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Abstract

Despite considerable advances in the treatment of multiple myeloma (MM) in the last decade, a substantial proportion of

patients do not respond to current therapies or have a short duration of response. Furthermore, these treatments can have

notable morbidity and are not uniformly tolerated in all patients. As there is no cure for MM, patients eventually become

resistant to therapies, leading to development of relapsed/refractory MM. Therefore, an unmet need exists for MM treatments

with novel mechanisms of action that can provide durable responses, evade resistance to prior therapies, and/or are better

tolerated. B-cell maturation antigen (BCMA) is preferentially expressed by mature B lymphocytes, and its overexpression

and activation are associated with MM in preclinical models and humans, supporting its potential utility as a therapeutic

target for MM. Moreover, the use of BCMA as a biomarker for MM is supported by its prognostic value, correlation with

clinical status, and its ability to be used in traditionally difficult-to-monitor patient populations. Here, we review three

common treatment modalities used to target BCMA in the treatment of MM: bispecific antibody constructs, antibody–drug

conjugates, and chimeric antigen receptor (CAR)-modified T-cell therapy. We provide an overview of preliminary clinical

data from trials using these therapies, including the BiTE® (bispecific T-cell engager) immuno-oncology therapy AMG 420,

the antibody–drug conjugate GSK2857916, and several CAR T-cell therapeutic agents including bb2121, NIH CAR-

BCMA, and LCAR-B38M. Notable antimyeloma activity and high minimal residual disease negativity rates have been

observed with several of these treatments. These clinical data outline the potential for BCMA-targeted therapies to improve

the treatment landscape for MM. Importantly, clinical results to date suggest that these therapies may hold promise for deep

and durable responses and support further investigation in earlier lines of treatment, including newly diagnosed MM.

Introduction

Multiple myeloma (MM) accounts for ~10% of all

hematologic malignancies in the United States, with the

highest incidences being observed in developed countries

[1]. Considerable advances have been made in the last

decade regarding the knowledge of the underlying biology

and natural progression of MM. In addition, the use of

proteasome inhibitors and immunomodulatory imide

drugs (IMiDs) has improved treatment options for this

condition [1]. Despite these advances, the 5-year survival

rate for patients with MM is ~50% and can be lower in

high-risk patients (e.g., frail elderly patients, MM with

high-risk cytogenetics), highlighting an unmet need for

improved treatment options for MM [1, 2]. With current

approaches, MM is not considered curable and relapse is

considered an inevitable part of the disease course, leading

to the development of relapsed/refractory MM (RRMM)

[1, 3–5]. Patients with RRMM have progressively shorter

durations of remission and lesser responses to standard

salvage therapies after relapse and treatment resistance. Of

note, patients who progress within 18 months of starting

initial therapy have particularly poor outcomes [1]. Ulti-

mately, there remains an unmet need for novel therapies

for newly diagnosed MM that could provide more durable

responses than standard therapies, or even potentially a

cure if used early in the disease course, as well as
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therapies for RRMM that can evade resistance to other

therapies [1, 3, 4].

B-cell maturation antigen (BCMA) has emerged as a

promising target for MM therapies. Currently, the three

most common treatment modalities for targeting BCMA are

bispecific antibody constructs including BiTE® (bispecific

T-cell engager) immuno-oncology therapies, antibody–drug

conjugates (ADCs), and chimeric antigen receptor (CAR)-

modified T-cell therapy. In this review, we provide an

overview of therapies from these classes that have presented

or published clinical data, including the BiTE® molecule

AMG 420, the ADC GSK2857916, and several CAR T-cell

therapies including NIH CAR-BCMA, bb2121, and LCAR-

B38M.

Materials and methods

Published or presented clinical data for BCMA-targeted

therapies were identified through PubMed (December 2,

2013 through May 16, 2019) and via search of abstracts

from major oncology and hematology conferences (2016

through May 2019, up to and including ASCO 2019).

BCMA-targeted therapies with clinical data presented or

published as of May 16, 2019 are summarized in this

review. The search terms used were “BCMA”, “CD269,”

and “TNFRSF17” for the therapeutic target and “MM” and

“myeloma” for the disease state. Major oncology and

hematology conferences included American Society of

Hematology, American Society of Clinical Oncology

(ASCO), American Association for Cancer Research, Eur-

opean Hematology Association, International Myeloma

Workshops, and Transplantation & Cellular Therapy

Meetings (cosponsored by the American Society for

Transplantation and Cellular Therapy and the Center for

International Blood & Marrow Transplant Research). The

most recent evidence regarding the biology of BCMA and

its use as a biomarker was assessed using published

research data and review articles.

Rationale for targeting BCMA for treatment
of MM

Biology of BCMA

B-cell maturation antigen, also referred to as TNFRSF17 or

CD269, is a member of the tumor necrosis factor receptor

(TNFR) superfamily [6, 7]. Ligands for BCMA include B-

cell activating factor (BAFF) and a proliferation-inducing

ligand (APRIL), of which APRIL has a higher affinity for

BCMA [8]. BCMA is expressed preferentially by mature B

lymphocytes, with minimal expression in hematopoietic

stem cells or nonhematopoietic tissue, and is essential for

the survival of long-lived bone marrow plasma cells (PCs),

but not overall B-cell homeostasis [9–12]. Membrane-

bound BCMA can undergo γ-secretase–mediated shedding

from the cell surface, leading to circulation of soluble

BCMA (sBCMA) and reduced activation of surface BCMA

by APRIL and BAFF [7, 13, 14].

Biology of BCMA in MM

The overexpression and activation of BCMA are associated

with progression of MM in preclinical models and humans,

which makes it an attractive therapeutic target [7, 15, 16].

Murine xenografts with induced BCMA overexpression

grow faster than BCMA-negative controls. This over-

expression leads to the upregulation of canonical and non-

canonical nuclear factor kappa-B pathways, as well as

enhanced expression of genes critical for survival, growth,

adhesion, osteoclast activation, angiogenesis, metastasis,

and immunosuppression [15]. Similar results are observed

after APRIL-induced activation of BCMA in ex vivo human

MM cells [15]. Furthermore, sBCMA can inhibit the

activity of BAFF via complex formation, leading to MM-

associated immunodeficiency [16]. BCMA is also expressed

at much lower concentrations (9- to 50-fold lower) by

plasmacytoid dendritic cells, which are known to help

promote MM PC survival in the bone marrow environment

[13, 17]. Additional details regarding the role of BCMA in

B-cell biology and in MM, including illustrations, can be

found in other reviews [18–21].

BCMA as a biomarker for diagnosis of MM

Malignant MM PCs typically compose a small subset of

bone marrow cells, so accurate identification of these cells

is important to ensure representative characterization of the

disease [22]. The traditional MM biomarker CD138 is

highly specific to PCs but rapidly disappears from the cell

surface when sample analysis is delayed or if the sample is

frozen [22]. Therefore, additional biomarkers to diagnose or

monitor MM are needed.

