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ABSTRACT
Minwise hashing is a standard technique in the context of search for
approximating set similarities. The recent work [26, 32] demon-
strated a potential use of b-bit minwise hashing [23, 24] for ef-
ficient search and learning on massive, high-dimensional, binary
data (which are typical for many applications in Web search and
text mining). In this paper, we focus on a number of critical is-
sues which must be addressed before one can apply b-bit minwise
hashing to the volumes of data often used industrial applications.

Minwise hashing requires an expensive preprocessing step that com-
putes k (e.g., 500) minimal values after applying the correspond-
ing permutations for each data vector. We developed a paralleliza-
tion scheme using GPUs and observed that the preprocessing time
can be reduced by a factor of 20 ∼ 80 and becomes substantially
smaller than the data loading time. Reducing the preprocessing
time is highly beneficial in practice, e.g., for duplicate Web page
detection (where minwise hashing is a major step in the crawling
pipeline) or for increasing the testing speed of online classifiers.

Another critical issue is that for very large data sets it becomes im-
possible to store a (fully) random permutation matrix, due to its
space requirements. Our paper is the first study to demonstrate that
b-bit minwise hashing implemented using simple hash functions,
e.g., the 2-universal (2U) and 4-universal (4U) hash families, can
produce very similar learning results as using fully random permu-
tations. Experiments on datasets of up to 200GB are presented.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Performance, Experimentation

1. INTRODUCTION
Minwise hashing [3–5] is a standard technique for efficiently

computing set similarities in the context of search, with further
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applications in the context of content matching for online adver-
tising [28], detection of redundancy in enterprise file systems [13],
syntactic similarity algorithms for enterprise information manage-
ment [8], Web spam [35], etc. The recent development of b-bit
minwise hashing [23, 24] provided a substantial improvement in
the estimation accuracy and speed by proposing a new estimator
that stores only the lowest b bits of each hashed value.

More recently, [25, 26] proposed the use of b-bit minwise hash-
ing in the context of learning algorithms such as SVM or logis-
tic regression on large binary data (which is typical in Web clas-
sification tasks). b-bit minwise hashing can enable scalable learn-
ing where otherwise massive (and expensive) parallel architectures
would have been required, at negligible reduction in learning qual-
ity. Furthermore, [32] proposed to directly use the bits from b-bit
minwise hashing to build hash tables to facilitate sublinear time
near neighbor search in binary data. [32] demonstrated its superior
performance compared to other competing algorithms.

In this study, we address two critical issues in order to apply
b-bit minwise hashing to truly large-scale industrial applications.
The first issue is that the current practice of minwise hashing re-
quires a very expensive preprocessing step. The second issue has
to do with random permutation generation, which must be approx-
imated when the data dimensionality is extremely high. We will
also explain why the other related and active line of research work
on one-permutation hashing [21,22,25] has not provided an ade-
quate solution to these two issues.

To understand these issues, we begin with a review of the method.

1.1 A Review of b-Bit Minwise Hashing
Minwise hashing mainly focuses on binary (0/1) data, which can

be viewed as sets. Consider sets S1, S2 ⊆ Ω = {0, 1, 2, ..., D−1},
minwise hashing applies a random permutation π : Ω → Ω on S1

and S2 and uses the following collision probability

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|
|S1 ∪ S2|

= R (1)

to estimate R, which is the resemblance between S1 and S2. With
k permutations: π1, ..., πk, one can estimate R without bias:

R̂M =
1

k

k∑
j=1

1{z1,j = z2,j} (2)

z1,j = min(πj(S1)), z2,j = min(πj(S2)).

A common practice is to store each hashed value, e.g., min(π(S1)),
using 64 bits [12]. The storage (and computational) cost is pro-
hibitive in industrial applications [27]. The recent work of b-bit
minwise hashing [23,24] provides a simple solution by storing only
the lowest b bits of each hashed value.



For convenience, we define

z
(b)
1 = the lowest b bits of z1, z

(b)
2 = the lowest b-bits of z2.

THEOREM 1. [23] Assume D is large.

Pb = Pr
(
z
(b)
1 = z

(b)
2

)
= C1,b + (1− C2,b)R, (3)

where C1,b and C2,b are functions of (D, |S1|, |S2|, |S1 ∩ S2|). 2

Based on Theorem 1, we can estimate Pb (and R) from k inde-
pendent permutations π1, π2, ..., πk:

R̂b =
P̂b − C1,b

1− C2,b
, P̂b =

1

k

k∑
j=1

1
{
z
(b)
1,πj

= z
(b)
2,πj

}
, (4)

The estimator P̂b is an inner product between two vectors in 2b×k
dimensions with exactly k 1’s, because

1
{
z
(b)
1 = z

(b)
2

}
=

2b−1∑
t=0

1{z(b)1 = t} × 1{z(b)2 = t} (5)

This provides a practical strategy for using b-bit minwise hashing
for large-scale learning. That is, each original data vector is trans-
formed into a new data point consisting of k b-bit integers, which
is expanded into a 2b × k-length binary vector at the run-time.

