashing algorithm is developed for large-scale search and learning in massive binary data. Compared

with the original k-permutation (e.g., k = 500) minwise hashing algorithm (which is the standard procedure

in the context of search), our method requires only one permutation and can achieve similar or even better

accuracies at merely 1/k of the original preprocessing cost. We expect that our proposed algorithm (or its

variant) will be adopted in practice.

References

[1] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor

in high dimensions. In Commun. ACM, volume 51, pages 117–122, 2008.

[2] Leon Bottou. http://leon.bottou.org/projects/sgd.

[3] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-wise independent

permutations (extended abstract). In STOC, pages 327–336, Dallas, TX, 1998.

[4] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syntactic clustering

of the web. In WWW, pages 1157 – 1166, Santa Clara, CA, 1997.

[5] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions (extended abstract). In

STOC, pages 106–112, 1977.

[6] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch

and its applications. Journal of Algorithm, 55(1):58–75, 2005.

[7] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A

library for large linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.

21

http://leon.bottou.org/projects/sgd

[8] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet L. Wiener. A large-scale study of the evolution

of web pages. In WWW, pages 669–678, Budapest, Hungary, 2003.

[9] Jerome H. Friedman, F. Baskett, and L. Shustek. An algorithm for finding nearest neighbors. IEEE
Transactions on Computers, 24:1000–1006, 1975.

[10] Izrail S. Gradshteyn and Iosif M. Ryzhik. Table of Integrals, Series, and Products. Academic Press,

New York, sixth edition, 2000.

[11] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and S. Sundararajan. A dual coor-

dinate descent method for large-scale linear svm. In Proceedings of the 25th international conference
on Machine learning, ICML, pages 408–415, 2008.

[12] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of

dimensionality. In STOC, pages 604–613, Dallas, TX, 1998.

[13] Thorsten Joachims. Training linear svms in linear time. In KDD, pages 217–226, Pittsburgh, PA, 2006.

[14] Ping Li and Kenneth W. Church. Using sketches to estimate associations. In HLT/EMNLP, pages

708–715, Vancouver, BC, Canada, 2005 (The full paper appeared in Commputational Linguistics in

2007).

[15] Ping Li, Kenneth W. Church, and Trevor J. Hastie. One sketch for all: Theory and applications of

conditional random sampling. In NIPS (Preliminary results appeared in NIPS 2006), Vancouver, BC,

Canada, 2008.

[16] Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very sparse random projections. In KDD, pages

287–296, Philadelphia, PA, 2006.

[17] Ping Li and Arnd Christian König. Theory and applications b-bit minwise hashing. Commun. ACM,

2011.

[18] Ping Li, Anshumali Shrivastava, Joshua Moore, and Arnd Christian König. Hashing algorithms for

large-scale learning. In NIPS, Granada, Spain, 2011.

[19] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal estimated sub-gradient solver

for svm. In ICML, pages 807–814, Corvalis, Oregon, 2007.

[20] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, and S.V.N. Vishwanathan.

Hash kernels for structured data. Journal of Machine Learning Research, 10:2615–2637, 2009.

[21] Anshumali Shrivastava and Ping Li. Fast near neighbor search in high-dimensional binary data. In

ECML, 2012.

[22] Josef Sivic and Andrew Zisserman. Video google: a text retrieval approach to object matching in

videos. In ICCV, 2003.

[23] Simon Tong. Lessons learned developing a practical large scale machine learning system.

http://googleresearch.blogspot.com/2010/04/lessons-learned-developing-practical.html, 2008.

[24] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature hash-

ing for large scale multitask learning. In ICML, pages 1113–1120, 2009.

22

http://googleresearch.blogspot.com/2010/04/lessons-learned-developing-practi

A Proof of Lemma 1

Recall Nemp =
∑k

j=1 Iemp,j , where Iemp,j = 1 if, in the j-th bin, both π(S1) and π(S2) are empty,

and Iemp,j = 0 otherwise. Also recall D = |Ω|, f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2|. Obviously, if

D
(

1− 1
k

)

< f1 + f2 − a, then none of the bins will be jointly empty, i.e., E(Nemp) = V ar(Nemp) = 0.