BCMA is highly expressed on malignant PCs collected

from patients with MM compared with normal bone mar-

row mononuclear cells (BMMCs) from healthy donors, and

several studies have assessed whether BCMA has value as a

marker for diagnosis, prognosis, and/or as a predictor of

treatment response (Table 1) [7, 23–28]. In contrast with

CD138, BCMA is readily identified in delayed and frozen

MM samples [22]. The levels of membrane-bound BCMA

can be measured by various techniques (e.g., flow cyto-

metry, immunohistochemistry), with flow cytometry being

more sensitive than immunohistochemistry, though the

quantification of BCMA levels can differ between studies

986 N. Shah et al.



T
a
b
le

1
B
-c
el
l
m
at
u
ra
ti
o
n
an
ti
g
en

as
a
b
io
m
ar
k
er
,
p
ro
g
n
o
st
ic

m
ar
k
er
,
an
d
p
re
d
ic
to
r
o
f
re
sp
o
n
se

to
tr
ea
tm

en
t
in

h
u
m
an
s.

S
tu
d
y

M
et
h
o
d
s

R
es
u
lt
s

S
an
ch
ez

et
al
.
[7
]

•
M
ea
su
re
d
su
rf
ac
e
B
C
M
A

an
d
so
lu
b
le

B
C
M
A

le
v
el
s
u
si
n
g
F
C

o
f
sa
m
p
le
s
co
ll
ec
te
d

fr
o
m

p
ts
w
it
h
N
D

an
d
tr
ea
te
d
M
M
,
p
ts
w
it
h
M
G
U
S
,
an
d
h
ea
lt
h
y
co
n
tr
o
ls

•
A
ss
es
se
d
co
rr
el
at
io
n
o
f
B
C
M
A

le
v
el
s
w
it
h
o
b
je
ct
iv
e
re
sp
o
n
se

to
an
ti
-M

M
th
er
ap
y
,

in
cl
u
d
in
g
P
Is
,
IM

iD
s,
an
d
P
L
D

•
P
ts
w
it
h
N
D

M
M

(n
=
5
0
)
h
ad

el
ev
at
ed

su
rf
ac
e
B
C
M
A

ex
p
re
ss
io
n
an
d
so
lu
b
le

B
C
M
A

le
v
el
s
co
m
p
ar
ed

w
it
h
h
ea
lt
h
y
co
n
tr
o
ls

•
P
re
v
io
u
sl
y
tr
ea
te
d
p
ts
w
it
h
≥
P
R
(n
=
8
0
)
h
ad

lo
w
er

so
lu
b
le
B
C
M
A
le
v
el
s
th
an

p
ts

w
it
h
p
ro
g
re
ss
iv
e
d
is
ea
se

(n
=
7
9
)

•
P
ts
w
it
h
B
C
M
A
le
v
el
s
ab
o
v
e
th
e
m
ed
ia
n
(n
=
1
6
2
)
h
ad

a
sh
o
rt
er

O
S
th
an

p
ts
w
it
h

B
C
M
A

le
v
el
s
b
el
o
w

th
e
m
ed
ia
n

•
S
o
lu
b
le
B
C
M
A
le
v
el
s
d
id

n
o
t
co
rr
el
at
e
w
it
h
u
se

o
f
sp
ec
ifi
c
an
ti
-M

M
ag
en
ts
(e
.g
.,

P
Is
,
IM

iD
s,
P
L
D
)

L
ee

et
al
.
[ 2
5
]

•
B
M

as
p
ir
at
es

co
ll
ec
te
d
fr
o
m

p
ts
w
it
h
N
D

o
r
R
R
M
M
,
as
se
ss
ed

fo
r
B
C
M
A

ex
p
re
ss
io
n
b
y
F
C

•
P
ri
m
ar
y
M
M

ce
ll
s
v
ar
ie
d
in

su
rf
ac
e
B
C
M
A

le
v
el
s

•
In

p
ts
w
it
h
se
q
u
en
ti
al

B
M

sa
m
p
le
s
(n
=
3
),
B
C
M
A

ex
p
re
ss
io
n
p
er
si
st
ed

th
ro
u
g
h
o
u
t
d
is
ea
se

re
la
p
se
s
af
te
r
n
o
n
-B
C
M
A
-t
ar
g
et
ed

th
er
ap
ie
s
(e
.g
.,
A
S
C
T
,

ch
em

o
th
er
ap
y
),
ev
en

in
p
ts
w
it
h
lo
w
-l
ev
el

d
is
ea
se

S
ec
k
in
g
er

et
al
.
[2
4
]
•
M
al
ig
n
an
t
P
C
s
co
ll
ec
te
d
fr
o
m

sa
m
p
le
s
o
f
p
re
v
io
u
sl
y
u
n
tr
ea
te
d
p
ts
o
r
p
ts
w
it
h
re
la
p
se
d

M
M

an
d
as
se
ss
ed

w
it
h
m
u
lt
id
im

en
si
o
n
al

F
C

•
A
ll
M
M

C
D
1
3
8
+
ce
ll
s
ex
p
re
ss
ed

B
C
M
A

R
N
A
,
w
it
h
si
m
il
ar

ex
p
re
ss
io
n
b
et
w
ee
n

p
ts
w
it
h
N
D

(n
=
6
3
0
)
an
d
R
R
M
M

(n
=
8
2
)

A
li
et

al
.
[ 2
6
]

B
ru
d
n
o
et

al
.
[2
7
]

N
C
T
0
2
2
1
5
9
6
7

•
E
n
ro
ll
ed

p
ts
w
it
h
M
M

w
it
h
u
n
if
o
rm

B
C
M
A

ex
p
re
ss
io
n
b
y
IH

C
o
r
F
C

[ 2
6
]

•
M
ed
ia
n
li
n
es

o
f
th
er
ap
y
:
7
(i
n
te
ri
m

re
su
lt
s,
n
=
1
2
),
9
.5

(fi
n
al

re
su
lt
s
at

h
ig
h
es
t
d
o
se

le
v
el

o
f
an
ti
-B
C
M
A

C
A
R
+
T
ce
ll
s,
n
=
1
6
)
[2
6
,
2
7
]

•
6
3
%

o
f
p
ts
tr
ea
te
d
at
th
e
h
ig
h
es
t
d
o
se

le
v
el
w
er
e
re
fr
ac
to
ry

to
th
ei
r
p
re
v
io
u
s
tr
ea
tm

en
t

re
g
im

en
[ 2
7
]

