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Intro paragraph: 

Treatment with immune checkpoint blockade (ICB) has revolutionized cancer therapy, and efforts 

to better understand therapeutic responses are ongoing. To date, predictive biomarkers1-10 and 

strategies to augment clinical response have largely focused on the T-cell compartment. 

However other immune subsets (including B-cells and tertiary lymphoid structures, TLS) may 

also contribute to anti-tumor immunity11-15, though these are not well-studied in ICB16. We 

conducted a neoadjuvant ICB trial in melanoma patients and demonstrated that B-cell signatures 

were enriched in tumors of responders (R) versus non-responders (NR) via targeted expression 

profiling17.To build on this, we performed bulk RNA sequencing on these tumor specimens and 

demonstrated that markers associated with B-cell development and function were the most 

differentially expressed genes in R versus NR. Findings were corroborated using a 

computational method to estimate immune and stromal composition of tumor samples (MCP 

counter18), and were corroborated in another melanoma cohort and in a cohort of renal cell 

carcinoma (RCC) patients on ICB. Histologic evaluation was performed in these cohorts, 

highlighting localization of B-cells within TLS. Potential functional contributions of B-cells were 

assessed via bulk and single-cell RNAseq analysis, demonstrating clonal expansion of B-cells in 

responders to ICB and unique transcriptional states associated with response. Mass cytometry 

(CyTOF) was performed in tumor and blood samples from our cohort demonstrating an 

enrichment of switched memory B-cells and decreased naïve B-cells in tumors of R versus NR 

to ICB, suggesting that these intra-tumoral B-cells may actively contribute to the anti-tumor 

response following ICB. Together, these data provide novel insight into the potential role of B-

cells and TLS in the response to ICB with implications for the development of biomarkers and 

potentially therapeutic targets. Further studies to fully elucidate their role are critically needed 

and are currently underway. 



Main: 

Immunotherapy has afforded patients with melanoma and other cancers the potential for long 

term survival, and we are beginning to gain insight into the mechanisms of therapeutic response 

as well as biomarkers of response and resistance. Significant progress has been made in this 

regard, with the identification of several validated biomarkers, particularly for immune checkpoint 

blockade (ICB)1-10. It is clear that cytotoxic T lymphocytes play a dominant role in response to 

ICB and other forms of immunotherapy; however there is a growing appreciation of other 

components of the tumor microenvironment that may influence therapeutic response – including 

myeloid cells and other immune cell subsets11.  

Tumor infiltrating B lymphocytes have been identified, yet their overall functional role in cancer is 

incompletely understood14,15,19-24 – with some studies suggesting that they are tumor-promoting 

while others show a positive association with improved cancer outcomes, particularly when they 

are found in association with organized lymphoid aggregates known as tertiary lymphoid 

structures (TLS)12,13,16,25-27.  

TLS have been identified within a wide range of human cancers at all stages of disease, though 

their presence is highly variable between cancer types as well as between patients12,16. 

Significant heterogeneity also exists with regards to the cellular constituents of TLS and their 

location within tumor, and this may influence the overall impact on anti-tumor immunity and 

outcome12-14,16. These TLS structures are not just a surrogate marker of a brisk immune 

response; rather, it is thought they actively modulate anti-tumor immune activity. In this regard, 

the benefit of a high CD8+ T-cell density within a tumor is abrogated in the absence of TLS-

associated DCs28. Mature TLS  exhibit evidence for germinal center formation29,30, and 

oligoclonal B-cell responses have been identified in cutaneous melanoma and metastases31,32, 

further suggesting an active humoral anti-tumor response within the TLS and one driven by B-

cells. Notably, the role of B-cells and, in particular, TLS in response to ICB remains unclear. 

We recently conducted a phase 2 clinical trial of neoadjuvant treatment with ICB in patients with 

high-risk resectable (clinical stage III or oligometastatic stage IV) melanoma to assess the safety 



and feasibility of this treatment in this patient population (NCT02519322)17. Importantly, 

longitudinal tumor samples were taken in the context of therapy, and molecular and immune 

profiling was performed to gain insight into mechanisms of therapeutic response and resistance. 