Next, assume D
(

1− 1
k

)

≥ f1 + f2 − a, then by the linearity of expectation,

E (Nemp) =

k
∑

j=1

Pr (Iemp,j = 1) = kPr (Iemp,1 = 1) = k

(D(1− 1
k)

f1+f2−a

)

(D
f1+f2−a

) = k

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

To derive the variance, we first assume D
(

1− 2
k

)

≥ f1 + f2 − a. Then

V ar (Nemp) =E
(

N2
emp

)

− E2 (Nemp)

=E

k
∑

j=1

I2emp,j +
∑

i 6=j

Iemp,iIemp,j

− E2 (Nemp)

=k(k − 1)Pr (Iemp,1 = 1, Iemp,2 = 1) + E (Nemp)−E2 (Nemp)

=k(k − 1)×
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j

+ k ×
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
−

k ×
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

2

If D
(

1− 2
k

)

< f1 + f2 − a ≤ D
(

1− 1
k

)

, then Pr (Iemp,1 = 1, Iemp,2 = 1) = 0 and hence

V ar (Nemp) = E (Nemp)− E2 (Nemp) = k ×
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
−

k ×
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

2

Assuming D
(

1− 2
k

)

≥ f1 + f2 − a, we obtain

V ar (Nemp)

k2
=
1

k

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

1−
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

−
(

1− 1

k

)

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

2

−
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j

=
1

k

(

E(Nemp)

k

)(

1− E(Nemp)

k

)

−
(

1− 1

k

)

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

2

−
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j

<
1

k

(

E(Nemp)

k

)(

1− E(Nemp)

k

)

23

because
(

D
(

1− 1
k

)

− j

D − j

)2

− D
(

1− 2
k

)

− j

D − j
> 0

⇐⇒
(

D

(

1− 1

k

)

− j

)2

> (D − j)

(

D

(

1− 2

k

)

− j

)

⇐⇒
(

1− 1

k

)2

= 1− 2

k
+

1

k2
> 1− 2

k

This completes the proof.

B Proof of Lemma 2

The following expansions will be useful

n−1
∑

j=1

1

j
= log n+ 0.577216 − 1

2n
− 1

12n2
+ ... ([10, 8.367.13]) (32)

log(1− x) = −x− x2

2
− x3

3
− ... (|x| < 1) (33)

Assume D
(

1− 1
k

)

≥ f1 + f2 − a. We can write

E (Nemp)

k
=

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
=

(

1− 1

k

)f1+f2−a

×
f1+f2−a−1
∏

j=0

(

1− j

(k − 1)(D − j)

)

Hence it suffices to study the error term

f1+f2−a−1
∏

j=0

(

1− j

(k − 1)(D − j)

)

.

log

f1+f2−a−1
∏

j=0

(

1− j

(k − 1)(D − j)

)

=

f1+f2−a−1
∑

j=0

log

(

1− j

(k − 1)(D − j)

)

=

f1+f2−a−1
∑

j=0

{

− j

(k − 1)(D − j)
− 1

2

(

j

(k − 1)(D − j)

)2

− 1

3

(

j

(k − 1)(D − j)

)3

+ ...

}

Take the first term,

f1+f2−a−1
∑

j=0

− j

(k − 1)(D − j)
=

1

k − 1

f1+f2−a−1
∑

j=0

D − j

D − j
− D

D − j

=
1

k − 1

f1 + f2 − a−D

f1+f2−a−1
∑

j=0

1

D − j

=
1

k − 1

f1 + f2 − a−D

D
∑

j=1

1

j
−

D−f1−f2+a
∑

j=1

1

j

=
1

k − 1

(

f1 + f2 − a−D

(

log(D + 1)− 1

2(D + 1)
− log(D − f1 − f2 + a+ 1) +

1

2(D − f1 − f2 + a+ 1)

)

+ ...