These days, many machine learning applications, especially in
the context of search, are faced with large and inherently high-
dimensional datasets. For example, [34] discusses training datasets
with (on average) n = 1011 items and D = 109 distinct features.
[36] experimented with a dataset of potentially D = 16 trillion
(1.6× 1013) unique features. Effective algorithms for data/feature
reduction are highly beneficial for these industry applications.

1.2 Linear Learning Algorithms
Clearly, b-bit minwise hashing can approximate both linear and

nonlinear kernels (if they are functions of the inner products). We
focus on linear learning because many high-dimensional datasets
used in the context of search are naturally suitable for linear algo-
rithms. Realistically, for industrial applications, “almost all the big
impact algorithms operate in pseudo-linear or better time” [20].

Linear algorithms such as linear SVM and logistic regression
have become very powerful and extremely popular. Representa-
tive software packages include SVMperf [18], Pegasos [30], Bot-
tou’s SGD SVM [2], and LIBLINEAR [11].

Given a dataset {(xi, yi)}ni=1, xi ∈ RD , yi ∈ {−1, 1}, the L2-
regularized linear SVM solves the following optimization problem:

min
w

1

2
wTw + C

n∑
i=1

max
{
1− yiw

Txi, 0
}
, (6)

and the L2-regularized logistic regression solves a similar problem:

min
w

1

2
wTw + C

n∑
i=1

log
(
1 + e−yiw

Txi

)
. (7)

Here C > 0 is an important penalty parameter.

1.3 Issue 1: Expensive Preprocessing
Minwise hashing requires an expensive preprocessing step in or-

der to compute k (e.g., k = 500) minimal values (after permuta-
tion) for each data vector. Note that in prior studies on duplicate

detection [3], k was usually not too large (i.e., 200), mainly be-
cause duplicate detection concerns highly similar pairs. With b-bit
minwise hashing, we have to use larger values of k according to the
analysis in [23] even in the context of duplicate detection (but still
obtain significant storage reduction). Also note that classification
tasks are quite different from duplicate detection. For example, we
use k ≤ 500 in our experiments on the rcv1 dataset; but it looks
there might be further (small) improvements by using k > 500.

In the context of Web page duplicate detection, the cost of the
preprocessing overhead is significant simply because of the huge
data volume. While parallelizing this task is conceptually sim-
ple (as the signatures of different pages can be computed indepen-
dently) it still comes at the cost of using additional hardware and
electricity. Any significant improvements in the speed of comput-
ing minhashes thus likely will be directly reflected in the cost of the
required infrastructure.

For machine learning research and applications, this expensive
preprocessing step can be a significant issue in scenarios where
(either due to changing data distributions or features) models are
frequently re-trained. Additionally, in user-facing applications, the
testing time performance can be severely affected by the prepro-
cessing step if the (new) incoming data have not been previously
processed. In the context of approximate near neighbor search by
building many hashing tables [17,32], often substantially more per-
mutations are required, compared to linear learning.

This paper studies how to speed up the execution of the signature
computation through the use of graphical processing units (GPUs).
GPUs offer, compared to current CPUs, higher instruction paral-
lelism and very low latency access to the internal GPU memory,
but comparatively slow latencies when accessing the main mem-
ory [19]. As a result, many data processing algorithms (especially
such with random memory access patterns) do not benefit signifi-
cantly when implemented using a GPU. However, the characteris-
tics of the minwise hashing algorithm make it very well suited for
execution using a GPU. The algorithm accesses each set Si in its
entirety, which allows for the use of main memory pre-fetching to
reduce access latencies. Moreover, since we compute k different
hash minima for each item in a set, the algorithm can make good
use of the high degree of parallelism in GPUs. This is especially
true for b-bit minwise hashing, which, compared to the original
algorithm, typically increases the number of hash functions (and
minima) to be computed by a factor of 3 or more. Also, note that
any improvements to the speed of (b-bit) minwise hashing are di-
rectly applicable to large-scale instances of the other applications
of minwise hashing mentioned previously.

1.4 Issue 2: Massive Permutation Matrix
When the data dimension (D) is not too large, e.g., millions, the

implementation of b-bit minwise hashing for learning is straight-
forward. Basically, we can assume a “fully random permutation
matrix” of size D×k, which defines k permutation mappings. This
is actually how researchers use (e.g., Matlab) simulations to verify
the theoretical results assuming perfectly random permutations.

