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Multisystem inflammatory syndrome in children (MIS-C) can complicate infection with severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), but differences in the immune responses during MIS-C compared to coronavirus disease 2019 (COVID-19) 
are poorly understood. We longitudinally compared the amounts and avidity of plasma anti-nucleocapsid (N) and spike (S) anti-
bodies, phenotypes of B cells, and numbers of virus-specific antibody-secreting cells in circulation of children hospitalized with 
COVID-19 (n = 10) and with MIS-C (n = 12). N-specific immunoglobulin G (IgG) was higher early after presentation for MIS-C 
than COVID-19 patients and avidity of N- and S-specific IgG at presentation did not mature further during follow-up as it did for 
COVID-19. Both groups had waning proportions of B cells in circulation and decreasing but sustained production of virus-specific 
antibody-secreting cells for months. Overall, B-cell responses were similar, but those with MIS-C demonstrated a more mature an-
tibody response at presentation compared to COVID-19, suggesting a postinfectious entity.

Keywords. antibody-secreting cells; COVID-19; flow cytometry; antiviral antibody; antibody avidity.

Children infected with severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) are often only mildly sympto-
matic, but the recognition of multisystem inflammatory syn-
drome in children (MIS-C) has called attention to the more 
severe pediatric clinical manifestations associated with the 
virus [1–4]. MIS-C is characterized by signs and symptoms 
reflective of intense immune activation with evidence of in-
creased cytokine production similar to that seen in adults 
with severe and life-threatening forms of coronavirus dis-
ease 2019 (COVID-19) [5–10]. Seropositivity at the time of 
symptom onset suggests that MIS-C is a post–SARS-CoV-2 
inflammatory disease [9]. This possibility is supported by 
antiviral antibody patterns at the time of hospitalization that 
show low levels of antiviral immunoglobulin M (IgM) and 
abundant immunoglobulin G (IgG) similar to those of adult 
COVID-19 patients convalescent from mild disease [11] but 
lower than after severe COVID-19 [12]. Compared to healthy 

donors or mildly ill patients, MIS-C patients have more ac-
tivated natural killer cells, plasmablasts, and monocyte-
activating SARS-CoV-2 IgG [13–15].

Systemic viral infections often lead to a sustained immune 
response with maintenance of protective titers of neutralizing 
antibody that correlate with resistance to reinfection [16, 
17]. Studies of common cold coronaviruses reveal transient 
immune memory, and studies of adults infected with other 
betacoronaviruses causing severe respiratory infection, such 
as severe acute respiratory syndrome and Middle East respi-
ratory syndrome, indicate that antibody wanes and memory 
B cells are only present for a few years after recovery in those 
with mild disease [18–21]. However, data from adults sug-
gest that more severely affected COVID-19 patients develop 
higher and more durable titers of virus-specific antibody 
[22–24]. One method of evaluating sustained production 
of antibody associated with a durable immune response is 
assessment of antibody-secreting cell (ASC) production. 
Germinal center–matured ASCs can develop into bone 
marrow–resident long-lived plasma cells and memory B cells 
capable of providing durable protective immunity [25–29]. 
The continued presence of virus-specific ASCs in the periph-
eral blood is indicative of prolonged output from germinal 
centers in lymphoid tissue and associated with a durable anti-
body response [30, 31].

Few studies have compared antiviral immune responses 
of similarly ill, previously healthy children hospitalized with 
MIS-C to those hospitalized with severe COVID-19. In addition, 
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longitudinal data are not available on the humoral immune re-
sponse or the durability of the immune response in children 
with MIS-C compared to severe COVID-19. Additionally, data 
are not available for SARS-CoV-2–infected children, and con-
cerns about the possibility of recurrent episodes of MIS-C upon 
reinfection with SARS-CoV-2 remain. While an increased pres-
ence of plasmablasts in acute MIS-C and children with COVID-
19 has been demonstrated [15], determining the continued 
production of ASCs over time and the specificity of the anti-
body produced by these cells will provide insight into immune 
responses and protection in pediatric patients with MIS-C as 
compared to those with acute COVID-19.