)

24

Thus, we obtain (by ignoring a term D
D+1)

f1+f2−a−1
∏

j=0

(

1− j

(k − 1)(D − j)

)

= exp

−D log D+1
D−f1−f2+a+1 + (f1 + f2 − a)

(

1− 1
2(D−f1−f2+a+1)

)

k − 1
+ ...

Assuming f1 + f2 − a ≪ D, we can further expand log D+1
D−f1−f2+a+1 and obtain a more simplified

approximation:

E (Nemp)

k
=

(

1− 1

k

)f1+f2−a(

1−O

(

(f1 + f2 − a)2

kD

))

Next, we analyze the approximation of the variance by assuming f1 + f2 − a ≪ D. A similar analysis

can show that

f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j
=

(

1− 2

k

)f1+f2−a(

1−O

(

(f1 + f2 − a)2

kD

))

and hence we obtain, by using 1− 2
k =

(

1− 1
k

)

(

1− 1
k−1

)

,

V ar (Nemp)

k2

=

(

1− 2

k

)f1+f2−a

−
(

1− 1

k

)2(f1+f2−a)

+
1

k

(

(

1− 1

k

)f1+f2−a

−
(

1− 2

k

)f1+f2−a
)

+O

(

(f1 + f2 − a)2

kD

)

=
1

k

(

1− 1

k

)f1+f2−a
(

1−
(

1− 1

k

)f1+f2−a
)

−
(

1− 1

k

)f1+f2−a+1
(

(

1− 1

k

)f1+f2−a

−
(

1− 1

k − 1

)f1+f2−a
)

+O

(

(f1 + f2 − a)2

kD

)

C Proof of Lemma 3

Let q(D, k, f) = Pr (Nemp = 0) and Djk = D(1− j/k). Then,

Pr (Nemp = j) =

(

k

j

)

P{Iemp,1 = · · · = Iemp,j = 1, Iemp,j+1 = · · · = Iemp,k = 0}

=

(

k

j

)

P
Djk

f

PD
f

q(Djk, k − j, f).

where PD
f is the “permutation” operator: PD

f = D(D − 1)(D − 2)...(D − f + 1).
Thus, to derive Pr (Nemp = j), we just need to find q(D, k, f). By the union-intersection formula,

1− q(D, k, f) =

k
∑

j=1

(−1)j−1

(

k

j

)

E

j
∏

i=1

Iemp,i.

25

From Lemma 1, we can infer E
∏j

i=1 Iemp,i = P
Djk

f /PD
f =

∏f−1
t=0

D(1− j

k)−t

D−t . Thus we find

q(D, k, f) = 1 +
k
∑

j=1

(−1)j
(

k

j

)

P
Djk

f

PD
f

=
k
∑

j=0

(−1)j
(

k

j

)

P
Djk

f

PD
f

.

It follows that

Pr (Nemp = j) =

(

k

j

) k−j
∑

s=0

(−1)s
(

k − j

s

)

P
D(1−j/k−s/k)
f

PD
f

=

k−j
∑

s=0

(−1)s
k!

j!s!(k − j − s)!

f−1
∏

t=0

D
(

1− j+s
k

)

− t

D − t

D Proof of Lemma 4

Define

S1 ∪ S2 = {j1, j2, ..., jf1+f2−a}
J = minπ(S1 ∪ S2) = min

1≤i≤f1+f2−a
π(ji)

T = argmin
i

π(ji), i.e., π(jT) = J

Because π is a random permutation, we know

Pr (T = i) = Pr (jT = ji) = Pr (π(jT) = π(ji)) =
1

f1 + f2 − a
, 1 ≤ i ≤ f1 + f2 − a

Due to symmetry,

Pr(T = i|J = t) = Pr(π(ji) = t| min
1≤l≤f1+f2−a

π(jl) = t) =
1

f1 + f2 − a

and hence we know that J and T are independent. Therefore,

E(Nmat) =

k
∑

j=1

Pr(Imat,j = 1) = kPr(Imat,1 = 1)

