
β-Cell Failure in Type 2 Diabetes: Postulated 
Mechanisms and Prospects for Prevention and 
Treatment

Citation
Halban, Philippe A., Kenneth S. Polonsky, Donald W. Bowden, Meredith A. Hawkins, Charlotte 
Ling, Kieren J. Mather, Alvin C. Powers, Christopher J. Rhodes, Lori Sussel, and Gordon C. 
Weir. 2014. “β-Cell Failure in Type 2 Diabetes: Postulated Mechanisms and Prospects for 
Prevention and Treatment.” Diabetes Care 37 (6): 1751-1758. doi:10.2337/dc14-0396. http://
dx.doi.org/10.2337/dc14-0396.

Published Version
doi:10.2337/dc14-0396

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:17295713

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:17295713
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=%CE%B2-Cell%20Failure%20in%20Type%202%20Diabetes:%20Postulated%20Mechanisms%20and%20Prospects%20for%20Prevention%20and%20Treatment&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=a52070f3638222fc054e94fd576d5af3&department
https://dash.harvard.edu/pages/accessibility


b-Cell Failure in Type 2 Diabetes:
Postulated Mechanisms and
Prospects for Prevention and
Treatment
Diabetes Care 2014;37:1751–1758 | DOI: 10.2337/dc14-0396

OBJECTIVE

This article examines the foundation of b-cell failure in type 2 diabetes (T2D) and
suggests areas for future research on the underlying mechanisms that may lead to
improved prevention and treatment.

RESEARCH DESIGN AND METHODS

A group of experts participated in a conference on 14–16 October 2013 cosponsored
by the Endocrine Society and the American Diabetes Association. A writing group
prepared this summary and recommendations.

RESULTS

The writing group based this article on conference presentations, discussion, and
debate. Topics covered include genetic predisposition, foundations of b-cell fail-
ure, natural history of b-cell failure, and impact of therapeutic interventions.

CONCLUSIONS

b-Cell failure is central to the development and progression of T2D. It antedates
and predicts diabetes onset and progression, is in part genetically determined,
and often can be identified with accuracy even though current tests are cumber-
some and not well standardized. Multiple pathways underlie decreased b-cell
function and mass, some of which may be shared and may also be a consequence
of processes that initially caused dysfunction. Goals for future research include to
1) impact the natural history of b-cell failure; 2) identify and characterize genetic
loci for T2D; 3) targetb-cell signaling, metabolic, and genetic pathways to improve
function/mass; 4) develop alternative sources of b-cells for cell-based therapy;
5) focus on metabolic environment to provide indirect benefit to b-cells; 6) im-
prove understanding of the physiology of responses to bypass surgery; and 7) iden-
tify circulating factors and neuronal circuits underlying the axis of communication
between the brain and b-cells.

Two major pathophysiologic abnormalities underlie most cases of type 2 diabetes
(T2D): 1) insulin resistance and 2) defects in pancreatic b-cell function. The current
consensus is that both are essential components in disease pathogenesis even if
their relative importance, the precise temporal sequence of events, and underlying
mechanisms vary considerably in different populations and individual patients.
In October 2013, the Global Partnership to Accelerate Diabetes Research, cospon-

sored by the Endocrine Society and the American Diabetes Association, assembled
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international experts (see APPENDIX) to in-
form the global health research agenda
by reviewing the state of the science and
identifying pressing research needs re-
lated to b-cell dysfunction in T2D. The
major issues addressed and outcomes of
their discussion follow.

GENETICS AND EPIGENETICS

Powerful evidence for a genetic compo-
nent to T2D (1) has driven extensive
efforts to identify genetic variants con-
tributing to risk. Monogenic forms of di-
abetes such as maturity-onset diabetes
of the young (MODY) have proven to
be natural models for understanding
mechanisms underlying insulin secre-
tion defects; genes discovered through
family-based approaches are important
regulators of insulin secretion and b-cell
development. Findings that neonatal di-
abetes is most commonly due to activat-
ing mutations in genes encoding the
ATP-sensitive potassium channel subu-
nits Kir6.2 or SUR1 and can be treated
with high-dose sulfonylureas despite
being insulin dependent also provide a
compelling case for genetic evaluation
of monogenic diabetes with therapeutic
and prognostic implications (2–6).
Exome-wide and whole-genome se-
quencing approaches will expand cur-
rent capacity to study these disorders.
Genome-wide association studies