In these studies, known and novel biomarkers of response were identified, and targeted protein 

expression profiling (via Nanostring Digital Spatial Profiling) revealed significantly higher 

expression of B-cell markers in baseline and on-treatment samples of responders to ICB17. 

To gain a deeper understanding of potential mechanisms of therapeutic response to ICB in this 

cohort, we performed RNA sequencing (RNAseq) in longitudinal tumor samples from this patient 

cohort. In these studies, significantly higher expression of B-cell related genes such as MZB1, 

JCHAIN, and IGLL5  were observed in responders versus non-responders to ICB at baseline 

(p<0.001) with over-representation of these genes compared to T-cell and other immune 

markers (with evaluable tumors from 7R and 9NR) (Figure 1 a-b, Extended Data Tables 1 ; 

Supplementary Table 1). Additional genes that are expected to alter B-cell function were also 

significantly enriched in R vs NR, such as FCRL5, ID01, IFN- γ, and BTLA. Low tumor purity was 

observed in some samples, particularly in the context of an effective therapeutic response, 

limiting conventional analysis of RNAseq data. To address this, we next performed a more 

focused interrogation of the tumor immune microenvironment using the MCP-counter method18 

on RNAseq data in baseline and on-treatment tumor samples - focusing more specifically on 

immune-related genes (Supplementary Table 2), allowing inclusion of samples with low tumor 

purity (10 R and 11 NR at baseline, 9 R and 11 NR on-treatment). In these analyses, we again 

observed enrichment of a B-cell signature in R versus NR at baseline and early on-treatment 

(p=0.036 and 0.038, respectively). Notably, these analyses included samples from patients with 

nodal and extra-nodal disease with no obvious contribution based on site of disease (Fig. 1c, 

Extended Data Fig. 1a-b and 2a, Supplementary Table 3 and 7), suggesting that B-cell 

signatures were not merely related to the presence of these tumors within lymph nodes. 

Importantly, findings of high B-cell lineage scores in responders were replicated in samples from 

an additional cohort of melanoma patients treated with neoadjuvant versus adjuvant checkpoint 



blockade (NCT02437279, OpACIN trial (n=12 R and 6 NR)33 (Extended Data Fig. 1d and 2c, 

Extended Data Table 2, Supplementary Tables 4 and 7). B-cell signatures alone were 

predictive of response in univariable analyses (OR 2.6, p=0.02 for our trial, and OR 2.9, p=0.03 

for combined melanoma cohorts), but not in multivariable analyses when considering other 

components of the immune cell infiltrate, suggesting that B-cells are likely acting in concert with 

other immune subsets and not acting in isolation; however these analyses were limited due to 

the low sample size (Extended Data Table 4 and 5). 

To evaluate the validity of these findings across additional cancer types, we next assessed the 

expression of these immune cell gene expression signatures in a pre-surgical ICB trial for 

patients with metastatic renal cell carcinoma (RCC) (NCT02210117, PD-1 blockade 

monotherapy versus combined CTLA-4 and PD-1 blockade versus combined PD-1 blockade and 

bevacizumab) (Extended Data Table 3). Gene expression profiling by microarray and 

subsequent MCP-counter analysis of baseline tumor samples was performed, demonstrating 

significantly higher expression of B-cell related genes in R vs NR to therapy (p=0.0011, n=17R 

and 11 NR) (Fig. 1d, Extended Data Fig. 1c, 2b, and 3, Supplementary Table 5-7). As in the 

case of melanoma, B-cell signatures were predictive of response in univariable analysis in the 

RCC cohort (OR 61.2, p=0.05) but not multivariable analysis, again suggesting cooperative 

function with other immune subsets; however, sample size was again quite limited (Extended 

Data Table 6). 

Based on these data along with existing data regarding a potential prognostic role for TLS in 

melanoma and other cancer types outside the context of treatment with ICB18,34,35, we next 

assessed the expression of these immune related genes in cutaneous melanoma from The 

Cancer Genome Atlas platform (TCGA-SKCM, n=136)36. To do this, we applied the MCP-counter 

algorithm to available RNAseq data from a subset of patients with non-recurrent Stage III 

disease (regional lymph node or regional subcutaneous metastases), as these were most 

comparable to our clinical cohort.  In these studies, we identified 3 distinct melanoma immune 

clusters (MICs), with significantly higher expression of B-cells in cluster C versus cluster A 



(p<0.0001) and cluster B (p<0.0001) (Extended Data Fig. 4a, Supplementary Table 8-10). 