Unfortunately, when the dimension is on the order of billions (let
alone 264), it becomes impractical (or too expensive) to store such
a permutation matrix. Thus, we have to resort to simple hash func-
tions such as various forms of 2-universal (2U) hashing (e.g., [9]).
Now the question is how reliable those hash functions are in the
context of learning with b-bit minwise hashing.

There were prior studies on the impact of limited randomness
on the estimation accuracy of (64-bit) minwise hashing, e.g., [16,



29]. However, no prior studies reported how the learning accuracies
were affected by the use of simple hash functions for b-bit minwise
hashing. This study provides the empirical support that, as long as
the data are reasonably sparse (as virtually always the case in the
context of search), using 2U/4U hash functions results in negligible
reduction of learning accuracies (unless b = 1 and k is very small).

One limitation of GPUs is that they have fairly limited mem-
ory [1]. Thus, it becomes even more beneficial if we can reliably
replace a massive permutation matrix with simple hash functions.

1.5 Discussion on One-Permutation Hashing
The very original paper on minwse hashing [3] actually only

used one permutation and the consecutive smallest k entries of the
permuted set. By taking entries consecutively, the samples are no
longer “aligned” in that one can use a simple unified inner product
of the samples of the sets to rigorously estimate the original simi-
larity. This serious drawback seriously limited the use of the orig-
inal one-permutation version of minwise hashing either for neigh-
bor search or learning. This was also the reason why the authors
quickly moved to the k-permutation version [4].

Using also only one permutation and the k consecutive elements
of permuted set, [21] substantially improved the original estimation
scheme of [3]. Later, [22] developed Conditional Random Sam-
pling (CRS) by extending the idea of [21] to real-valued (not just
binary) data. Obviously, CRS still suffered the similar drawback of
the original one-permutation scheme [3].

Recently, a significant progress on one-permutation hashing
has been accomplished by [25], which divided the space into equal-
sized k bins after one permutation and then took the minimum in
each bin. This way, the samples are naturally “aligned” with one
caveat that there might be many empty bins. The issue of “empty
bins” may not be too serious for linear learning because [25] could
heuristically treat empty bins as zeros. For near neighbor search
which uses hash values for indexing, this issue is very urgent be-
cause empty bins do not carry indexing information.

In summary, while one-permutation hashing is promising, at the
moment it could not provide an adequate solution to the issue of
expensive preprocessing, due to the presence of empty bins. Thus,
our work on using GPUs for minwise hashing is still valuable. Of
course, even with one permutation, we often still have to resort to
simple hashing functions instead of perfect random permutations;
and the work in this paper will provide guidelines for practice.

2. SIMPLE HASH FUNCTIONS
As previously discussed, in large-scale industry practice, it is

often infeasible to assume perfect random permutations. For ex-
ample, when D = 230 (about 1 billion) and k = 500, a matrix of
D × k integers (4-byte each) would require > 2000GB of storage.

To overcome the difficulty in achieving perfect permutations, the
common practice is to use the so-called universal hashing [6]. One
standard 2-universal (2U) hash function is, for j = 1 to k,

h
(2U)
j (t) = {a1,j + a2,j t mod p} mod D, (8)

where p > D is a prime number and a1,j , a2,j are chosen uni-
formly from {0, 1, ..., p − 1}. To increase randomness, one can
also use the following 4-universal (4U) hash function:

h
(4U)
j (t) =

{
4∑

i=1

ai,jt
i−1 mod p

}
mod D, (9)

where the ai,j (i = 1, 2, 3, 4) are chosen uniformly from {0, 1, ..., p−
1}. The storage cost for retaining the ai,j’s is minimal, compared

to storing a permutation matrix. In theory, the 4U hash function is
(in the worst-case) more random than the 2U hash function.

Now, to compute the minwise hashes for a given feature vector
(e.g., a parsed document represented as a list of 1-grams, 2-grams,
and 3-grams, where each n-gram can be viewed as a binary fea-
ture), we iterate over all non-zero features; any non-zero location t
in the original feature vector is mapped to its new location hj(t);
we then iterate over all mapped locations to find their minimum,
which will be the jth hashed value for that feature vector.

3. GPU FOR FAST PREPROCESSING
In this section we will describe and analyze the use of graphics

processors (GPUs) for fast computation of minwise hashes. We
will first sketch the relevant properties of GPUs in general and then
describe in how far minwise hashing computation is suited for exe-
cution on this architecture. Subsequently, we will describe our im-
plementation and analyze the resulting performance improvements
over a CPU-based implementation.