(GWAS) using high-density genotyping
arrays have transformed understanding
of the genetic architecture of T2D (7). At
the time of writing, over 60 genetic loci
have been convincingly associated with
T2D, the great majority in some way in-
volved in b-cell biology, underscoring
the importance of b-cell dysfunction in
T2D pathogenesis (8,9). GWAS data
must be interpreted with great caution
until the precise genes in the loci asso-
ciated with T2D have been identified
and the impact of specific variants on
b-cell function is more clearly under-
stood, as exemplified in a recent enig-
matic study on the possible protective
effects against T2D of loss-of-function
mutations in SLC30A8 (encoding the is-
let zinc transporter ZnT8) (10). In any
case, these variants explain only a small
proportion of total genetic risk (11).
Studies based on exome and whole-
genome sequencing technology are
under way to identify low-frequency,
high-impact variants accounting for a
greater component of risk (12). Other

novel approaches have been proposed,
but genetic discovery models to date
have largely been simple case-control
studies of this complex metabolic disor-
der (13). It is furthermore evident that
other factors that influence gene ex-
pression contribute toward the com-
plexity of T2D, specifically epigenetic
mechanisms and microRNAs (miRNAs).

Epigenetic mechanisms refer to func-
tional changes to the genome that do
not involve any alteration in nucleotide
sequence. Such mechanisms (e.g., DNA
methylation and histone modifications)
can be active during fetal as well as post-
natal and adult life and impact the level
of expression of select genes associated
with T2D (14). While the epigenome
may be dynamic and change due to en-
vironmental exposure, modifications
may also be stable and inherited, mak-
ing epigenetics a potentially important
pathogenic mechanism. The possibility
that the environment can alter the
pancreatic islet epigenome and sub-
sequently affect b-cell function and di-
abetes pathogenesis is specifically
reflected in human and animal studies
linking an impaired intrauterine envi-
ronment and resulting low birth weight
to an increased risk for postnatal meta-
bolic disease, with decreases in b-cell
proliferation, mass, and insulin secre-
tion in the face of documented epige-
netic modifications in key b-cell genes
(15,16). In addition, a low-protein diet
in utero alters the epigenetic profile of
HNF4A in rodent islets, associated with
impaired islet function (17,18)dfindings
supported by human studies.

Studies of pancreatic islets from non-
diabetic donors (19,20) and patients
with T2D (21) have identified epigenetic
modifications in genes that potentially
affect b-cell function. Such studies of
human pancreatic islets together with
in vitro studies of clonal b-cells further
suggest that hyperglycemia alters DNA
methylation of PDX1 and INS (22–25).
DNA methylation mainly occurs on cy-
tosines in CpG dinucleotides, and ap-
proximately 50% of single nucleotide
polymorphisms (SNPs) associated with
T2D introduce or remove a CpG site.
These CpG-SNPs are associated with dif-
ferential DNAmethylation, gene expres-
sion, alternative splicing events, and
hormone secretion in human pancreatic
islets, suggesting strong genetic-epigenetic
interactions (26).

It has also been suggested that his-
tone modifications in human islets con-
tribute to reprogramming a-cells to
b-cells, possibly due to the large number
of bivalent marks in a-cells (27). Lipid
treatment also alters the activity of
enzymes responsible for histone mod-
ifications in clonal b-cells, in parallel
with decreased glucose-stimulated
insulin secretion (28). Other recent
studies indicate that histone deacety-
lases (HDACs) contribute to cytokine-
mediated b-cell damage, suggesting
HDAC inhibition as a possible diabetes
treatment (29).

miRNAs are a class of small noncoding
RNA molecules that modulate gene ex-
pression by binding to specific target
messenger RNAs to prevent their trans-
lation and/or to promote degradation. It
has been suggested that altered miRNA
expression may contribute toward
b-cell failure in T2D and that these mol-
ecules may serve as biomarkers for the
disease (30).