Here, we use enzyme-linked immunosorbent spot (ELISpot) 
assays and document the plasma levels of virus-specific IgG, 
IgM and immunoglobulin A (IgA), the avidity of the IgG an-
tibody, and the B-cell subset phenotypes in pediatric patients 
hospitalized with acute COVID-19 and MIS-C collected lon-
gitudinally. These studies suggest that infection had been more 
prolonged at the time of hospitalization for children with 
MIS-C than severe COVID-19, but that virus-specific antibody 
and B-cell responses were otherwise similar.

MATERIALS AND METHODS

Study Participants
Patients admitted with suspected SARS-CoV-2 infection to 
the Johns Hopkins Hospital were prospectively enrolled into 
a cohort study entitled “Clinical Characterization Protocol for 
Severe Emerging Infections.” After informed consent, 80 pe-
diatric participants were enrolled between 10 April 2020 to 22 
January 2021. Mean time from admission to enrollment into 
the study was 3.1 days. After hospital discharge, patients were 
followed and sampled at 1, 3, and 6 months from study entry, 
within a predefined window of time.

Samples
Peripheral blood was collected in acid citrate dextrose tubes 
from 53 of those enrolled and peripheral blood mononu-
clear cells (PBMCs) were isolated using Ficoll-Paque gradi-
ents, cryopreserved in fetal bovine serum (FBS) containing 
10% dimethyl sulfoxide, and stored in liquid nitrogen as part 
of the Johns Hopkins Biospecimen Repository. Plasma was 
frozen at –20°C and used for the previously reported anal-
ysis of cytokines and chemokines [5] and of antibody in this 
study. Sufficient PBMCs were available in 53 samples from 
22 patients (10 COVID-19; 12 MIS-C) for analysis at 2–3 
postentry time points. Studies were performed according to 
protocols approved by the Johns Hopkins School of Medicine 
Institutional Review Board.

SARS-CoV-2 Viral Protein Antigen Preparation

Protein antigens for antibody-binding assays were prepared 
from lysates of cells expressing native SARS-CoV-2  N and S 

proteins as previously described [24]. In brief, the HEK293F 
cell line Ftet2 expressing rtTAv16 [32] was transfected with 
plasmids expressing a doxycycline-inducible codon-optimized 
SARS-CoV-2 N open reading frame (ORF) (pCG144), S ORF 
(pCG146), or empty plasmid. The S protein matches the orig-
inal SARS-CoV-2 isolate [33], except for 2 proline substitutions 
that stabilize the trimeric prefusion conformation (986KV987 
to 986PP987) and 3 substitutions that eliminate basic amino 
acids at the S1/S2 cleavage site (682RRAR685 to 682GSAG685). 
Cells were induced with doxycycline and lysates for use as an-
tigen prepared with 3 freeze-thaw cycles, clarified, and stored at 
–80ºC. Protein coating concentrations were optimized for sen-
sitivity and specificity using prepandemic plasma, COVID-19 
convalescent plasma, and control lysates.