•
6
1
%

(5
2
/8
5
)
o
f
p
ts
sc
re
en
ed

fo
r
th
e
st
u
d
y
h
ad

B
C
M
A
+

P
C

sa
m
p
le
s
b
y
IH

C

•
P
re
tr
ea
tm

en
t
su
rf
ac
e
B
C
M
A

ex
p
re
ss
io
n
w
as

w
id
el
y
v
ar
ia
b
le

b
et
w
ee
n
p
ts
[ 2
7
]

•
S
o
lu
b
le

B
C
M
A

d
ec
re
as
ed

si
g
n
ifi
ca
n
tl
y
in

p
ts
w
h
o
re
sp
o
n
d
ed

to
an
ti
-B
C
M
A

C
A
R
+
T
-c
el
l
th
er
ap
y
b
u
t
n
o
t
in

p
ts
w
it
h
n
o
an
ti
m
y
el
o
m
a
re
sp
o
n
se

(n
=
1
6
)

F
ri
ed
m
an

et
al
.
[ 2
8
]

•
B
M

b
io
p
si
es

co
ll
ec
te
d
fr
o
m

p
ts
w
it
h
M
M

(n
=
2
9
)

•
B
C
M
A

ex
p
re
ss
io
n
as
se
ss
ed

b
y
IH

C

•
B
C
M
A

w
as

ex
p
re
ss
ed

o
n
al
l
M
M

sa
m
p
le
s,
th
o
u
g
h
ex
p
re
ss
io
n
w
as

v
ar
ia
b
le

•
In

4
1
%

o
f
M
M

B
M

b
io
p
si
es
,
B
C
M
A
+

ce
ll
s
co
m
p
o
se
d
>
5
0
%

o
f
tu
m
o
r
ar
ea

S
al
em

et
al
.
[2
3
]

•
P
ts
w
it
h
M
M

(n
=
7
0
)
w
er
e
sc
re
en
ed

fo
r
B
C
M
A

ex
p
re
ss
io
n
b
y
F
C

•
3
9
sa
m
p
le
s
as
se
ss
ed

b
y
b
o
th

F
C

an
d
IH

C

•
9
4
%

(6
6
/7
0
)
o
f
p
ts
w
er
e
B
C
M
A
+

b
y
F
C

•
A
m
o
n
g
sa
m
p
le
s
as
se
ss
ed

b
y
b
o
th

F
C
an
d
IH

C
,
3
8
w
er
e
B
C
M
A
+

b
y
F
C
an
d
2
8

w
er
e
B
C
M
A
+

b
y
IH

C

•
B
C
M
A

ex
p
re
ss
io
n
w
as

h
ig
h
ly

v
ar
ia
b
le

b
et
w
ee
n
sa
m
p
le
s

A
S
C
T

au
to
lo
g
o
u
s
st
em

ce
ll

tr
an
sp
la
n
ta
ti
o
n
,
B
C
M
A

B
-c
el
l
m
at
u
ra
ti
o
n
an
ti
g
en
,
B
M

b
o
n
e
m
ar
ro
w
,
C
A
R

ch
im

er
ic

an
ti
g
en

re
ce
p
to
r,

F
C

fl
o
w

cy
to
m
et
ry
,
IH

C
im

m
u
n
o
h
is
to
ch
em

is
tr
y
,
IM

iD

im
m
u
n
o
m
o
d
u
la
to
ry

d
ru
g
,
M
G
U
S
m
o
n
o
cl
o
n
al

g
am

m
o
p
at
h
y
o
f
u
n
d
et
er
m
in
ed

si
g
n
ifi
ca
n
ce
,
M
M

m
u
lt
ip
le

m
y
el
o
m
a,

N
D

n
ew

ly
d
ia
g
n
o
se
d
,
O
S
o
v
er
al
l
su
rv
iv
al
,
P
C

p
la
sm

a
ce
ll
,
P
I
p
ro
te
as
o
m
e

in
h
ib
it
o
r,
P
L
D

p
eg
y
la
te
d
li
p
o
so
m
al

d
o
x
o
ru
b
ic
in
,
P
R
p
ar
ti
al

re
sp
o
n
se
,
p
ts
p
at
ie
n
ts
,
R
R
M
M

re
la
p
se
d
/r
ef
ra
ct
o
ry

M
M
.

B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic. . . 987



owing to differences in methodology [7, 23, 28]. Interest-

ingly, BCMA mRNA is expressed at similar levels by

malignant PCs in patients with newly diagnosed MM and

RRMM, suggesting that BCMA may be a promising ther-

apeutic target throughout the MM disease course [24].

sBCMA levels are elevated in patients with MM and

correlate with the proportion of MM cells in BMMC sam-

ples [7]. sBCMA may also serve as a valuable biomarker in

select patient populations that are otherwise difficult to

monitor. The levels of sBCMA are independent of renal

function, which permits its use as a biomarker in patients

with renal insufficiency, and sBCMA is detectable in the

serum of patients with nonsecretory disease as well as in

nonsecretory murine xenograft models [7, 21, 29].

BCMA as a tool for prognosis and treatment response

The clinical course of MM is variable and there remains a

need for reliable methods to assess the prognosis of patients

and monitor their disease status [29]. The levels of sBCMA

have prognostic value, as patients with higher levels, par-

ticularly those ~25–325 ng/mL or higher, have poorer

clinical outcomes than those with lower sBCMA values

[7, 25, 29]. Similarly, baseline sBCMA levels have been

suggested to be inversely correlated with future response to

treatment [7, 30], though this correlation has not been

observed in all studies [25, 31–34]. Higher sBCMA levels

in patients with monoclonal gammopathy of undetermined

significance or smoldering MM also appear to be associated

with an increased risk of progression to MM [35].

The measurements of sBCMA may also be useful for

monitoring patient response to ongoing therapy. Patients

who have responded to therapy have reduced sBCMA

levels compared with patients with progressive disease

[7, 27]. Changes in sBCMA levels tend to correlate with the

clinical status of patients with MM during anti-MM treat-

ment, as well as tumor mass in preclinical models

[7, 21, 26–29, 36, 37]. For example, one study found that

patients with a complete response (CR) had lower sBCMA

levels (median, 38.9 ng/mL) than patients with a partial or

minimal response (median, 99.7 ng/mL) or nonresponsive

disease (median, 195.3 ng/mL) [29]. Because sBCMA has a

much shorter serum half-life (24–36 h) compared with M-

protein (3–4 weeks), changes in sBCMA more rapidly

reflect changes in disease status than M-protein levels and

therefore may serve as a useful alternative and potentially

more sensitive marker for monitoring disease status

[20, 34]. Notably, sBCMA levels do not appear to change

more significantly in response to one particular class of anti-

MM therapy over others [7].