Genetic and environmental stressors
likely modulate miRNA expression,
altering cellular phenotypes. Specific
miRNAs are critical to pancreatic b-cell
development, function, and adaptive
turnover. Individual miRNAs are highly
represented in b-cells (31), impacting
function and mass both positively and
negatively. For example, knockout
of miR-375 promotes progressive hy-
perglycemia in mouse models due to
decreased insulin content and pro-
gressive loss of b-cell mass (32). There
is increasing interest in the modulation
of miRNA expression, and a recent
study has revealed an epigenetic
mechanism in islets from patients
with T2D (33).

Looking to the Future
Elucidating a full picture of genetic risk
for diabetes is an increasingly daunting
prospect. This will require insight and
expertise from investigators in a wide
range of fields that complement the
specific skills of diabetes-focused re-
searchers. Clearly, extensions of “con-
ventional GWAS” are highly desirable,
including evaluation of genetic models
beyond single genes, coupled with more
sophisticated quantitative measures of
b-cell function. A major barrier is the
lack of large-scale, population-based
samples with high-quality metabolic
measurements of b-cell function and
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the dearth of explanations for how dis-
covered T2D genes actually mediate di-
abetes risk.
Studies on epigenetics andmiRNAs are

distinctive in going beyond statistical as-
sociations to integrate multiple pathways
to identify function, but they are in their
infancy. Understanding factors altering
the expression of miRNAs and the epige-
nome in pancreatic islets andb-cells from
prediabetic and T2D subjects and, fur-
ther, developing selective small mole-
cules that target epigenetic enzymes to
improve b-cell function and/or treat di-
abetes is essential. Environmental modi-
fication could influence both miRNAs and
epigenetics, and a provocative question is
whether such modifications can be used
to predict b-cell failure risk. Finally, com-
bining epigenetic and genetic research to
integrate the entire body of data will be
necessary to explain the “missing” herita-
bility in diabetes.

THE FOUNDATIONS OF b-CELL
FAILURE: DYSFUNCTION,
DEDIFFERENTIATION,
OR DEATH?

b-Cell loss in response to nutrient excess
and stress was traditionally felt to occur
exclusively via b-cell death. Although
b-cell death might be a final common
pathway in the natural history of T2D,
more recent evidence indicates a more
complex situation in which b-cells can
initiate several alternative responses
to avert irreversible loss, suggesting
the potential for earlier intervention.
Mouse studies led by Accili and col-
leagues (34) have shown that b-cell dys-
function due to FoxO1 deficiency during
pregnancy and aging is primarily associ-
ated with b-cell dedifferentiation rather
than death. This finding revisits an ear-
lier one (35) suggesting b-cell dediffer-
entiation during disease development,
although additional experimentation is
needed to determine whether cells lose
their defining b-cell characteristics
temporarily, revert to an immature fetal
or neonatal-like state with impaired
glucose-stimulated insulin secretion that
reinitiates expression of fetal hormones,
or indeed revert to an undifferentiated
progenitor state. Relevance to human di-
abetes remains to be established.
Oxidative stress can inactivate key is-

let transcription factors, producing
“stunned” b-cells that temporarily
stop responding to glucose and storing

normal amounts of insulin (36,37).
Emerging evidence in mice also shows
considerable plasticity within islets, al-
lowing intraislet cell conversions, but
only in the face of extremeb-cell destruc-
tion (38). The similarity between a-cell
andb-cell transcriptomes inmice and hu-
mans supports this model, as does the
discovery that hormone gene promoters
in different islet cell types present similar
methylation patterns.

A challenge in understanding b-cell
failure is elucidating key elements re-
sponsible for their function and survival,
including their apparently unique vul-
nerability to environmental changes.
Here, clonal cell lines selected for char-
acteristics such as secretory defects
after high-glucose exposure or suscepti-
bility to cytokine-induced death have
proved useful (39). Insights have also
come from studying the unique sub-
strate metabolism of b-cells, chiefly fo-
cusing on the link between pyruvate
cycling and glucose-induced insulin
secretion (40). Studying the transcrip-
tional control of replication is yet an-
other way in which basic models may
provide valuable translatable informa-
tion and ultimately generate hypothe-
ses for evaluation in primary b-cells in
vitro and in vivo (41).