Notably, there was no clear association of MIC with known genomic subtypes of melanoma 

(BRAF, NRAS, NF1, triple WT)36 or disease site (nodal versus non-nodal) (Extended Data Fig. 

4a, Supplementary Table 10). Importantly, survival analyses revealed that cases in cluster C 

had significantly improved overall survival (OS) compared to cluster A (p=0.0068) (Extended 

Data Fig. 4b). To assess the association with B-cell signatures specifically, we next compared 

OS between B-cell lineage high versus low demonstrating prolonged survival in patients with B-

cell lineage high versus to B-cell lineage low tumors (p=0.053) (Extended Data Fig. 4c). 

Furthermore, univariable Cox Proportional Hazards modeling demonstrated that tumors with low 

B-cell infiltrate had significantly increased risk of death (HR is 1.7 for B-cell low, p=0.05) in 

comparison to B-cell high group (Extended Data Table 7). Similar analyses were performed to 

assess the expression of immune-related genes in clear cell RCC from the TCGA (TCGA-KIRC, 

n=526)37. In these studies, similar immune clusters were observed; however, immune infiltrate 

was not associated with survival in these patients (p=0.24) (Extended Data Fig. 5, 

Supplementary Tables 11-13), possibly owing to the heterogeneous nature of this disease and 

other driving mechanisms of patient outcomes. 

Based on these insights from gene expression profiling data, we next assessed tumor samples 

histologically to gain insight into the density and distribution of B-cells as well as their 

relationship to TLS in patients treated with neoadjuvant ICB. The density of CD20+ B-cells, TLS, 

and ratio of TLS to tumor area was higher in R versus NR in our neoadjuvant melanoma cohort, 

particularly in early on-treatment samples (p=0.0008, p=0.001, p=0.002 respectively), though 

statistical significance was not reached for all of these markers in baseline samples (p=0.132, 

p=0.078, p=0.037, respectively) (Fig. 2a), which is in line with our prior published work 

suggesting that assessment of early on-treatment immune infiltrate is far more predictive of 

response to ICB than assessment of pre-treatment samples1. Findings between gene expression 

profiling and IHC were complementary, and had modest correlation as described by others18 

(Extended Data Fig 9). Intriguingly, we also demonstrate increased abundance of B-cell related 



exosomes (CD20+ exosome-coated beads) in the peripheral blood of Rs as compared to NRs at 

early on-treatment timepoints (Extended Data Fig. 6).    

Importantly, architectural analysis identified that CD20+ B-cells were localized in TLS within 

tumors of Rs with co-localization of CD20+ B-cells with CD4+, CD8+, and FoxP3+ T lymphocytes. 

Co-localization with CD21+ follicular dendritic cells and MECA79+ high endothelial venules (HEV) 

was also demonstrated (Fig. 2d-f, Extended Data Fig. 7a and 8a). The vast majority of 

evaluated TLS in these patients represented mature secondary-follicle like TLS, as indicated by 

the presence of both CD21+ follicular dendritic cells and CD23+ germinal center B-cells29 (Fig. 

2d-f, Extended Data Fig. 7a and 8a). We identify similar mature TLS in patients with extra-

nodal metastases (Extended Data Fig. 8b), suggesting that TLS may develop in non-nodal sites 

and are associated with response to ICB. Analogous immunohistochemical findings were 

observed in our cohort of RCC patients treated with pre-surgical ICB with increased CD20+ cell 

infiltration and TLS density associated with response (Extended Data Fig. 10a-c); these TLS 

are morphologically similar to those found in melanoma (Extended Data Fig. 7b and 10d-f). We 

also assessed the potential functional role of B-cells and TLS in promoting T-cell responses in 

our cohort via additional spatial profiling analyses, noting increased markers of activation on T-

cells within as compared to those outside these TLS (Extended Data Fig 11).  