The efficacy and durability of anti-BCMA therapies may

be particularly dependent on sBCMA levels. It has been

demonstrated that sBCMA can bind to and interfere with

anti-BCMA antibodies [38]. In this case, drugs that inhibit γ-

secretase could enhance the efficacy of BCMA-targeted

therapy by reducing shedding of BCMA from the cell surface

and subsequent interference of BCMA-targeted therapies by

sBCMA [20, 21, 38]. An additional approach could be to use

anti-BCMA monoclonal antibodies (mAbs) with higher

specificity for membrane-bound BCMA than sBCMA [39].

As it is currently unclear whether changes in membrane-

bound or sBCMA levels during therapy could alter the long-

term efficacy of anti-BCMA therapies, additional investiga-

tion into the relationship between baseline sBCMA and

response to BCMA-directed therapies is warranted.

Treatment modalities to target BCMA

Given the selective expression of BCMA on malignant PCs,

several BCMA-targeted therapies have been developed with

the aim of eradicating these malignant cells through distinct

mechanisms. Current anti-BCMA therapies generally fall

into one of three classes: bispecific antibody constructs,

including BiTE® (bispecific T-cell engager) molecules,

ADCs, and CAR T-cell therapy. In this section, we provide

an overview of anti-BCMA therapies in these classes,

focused on therapies with clinical data.

Use of minimal residual disease measures in MM

In addition to impressive response rates by International

Myeloma Working Group criteria, several BCMA-targeted

therapies described below have demonstrated minimal

residual disease (MRD)-negative status in heavily pre-

treated patients with RRMM [27, 34, 40, 41]. Minimal

residual disease is defined as the presence of a small

number of tumor cells after treatment that is below the level

of detection using conventional morphologic assessments

(e.g., stringent CR [sCR], CR). The precise definition of

MRD negativity depends on the threshold and detection

method used (e.g., flow cytometry, next-generation

sequencing) [42, 43]. The use of MRD endpoints in clin-

ical studies of hematologic malignancies has been

increasing over time, and achieving MRD negativity is

associated with better clinical outcomes [42, 44]. Even in

cases in which patients achieve a CR by conventional

measurements, patients who are MRD negative may have

longer overall and progression-free survival (PFS) com-

pared with patients who achieve a CR but are MRD posi-

tive [42, 43]. Therapies that help patients attain MRD-

negative status along with deep morphological remission

(i.e., CR) could ultimately lay the groundwork for

achieving a cure for MM [42]. However, there are limita-

tions to MRD measurements in the RRMM setting. First,

the measurement and definition of MRD may not always be

988 N. Shah et al.



reproducible across studies, as techniques for assessing

MRD differ in sensitivity and the cutoff used for defining

MRD (e.g., 10−4, 10−6) have not yet been standardized

[42, 43]. Second, MRD negativity cannot be directly

interpreted as a cure, and some patients who do not achieve

deep molecular remission still achieve long-term disease

control [42]. Third, there are limited clinical data that have

directly assessed the role of MRD in MM for guiding

treatment decisions [42, 43]. Finally, the assessment of

MRD in MM to date has been primarily in the newly

diagnosed or maintenance setting; therefore, the role of

MRD in RRMM prognosis or guidance of future treatment

remains unclear [42].

Bispecific antibody constructs

Bispecific antibody constructs are engineered to have dual

antigen specificity to facilitate cell-to-cell interactions

between the patients’ own T cells and malignant cells

expressing tumor-specific antigens [45]. Several different

structures have been used for bispecific antibody constructs

investigated in oncological clinical trials, as illustrated in a

recent review [46]. Forms of these constructs that have been

investigated in MM include BiTE® (bispecific T-cell

engager; Amgen, Thousand Oaks, CA, USA) molecules

and DuoBody® (Genmab A/S, Copenhagen, Denmark)

technology, among others. BiTE® molecules are fusion

proteins consisting of single-chain variable fragments

(scFv) with unique antigen specificities (Fig. 1) [45].

DuoBody® bispecific antibody constructs are generated via

Fab-arm exchange, which uses mutations and recombina-

tion at the CH3–CH3 antibody interface to combine heavy

and light chain homodimers from two separate mAbs into a

single heterodimeric, bispecific antibody structure [47].

Of these two modalities, BiTE® molecules are currently

the only type of bispecific antibody construct with pre-

liminary efficacy data from clinical trials in MM [41, 48].

The rationale for use of BiTE® molecules in MM is also

supported by the antitumor activity of blinatumomab, which

is approved for treatment of select patients with acute

lymphoblastic leukemia (ALL). Blinatumomab is a BiTE®

molecule that engages CD3+ cytotoxic T cells and CD19+

B cells to recognize and eliminate CD19+ ALL blasts,

leading to a survival benefit of 3.7 months compared with

chemotherapy in patients with Philadelphia chromosome-

negative B-cell ALL [49, 50]. BiTE® molecules for MM

incorporate one scFv that engages the T-cell receptor CD3ε

subunit, while the other engages a tumor-specific antigen

expressed on malignant cells. This dual engagement leads to

the formation of a cytolytic synapse between the T cell and

the BCMA-expressing cell. Because formation of the

cytolytic synapse is independent of standard antigen

recognition and costimulation mediated by major histo-

compatibility complex class I, lysis of the target tumor cell

occurs in a manner that is independent of immune escape

mechanisms that tumor cells may develop to evade detec-

tion. CD3ε is expressed by all CD8+ and CD4+ T cells,

which enables polyclonal T-cell activation, expansion,

cytokine production, and tumor cell lysis [51].

AMG 420

AMG 420, formerly BI 836909, is a BCMA × CD3 BiTE®

molecule that has been investigated in patients with RRMM

(Table 2). Data from a first-in-human, phase 1 dose-

escalation study (NCT02514239) reported an objective

response rate (ORR) of 70% (7/10) at 400 μg/day, which

included five MRD-negative CRs (i.e., a 50% MRD-

A

Anti-CD3 

mAb

Anti-BCMA 

mAb

Flexible 

linker

T cell

CD3

TCR

BCMA×CD3

BiTE® molecule

B

BCMA×CD3

DuoBody®

technology

Anti-CD3 

mAb

Anti-BCMA 

mAb

Fab-arm 

exchange

CD3

T cell
Malignant 

plasma cell
TCR

BCMABCMA

Malignant 

plasma cell

Cellular lysis Cellular lysis

Fig. 1 Bispecific antibody

constructs facilitate cell-to-cell

interactions via dual antigen

specificity. Different forms of

bispecific antibody constructs

include BiTE® molecules (left)

and DuoBody® technology

(right). Engagement of T cells to

malignant cells expressing B-

cell maturation antigen (BCMA)

leads to selective, redirected

lysis of MM cells.
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negativity rate), one VGPR, and one PR [41, 48]. Minimal

residual disease in this study was defined as <1 tumor cell

per 104 normal cells in the bone marrow by flow cytometry.