Enzyme Immunoassays and Avidity Determination

Enzyme immunoassays (EIAs) and avidity determinations 
were optimized and performed as previously described [24, 
31]. In brief, plasma antibody was quantified with indirect 
EIAs using clear Nunc Maxisorp 96-well plates (Thermo 
Fisher Scientific) coated with protein lysates from HEK-
293 Ftet2 cells expressing S, N, or no viral protein diluted in 
phosphate-buffered saline (PBS) pH 7.4 (S lysate) or 50 mM 
bicarbonate buffer pH 9.6 (N lysate). After coating overnight 
with 2 µg lysate/mL at 4°C, plates were washed with PBS con-
taining 0.05% Tween20 (PBST) and blocked at room temper-
ature (RT) with nonfat milk in PBST (5% and 3 hours for N; 
3% and 1 hour for S). For measurement of IgM, plasma sam-
ples were preincubated with protein G agarose (Pierce, catalog 
number 20398, Thermo Scientific) to deplete IgG. Plasma was 
serially diluted 2-fold from 1:50 to 1:102 400 and 50 µL was 
added to each well. Plates were incubated at RT for 2 hours, 
then washed with PBST. Horseradish peroxidase (HRP)–con-
jugated secondary antibodies were goat anti-human: IgG (cat-
alog number Ab6858, Abcam, Cambridge, UK; 1:5000), IgM 
(µ-chain-specific, catalog number A6907, Abcam), and IgA 
(α-chain-specific, Sigma-Aldrich; 1:3000) with incubation 
for 1 hour at 37°C. OptEIA TMB substrate (catalog number 
555214, BD Biosciences) was added and incubated at RT in the 
dark for 15 minutes before adding 2 M sulfuric acid as a stop 
solution. The plates were read at 450 nm. The titer of antibody 
was determined as the highest dilution with an optical density 
(OD) 3 times greater than control.

For analysis of IgG avidity, EIAs were performed as above 
and after plasma incubation (1:50 dilution), wells were washed 
with PBST and increasing concentrations (0.5–7 M) of ammo-
nium thiocyanate (NH4SCN) were added for 15 minutes to dis-
rupt the antigen-antibody interaction [34]. Plates were washed, 
incubated with HRP-conjugated secondary anti-IgG, and pro-
cessed as above. Avidity index was expressed as the concentra-
tion of NH4SCN required to remove 50% of the bound antibody. 
Samples with OD values <0.3 were excluded.
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ELISpot Assays

MultiScreen-IP 96-well plates (Merck Millipore, Darmstadt, 
Germany) were coated at 4°C overnight with 10 µg/mL N ly-
sate, S lysate, or immunoglobulin capture antibody (catalog 
number 609-101-130, Rockland, Limerick, Pennsylvania). 
Plates washed with PBST were blocked with 10% FBS in 
RPMI for 2 hours at 37°C. PBMCs were thawed, washed, 
and resuspended in RPMI-1640 supplemented with 2  mM 
l-glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin 
and 10% heat-inactivated FBS. Cells were transferred to 
blocked/coated plates, incubated 5 hours at 37°C, and then 
recovered for flow cytometry. Washed plates were incubated 
with HRP-conjugated secondary antibody to IgM, IgG, and/
or IgA overnight at 4°C, developed with diaminobenzidine 
substrate (catalog number SK-4100, Vector Laboratories) for 
20 minutes, and dried, and spots were counted on an auto-
mated ELISpot reader (CTL).

B-Cell Phenotypic Analysis by Flow Cytometry

PBMCs washed twice with PBS were stained with Fixable Viability 
Stain 780 (catalog number 565388, BD Biosciences) to distin-
guish live/dead cells and blocked using Anti-Hu Fc Receptor 
Binding Inhibitor (catalog number 14-9161-73, eBioscience, 
Invitrogen) for 15 minutes. The following antibody staining 
panel was used: anti-CD3 (SK7)/anti-CD14 (MõP9)/CD16 
(3G8)-APC-Cy7 as a “dump” channel; immunoglobulin D (IgD) 
(IA6-2)-PE-Cy™7, CD20 (2H7)-BV510, CD138 (MI15)-BV421 
(all from BD Biosciences); and CD19 (HIB19)-PE, CD27 
(M-T271)-FITC, CD38 (HIT2)-PerCP/Cyanine 5.5 (all from 
BioLegend). PBMCs were evaluated for presence of total B cells 
(CD3–CD14–CD16–CD19+), naive B cells (CD19+IgD+CD27–), 
double-negative extrafollicular plasmablasts (CD19+IgD–