=kPr (jT ∈ S1 ∩ S2, 0 ≤ J ≤ D/k − 1)

=kPr (jT ∈ S1 ∩ S2)Pr (0 ≤ J ≤ D/k − 1)

=kRPr (Iemp,1 = 0)

=kR

(

1− E (Nemp)

k

)

E(N2
mat) =E

k
∑

j=1

Imat,j

2

 = E

k
∑

j=1

Imat,j +
k
∑

i 6=j

Imat,iImat,j

=E(Nmat) + k(k − 1)E(Imat,1Imat,2)

26

E(Imat,1Imat,2) = Pr (Imat,1 = 1, Imat,2 = 1)

=

D/k−1
∑

t=0

Pr (Imat,1 = 1, Imat,2 = 1|J = t)Pr (J = t)

=

D/k−1
∑

t=0

Pr (jT ∈ S1 ∩ S2, Imat,2 = 1|J = t)Pr (J = t)

=

D/k−1
∑

t=0

Pr (Imat,2 = 1|J = t, jT ∈ S1 ∩ S2)Pr (jT ∈ S1 ∩ S2)Pr (J = t)

=R

D/k−1
∑

t=0

Pr (Imat,2 = 1|J = t, jT ∈ S1 ∩ S2)Pr (J = t)

Note that, conditioning on {J = t, jT ∈ S1 ∩ S2}, the problem (i.e., the event {Imat,2 = 1}) is actually

the same as our original problem with f1 + f2 − a− 1 elements whose locations are uniformly random on

{t+ 1, t+ 2, ...,D − 1}. Therefore,

E(Imat,1Imat,2)

=R

D/k−1
∑

t=0

a− 1

f1 + f2 − a− 1

1−
f1+f2−a−2
∏

j=0

D
(

1− 1
k

)

− t− 1− j

D − t− 1− j

Pr (J = t)

=R
a− 1

f1 + f2 − a− 1

D/k−1
∑

t=0

Pr (J = t)

1−
f1+f2−a−2
∏

j=0

D
(

1− 1
k

)

− t− 1− j

D − t− 1− j

=R
a− 1

f1 + f2 − a− 1

D/k−1
∑

t=0

Pr (J = t)−
D/k−1
∑

t=0

Pr (J = t)

f1+f2−a−2
∏

j=0

D
(

1− 1
k

)

− t− 1− j

D − t− 1− j

By observing that

Pr(J = t) =

(D−t−1
f1+f2−a−1

)

(D
f1+f2−a

) =
f1 + f2 − a

D

t−1
∏

j=0

D − f1 − f2 + a− j

D − 1− j
=

f1 + f2 − a

D

f1+f2−a−1
∏

j=1

D − t− j

D − j

D/k−1
∑

t=0

Pr(J = t) = 1−Pr (Iemp,1 = 1) = 1− E (Nemp)

k
= 1−

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

we obtain two interesting (combinatorial) identities

f1 + f2 − a

D

D/k−1
∑

t=0

t−1
∏

j=0

D − f1 − f2 + a− j

D − 1− j
= 1−

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

f1 + f2 − a

D

D/k−1
∑

t=0

f1+f2−a−1
∏

j=1

D − t− j

D − j
= 1−

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

27

which helps us simplify the expression:

D/k−1
∑

t=0

Pr (J = t)

f1+f2−a−2
∏

j=0

D
(

1− 1
k

)

− t− 1− j

D − t− 1− j

=

D/k−1
∑

t=0

f1 + f2 − a

D

f1+f2−a−1
∏

j=1

D − t− j

D − j

f1+f2−a−2
∏

j=0

D
(

1− 1
k

)

− t− 1− j

D − t− 1− j

=

D/k−1
∑

t=0

f1 + f2 − a

D

f1+f2−a−1
∏

j=1

D
(

1− 1
k

)