Many physiologic stressors impact
b-cell function in the environment
of metabolic overload and insulin re-
sistance commonly found in human
obesity-linked T2D (Fig. 1). While
b-cells initially respond by activating
compensatory pathways to improve
the insulin secretory response, eventu-
ally they initiate several pathologic pro-
grams that synergistically promote
b-cell dysfunction and, ultimately,
death. To understand and intervene in
disease progression, ongoing investiga-
tions are exploring which of the follow-
ing pathologic conditions, or b-cell
stressors, are initiated first and which
might represent the most effective in-
tervention points.

Endoplasmic Reticulum Stress
Endoplasmic reticulum (ER) stress ap-
pears to arise when markedly increased
insulin production to meet metabolic
demand necessitates increasing flux
through the rough ER, with stress evi-
dent in the unfolded protein response
that chaperones newly synthesized pro-
insulin along the secretory pathway.

Such changes may promote b-cell secre-
tory dysfunction and, under chronic
challenge, apoptosis. While ER stress
may play a key role in the pathogenesis
of certain forms of monogenic diabetes,
its role in common T2D remains unclear.

Metabolic and Oxidative Stress
Metabolic and oxidative stress, primar-
ily from obesity’s excessive nutritional
state, leads to b-cell damage associated
with glucotoxicity, lipotoxicity, and
glucolipotoxicity (42). An emerging con-
cept is a link between oxidative stress
and observed DNA damage leading to
altered transcription factor expression.
Although b-cells are uniquely geared for
efficient oxidative metabolismdboth
to provide energy via ATP production
and to generate secondary signaling
mechanismsdmarkedly increased gly-
colytic flux in hyperglycemia may un-
derlie dysfunction. Moreover, because
b-cells lack certain antioxidant enzymes
that dispose of reactive oxygen species
(ROS), increased ROS production may
promote dysfunction and even apopto-
sis.Mishandling of excessive cholesterol
commonly seen in T2D, with accumula-
tion in b-cells, could perhaps impair
secretion (43).

Amyloid Plaques
Amyloid plaques, which characterize
islets in T2D, consist mainly of islet am-
yloid polypeptide (IAPP). In chronic hy-
perglycemia/hyperlipidemia, (pro)IAPP
synthesis increases in b-cells, parallel
to proinsulin, and can reach threshold
levels that allow proapoptotic IAPP
oligomers to form (44) that induce
interleukin (IL)-1b release to recruit
macrophages and enhance local islet in-
flammation (45).

Inflammation
Whether increased local islet inflamma-
tion, well established in T2D pathogen-
esis (46), results from a janitorial
macrophage infiltration to clear dam-
aged islet b-cells and/or an innate
inflammatory response remains unre-
solved. What has become clear, however,
is that anti-inflammatory therapies (i.e.,
IL-1b antagonism) can preserve some
b-cell functional mass in T2D (47).

Islet Integrity/Organization
Islet integrity/organization is often dis-
rupted in T2D pathogenesis, potentially
perturbing cell–cell communication
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within islets. This may contribute to
poorly regulated secretion of insulin
and glucagon, perhaps contributing
toward hyperglucagonemia that exacer-
bates hyperglycemia in T2D. In addition,
loss of islet integrity could diminish the
b-cell incretin response.

Looking to the Future
b-Cell demise is a multifactorial process
involving many stressors. It remains un-
clear which pathway is disrupted first,
and this may actually depend on the in-
dividual. Regardless of the initiation
event, a feed-forward loop becomes in-
duced that is difficult to stop. Given
the likely molecular cross talk and
convergence between the pathways,
targeting a single molecule could have
beneficial effects by blocking multiple
stressor pathways. Recent studies have
offered novel insight into pathways acti-
vated within b-cells to cope with stress.
Novel therapies that exploit these natu-
ral defense mechanisms to prevent or re-
verse b-cell failure in T2D may be
possible. It is postulated that if b-cell dys-
function is not ameliorated by effective
therapy, with time there is loss of b-cell
identity through dedifferentiation and ul-
timately death. This sequence suggests

the need to intervene as early as possible
in the course of disease.