CD27–), and ASCs (CD19+CD38hiCD27hi), as well as 
plasmablasts (CD19+CD27+CD38+CD138–), plasma cells 
(CD19+CD27+CD38hiCD138hi), unswitched memory 
(CD19+CD27+IgD+), and switched memory (CD19+CD27+IgD–). 
Cells were stained in FACS buffer (2% bovine serum albumin 
and 2 mM ethylenediaminetetraacetic acid in PBS) on ice for 30 
minutes, washed 3 times, and fixed with 4.2% formaldehyde BD 
Cytofix/Cytoperm (catalog number 554714, BD Biosciences) 
for 20 minutes at 4°C. Data were acquired on a FACSCanto II 
with FACSDiva Software (BD Biosciences) and analyzed using 
FlowJo software (Treestar, Ashland, Oregon). Gating strategy 
was based on fluorescence minus 1 stain control as previously 
described [24]. The percentages of phenotypic B cells were cal-
culated and converted to cell numbers per microliter based on 
the absolute lymphocyte count.

Data Analysis

All data were analyzed with 2-way analysis of variance and were 
considered significant when the P value was < .05. Figures were 
generated with GraphPad Prism 8.4.3 software.

Study Approval

The study was approved by the Johns Hopkins Medicine 
Institutional Review Board. After informed consent, blood 
samples were collected in coordination with routine medical 
care and/or remnant blood samples were retrieved from the 
clinical laboratory.

RESULTS

Demographics

Of the 53 participants with blood samples collected, 22 had 
longitudinal samples with sufficient PBMCs for analysis. 
These patients were confirmed to have SARS-CoV-2 infec-
tion by positive nucleic acid amplification test, positive IgG on 
the Euroimmune (Mountain Lakes, New Jersey) or in-house 
SARS-CoV-2 EIA, or history of exposure to a known COVID-
19 contact in the preceding 4 weeks. The mean age was 
10.8 ± 6.4 years, and 55% (n = 12) met the Centers for Disease 
Control and Prevention criteria for MIS-C: <21 years of age 
with fever, laboratory evidence of inflammation, severe illness 
requiring hospitalization, involvement of ≥2 organ systems, 
no alternative plausible diagnoses, and positive for current/re-
cent SARS-CoV-2 infection [3]. The remaining 45% (n = 10) 
were categorized as acute COVID-19. Range of days of avail-
able longitudinal plasma and PBMC samples was from 1 to 
337 days (~11 months) from onset of symptoms. Additional 
demographic and laboratory data are summarized in Table 1 
and Supplementary Tables 1 and 2.

SARS-CoV-2 N- and S-Specific IgM, IgA, and IgG and IgG Avidity

SARS-CoV-2–specific antibody was measured on 28 plasma 
samples from patients with MIS-C (2–268 days from symptom 
onset; mean, 59 ± 78 days; median, 33.5 days) and 25 sam-
ples from patients with acute COVID-19 (1–337 days from 
symptom onset; mean, 76 ± 90 days; median, 38 days) by EIA 
using lysates from cells producing native forms of S or N pro-
tein as antigen (Supplementary Figure 1 and Figure 1). IgM 
and IgA data are reported as OD values (Supplementary Figure 
1) and IgG data as titers defined as the reciprocal of highest 
dilution of plasma with an OD 3 times background (Figure 1). 
N-specific IgM peaked at similar times between 8 and 21 days 
from symptom onset (Supplementary Figure 1A). S-specific 
IgM levels were also similar in both groups, with a peak for 
MIS-C at days 22–42 from symptom onset (Supplementary 
Figure 1B). In both groups and for both antigens, levels of 
IgM were very low after 42 days from illness onset. N-specific 
IgA followed a similar trend to N-specific IgM, peaking at 
8–21 days in those with MIS-C (Supplementary Figure 1C). 
S-specific IgA levels were also similar between the 2 groups 
(Supplementary Figure 1D). Patients with MIS-C had higher 
levels of N-specific IgG early (days 0–42) after symptom onset 
(Figure 1A), whereas S-specific IgG levels were not signifi-
cantly different from those of patients with acute COVID-19 
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(Figure 1B). While early timepoints (days 0–42 postinfection) 
were evaluated separately for all immunoglobulins, only 
N-specific IgG showed a significant difference.