− t− j

D − j

=

2D/k−1
∑

t=0

f1 + f2 − a

D

f1+f2−a−1
∏

j=1

D − t− j

D − j
−

D/k−1
∑

t=0

f1 + f2 − a

D

f1+f2−a−1
∏

j=1

D − t− j

D − j

=

1−
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j

−

1−
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

=−
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j
+

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

Combining the results, we obtain

E(Imat,1Imat,2)

=R
a− 1

f1 + f2 − a− 1

1−
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
+

f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j
−

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

=R
a− 1

f1 + f2 − a− 1

1− 2

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
+

f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j

And hence

V ar(Nmat) = k(k − 1)E(Imat,1Imat,2) +E(Nmat)− E2(Nmat)

=k(k − 1)R
a− 1

f1 + f2 − a− 1

1− 2

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
+

f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j

+ kR

1−
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

− k2R2

1−
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

2

28

V ar(Nmat)

k2

=
1

k

(

E(Nmat)

k

)(

1− E(Nmat)

k

)

+

(

1− 1

k

)

R
a− 1

f1 + f2 − a− 1

1− 2

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
+

f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j

−
(

1− 1

k

)

R2

1−
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

2

<
1

k

(

E(Nmat)

k

)(

1− E(Nmat)

k

)

+

(

1− 1

k

)

R2

1− 2

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
+

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

2

−
(

1− 1

k

)

R2

1−
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

2

=
1

k

(

E(Nmat)

k

)(

1− E(Nmat)

k

)

To see the inequality, note that a−1
f1+f2−a−1 < R = a

f1+f2−a , and
D(1− 2

k)−j

D−j <

(

D(1− 1
k)−j

D−j

)2

as proved

towards the end of Appendix A. This completes the proof.

E Proof of Lemma 5

E (NmatNemp) =E

k
∑

j=1

Imat,j

k
∑

j=1

Iemp,j

 =

k
∑

j=1

E (Imat,jIemp,j) +
∑

i 6=j

E (Imat,iIemp,j)

=0 +
∑

i 6=j

E (Imat,iIemp,j) = k(k − 1)E (Iemp,1Imat,2)

E (Iemp,1Imat,2) =Pr (Iemp,1 = 1, Imat,2 = 1) = Pr (Imat,2 = 1|Iemp,1 = 1)Pr (Iemp,1 = 1)

=R

1−
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

29

Cov (Nmat, Nemp) = E (NmatNemp)− E (Nmat)E (Nemp)

=k(k − 1)R

1−
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

− kR

1−
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

 k

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

=k2R

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
−

f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j

− kR

1−
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

 ≤ 0

To see the inequality, it suffices to show that g(k) < 0, where

g(k) =k

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
−

f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j

−

1−
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j

=k

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

− 1− (k − 1)

f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j

Because g(k = ∞) = 0, it suffices to show that g(k) is increasing in k.

g(f ; k) =k

f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

− 1− (k − 1)

f−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j

g(f + 1; k) =k

f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

(

D
(

1− 1
k

)

− f

D − f

)

− 1− (k − 1)

f−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j

(

D
(

1− 2
k

)

− f

D
(

1− 1
k

)

− f

)

=g(f ; k)−

f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

(

D

D − f

)

+

f−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j

(

D
(

1− 1
k

)

D
(

1− 1
k

)

− f

)

Thus, it suffices to show

−

f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

(

D

D − f

)

+

f−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j

(

D
(

1− 1
k

)

D
(

1− 1
k

)

− f

)

≤ 0

⇐⇒h(f ; k) =

f−1
∏

j=0

(

D
(

1− 2
k

)

− j
)

(D − j)
(

D
(

1− 1
k

)

− j
)2

(

(

1− 1
k

)

(D − f)

D
(

1− 1
k

)

− f

)

≤ 1

h(f ; k) ≤ 1 holds because one can check that h(1; k) ≤ 1 and
(D(1− 2

k)−j)(D−j)

(D(1− 1
k)−j)

2 < 1.