3.1 Introduction
The use of GPUs as general-purpose coprocessors is relatively

recent and primarily due to their high computational power at com-
paratively low cost. In comparison with commodity CPUs, GPUs
offer significantly increased computation speed and memory band-
width. However, since GPUs have been designed for graphics pro-
cessing, the programming model (which includes massively par-
allel Single-Instruction-Multiple-Data (SIMD) processing and lim-
ited bus speeds for data transfers to/from main memory) is not suit-
able for arbitrary data processing applications [15]. GPUs consist
of a number of SIMD multiprocessors. At each clock cycle, all pro-
cessors in a multiprocessor execute identical instructions, but on
different parts of the data. Thus, GPUs can leverage spatial locality
in data access and group accesses to consecutive memory addresses
into a single access; this is referred to as coalesced access.

3.2 Our Approach
In light of the properties of GPU processing, our GPU algorithm

to compute b-bit minwise hashes proceeds in 3 distinct phases:
First, we read in chunks of 10K sets from disk into main memory
and write these to the GPU memory. Then, we compute the hash
values and the corresponding minima by applying all k hash func-
tions to the data currently in the GPU and retaining, for each hash
function and set, the corresponding minima. Finally, we write out
the resulting minima back to main memory and repeat the process.

This batch-style computation has a number of advantages. Be-
cause we transfer larger blocks of data, the main memory latency is
reduced through the use of main memory pre-fetching. Moreover,
because the computation within the GPU itself scans through con-
secutive blocks of data in the GPU-internal memory (as opposed to
random memory access patterns), performing the same computa-
tion (with a different hash function) for each set entry k times, we
can take full advantage of coalesced access and the massive paral-
lelism inherent in the GPU architecture.

Because GPUs are known to have fairly limited memory capac-
ity, it becomes even more impractical to store a fully random per-
mutation matrix; and hence it is crucial to utilize simple hash func-
tions. We implemented both 2U and 4U hash functions introduced
in Section 2. However, because the modulo operations in the def-
initions of the 2U/4U hash functions are expensive especially for
GPUs [1], we have used the following tricks to avoid them and
make our approach (more) suitable for GPU-based execution.



3.3 Avoid Modulo Operations in 2U Hashing
To avoid the modulo operations in 2U hashing, we adopt a com-

mon trick [10]. Here, for simplicity, we assume D = 2s < 232

(note that D = 230 corresponds to about a billion features). It is
known that the following hash function is essentially 2U [10]:

h
(s)
j (t) =

{
a1,j + a2,j t mod 232

}
mod 2s, (10)

where a1,j is chosen uniformly from {0, 1, ..., 232 − 1} and a2,j

uniformly from {1, 3, ..., 232 − 1} (i.e., a2,j is odd). This scheme
is much faster because we can effectively leverage the integer over-
flow mechanism and the efficient bit-shift operation. In this paper,
we always implement 2U hash using h

(s)
j .

3.4 Avoid Modulo Operations in 4U Hashing
It is slightly tricky to avoid the modulo operations in evaluating

4U hash functions. Assuming D < p = 231 − 1 (a prime number),
we provide the C# code to compute v mod p with p = 231 − 1:

private static ulong BitMod(ulong v)
{

ulong p = 2147483647; // p = 2^31-1
v = (v >> 31) + (v & p);
if (v >= 2 * p)

v = (v >> 31) + (v & p);
if (v >= p)

return v - p;
else

return v;
}

To better understand the code, consider

v mod p = x, and v mod 231 = y

=⇒v = p× Z + x = 231 × S + y

=⇒x = 231(S − Z) + Z + y

for two integers S and Z. S and y can be efficiently evaluated using
bit operations: S = v >> 31 and y = v & p.

A recent paper [33] implemented a similar trick for p = 261−1,
which was simpler than ours because with p = 261 − 1 there is no
need to check the condition “if (v >= 2 * p)”. We find the case of
p = 231 − 1 useful in machine learning practice because it suffices
for datasets with less than a billion features. Note that a large value
of p potentially increases the dimensionality of the hashed data.

3.5 Experiments: Datasets
Table 1 summarizes the two datasets used in this evaluation:

webspam and rcv1. The webspam dataset was used in the recent
paper [26]. Since the webspam dataset (24 GB in LibSVM format)
may be too small compared to datasets used in industrial practice,
in this paper we also present an empirical study on the expanded
rcv1 dataset [2], which we generated by using the original features
+ all pairwise combinations (products) of features + 1/30 of 3-way
combinations (products) of features. Note that, for rcv1, we did not
include the original test set in [2], which has only 20242 examples.
To ensure reliable test results, we randomly split our expanded rcv1
dataset into two halves, for training and testing.