NATURAL HISTORY OF b-CELL
FAILURE

Impaired insulin secretion assessed by
oral or intravenous glucose tolerance
testing and hyperglycemic clamp stud-
ies is seen in prediabetes as well as early
in the disease, with reduced secretion
negatively correlated with glycemia
(48). Although declines in b-cell mass
and function are not well correlated,
presumably because function depends
greatly on diabetes milieu, climbing glu-
cose levels and deteriorating b-cell
function are tightly correlated (49).
While b-cell function appears to decline
progressively, insulin secretion defects
seem at least partially reversible, espe-
cially early in the disease.

Family history and obesity are major
risk factors for both youth and adults. In
youth, a family history of T2D is also
associated with a high risk for decreased
insulin sensitivity and response, and in-
creased proinsulin-to-insulin ratio (50).
Impaired glucose tolerance (IGT) in
youth is characterized by b-cell dysfunc-
tion manifested in impaired first-phase,

but preserved second-phase, insulin
secretion relative to sensitivity. How-
ever, youth with IGT are no more insu-
lin resistant than peers with normal
glucose tolerance (NGT) if matched
for body composition and fat topogra-
phy (51). Once treated with metformin
after progressing to T2D, youth show a
greater rate of treatment failure than
adults (52).

b-Cell mass increases during the first
decade of life due to proliferation during
the first 5 years (53,54), stabilizing dur-
ing adolescence with considerable vari-
ation (three- to fivefold) unrelated to
age or BMI. b-Cell mass in T2D likewise
varies, overlapping with that of normal
individuals (55–57), although current
data suggest a 20–60% reduction (58).
Currently, measurements of human
b-cell mass rely entirely on postmortem,
cross-sectional assessments; inability to
assessmass noninvasively via imaging or
biomarkers impedes determining tem-
poral changes. Furthermore, histomor-
phometric measurement of b-cell area,
volume, and mass is often imprecisely
defined and complicated by technical in-
consistencies (59). Importantly, too, be-
cause insulin sensitivity may vary as

Figure 1—Stressors on the b-cell in the pathogenesis of T2D. In the excessive nutritional state found in obesity, hyperglycemia and hyperlipidemia
develop, increasing metabolic load coupled with concurrent inherent insulin resistance and chronic inflammation. The pancreatic islet response to
this new environment is likely variable among individuals with differing genetic susceptibility but may include inflammatory stress, ER stress,
metabolic and oxidative stress (e.g., glucotoxicity, lipotoxicity, and glucolipotoxicity), amyloid stress, and loss of islet cell integrity. If untreated, these
interrelated stressors increase with time, promoting b-cell dysfunction (coupled with increased glucagon secretion) and ultimately loss of b-cell
mass and possibly dedifferentiation that mark the onset of T2D.
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much as 10-fold in humans, variations in
b-cell mass may be linked to individual
insulin sensitivity. Thus, an individual
with low insulin sensitivity and T2D
may have a higher than “normal”
b-cell mass that is functionally reduced,
suggesting that de facto variation might
be considerably reduced if corrected for
insulin sensitivity.

Looking to the Future
Marked variation in degree of b-cell loss
in T2D could potentially be reconciled by
adopting standardized approaches to
quantification using area, volume, and/
ormass in available pancreases. It would
be enormously helpful to be able to
measure b-cell mass in humans with
noninvasive techniques. Many ap-
proaches have been and are being ex-
amined, as has recently been reviewed
(60). One promising approach is to use
fluorescent exendin-4 derivatives,
which should bind preferentially to
b-cells (61,62). However, a major issue
concerns how much sensitivity and pre-
cision can be achieved by any noninva-
sive approach. A desirable goal might
be the ability to measure changes in
b-cell mass as small as 5% because
such changes are expected to be impor-
tant for b-cell function.
Given the difficulty of studying hu-

manb-cells, well-defined clinical pheno-
types correlated with b-cell defects
and/or noninvasive imaging or bio-
markers defining proliferation and
death in pancreatic samples could help
elucidate the discordance between
functional and morphometric assess-
ments as well as help identify changes
indicating early b-cell failure in high-risk
individuals (63).
Standardizing methodologies measur-

ing b-cell function and defining ap-
proaches for specific clinical questions
may also facilitate cross-study compari-
sons. Currently, b-cell function is variably
assessed using fasting indices derived
from insulin and glucose values, dynamic
testing with oral glucose or standardized
meals, and responses following intrave-
nous glucose infusions (64). Interpreting
b-cell function in the context of glycemia
and concurrent insulin resistance is criti-
cal in clinical studies evaluating therapeu-
tic efficacy. Other features of potential
interest include sustainability and dura-
bility of treatment effects during and af-
ter therapy.