Avidity of IgG to both N and S proteins was measured by de-
termining the concentration of the chaotropic agent NH4SCN 
required to disrupt antibody binding by 50% (Figure 2A and 2B). 
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Figure 1. Amounts of severe acute respiratory syndrome coronavirus 2 N- and S-specific immunoglobulin G (IgG) in plasma of multisystem inflammatory syndrome and 
acute coronavirus disease 2019 pediatric patients as measured by enzyme immunoassay. Data were grouped into time categories based on reported date of symptom onset. 
A, Anti-N IgG. B, Anti-S IgG. Data are reported as the log10 reciprocal of the highest dilution with an optical density (450 nm) 3 times background. Abbreviations: COVID-19, 
coronavirus disease 2019; MIS-C, multisystem inflammatory syndrome in children; ns, not significant.

Table 1. Demographic Characteristics

Characteristic 
Total Cohort

(N = 22) 
MIS-C

(n = 12) Acute COVID-19 (n = 10) P Value 

Age, y, median (IQR) 12.52 (4.41–17.19) 9.19 (5.1–14.14) 17.24 (2.35–17.49) .209

Age, y, mean (SD) 10.82 (6.37) 9.43 (5.46) 11.99 (8.04)

Race

  Black 6 (27) 3 (25) 3 (30)

  White 5 (23) 1 (8) 4 (40)

  Asian 2 (9) 1 (8) 1 (10)

  Other 9 (41) 7 (58) 2 (20)

Hispanic ethnicity 10 (45) 8 (67) 2 (20)

Male sex 10 (45) 7 (58) 3 (30) .231

Positive SARS-CoV-2 NAT 14 (64) 9 (75) 5 (50) .378

Duration of symptoms prior to initial (D0) sampling, d, median (IQR) 6.5 (4–10.25) 6 (4.0–10) 8 (2.75–20) .661

Duration of symptoms prior to initial (D0) sampling, d, mean (SD) 9.23 (9.05) 7.25 (4.03) 12.63 (14.06)

Duration of symptoms prior to longitudinal timepoints, d, median (IQR) 37.00 (9.50–90.50) 33.5 (7.0–61.5) 38.0 (9.5–110.0) .599

Duration of symptoms prior to longitudinal timepoints, d, mean (SD) 66.89 (83.15) 59.14 (77.73) 75.56 (89.64)

Length of stay, d, median (IQR) 6 (4.5–9) 7 (4.3–9) 5 (3–9) .551

Length of stay, d, mean (SD) 6.90 (4.07) 7.08 (3.29) 7 (5.89)

ICU 14 (64) 9 (75) 5 (50) .378

Supplemental oxygen 9 (41) 6 (50) 3 (30) .415

Intubated 0 (0) 0 (0) 0 (0) >.999

Vasopressors 6 (27) 5 (42) 1 (10) .162

Treatment provided 12 (55) 10 (83) 2 (20) .008

Readmission 2 (9) 0 (0) 2 (20) .195

Death 0 (0) 0 (0) 0 (0)

Data are presented as No. (%) unless otherwise indicated. Bold font indicates significant difference.

Abbreviations: COVID-19, coronavirus disease 2019; D0, day 0; ICU, intensive care unit; IQR, interquartile range; MIS-C, multisystem inflammatory syndrome in children; NAT, nucleic acid 
test; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SD, standard deviation.
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Avidity did not change over time in those with MIS-C (Figure 
2C), while those with acute COVID-19 showed increasing 
avidity from 2 to 5 months after symptom onset (Figure 2D). 
Mean S-specific avidity was lower than mean N-specific avidity 
at all time points in both groups (MIS-C, P = .0014; acute 
COVID-19, P = .0155).