Table 1: Data information

Dataset n D # Avg Nonzeros Train / Test
Webspam (24 GB) 350000 16609143 3728 80% / 20%
Rcv1 (200 GB) 781265 1010017424 12062 50% / 50%

3.6 Experiments: Platform
The GPU platform we use in our experiments is the NVIDIA

Tesla C2050, which has 15 Simultaneous Multiprocessors (SMs),
each with 2 groups of 16 scalar processors (hence 2 sets of 16-
element wide SIMD units). The peak (single precision) GFlops of
this GPU are 1030, with a peak memory bandwidth of 144 GB/s. In
comparison, the numbers for a Intel Xeon processor X5670 (West-
mere) processor are 278 GFlops and 60 GB/s.

3.7 Experiments: CPU Results
We use the setting of k = 500 for these experiments. Table 2

shows the overhead of the CPU-based implementation, broken down
into the time required to load the data into memory and the time for
the minwise hashing computation. For 2U, we always use the 2U
hash function (10). For 4U (Mod), we use the 4U hash function (9)
which requires the modulo operation. For 4U (Bit), we use the im-
plementation in Section 3.4, which converted the modulo operation
into bit operations. Note that for rcv1 dataset, we only report the
experimental results for 2U hashing.

Table 2: The data loading and preprocessing (for k = 500 per-
mutations) times (in seconds). Note that we measured the data
loading times of LIBLINEAR which used a plain text data for-
mat. The data loading times could be reduced by a factor of 5
or so when the data were converted into binary. In other words,
the (relative) preprocessing costs of minwise hashing would be
even much more expensive if we optimized the data loading
procedure of LIBLINEAR. This further explains why reducing
the cost by using GPUs could be so beneficial.

Dataset Loading Permu 2U 4U (Mod) 4U (Bit)
Webspam 9.7 × 102 6.1 × 103 4.1 × 103 4.4 × 104 1.4 × 104

Rcv1 1.0 × 104 – 3.0 × 104 – –

Table 2 shows that the preprocessing using CPUs (even for 2U)
can be very expensive, substantially more than data-loading. 4U
hashing with modulo operations can take an order of magnitude
more time than 2U hashing. As expected, the cost for 4U hashing
can be substantially reduced if modulo operations are avoided.

Note that for webspam dataset (with only 16 million features),
using permutations is actually faster than the algebra required for
4U hash functions. The main constraint here is the storage space.
The permutations are generated once and then stored in main mem-
ory. This makes them impractical for use with larger feature sets
such as the rcv1 data (with about a billion features)

3.8 Experiments: GPU results
The total overhead for the GPU-based processing for batch size

= 10K is summarized in Table 3, demonstrating the substantial time
reduction compared to the CPU-based processing in Table 2. For
example, the cost of 2U processing on the webspam dataset is re-
duced from 4100 seconds to 51 seconds, a 80-fold reduction. We
also observe improvements of similar magnitude for 4U processing
(both modulo and bit versions) on webspam. For the rcv1 dataset,
the time reduction of the GPU-based implementation is about 20-
fold, compared to the CPU-based implementation.

Figures 1 to 3 provide the breakdowns of the overhead for the
GPU-based implementations, using 2U hashing, 4U hashing with
modulo operations, and 4U hashing without modulo operations, re-
spectively. As shown in the figures, we separate the overhead into
three components: (i) time spent transferring the data from main



Table 3: The data loading and preprocessing (for k = 500 per-
mutations) times (in seconds) for using GPUs.

Dataset Loading GPU 2U GPU 4U (Mod) GPU 4U (Bit)
Webspam 9.7 × 102 51 5.2 × 102 1.2 × 102

Rcv1 1.0 × 104 1.4 × 103 1.5 × 104 3.2 × 103

memory to the GPU (“CPU → GPU”), (ii) the actual computation
(“GPU Kernel”) and (iii) transferring the k minima back to main
memory (“GPU → CPU”).
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Figure 1: 2U. Overhead of the three phases of the GPU-based
implementation using 2U hash functions, for both webspam (left
panel) and rcv1 (right panel) datasets.
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Figure 2: 4U-Mod. Overhead of the three phases of the GPU-
based implementation using 4U hash functions with modulo op-
erations, for both datasets.
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Figure 3: 4U-Bit. Overhead of the three phases of the GPU-
based implementation using 4U hash functions without modulo
operations (Section 3.4), for both datasets.