IMPACT OF THERAPEUTIC
INTERVENTIONS

Interventions to prevent and treat dia-
betes by improving b-cell function are
based on the premise that b-cell dys-
function can be reversed. This appears
true for at least some portion of the
pathogenesis spectrum, but limits of re-
versibility remain unexplored. Available
data suggest that in established diabe-
tes effects on b-cell function are not
sustained following withdrawal of active
therapies; whether this is true at earlier
stages of diabetes or in prediabetes is
unknown. In the Diabetes Prevention
Program (DPP), greater baseline b-cell
function and insulin sensitivity contrib-
uted independently to the restoration of
NGT following lifestyle changes (65,66).
Improvements in b-cell function also ap-
pear to play a role in pharmacologic ap-
proaches to prevention and treatment.
Interventions in the Troglitazone in
Prevention of Diabetes (TRIPOD) and
Pioglitazone in Prevention of Diabetes
(PIPOD) and Actos Now for Prevention
of Diabetes (ACT NOW) (pioglitazone)
studies, for example, significantly im-
proved the oral disposition index. More-
over, changes such as regression to IGT,
maintenance of NGT, or progression to
diabetes were proportional to insulin
secretion response (67). GLP-1–based
therapies magnify glucose-stimulated
insulin secretion, as seen with signifi-
cantly improved b-cell function in T2D
following short-term infusions of GLP-1
(68,69) and longer-term treatments
with dipeptidyl peptidase-4 inhibitors
(70) and GLP-1 receptor agonists
(71,72). However, while augmented
insulin production as assessed with
glucose and arginine stimulation con-
tinues during active treatment and is
of clinical value, none of these agents
have produced a meaningful, persistent
change following therapy withdrawal
(71,73).

New evidence suggests that Roux-en-Y
gastric bypass surgery (RYGB) exerts anti-
diabetes effects in part via b-cell func-
tional improvements. RYGB is unique
among weight-loss surgery approaches
to diabetes for producing marked im-
provements inmetabolic status, including
disease remission in at least 80% of pa-
tients (74). The overall benefit clearly
has a basis in the direct effects of weight
loss, with attendant reduction in insulin

resistance, and acute caloric restriction
(75,76). However, many lines of evidence
demonstrate glycemic benefits indepen-
dent of weight (77), including changes in
b-cell function (78). Although studies to
date have not clearly dissected changes in
insulin sensitivity from changes in b-cell
function, augmentedGLP-1 secretion am-
plifies RYGB’s antidiabetes effects on
pancreatic islets (79), and post-RYGB hy-
perinsulinemic hypoglycemiamay involve
b-cell hypertrophy or neogenesis as well
(80,81). The observation that the stron-
gest predictor of diabetes remission is du-
ration of diabetes and insulin use prior to
surgery (82) rather than weight regain
also suggests underlying b-cell health
as a limiting factor for RYGB’s antidiabe-
tes benefits.

Novel mechanisms of action and tar-
gets in b-cells, such as fatty acid recep-
tor activation, glucokinase activators,
fractalkine, betatrophin, and b-secretase
2 inhibitors, continue to emerge, adding
to the potential approaches to alter the
natural history of diabetes. For decades it
has been known that relieving hypergly-
cemia can itself improve insulin secretion
and restore metabolic control, at least
temporarily. Recently, early interventions
with insulin therapy in newly diagnosed
T2D (83), with targeted anti-inflammatory
therapy using an IL-1b antagonist (84),
and with GLP-1 receptor agonists (85)
have demonstrated that b-cell dysfunc-
tion can be reversed temporarily. How-
ever, durability of these effects following
therapy withdrawal remains challeng-
ing. To date, these responses have been
evaluated only in established diabetes;
whether they can alter the natural history
of b-cell failure earlier in disease progres-
sion is unknown.