As of cutoff for the most recently presented data, some

responses were durable over 1 year, and two patients were

in ongoing treatment at the 400 μg/day dose. Overall,

median time to any response was 1 month. Serious AEs

(SAEs) observed in more than one patient were infections

and polyneuropathy (PN). Treatment-related SAEs included

two grade 3 PNs and one grade 3 edema. Grade 2 or 3

cytokine release syndrome (CRS) was observed in 3 of 42

patients included in the phase 1 study. AMG 701, a half-life

extended BiTE® molecule targeted to BCMA, appears to

induce potent T cell-directed lysis of BCMA-positive MM

cells in vitro [52] and is in clinical development.

PF-06863135

PF-06863135 (PF-3135) is a humanized bispecific IgG

mAb consisting of anti-CD3 and anti-BCMA-targeting arms

paired through hinge-mutation technology within an IgG2a

backbone [53]. Safety results from a phase 1 dose-

escalation study in patients with RRMM suggest that PF-

3135 is well tolerated, with no dose-limiting toxicities or

CRS events observed in the first five patients treated [53].

Other bispecific antibody constructs in clinical

development

Other BCMA-targeted bispecific antibody constructs in

clinical development that have demonstrated preclinical

efficacy include JNJ-957 (a humanized BCMA × CD3 bis-

pecific antibody construct with DuoBody® technology)

[54], REGN5458 (a humanized BCMA × CD3 bispecific

antibody construct) [55], TNB-383B (a fully human

BCMA × CD3 bispecific antibody construct with a low-

activating αCD3 arm that preferentially activates effector

T cells over regulatory T cells) [56], and CC-93269 (pre-

viously known as BCMA-TCB2/EM901, a dual-arm,

human IgG1-based bispecific antibody construct with one

CD3 and two BCMA-binding sites) [57, 58].

Antibody–drug conjugates

ADCs are tumor-associated antigen (TAA)-targeted mAbs

conjugated to toxic payloads, such as tubulin polymeriza-

tion inhibitor monomethyl auristatin F (MMAF), pyrrolo-

benzodiazepine (PBD), or the RNA polymerase II inhibitor

α-amanitin, using a cleavable or non-cleavable linker

[17, 31, 59, 60]. Once bound to TAA-expressing target

cells, ADCs are internalized and the toxic payload is

released to induce DNA damage and cell death (Fig. 2)

[17, 39, 59]. Cleavable linkers are enzymatically processed

within the target cell, while the action of ADCs with non-

cleavable linkers requires degradation of the attached anti-

body within lysosomes to release the payload [59].

Currently, one anti-BCMA ADC (GSK2857916) has

demonstrated antimyeloma activity in a phase 1 trial

(Table 2; described further below), and others have been

investigated in preclinical species.

GSK2857916

The anti-BCMA ADC GSK2857916 consists of an afuco-

sylated, humanized IgG1 anti-BCMA mAb conjugated to

the tubulin polymerization inhibitor MMAF [31, 61]. The

use of a defucosylated Fc region also helps facilitate the

binding of effector cells to promote cell lysis of BCMA-

expressing tumor cells via antibody-dependent cell-medi-

ated cytotoxicity and antibody-dependent cellular-mediated

phagocytosis [17]. GSK2857916 was investigated in a

phase 1 trial of patients with progressive MM

(NCT02064387) that included dose escalation and expan-

sion (Table 2) [31, 61]. GSK2857916 was administered via

1-h infusions once every 3 weeks, and the ORR in the dose-

expansion phase was 60% (21/35 patients), including two

sCR, three CR, 14 VGPR, and two PR. Overall median PFS

in these patients was 12.0 months. The most common grade

3 or 4 adverse events (AEs) during dose expansion were

Toxic

payload

ADC 

binding

Internalization

Lysosomal 

degradation

Release of 

toxic payload
BCMA

ADC
Anti-BCMA

mAb

Fig. 2 Antibody–drug conjugates bind to tumor-associated antigens on

target cells, which leads to subsequent internalization and release of

the toxic payload to induce selective cell death.
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thrombocytopenia (34%) and anemia (17%). Corneal events

were reported in 69% of patients, most of which were mild

to moderate in severity, and had a median duration of

35 days. GSK2857916 was granted breakthrough therapy

designation by the US Food and Drug Administration

(FDA) in November 2017 and is currently being investi-

gated in clinical trials in combination with IMiD therapies

for treatment of patients with RRMM [62].

Other anti-BCMA ADCs in clinical development

Other anti-BCMA ADCs in clinical development include

HDP-101 (an anti-BCMA antibody conjugated to the RNA

polymerase II inhibitor amanitin), which may provide potent

antitumor activity in patients with 17p deletions due to

reduced RNA polymerase II subunit A expression in these

patients, and MEDI2228, an anti-BCMA mAb conjugated to

the PBD tesirine via a cleavable linker [39, 60, 63].

Chimeric antigen receptor (CAR)-modified T-cell
therapy

CAR T cells are genetically modified T cells that express a

CAR targeted against a specific TAA, which upon binding

initiates T-cell activation in a human leukocyte

antigen–independent manner (Fig. 3) [64–67]. These CAR

constructs consist of TAA-targeted scFvs (typically murine

or human) connected to the CD3ζ intracellular signaling

domain along with costimulatory domains (e.g., CD28,

OX40, 4-1BB) by an extracellular spacer and transmem-

brane domain [65–67]. First-generation CARs only con-

tained a CD3ζ signaling domain, but next-generation CARs

have included multiple costimulatory domains to enhance

the likelihood of CAR T-cell proliferation [65, 66]. Pro-

liferation of CAR T cells in vivo has been shown to cor-

relate with clinical activity and is frequently assessed in

preclinical and clinical studies [26, 27, 68].

CAR T cells are typically generated from autologous

T cells collected from the patient via leukapheresis, mod-

ified to express the CAR, and expanded ex vivo. While the

CAR T cells are being manufactured, patients may receive

bridging chemotherapy to maintain disease control before

the CAR T cells are ready to be infused back into the patient

[34, 64, 65, 69]. Before reinfusion of the expanded CAR

T cells, most patients undergo a conditioning lymphode-

pletion chemotherapy regimen (e.g., fludarabine and

cyclophosphamide), which reduces endogenous levels of

lymphocytes to create a favorable environment for CAR T-

cell expansion, persistence, and subsequent activity

[64, 70, 71].

Anti-BCMA CAR T-cell therapies in clinical development

Several BCMA-targeted CAR T-cell therapies have demon-

strated efficacy in early-phase clinical trials (Table 3).