ASCs Producing N- and S-Specific IgM, IgA, and IgG

SARS-CoV-2–specific ASCs were detected in all hospitalized 
children at some point after infection (Figure 3). IgM-secreting 
N- and S-specific ASCs were present primarily before 22 days 
in both groups (Figure 3A and 3B). IgA-secreting N- and 
S-specific ASCs were overall similar between the groups with 
continued production through late timepoints (Figure 3C and 
3D). IgG-secreting N- and S-specific ASCs were present at sim-
ilar levels in those with MIS-C and acute COVID-19 and con-
tinued to be detectable more than 4–5 months after symptom 
onset (Figure 4A and 4B). Total IgG-, IgA-, and IgM-secreting 
ASCs were essentially unchanged over time and similar in both 
groups (Figure 4C).

Flow Cytometry Analysis of Changes in B-Cell Subsets in Response to 

SARS-CoV-2 Infection

Flow cytometry was performed to better characterize the 
B-cell population phenotypes in the SARS-CoV-2–infected 
children in this cohort (Figures 5 and 6). The proportion of 
live cells that were B cells was similar in both groups, with 
the highest proportions in the first 3 weeks after the onset 
of symptoms followed by a decrease over time (Figure 5A). 
Analysis of B-cell subsets did not identify significant changes 
in the proportions of B cells that were naive, antibody-
secreting, or memory or in differences between groups 
(Figures 5B–D and 6A–D).

DISCUSSION

In this longitudinal study of hospitalized SARS-CoV-2–in-
fected pediatric patients with MIS-C or acute COVID-19, we 
compared the B-cell responses to the S and N viral proteins by 
evaluating plasma levels of antiviral antibody; maturation of 
IgG avidity; ASCs producing virus-specific IgM, IgA, and IgG; 
and B-cell population phenotypes. Overall, the responses were 
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Figure 2. Avidity of severe acute respiratory syndrome coronavirus 2 N- and S-specific immunoglobulin G (IgG) in plasma of multisystem inflammatory syndrome (MIS-C) 
and acute coronavirus disease 2019 (COVID-19) pediatric patients. Avidity index was defined as the molar concentration of ammonium thiocyanate required to decrease 
antibody binding by 50%. A, Avidity of N-specific IgG. B, Avidity of S-specific IgG. Bars indicate the mean and standard deviation (SD) at each timepoint. Comparisons of the 
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2019; MIS-C, multisystem inflammatory syndrome in children; ns, not significant.
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similar with waning proportions of B cells in circulation and 
decreasing but sustained production of virus N- and S-specific 
ASCs during recovery from infection. Titers of N-specific IgG 
were higher early in hospitalization for MIS-C patients than 
COVID-19 patients. IgG avidity was greater for IgG to N than 
to S in both groups and at all times examined. For patients with 
MIS-C, IgG avidity was high at entry and did not mature fur-
ther during follow-up, whereas for patients with acute COVID-
19, avidity of antiviral IgG showed continuing improvement 
during the 2- to >5-month follow-up. Therefore, MIS-C was 
associated with a more mature antibody response at the time of 
hospitalization than acute COVID-19, consistent with a delayed 
inflammatory response to infection, but long-term production 
of antiviral antibody was similar.

MIS-C as a postinfection inflammatory syndrome is con-
sistent with the presence of antiviral IgG, elevation of cyto-
kines and chemokines produced by activated myeloid cells, 
multiorgan damage, and response to immunomodulatory 
therapy [5–7, 11]. Children with uncomplicated SARS-CoV-2 
infection develop IgG antibodies at approximately 1 week from 
symptom onset with a peak within 2 weeks whereas, as we have 

observed for N-specific IgG, children with MIS-C have IgG at 
the time of symptom onset and hospitalization [13, 35]. It has 
been presumed that this severe phenotype in children might be 
associated with a more durable immune response as is true for 
adults with severe COVID-19 compared to mild disease. We 
evaluated the persistence of antiviral IgG for up to 11 months 
from symptom onset (range, 1–337 days) and found that an-
tibody to both the S and N proteins was maintained in both 
groups of children with different manifestations of severe 
SARS-CoV-2–induced disease.