This completes the proof.

30

F Proof of Lemma 6

We first prove that R̂mat =
Nmat

k−Nemp
is unbiased,

Iemp,j = 1 ⇒ Imat,j = 0

E
(

Imat,j

∣

∣

∣
Iemp,j = 0

)

= R

E
(

Imat,j

∣

∣

∣
k −Nemp = m

)

= (m/k)R, m > 0

P{k −Nemp > 0} = 1

E
(

Nmat

∣

∣

∣k −Nemp

)

= R(k −Nemp)

E
(

Nmat/(k −Nemp)
∣

∣

∣k −Nemp

)

= R independent of Nemp

E
(

R̂mat

)

= R

Next, we compute the variance. To simplify the notation, denote f = f1 + f2 − a and R̃ = a−1
f−1 . Note

that

E
(

Imat,1Imat,2

∣

∣

∣
Iemp,1 = Iemp,2 = 0

)

= R(a− 1)/(f − 1) = RR̃

R2 −RR̃ = R{a(f − 1)− f(a− 1)}/{f(f − 1)} = R(1−R)/(f − 1)

E
(

Imat,1Imat,2

∣

∣

∣Iemp,1 + Iemp,2 > 0
)

= 0

By conditioning on k −Nemp, we obtain

E
(

N2
mat

∣

∣

∣
k −Nemp = m

)

= kE
(

Imat,1

∣

∣

∣
k −Nemp = m

)

+ k(k − 1)E
(

Imat,1Imat,2

∣

∣

∣
k −Nemp = m

)

= Rm+ k(k − 1)RR̃Pr

(

Iemp,1 = Iemp,2 = 0
∣

∣

∣
k −Nemp = m

)

= Rm+ k(k − 1)RR̃

(

m

2

)

/

(

k

2

)

= Rm+m(m− 1)RR̃

and

E
(

R̂2
mat

∣

∣

∣k −Nemp = m
)

= RR̃+ (R−RR̃)/m

ER̂2
mat = RR̃+ (R−RR̃)E(k −Nemp)

−1

Combining the above results, we obtain

V ar
(

R̂mat

)

=RR̃−R2 + (R−RR̃)E(k −Nemp)
−1

=R(1−R)E(k −Nemp)
−1 − (R2 −RR̃)(1 − E(k −Nemp)

−1)

=R(1−R)E(k −Nemp)
−1 −R(1−R)(f − 1)−1(1− E(k −Nemp)

−1)

=R(1−R)
{

E(k −Nemp)
−1 − (f − 1)−1 + (f − 1)−1E(k −Nemp)

−1)
}

31

G Proof of Lemma 7

g(f ; k) =
1

1−
(

1− 1
k

)f

(

1 +
1

f − 1

)

− k

f − 1

To show g(f ; , k) ≤ 1, it suffices to show

h(f ; k) = (f + k − 1)

(

1−
(

1− 1

k

)f
)

− f ≥ 0 (note that h(1; k) = 0, h(2; k) > 0)

for which it suffices to show

∂h(f ; k)

∂f
=

(

1−
(

1− 1

k

)f
)

+ (f + k − 1)

(

−
(

1− 1

k

)f

log

(

1− 1

k

)

)

− 1 ≥ 0

and hence it suffices to show −1− (f + k − 1) log
(

1− 1
k

)

≥ 0, which is true because log
(

1− 1
k

)

< − 1
k .

This completes the proof.