Next we performed several more in-depth analyses to gain insight into the phenotype and 

function of the infiltrating B-cells, and how they might be contributing to responses to ICB. 

Reasoning that differences in clonotypes of B-cell receptors (BCRs) between Rs and NRs would 

be indicative of an antitumor B-cell response, we probed our RNAseq data for BCR sequences 

using the modified TRUST algorithm. In these studies, we identified significantly increased clonal 

counts for both immunoglobulin heavy chain (IgH) and immunoglobulin light chain (IgL) (p=0.001 

and p=0.004, respectively) and increased BCR diversity in Rs as compared to NRs (p=0.002 and 

p=0.0008) suggesting an active role for B-cells in anti-tumor immunity (Fig. 3a, Extended Data 

Fig. 12-13). To complement these analyses, we next analyzed single-cell RNA sequencing data 

from baseline and on-treatment samples from an independent cohort of metastatic melanoma 



patients treated with ICB (n=48 tumor samples--1760 B-cells from 32 patients treated with PD-1 

blockade monotherapy, CTLA-4 blockade monotherapy, or combined PD-1 and CTLA-4 

blockade, including samples from some patients in our neoadjuvant ICB cohort38) (Extended 

Data Tables 8 and 14). Similar to observations made in our clinical trial cohort, we 

demonstrated that B-cells were significantly enriched in R versus NR tumors and were predictive 

of response (OR 1.05, p=0.02), whereas interestingly T-cells overall (as opposed to differential T-

cell states) were not predictive of response in this cohort (Fig. 3b and Extended Data Fig. 14a, 

Extended Data Table 9). Unbiased analysis for B-cell markers (using all expressed genes in the 

CD45+CD19+ population only) associated with clinical outcome demonstrated 46 markers to be 

significantly enriched in R and 147 markers significantly enriched in NR lesions (Extended Data 

Fig. 14b, Supplementary Tables 14-15). Pathways upregulated in Rs as compared to NRs 

include those consistent with increased immune activity including CXCR4 signaling, cytokine 

receptor interaction and chemokine signaling pathways (Extended Data Fig. 15a and Extended 

Data Table 10). Unsupervised clustering of B-cells using k-means clustering, after testing for the 

robustness of each solution, identified 4 distinct B-cell clusters, G1 (B-cells, switched, activated 

IgD- cells), G2 (plasma cells), G3 (B-cells unswitched IgD+) and G4 (B-cells, switched, activated 

IgD- cells, with unique markers relative to G1), each of which is associated with different 

functional state (Fig. 3c, Extended Data Fig. 14c and 15b and Extended Data Table 11). No 

significant differences were identified when testing for associations of each individual cluster 

(G1-G4) with the clinical outcome, likely owing to limited sample size. Pathway analysis was also 

performed on bulk RNA sequencing data from our clinical trial cohort, revealing increased 

immune signaling pathways in Rs as compared to NRs including TCR signaling, MHC-mediated 

antigen processing and presentation, Th1- and Th2-cell differentiation, and co-stimulatory 

signaling associated with T-cell signaling (Extended Data Fig. 16 and Extended Data Table 12 

and 13). 

To gain additional insight into the potential functional role of B-cells in response to ICB, we 

performed mass cytometry (CyTOF) in evaluable tumor and peripheral blood (PB) samples (n = 



7 R and n = 3 NR for tumor and n = 4 R and n = 4 NR for PB from our neoadjuvant ICB trial). 

Sample size was somewhat limited due to the amount of tumor available given prioritization for 

other studies as well as tumor viability. Notably, these analyses include patients with nodal and 

non-nodal metastases (Extended Data Fig 17a and Extended Data Table 15). We first 

assessed differences between intra-tumoral B-cells and those in the peripheral blood of patients. 