Though the constructs for these CAR T cells share some

similarities, they differ in the costimulatory domains used

(e.g., 4-1BB [33, 34, 37, 72, 73], CD28 [27, 74, 75], OX40

[75]), hinge regions (e.g., CD8 [27, 34, 37]), transmembrane

domain (e.g., CD8 [27, 37, 76], CD28 [33, 74]), the species

used to generate anti-BCMA scFvs (e.g., murine [27, 74],

human [33, 37, 73, 77], llama [32]), and the use of mod-

ifications to enhance the safety of the CAR T-cell therapy

(e.g., truncated epidermal growth factor receptor [73, 74, 77]

or other safety switches [78]). The process of generating

CAR T-cell therapies can also notably differ between dif-

ferent compounds, including the method of transduction

(retroviral vs lentiviral), and the culture media used for

ex vivo enrichment and stimulation of CAR T cells (e.g.,

paramagnetic beads coated with anti-CD3/anti-CD28 mAbs,

OKT3, phosphoinositide 3 kinase inhibitors). Of note,

although most CAR T-cell therapies to date are transduced

using either a retroviral or lentiviral vector, the CAR T-cell

therapy P-BCMA-101 is produced using the piggyBacTM

DNA modification system and is the only BCMA-targeted

CAR T-cell therapy produced using a non-viral transduction

method to date [78].

In addition to differences in the structure and manu-

facturing of CAR T-cell constructs, clinical trial designs and

results have differed between BCMA-targeted CAR T-cell

therapies to date, including differences in the studied patient

populations, dosing and persistence of CAR T cells, and

CD3

T cell Malignant 

plasma cell

TCR

BCMA

Anti-BCMA 

scFV

CAR

CD3ζ

signaling 

domain

SpacerHinge 

region

Costimulatory 

domain(s) 

(eg, CD28, 4-1BB)

Fig. 3 Chimeric antigen

receptors (CARs) consist of

tumor-associated antigen

(TAA)-targeted single-chain

variable fragments connected

to intracellular signaling

domains along with

costimulatory domains. T cells

that are genetically modified to

express CARs bind to TAA-

expressing target cells to initiate

cellular lysis and death.
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efficacy and safety data (Table 3). Clinical data for several

of these therapies show ORR > 80% in patients with

RRMM. The most common AEs across therapies are CRS

and neurotoxicity, though incidence, severity, and time to

CRS onset vary by therapy.

bb2121 and bb21217

The CAR T-cell therapy bb2121 has been investigated in

patients with RRMM who have ≥50% BCMA expression

on malignant cells [34]. The ORR was 85% (28/33 patients)

and 45% of patients experienced CR or sCR, with a median

duration of response of 10.9 months. Median PFS was

11.8 months. In 16 responders evaluated for MRD nega-

tivity, 100% were MRD negative at 10−4 cells or better,

94% were MRD negative at 10-5 cells or better, and 19%

were MRD negative at 10−6 cells. In contrast, two patients

who did not achieve a response to bb2121 were MRD

positive 1 month post infusion. All 33 patients experienced

AEs, with 97% of patients experiencing at least one grade ≥

3 AE. CRS occurred in 76% of patients, including grade 3

CRS in two patients. Among 14 patients experiencing

neurotoxicity, one patient had grade 4 neurotoxicity 11 days

after infusion. On the basis of early clinical data, bb2121

received breakthrough therapy designation from the FDA in

late 2017.

Another CAR T-cell construct similar to bb2121, known

as bb21217, is also under clinical investigation [40]. These

CAR T cells are cultured in the presence of the phosphoi-

nositide 3 kinase inhibitor bb007 ex vivo to promote a

memory-like phenotype, which is hypothesized to increase

the persistence and potency of CAR T cells. Among seven

treated patients, ORR was 86% (one sCR, three VGPR, and

two PR), and all three evaluable responders were MRD

negative by next-generation sequencing. CRS was observed

in 62.5% (5/8) of patients, including one case of grade 3

CRS that was accompanied by grade 4 encephalopathy with

signs of posterior reversible encephalopathy syndrome.

NIH CAR-BCMA

NIH CAR-BCMA has been investigated in a phase 1 dose-

escalation trial in patients with measurable MM and uni-

form BCMA expression on PCs [26, 27]. Among 16

patients treated with doses of 9 × 106 cells/kg or higher, the

ORR was 81% (13/16), and all 11 evaluated patients had

MRD-negative disease 2 months after NIH CAR-BCMA

infusion as assessed by bone marrow flow cytometry (limit

of detection, 7 × 10−6). Duration of myeloma responses

ranged from 2 to 51 weeks, and 6 of the 11 patients who

were MRD negative had an ongoing response at the last

follow-up before publication. Treatment-related toxicity

was mild at lower doses (no grade ≥ 3 CRS). However,

CRS-related toxicity was substantial at the highest dose

tested (9 × 106 cells/kg), particularly for patients with high

tumor burden, and, overall, 38% of patients required

vasopressor support for hypotension. Neurologic toxicities

accompanying severe CRS were limited to confusion or

delirium, except for one patient who experienced encepha-

lopathy and muscle weakness consistent with PN.

FCARH143

FCARH143 is a fully human BCMA-targeting CAR T-cell

therapy that is formulated in a 1:1 ratio of CD4+ to CD8+

CAR T cells for infusion and expresses a truncated non-

functional human epidermal growth factor receptor to help

identify transduced T cells [73]. Preliminary results from an

ongoing phase 1 trial in patients with RRMM indicated that

treatment with FCARH143 was associated with an ORR of

100% at 28 days in 6 evaluable patients, and all 6 patients

had no detectable abnormal bone marrow PCs by immu-

nohistochemistry and flow cytometry. All patients were

currently alive at a median (range) of 16 (2–26) weeks of

follow-up. Grade 2 or lower CRS was experienced by 86%

of patients and no neurotoxicity was observed.

LCAR-B38M

LCAR-B38M is a dual epitope-binding CAR T-cell therapy

directed against two distinct BCMA epitopes that was

investigated in a phase 1 trial in patients with RRMM [32].

Treatment with three infusions of LCAR-B38M adminis-

tered over 7 days resulted in an ORR of 88% (50/57

patients), including 39 CR, three VGPR, and eight PR, and

an MRD negativity rate of 63% (36/57 patients) as assessed

by bone marrow flow cytometry, defined as <1 tumor cell

per 104 normal cells. At data cutoff before publication, 20%

of patients who achieved a PR or better had subsequently

progressed. Median PFS was 15 months. The most common

grade ≥ 3 AEs were leukopenia (30%), thrombocytopenia

(23%), and aspartate aminotransferase elevations (21%).

Ninety percent (51/57) of patients experienced CRS of any

severity, including four patients (7%) with grade ≥ 3 CRS,

and grade 1 neurotoxicity was observed in one patient.

Similar efficacy and safety were observed in an additional

exploratory trial of LCAR-B38M at a separate site with 17

patients with RRMM, regardless of whether LCAR-B38M

was administered as a three-infusion or single-infusion

process [79].