3.9 Optimizing GPU Utilization
In order to make best use of the massive parallelism of the GPU

we need to ensure that we schedule the computation in such a way
that as many multiprocessors as possible are kept busy; in partic-
ular, it is not sufficient to compute only k independent hashes in

parallel. Instead, we process batches of B data vectors simultane-
ously, computing k parallel hashes for each entry. One side-effect
of this is a noticeable reduction in the host-device memory trans-
fer time as we are now transferring larger, consecutive blocks of
memory, thereby reducing the aggregate memory latency.

Moreover, to ensure that all multiprocessors are busy we also
need a sufficient number blocks per grid, and we need sufficient
threads per multiprocessor to mask the latency. Here, we launch
the kernel with B blocks with k threads each. Note that we report
results only for k = 500 but we observe the same magnitude of
improvements with e.g., k = 200. We keep the number of threads
equal to the number of hashes, which provides very intuitive cod-
ing: the blocks IDs correspond to the data vector IDs and thread
IDs to hashes. To find the optimum choice of the block number B,
we varied B and recorded the resulting performance. As expected,
it can be clearly seen from Figures 1 to 3 that when B increases
the multiprocessor-utilization increases as well, until no more mul-
tiprocessors are idle; we do not observe any performance gain after
that.

4. VALIDATION OF THE USE OF 2U/4U
HASH FUNCTIONS FOR LEARNING

For large-scale industrial applications, because storing a fully
random permutation matrix is not practical, we have to resort to
simple hash functions such as 2U or 4U hash families. However,
before we can recommend them to practitioners, we must first val-
idate on a smaller dataset that using such hash functions will not
hurt the learning performance. To the best of our knowledge, this
section is the first empirical study of the impact of hashing func-
tions on machine learning with b-bit minwise hashing.

In addition, Appendix A provides another set of experiments for
estimating resemblances using b-bit minwise hashing with simple
hash functions. Those experiments demonstrate that, as long as the
data are not too dense, using 2U hash will produce very similar esti-
mates as using fully random permutations. That set of experiments
may help understand the experimental results in this section. Note
that both datasets listed in Table 1 are extremely sparse.

The webspam dataset is small enough (24GB and 16 million fea-
tures) that we can conduct experiments using a permutation matrix.
We chose LIBLINEAR as the underlying learning procedure. All
experiments were conducted on workstations with Xeon(R) CPU
(W5590@3.33GHz) and 48GB RAM, on a Windows 7 System.

4.1 Experimental Results
We experimented with both 2U and 4U hash schemes for train-

ing linear SVM and logistic regression. We tried out 30 values for
the regularization parameter C in the interval [10−3, 100]. We ex-
perimented with 11 k values from k = 10 to k = 500, and for 7 b
values: b = 1, 2, 4, 6, 8, 10, 16. Each experiment was repeated 50
times. The total number of training experiments turns out to be

2× 2× 30× 11× 7× 50 = 462000.

To maximize the repeatability, whenever page space allows, we
always would like to present the detailed experimental results for
all the parameters instead of, for example, only reporting the best
results or the cross-validated results. In this subsection, we only
present the results for webspam dataset using linear SVM because
the results for logistic regression lead to the same conclusion.

Figure 4 presents the SVM test accuracies (averaged over 50
runs). For the test cases that correspond to the most likely parame-
ter settings used in practice (e.g., k ≥ 200 and b ≥ 4), we can see



that the results from the three hashing schemes (full permutations,
2U, and 4U) are essentially identical. Overall, it appears that 4U is
slightly better than 2U when b = 1 or k is very small.

This set of experiments can provide us with a strong experimen-
tal evidence that the simple and highly efficient 2U hashing scheme
may be sufficient in practice, when used in the context of large-
scale machine learning using b-bit minwise hashing.
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Figure 4: Linear SVM test accuracies on webspam, using three
hashing schemes: permutations, 2U, and 4U. Both 2U and 4U
perform well as the curves essentially overlap except when b =
1 or small k. It appears that 4U is only slightly better than 2U.

5. LEARNING ON RCV1 DATA (200GB)
Compared to webspam, the size of the expanded rcv1 dataset

may be more close to the training data sizes used in industrial ap-
plications. We report the experiments on linear SVM and logistic
regression, as well as the comparisons with the VW hash algorithm.

5.1 Experiments on Linear SVM
Figure 5 and Figure 6 respectively provide the test accuracies and

train times, for training linear SVM. We can not report the baseline
because the original dataset exceeds the memory capacity. Using
merely k = 30 and b = 12, our method can achieve > 90% test
accuracies. With k ≥ 300, we can achieve > 95% test accuracies.
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Figure 5: Linear SVM test accuracy on rcv1.
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Figure 6: Linear SVM training time on rcv1.