In these studies, unique clusters of CD45+ CD19+ (B-cell) populations including naïve (CD19+, 

CD27-, IgD+), transitional (CD19+, CD24++, CD38++, CD10+, CD27-, IgD+), unswitched and 

switched memory (CD19+, CD27+, IgD+/-), double-negative (CD19+, CD27-, IgD-),  and 

plasma(like) cell (CD19+, CD20-, CD22-, CD38++, CD27++ ) populations were demonstrated in 

peripheral blood and tumor samples, with distinct profiles in the tumor compared to peripheral 

blood samples (Fig. 3e, Extended Data Fig. 17 and 18). Intratumoral B-cells had reduced 

expression of CD21, CD23, CD79b, and CXCR5, pointing to distinct functional and migratory 

profiles compared to similar B-cell populations in the peripheral blood (Extended Data Fig 19a). 

We next compared the phenotypes of B-cells in Rs as compared to NRs to ICB in both tumor 

and peripheral blood. Though B-cell subsets (naïve, memory and transitional B-cells and plasma 

cells) in the peripheral blood had a similar distribution in R and NR (Extended Data Fig. 17b), 

significant differences were noted in B-cell subsets in tumors of R vs NR to ICB (Extended Data 

Fig. 17b). Specifically, tumors from R had a significantly higher frequency of memory B-cells, 

whereas NR had a significantly higher frequency of naïve B-cells (p=0.033 for naïve and p 

=0.033 for memory) (Fig. 3f-g, Extended Data Fig. 17). Other notable differences included an 

increase in plasma cells in R vs NR; however this did not reach significance and was largely 

driven by data from one patient (p=0.3). An increased percentage of CXCR3+ and CD86+ B-cells 

were identified in Rs as compared to NRs, which are markers of memory B-cells and germinal 

center B-cells (Extended Data Fig. 19c).  

In summary, we present multi-omic data supporting a role for B-cells within TLS in the response 

to ICB in patients with melanoma and RCC. While the distinct mechanisms through which B-cells 

contribute are incompletely understood, our data suggests that the same properties of memory 



B-cells and plasma cells desirable for acquired immune responses may also be contributing to 

an effective T-cell response following ICB. Importantly, these B-cells are likely acting in concert 

with other key immune constituents of the TLS by altering T-cell activation and function as well 

as through other mechanisms. Memory B-cells may be acting as antigen-presenting cells, driving 

the expansion of both memory and naive tumor-associated T-cell responses. B-cells can also 

secrete an array of cytokines, including TNF-α, IL-2, IL-6 and IFNγ, through which they activate 

and recruit other immune effector cells, including T-cells. The observation of switched memory B-

cells (that can differentiate into plasma cells) in responders suggests that they could be 

potentially contributing to the anti-tumor response by producing antibodies against tumor 

antigens, though we did not have adequate samples to study this in our cohort. Though findings 

in these cohorts are provocative, further studies need to be performed in additional cohort and 

pre-clinical models to better understand the mechanisms through which B-cells and TLS may 

favorably impact response to immunotherapy. Nonetheless, this represents an important insight 

into therapeutic responses to ICB and will likely stimulate further research in this area. 



Materials and Methods: 

Patient Cohort(s) and Sample Collection 

For the melanoma neoadjuvant cohort (NCT02519322)17 , 23 patients enrolled in a phase II 

clinical trial of neoadjuvant ICB. Twelve patients received nivolumab monotherapy with 3 mg/kg 

every 2 weeks for up to 4 doses, and 11 patients received ipilimumab 3 mg/kg with nivolumab 1 

mg/kg every 3 weeks for up to 3 doses followed by surgical resection. These patients were 

treated at the University of Texas MD Anderson Cancer Center and had tumor samples collected 

and analyzed under Institutional Review Board (IRB)-approved protocols (2015-0041, 

2012-0846). Of note, these studies were conducted in accordance with the Declaration of 

Helsinski and approved by the UT MD Anderson Cancer Center IRB. Response was defined as 

achieving a complete or partial radiographic response by RECIST 1.1 between pre-treatment 

imaging and post-neoadjuvant treatment imaging prior to surgical resection. Tumor samples 

were collected at several time-points for correlative studies including baseline and on-treatment 

(weeks 3 and 5 for nivolumab monotherapy, weeks 4 and 7 for combination ipilimumab with 

nivolumab). Tumor samples were obtained as core, punch or excisional biopsies performed by 

treating clinicians or an interventional radiologist. Samples were immediately formalin fixed and 

paraffin-embedded (FFPE), snap frozen, or digested following tissue collection. 