JCARH125

JCARH125 is a fully human CAR T-cell therapy with a 4-

1BB costimulatory domain that has been investigated in

a multicenter phase 1/2 trial in patients with RRMM
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(EVOLVE) [33]. Among 44 patients treated at doses of 50,

150, or 450 × 106 cells, ORR was 82%, with 48% of

patients achieving VGPR or greater. Some patients had

improved responses over time, and six of nine evaluable

patients were MRD negative by next-generation sequencing

(defined as ≤1 tumor cell per 105 normal cells) at day 29

post infusion. CRS occurred in 80% of patients and 9%

experienced grade ≥ 3 CRS. Grade 1 to 2 and grade ≥ 3

neurotoxicity occurred in 18 and 7% of patients,

respectively.

MCARH171

MCARH171 is a human-derived CAR T-cell therapy with a

truncated EGFR safety system that has been investigated in

a phase 1 dose-escalation trial [77]. In 11 patients, ORR was

64% across all dose levels tested; all five patients who

received the higher dose levels tested (≥450 × 106 cells)

achieved an objective response. Responses ranged in

duration from 17 to 235 days, with three of five patients

treated at the highest doses having responses longer than

6 months and two patients having ongoing responses at 7.5

and 10 months of follow-up. Grade 1–2 and grade 3 CRS

occurred in 40% and 20% of patients, respectively, and one

case of grade 2 neurotoxicity (encephalopathy) was

reported.

CART-BCMA

CART-BCMA is a CAR T-cell therapy with a fully human

scFv with a 4-1BB costimulatory domain that has been

investigated in a phase 1, open-label study in patients with

RRMM [37]. Twenty-five patients were treated across three

dose cohorts, which varied in CART-BCMA dose level

and/or coadministration of cyclophosphamide (Table 3).

The ORR across all 25 treated patients was 48% and was

higher (55%) in those receiving the higher dose level

(1–5 × 108 CART-BCMA cells). The median (range) dura-

tion of response was 124.5 (29–939+) days. Three patients

remained progression free at data cutoff, with a median

overall survival of 502 days among all treated patients.

Grade 3 or higher AEs were observed in 96% (24/25) of

patients, regardless of attribution to study drug. CRS was

observed in 88% of patients (32% grade 3 or 4), and 32% of

patients experienced neurotoxicity (including 3 cases of

grade 3–4 encephalopathy).

Discussion and future perspectives

BCMA is a promising novel target for antimyeloma thera-

pies. Different classes of BCMA-targeting drugs, including

bispecific antibody constructs, ADCs, and CAR T-cell

therapies, have shown antimyeloma activity in patients with

RRMM and could help address a critical unmet need for

therapies in patients with MM [1, 3, 4]. While there are not

yet trials underway using BCMA-targeted therapies for

treatment of newly diagnosed MM, these therapies could

offer promise in this population as well, as supported by the

high MRD negativity rates, high ORR, and durable

responses reported to date with select BCMA-targeted

therapies. As MRD negativity is associated with prolonged

remission, further study is warranted to investigate whether

BCMA-targeted therapies could provide durable responses

or even a cure in earlier lines of therapy for MM, including

newly diagnosed MM [42, 80].

Each BCMA-targeted treatment modality carries poten-

tial strengths and limitations. Bispecific antibody constructs

are off-the-shelf therapies that have the potential to be

available to patients to initiate treatment immediately and

do not depend on ex vivo manipulation of patients’ cells.

Clinical and notable antimyeloma activity has been

observed with the BiTE® molecule AMG 420 in a phase 1

trial [41, 48]. One limitation of AMG 420, and similar

bispecific antibody constructs, is that its relatively short

half-life necessitates prolonged intravenous infusion using a

central venous access device, though this short half-life may

help manage treatment-emergent AEs, such as CRS

[41, 45]. To address this limitation, several groups are

developing bispecific antibody constructs with longer half-

lives that are being investigated in ongoing clinical trials,

including AMG 701 (NCT03287908) [52], CC-93269

(NCT03486067) [57], JNJ-64007957 (NCT03145181)

[54], REGN5458 (NCT03761108) [55], and TNB-383B

(NCT03933735) (Table 4) [56]. Unlike CAR T-cell thera-

pies, bispecific antibody constructs themselves do not pro-

liferate but rather act by inducing expansion of antigen-

experienced T cells. Although it is unclear how to directly

compare the immune expansion capability of bispecific

antibody constructs and CAR T-cell therapies, it has been

noted that the expansion of antigen-experienced T cells by

bispecific antibody constructs can be order of magnitudes

lower than the self-expansion of CAR T-cell therapies [81].

Because the resolution of malignant disease could require

continued action of T cells over prolonged time periods,

differences in T-cell expansion and persistence between

bispecific antibody constructs and CAR T-cell therapies

could lead to differences in durability of remission, though

there is currently insufficient clinical data for BCMA-

targeted therapies to date to make direct comparisons [81].

Similar to bispecific antibody constructs, ADCs do not

require sample collection from the patient to generate a

personalized ADC, and the antimyeloma activity of

GSK2857916 has been observed in patients with RRMM

[31]. The most common AEs observed with GSK2857916,

thrombocytopenia and corneal events, are consistent with
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the known adverse effects of the toxic payload MMAF [31].

Indeed, the safety profile of ADCs depends on the toxic

payload used. For certain ADC constructs, extracellular

cleavage of the ADC before target cell penetration could

lead to premature liberation of the toxic payload and

negative effects on healthy cells, but the use of noncell-

permeable payloads (e.g., MMAF) or non-cleavable linkers

can reduce this concern [17, 59]. Similar to bispecific

antibody constructs, ADCs can induce immunogenic

responses against myeloma cells, which could help promote

durable endogenous antimyeloma activity [17, 31]. How-

ever, similar to bispecific antibody constructs and in con-

trast with CAR T-cell therapies, ADCs are not anticipated to

expand and persist in vivo based on their mechanism of

action. This contrast may lead to differences in durability of

responses compared with CAR T-cell therapies, though

there have been no direct comparisons of BCMA-targeted

ADCs and CAR T-cell therapies to date.