Looking to the Future
Numerous pathophysiologic pathways
contributing to progressive b-cell failure
have been identified as viable targets for
intervention. However, no study has es-
tablished whether one pathogenic path-
way dominates or can serve as a single
major target. Moreover, different path-
ophysiologic processes may be active at
different stages of progression, and op-
timal targets may shift accordingly.
For example, early hyperglycemia may
activate multiple pathophysiologic pro-
cesses, including inflammation, amyloid
accumulation, dedifferentiation, apo-
ptosis, and genetic alterations; whether

care.diabetesjournals.org Halban and Associates 1755

http://care.diabetesjournals.org


any one target is optimal or sufficient
at this stage remains undetermined.
Further, there may also be a stage
of pathogenesis beyond which thera-
peutic interventions cannot sufficiently
enhance b-cell function, making treat-
ments targeting other aspects of meta-
bolic dysregulation relatively more
valuable. Interventions targeted by
stage of pathogenesis or combinatorial
approachesmay be required to preserve
or restore b-cell function.

SUMMARY AND CONCLUSIONS

Progressive loss of b-cell function is cen-
tral to the development and progression
of T2D. Deterioration of b-cell function
antedates and predicts diabetes onset
and progression, is genetically deter-
mined, and can be predicted with accu-
racy even though current tests are
cumbersome and not well standardized.
There is, however, continued debate
surrounding the relative contributions
of decreased function or mass to clini-
cally manifest b-cell dysfunction. This
leads to confusion that extends beyond
semantics and that will not be resolved
until there are precise noninvasive
methods to relate changes in b-cell
mass and function over time. Multiple
pathways underlie decreased b-cell
function and mass, some of which may
be shared, with reduction in mass,
perhaps a consequence of processes
that initially caused dysfunction. In ad-
dition, the concept of b-cell dedifferen-
tiation in T2D has regained favor. Even
in the late stages of the disease, residual
b-cells remain, and their number is pos-
sibly underestimated due to absence of
markers of b-cell identity in dedifferen-
tiated cells (86).
To date, most genes suggested by

GWAS as associated with T2D are also
associated with reduced b-cell function

in the nondiabetic population and are
known to be expressed in b-cells and
implicated in their development, func-
tion, or survival. However, many of
these genes are also expressed in other
tissues where their dysfunction may dis-
turb glucose homeostasis and thereby,
indirectly, b-cell function. Other ge-
netic variation associated with diabe-
tes, both common and less common,
will be identified as the power of ge-
netic studies increases; the challenge
will be to turn this information into new
biological insights. The study of epige-
netic changes in the b-cell in T2D is likely
to provide important new insight as well,
but these studies are severely limited by
the small number of islets available
from patients with T2D and the difficul-
ties separating cause and effect in hy-
perglycemia.

A variety of interventions including
weight loss, insulin, thiazolidinediones,
and anti-inflammatory drugs can im-
prove b-cell function temporarily with
improved glucose control, and these out-
comes are certainly of value to patients.
However, the limited number of clinical
studies with appropriate protocols indi-
cates that existing therapydoesnot arrest
progression of b-cell dysfunction in T2D
let alone reverse it, with the possible ex-
ception of gastric bypass surgery.