Plasma antibody levels are maintained by long-lived 
plasma cells that are produced from germinal centers in sec-
ondary lymphoid tissue and reside primarily in bone marrow. 
Information on production of virus-specific ASCs was 
obtained using ELISpot assays on PBMCs, and both S- and 
N-specific IgG-producing ASCs were continuously detected, 
although in decreasing numbers over time in both groups of 
children. The persistent appearance of ASCs in the periphery 
after infection has been associated with greater durability of 
antibody responses and varies with different viral infections. 
For example, after acute infection with measles virus, ASC 
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production is sustained for >5 months from the time of in-
fection and life-long protective immunity is established [17, 
31, 36]. In contrast, after infection with respiratory syncytial 
virus, ASCs can be detected for about 2 months and protec-
tion from reinfection is brief [37–40]. Our previous studies 
of hospitalized adults with SARS-CoV-2 infection showed 
that those with more severe disease produced more S-specific 
ASCs than those with mild disease [24], a difference that 
we did not detect in our small cohort of hospitalized SARS-
CoV-2–infected pediatric patients. This is consistent with the 
hypothesis that MIS-C is a different disease process than se-
vere COVID-19 and may be explained in part by the fact that 
we did not study nonhospitalized children with mild disease 
for comparison.

Avidity maturation is a measure of ongoing stimulation of 
lymphoid tissue that yields B cells selected for improved an-
tigen binding capacity [25]. In SARS-CoV-2–infected adults 
and children, disease severity is associated with a more pro-
nounced innate immune response [5, 8] that may facilitate 
a more robust adaptive immune response [41–44], including 
higher affinity antibody. As previously observed for adults 

[24, 45, 46], N protein antibody avidity was higher than S 
protein antibody avidity in SARS-CoV-2–infected children. 
The presence of high avidity in children with MIS-C at the 
time of hospitalization compared to the ongoing maturation 
in children with acute COVID-19 is consistent with MIS-C as 
a postinfectious condition.

Flow cytometry helps to better define the B-cell popula-
tions in pediatric as well as adult patients infected with SARS-
CoV-2. Adult patients with severe COVID-19 have higher 
percentages of flow cytometry–defined ASCs, plasmablasts, 
and plasma cells in circulation [24]. Few studies have evalu-
ated the B-cell populations in children with MIS-C compared 
to acute COVID-19. In cross-sectional studies of acute MIS-C 
patients compared to healthy children, plasmablasts and naive 
B cells are increased and memory B cells reduced [15], and a 
comparison of MIS-C and acute COVID-19 pediatric patients 
showed that plasmablast frequencies were similar and higher 
than in healthy adults [14]. In our hospitalized pediatric co-
hort, we noted a decrease in circulating B cells over time, but 
did not identify differences in the B-cell subsets for MIS-C 
compared to acute COVID-19.
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Our study has limitations. The sample size is small due to the 
rarity of MIS-C as well as the complexity of coordinating fol-
low-up for pediatric patients during the peak of the pandemic. 
Therefore, it is difficult to apply our findings to the broader 
population of children affected by this disease. Additionally, we 
did not study the neutralizing capacity of the antibodies and 
do not have sequence information on the infecting viruses. 
Furthermore, we were not able to correlate the longitudinal 
data with clinical symptoms after hospital discharge or deter-
mine the protection from reinfection.

In summary, pediatric patients hospitalized with MIS-C had 
evidence of a more mature antiviral antibody response with 
more anti-N IgG and maximal avidity maturation at the time 
of admission than those with acute COVID-19. Predicted du-
rability of the antiviral antibody response was similar with 
continued production of virus-specific ASCs for months after 
infection. Further study is required to determine the relation-
ship of type of clinical disease to the durability of protective im-
munity in children.
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