Early-phase clinical efficacy has been observed with

several different anti-BCMA CAR T-cell constructs

(Table 3). A notable advantage of CAR T cells is that these

cells can expand after a single infusion, which may lead to

persistent immunity against cancer cells [4, 64, 71]. The

most common toxicities associated with CAR T cells

include CRS and neurologic toxicity, which are typically

managed with an IL-6 receptor antagonist (e.g., tocilizu-

mab) and systemic corticosteroids, respectively

[4, 66, 71, 82]. Other common toxicities include cytopenias

and hypogammaglobulinemia [82]. One approach to avoid

potential toxicities has been to engineer an “off switch” into

CAR T-cell therapies so that the activity of these cells can

be modified post infusion by dosing with an antibody-based

switch [83]. Moreover, patients receiving CAR T-cell

therapy may receive treatment with bridging chemother-

apy before infusion, which could impact subsequent out-

comes [69]. One limitation of CAR T-cell therapy is the

prolonged manufacturing time needed before treatment, as

several days to weeks are required for the collection of

leukocytes from patients, ex vivo expansion and transduc-

tion of autologous T cells with CAR, and infusion at a

specialized treatment center [27, 31, 71, 84]. This prolonged

manufacturing time can lead to disease progression between

leukapheresis and CAR T-cell infusion [37]. The develop-

ment of allogeneic off-the-shelf CAR T cells with reduced

risk of graft-versus-host disease could significantly change

the workflow of CAR T-cell therapy if these treatments

become available to patients without the requirements for

standard CAR T-cell manufacturing [84–88]. Another

potential drawback of CAR T-cell therapy is the use of

preconditioning lymphodepletion regimens. Though lym-

phodepletion is an important part of the CAR T-cell treat-

ment process, reduction of endogenous lymphocyte levels

and subsequent CAR T-cell expansion may have

implications for salvage therapy after failure of CAR T-cell

therapy, as these processes modify the characteristics of

patients’ T cells [87]. As a result, treatment responses to

subsequent lines of therapy could be altered in these

patients, and the implications of lymphodepletion regimens

for treatment sequencing should be considered.

Other unique BCMA-targeted therapies are being

investigated for treatment of MM. These include an anti-

BCMA mAb conjugated to an antitumor maytansine deri-

vative via a non-cleavable linker (AMG 224, under clinical

study); combination therapy with an antibody-coupled T-

cell receptor (ACTR087) plus an anti-BCMA antibody

(SEA BCMA); a BCMA- and CD16A-directed tetravalent

antibody that engages natural killer cells (AFM26); anti-

BCMA recombinant immunotoxins; a heteroclitic BCMA

peptide encapsulated nanoparticle-based cancer vaccine;

and an antibody-based scaffold that binds CD3, BCMA,

and programmed cell death ligand 1 [89–93]. Antimyeloma

therapies targeting or incorporating APRIL, the primary

ligand for BCMA, have also been developed. These thera-

pies include two APRIL-based CAR T-cell constructs

(ACAR, APRIL-CAR), which use truncated forms of

APRIL as the tumor-targeting domain for dual targeting of

the APRIL receptors BCMA and transmembrane activator

and calcium-modulating cyclophilin ligand [94, 95].

In current clinical trials, patients who are treated with a

previous anti-BCMA-directed therapy are often excluded

from receiving any subsequent anti-BCMA treatments.

Because these exclusion criteria may limit BCMA-targeted

treatment options for these patients, trials assessing anti-

BCMA therapies should carefully consider patient selection

until we have a greater biological and clinical understanding

of how anti-BCMA treatment sequencing may be conducted

in the future. For example, patients at high risk of pro-

gression may not be suitable for the lag time required for

CAR T-cell manufacturing and may be better suited for

readily available anti-BCMA products [86]. Further

assessment of anti-BCMA therapies in patients with MM

with unmet needs (e.g., patients with high-risk MM, elderly

and frail patients, or patients with renal failure) is also

necessary, as these patients are often excluded from clinical

trials [96, 97]. There are currently >50 ongoing clinical

trials assessing BCMA-targeted therapies for MM, includ-

ing ~15 phase 2 studies, and these trials will help gain

insight into the efficacy and safety across MM populations.

Furthermore, several studies are underway to assess whether

combination of anti-BCMA therapies in combination with

other treatments with different targets and mechanisms of

action can enhance the efficacy of antimyeloma treatment

regimens [7, 14, 20, 26, 27, 36–38, 94, 98–100].

Though they have predominantly been investigated in an

RRMM population to date, the striking data observed with

BCMA-targeted therapies suggest that these therapies could
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be transformative for MM treatment paradigms if used in

earlier lines of treatment. Currently, even the most intensive

initial lines of therapy followed by stem cell transplantation

has resulted in limited extension of PFS, which necessitates

the use of maintenance therapies for a prolonged duration

until progression occurs [101]. If BCMA-targeted therapies

are able to demonstrate deep and durable responses after

short treatment durations, they may reduce the need for

“treat-to-progression” paradigms for MM, which are less

feasible in the real-world setting compared with clinical

studies, or could even replace stem cell transplantation as

first-line treatment for newly diagnosed MM, for which not

all patients are eligible [31, 102].

Though mechanisms of failure of BCMA-targeted ther-

apy are not fully known, observations and hypotheses

regarding potential limitations of this approach have been

reported. Targeted immunotherapies, including BCMA-

targeted agents, may be affected by antigen-escape

mechanisms. sBCMA levels have been widely demon-

strated to decrease during treatment in response to new MM

therapies, including BCMA-targeted therapies [7, 27, 36].

Although these reductions in sBCMA levels may lessen

concerns with sBCMA interfering with BCMA-targeted

therapies by competing with membrane-bound BCMA [38],

there may also be a corresponding decline in membrane-

bound BCMA that would alter the ability of BCMA-

directed therapies to target MM. Indeed, a trial assessing

BCMA CAR T-cell therapy observed that the majority of

patients showed a decline in BCMA intensity post infusion,

though membrane BCMA expression increased back

toward baseline in the majority of these patients [37].

Though clinical data are limited, BCMA-negative relapse

has also been reported with BCMA-targeted CAR T-cell

therapy [26, 98]. Because the majority of relapses after

BCMA-targeted therapies may involve BCMA-positive

disease [26], retreatment with different BCMA-targeted

therapies may also be feasible in the future, though

sequencing with these therapies has yet to be investigated in

clinical trials. Immunogenicity to anti-BCMA mAbs or

scFvs could also limit the efficacy and persistence of

BCMA-targeted therapy. This may be partially addressed

by the use of humanized mAbs or scFvs, which are less

likely to be immunogenic compared with fragments gen-

erated from other species (e.g., mice) [100]. Moreover,

structural alterations have been pursued for CAR T-cell

therapies, in particular to promote the expansion and per-

sistence of these therapies in vivo, and further advance-

ments within the MM field could benefit from similar

optimization [103]. Ultimately, clinical data from larger

randomized trials are needed to further understand the

limitations of BCMA-directed therapies, including potential

differences between BCMA-targeted bispecific antibody

constructs, ADCs, and CAR T-cell therapies.

Summary

BCMA-targeted therapies have demonstrated promising

and exciting clinical results in heavily pretreated patients

with RRMM. Further study is warranted to investigate

whether BCMA-targeted therapies could provide long-

lasting responses when used in earlier lines of therapy

for MM.
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