5.2 Experiments on Logistic Regression
Figure 7 and Figure 8 respectively present the test accuracies

and training times for training logistic regression. Again, using



merely k = 30 and b = 12, our method can achieve > 90% test
accuracies. With k ≥ 300, we can achieve > 95% test accuracies.
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Figure 7: Logistic regression test accuracy on rcv1.
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Figure 8: Logistic regression training time on rcv1.

To help understand the significance of these results, next we pro-
vide a comparison study with the VW hashing algorithm [31, 36].

5.3 Comparisons with VW Algorithm
The Vowpal Wabbit (VW) algorithm [31, 36] is an influential

hashing method for data/dimension reduction. Since [26] only com-
pared b-bit minwise hashing with VW on a small dataset, it is more
informative to conduct a comparison of the two algorithms on this
much larger dataset (200GB). We experimented with VW using
k = 25 to 214 hash bins (sample size). Note that 214 = 16384.

It is difficult to train LIBLINEAR with k = 215 because the train-
ing size of the hashed data by VW is close to 48 GB when k = 215.

Figure 9 and Figure 10 plot the test accuracies for SVM and
logistic regression, respectively. In each figure, every panel has the
same set of solid curves for VW but a different set of dashed curves
for different values of b in b-bit minwise hashing. Since the range
of k is very large, here we choose to present the test accuracies
against k. Representative C values (0.01, 0.1, 1, 10) are selected
for the presentations.

From Figures 9 and 10, we can see clearly that b-bit minwise
hashing is substantially more accurate than VW at the same storage
size. In other words, in order to achieve the same accuracy, VW
will require substantially more storage than b-bit minwise hashing.
In fact, from the figures, it looks almost like 1-bit minwise hashing,
at the same k, can achieve similar test accuracies as VW.
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Figure 9: SVM test accuracy on rcv1 for comparing VW (solid)
with b-bit minwise hashing (dashed). Each panel plots the same
results for VW and results for b-bit minwise hashing for a dif-
ferent b. We select C = 0.01, 0.1, 1, 10.
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Figure 10: Logistic Regression test accuracy on rcv1 for com-
paring VW with b-bit minwise hashing.



Figure 11 presents the training times for comparing VW with 8-
bit minwise hashing. In this case, we can see that even at the same
k, 8-bit hashing may have some computational advantages com-
pared to VW. Of course, as it is clear that VW will require a much
larger k in order to achieve the same accuracies as 8-bit minwise
hashing, we know that the advantage of b-bit minwise hashing in
terms of training time reduction is also enormous.
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Figure 11: Training time for SVM (left) and logistic regression
(right) on rcv1 for comparing VW with 8-bit minwise hashing.

Note that our comparison focuses on the VW hashing algorithm,
not the VW online learning platform. The prior work [7] exper-
imented with the VW online learning platform on webspam and
reported an accuracy of 98.42% (compared to > 99.5% in our ex-
periments with b-bit hashing) after 597 seconds of training.

6. CONCLUSION
Minwise Hashing is a standard technique for similarity compu-

tation which has also recently been shown [25,26,32] to be a valu-
able data reduction technique in machine learning and near neigh-
bor search, where it can reduce both the computational overhead
as well as the required infrastructure and energy consumption by
orders of magnitude, at often negligible reduction in accuracy.

However, the use of b-bit minwise hashing on truly large learn-
ing datasets requires study of two related challenges. Datasets
with very large numbers of features make it impossible to use pre-
computed permutation matrices for the permutation step, due to
prohibitive storage requirements. Also, for very large data, the
initial pre-processing phase during which minhash signatures are
computed, consumes significant resources.

In the context of duplicate detection (which normally concerns
only highly similar pairs of documents) using minwise hashing
with 64 bits per hashed value, the prior studies (e.g., [3]) demon-
strated that it would be sufficient to use about k ≈ 200 permu-
tations. However, b-bit minwise hashing (for small values of b)
does require more permutations than the original minwise hashing,
as explained in [23], for example, by increasing k by a factor of
3 when using b = 1 and the resemblance threshold is R = 0.5.
In the context of machine learning and b-bit minwise hashing, we
have also found that in some datasets k has to be fairly large, e.g.,
k = 500 or even more. This is because machine learning algo-
rithms use all similarities, not just highly similar pairs.

In this study, we were able to show that, when using 2- or 4-
universal hash functions, we see accuracy similar to the one achieved
by using fully random permutations. This validates the use of b-bit
minwise hashing for data with extremely large numbers of features.

We were able to formulate an implementation of the minwise
hashing algorithm that effectively leverages the properties of cur-
rent GPU architectures, in particular their massive parallelism and
SIMD instruction processing, while minimizing the impact of their

constraints (most notably slow modulo operations and the limited
bandwidth available for main memory data transfer). We observed
that the new GPU-based implementation resulted in speed-ups of
between 20-80× for the minhash computation.