The group of experts identified areas
for future research that would improve
our understanding of b-cell failure in
T2D, hopefully leading to more effective
prevention and the development of
treatment with more durable beneficial
effects on b-cell function than is possi-
ble today. The goals of future research
are presented in Table 1.
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Participants in the meeting “Beta Cell Failure in
Type 2 Diabetes” held on 14–16 October 2013
are listed here.
Meeting Series Steering Committee: Robert
H. Eckel, MD, University of Colorado; Ele
Ferrannini, MD, University of Pisa, Italy; and
Steven E. Kahn, MB, ChB, VA Puget Sound Health
Care System and University of Washington.
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Geneva, Switzerland, and K.S.P., MD, University
of Chicago.
Session Cochairs: D.W.B., PhD, Wake Forest
University; Robert L. Hanson, MD, MPH, Na-
tional Institute of Diabetes and Digestive and
Kidney Diseases (NIDDK) at the National Insti-
tutes of Health (NIH)*; L.S., PhD, Columbia
University; C.J.R., PhD, University of Chicago;
G.C.W., MD, Joslin Diabetes Center, Harvard
Medical School; A.C.P., MD, Vanderbilt Univer-
sity School of Medicine; M.A.H., MD, Albert
Einstein College of Medicine; and K.J.M., MD,
Indiana University.
Speakers: Domenico Accili, MD, Columbia
University; Silva A. Arslanian, MD, University
of Pittsburgh; David E. Cummings, MD, Univer-
sity of Washington; Stefano Del Prato, MD,
University of Pisa, Italy; Michaela Diamant,
MD, PhD, VU University Medical Center, the
Netherlands; Marc Y. Donath, MD, University of
Zurich, Switzerland; Yuval Dor, PhD, Hebrew
University of Jerusalem, Israel; Judith E. Fradkin,
MD, NIDDK, NIH*; Andrew T. Hattersley, FRS,
FRCP, University of Exeter, U.K.; Ele Ferrannini,

Table 1—Goals of future research
1. Impact the natural history of b-cell failure and slow the rate of progressive deterioration in function/mass.

2. Identify and characterize additional genetic loci for T2D and define their impact on b-cell function.

3. Target b-cell signaling, metabolic, and genetic pathways to improve b-cell function/mass. Suggested targets are glucose metabolism, transcription
factors and miRNAs, epigenetic changes, inflammation, growth and differentiation, and amyloid deposition.

4. Develop alternative sources of b-cells for cell-based therapy.

5. Focus on metabolic environment, insulin resistance, and obesity to benefit b-cells indirectly.

6. Improve understanding of the important and unexpected physiology of responses to bypass surgery as the basis for new therapy and to identify
patients most likely to benefit from surgery.

7. Identify circulating factors and neuronal circuits underlying the axis of communication between the brain and b-cells.

Themeeting participants identified thesemajor goals for future research, focusing on understanding, preventing, and reversingb-cell failure in T2D.
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MD, University of Pisa, Italy; Steven E. Kahn,
MB, ChB, VA Puget Sound Health Care System
and University of Washington; Jack L. Leahy,
MD, University of Vermont College of Medicine
and Vermont Regional Diabetes Center; Barbara
L. Linder, MD, NIDDK, NIH*; Charlotte Ling, PhD,
Lund University, Sweden; Christopher B.
Newgard, PhD, Duke University; Robert E.
Ratner, MD, American Diabetes Association;
Rebecca A. Simmons, MD, University of Penn-
sylvania; Markus Stoffel, MD, PhD, Swiss
Federal Institute of Technology (ETH), Switzer-
land; and C. Bruce Verchere, PhD, University of
British Columbia, Canada.
*Unable to attend due to U.S. government
shutdown.
Fellows: Claudia Cavelti-Weder, MD, Univer-
sity Hospital of Zurich, Switzerland; Andrea
Giuseppe Daniele, MD, PhD, University of Texas
Health Science Center; Daniel T. Meier, PhD,
University of Washington; Sara Michaliszyn,
PhD, Children’s Hospital of Pittsburgh; Marcel
H.A. Muskiet, MD, VU University Medical Cen-
ter, the Netherlands; Anders Olsson, PhD, Lund
University Diabetes Centre, Sweden; Richard
Oram, MD, University of Exeter, U.K.; Lane
Jaeckle Santos, PhD, University of Pennsylvania;
Marta Seghieri, MD, University of Pisa, Italy;
Sam Stephens, PhD, Duke University; and Clara
Westwell-Roper, MD/PhD candidate, University
of British Columbia, Canada.
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Rönn T, Ling C. Identification of CpG-SNPs asso-
ciated with type 2 diabetes and differential DNA
methylation in human pancreatic islets. Diabe-
tologia 2013;56:1036–1046
27. Bramswig NC, Everett LJ, Schug J, et al. Epi-
genomic plasticity enables human pancreatic
a to b cell reprogramming. J Clin Invest 2013;
123:1275–1284
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