H Proof of Lemma 8

Recall we first divide the D elements into k bins whose lengths are multinomial distributed with equal

probability 1
k . We denote their lengths by Lj , j = 1 to k. In other words,

(L1, L2, ..., Lk) ∼ multinomial

(

D,
1

k
,
1

k
, ...,

1

k

)

and we know

E(Lj) =
D

k
, V ar(Lj) = D

1

k

(

1− 1

k

)

, Cov(Li, Lj) = −D

k2

Define

Ii,j =

{

1 if the i-th element is hashed to the j-th bin

0 otherwise
(34)

We know

E(Ii,j) =
1

k
, E(I2i,j) =

1

k
, E(Ii,jIi,j′) = 0, E(Ii,jIi′,j) =

1

k2
,

E(1− Ii,j) = 1− 1

k
, E(1− Ii,j)

2 = 1− 1

k
, E(1− Ii,j)(1 − Ii,j′) = 1− 2

k

Thus

Nemp =

k
∑

j=1

∏

i∈S1∪S2

(1− Ii,j)

32

E (Nemp) =

k
∑

j=1

∏

i∈S1∪S2

E ((1− Ii,j)) = k

(

1− 1

k

)f1+f2−a

E
(

N2
emp

)

=
k
∑

j=1

∏

i∈S1∪S2

(1− Ii,j)
2 +

∑

j 6=j′

∏

i∈S1∪S2

(1− Ii,j)
(

1− Ii,j′
)

=k

(

1− 1

k

)f1+f2−a

+ k(k − 1)

(

1− 2

k

)f1+f2−a

V ar (Nemp) =k

(

1− 1

k

)f1+f2−a

+ k(k − 1)

(

1− 2

k

)f1+f2−a

− k2
(

1− 1

k

)2(f1+f2−a)

Therefore,

V ar (Nemp)

k2
=
1

k

(

1− 1

k

)f1+f2−a
(

1−
(

1− 1

k

)f1+f2−a
)

−
(

1− 1

k

)

(

(

1− 1

k

)2(f1+f2−a)

−
(

1− 2

k

)f1+f2−a
)

<
1

k

(

1− 1

k

)f1+f2−a
(

1−
(

1− 1

k

)f1+f2−a
)

This completes the proof of Lemma 8.

33

	www10_minwise
	NIPS10_hashing
	NIPS2011_Hashing
	NIPS_OneHashing_final
	OneHashArXiv
	1 Introduction
	1.1 Massive High-Dimensional Binary Data
	1.2 Minwise Hashing
	1.3 The Cost of Preprocessing and Testing
	1.4 Our Proposal: One Permutation Hashing
	1.5 Summary of the Advantages of One Permutation Hashing
	1.6 Related Work

	2 Applications of Minwise Hashing on Efficient Search and Learning
	2.1 Sublinear Time Near Neighbor Search
	2.2 Large-Scale Linear Learning

	3 Theoretical Analysis of the Fixed-Length One Permutation Scheme
	3.1 Expectation, Variance, and Distribution of the Number of Jointly Empty Bins
	3.2 Expectation and Variance of the Number of Matched Bins
	3.3 Covariance of Nmat and Nemp
	3.4 An Unbiased Estimator of R and the Variance
	3.5 Experiments for Validating the Theoretical Results
	3.5.1 E(Nemp) and Var(Nemp)
	3.5.2 E(Nmat) and Var(Nmat)
	3.5.3 Cov(Nemp, Nmat)
	3.5.4 E(mat) and Var(mat)

	4 Strategies for Dealing with Empty Bins
	4.1 The m-Permutation Scheme with 1<mk
	4.2 An Example of The ``Zero Coding'' Strategy for Linear Learning

	5 Experimental Results on the Webspam Dataset
	5.1 One Permutation v.s. k-Permutation
	5.2 Preprocessing Time and Training Time
	5.3 Zero Coding v.s. Random Coding for Empty Bins

	6 Experimental Results on the News20 Dataset
	6.1 One Permutation v.s. k-Permutation
	6.2 Zero Coding v.s. Random Coding for Empty Bins

	7 The Variable Length One Permutation Hashing Scheme
	8 Conclusion
	A Proof of Lemma 1
	B Proof of Lemma 2
	C Proof of Lemma 3
	D Proof of Lemma 4
	E Proof of Lemma 5
	F Proof of Lemma 6
	G Proof of Lemma 7
	H Proof of Lemma 8