Therefore, we can conclude that b-bit minwise hashing can be
naturally integrated with search and learning algorithms, to solve
extremely large-scale learning problems in industrial applications.

Open problem: While our use of GPUs results in a significant im-
provement of the processing speed for the standard (k-permutation)
minwise hashing, parallelization does not provide an energy-efficient
solution. There is a line of work on one permutation hashing
[21,22,25], which at the moment still suffers from the severe issue
of “empty bins” especially when it is used for approximate near
neighbor search. How to solve this open problem (i.e., the empty
bin issue) for one permutation hashing will be an interesting and
important research problem with an urgent need from practice.
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APPENDIX
A. RESEMBLANCE ESTIMATION USING

SIMPLE HASH FUNCTIONS
This section studies the effect of using 2U/4U hashing function

in place of (fully) random permutation matrices on the accuracy
of resemblance estimation via b-bit minwise hashing. This will
provide us a better understanding why the learning results using
b-bit minwise hashing are not noticeably affected by replacing the
fully random permutation matrix with 2U/4U hash functions. As
we shall see, as long as the original data are not too dense, using
2U/4U hash functions will not result in loss of estimation accuracy.
As we observed that results from 2U and 4U are essentially indis-
tinguishable, we only report the 2U experiments.

The task we study here is the estimation of word associations.
The dataset, extracted from commercial Web crawls, consists of 10
pairs of sets (20 English words). Each set consists of the document
IDs which contain the word at least once. See Table 4.

Table 4: Data information of the 10 pairs of English words. For ex-
ample, “KONG” and “HONG” correspond to the two sets of document
IDs which contained word “KONG” and word “HONG” respectively.

Word 1 Word 2 f1 f2 R
KONG HONG 948 940 0.925
RIGHTS RESERVED 12234 11272 0.877
OF AND 37339 36289 0.771
GAMBIA KIRIBATI 206 186 0.712
UNITED STATES 4079 3981 0.591
SAN FRANCISCO 3194 1651 0.476
CREDIT CARD 2999 2697 0.285
TIME JOB 37339 36289 0.128
LOW PAY 2936 2828 0.112
A TEST 39063 2278 0.052

We implemented both 2U hash (10) and 4U hash schemes, for
D = 216, 218, 220, 222, 224, 226, 228, 230, 232. Note that D ≥ 216

is necessary for this dataset. After sufficient number of repetitions,
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Figure 12: Mean square errors (MSEs) of the resemblance es-
timates using (4) and 2U hashing with D = 216, on the 10 En-
glish word vector pairs in Table 4. We present b = 1, 2, 4 and
the original minwise hashing (i.e., “M”). The dashed curves are
the theoretical variances (Eq. (11) in [23]). Ideally the solid and
dashed curves should overlap (e.g., KONG-HONG). Due to lim-
ited randomness, when the data are fairy dense (e.g., OF-AND),
the empirical estimates deviate from theoretical predictions.

we computed the simulated mean square error (MSE = Var + Bias2)
for each case, to compare with the theoretical variance (Eq. (11)
in [23]), which was derived by assuming perfect random permu-
tations. Ideally, the empirical MSEs and the theoretical variances
should overlap. Indeed, we observe this is always the case when
D ≥ 220. This is the reason why we only plot the results for
D ≤ 220 in Figures 12 to 14. In fact, as shown in Figure 12, when
the data are not dense (e.g., KONG-HONG, GABMIA-KIRIBATI,
SAN-FRANCISCO), using 2U can achieve very similar results as
using perfect random permutations, even at the smallest D = 216.

Practical Implication: In practice, we expect the data vectors to
be very sparse for a large number of applications, especially the
many search-related tasks where features correspond to the pres-
ence/absence of text n-grams. For these tasks, the large number of
distinct words (e.g., [14] reports 38M distinct 1-grams in an early
Wikipedia corpus) and the much smaller number of terms in indi-
vidual documents combine to cause this property. Therefore, we
expect that 2U/4U hash functions will perform well when used for
b-bit minwise hashing, as verified in the main body of the paper.
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Figure 13: Mean square errors (MSEs) of the resemblance es-
timates using (4) and 2U hashing with D = 218, on 6 English
word vector pairs which do not perform too well with D = 216

in Figure 12. We can see that the results become much better.
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Figure 14: Mean square errors (MSEs) of the resemblance es-
timates using (4) and 2U hashing with D = 220, on 3 English
word vector pairs which do not perform too well with D = 218

in Figure 13. We can see now all the dashed curves (theoretical)
match the solid curves (empirical) now.
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