Additional patients off-protocol included 5 patients with widely metastatic melanoma who  were 

treated at the University of Texas MD Anderson Cancer Center and had tumor samples collected 

and analyzed under Institutional Review Board (IRB)-approved protocols (LAB00-063 and PA17 

– 0261). Samples were immediately formalin fixed and paraffin-embedded (FFPE) following 

tissue collection. 

For the validation melanoma cohort, we used samples of 18 patients enrolled in the OpACIN trial 

(NCT02437279). In the phase 1b OpACIN trial 20 patients with palpable stage III melanoma 

were randomized 1:1 to receive ipilimumab 3 mg/kg and nivolumab 1 mg/kg, either four courses 

after surgery (adjuvant arm), or 2 courses prior to surgery and two courses post-surgery 



(neoadjuvant arm). Co-primary endpoints were safety/feasibility and tumor specific T-cell 

expansion. For this current correlative study, response was defined as not having disease 

relapse. These patients were treated at the Netherlands Cancer Institute (Amsterdam, the 

Netherlands). The study was conducted in accordance with the Declaration of Helsinki and 

approved by the medical ethics committee of the Netherlands Cancer Institute. All subjects 

provided informed consent prior to their participation in the study. Patients underwent a pre-

treatment tumor biopsy (1x formalin fixed and paraffin-embedded (FFPE) and 2x fresh frozen) 

obtained as a core biopsy performed by a radiologist. RNA was extracted from one frozen biopsy 

for RNA-Sequencing analysis. We only included 18 patients in our analysis because the tumor 

purity in the frozen pretreatment biopsy of two patients was too low, therefore no RNA could be 

isolated and these patients could not be included in this analysis. The clinical responses of this 

cohort has been previously described33. 

The renal cell carcinoma (RCC) trial was an open-label, randomized, pre-surgical/pre-biopsy trial 

(NCT02210117) whereby adults with metastatic RCC without prior immune checkpoint therapy 

and anti-VEGF therapy were enrolled and randomized 2:3:2 to receive nivolumab (3mg/kg 

q2wks x3 doses), nivolumab+bevacizumab (3mg/kg q2wks x3 +10mg/kg x3) or 

nivolumab+ipilimumab (3mg/kg q2wks x3 1mg/kg x2), followed by surgery (cytoreductive 

nephrectomy or metastasectomy), or biopsy at week 8-10, and subsequent nivo maintenance 

therapy up to 2 years. Response was assessed at 8 weeks and then at ≥12 weeks by RECIST 

1.1 criteria. Clinical response data collection is still ongoing at this time. For this current 

correlative study, response was defined as achieving a complete or partial response. Pre- and 

post-treatment blood and tumors were obtained for correlative studies by IRB-approved lab 

protocol PA13-0291. Tumor samples were obtained as core biopsies or surgical resection 

performed by interventional radiologists or surgeons. Samples were immediately formalin fixed 

and paraffin-embedded (FFPE) or snap frozen following tissue collection. 

The single-cell RNA sequencing B-cell analysis used a dataset from 32 metastatic melanoma 

patients (n=48 samples) treated with anti-PD1 (n=37), anti-CTLA4 (n=2), or anti-PD1/CTLA4 



(n=9)38. Patient response was determined by RECIST criteria: CR and PR for R or SD and PD 

for NR. For the analysis we focused on individual lesions and classified them into two categories: 

Responder (R; n=17) including CR and PR samples; Non-responder (NR; n=31) including SD 

and PD samples, based on radiologic tumor evaluations. Samples were collected after patients 

provided a written consent for research and genomic profiling of collected tissue as approved by 

the Dana-Farber/Harvard Cancer Center Institutional Review Board (DF/HCC protocol 11-181) 

and UT MD Anderson Cancer Center (LAB00-063 and 2012-0846). 

Gene Expression Profiling and Analysis 

RNA extraction for neoadjuvant melanoma ICB cohort. Total RNA was extracted from snap-

frozen tumor specimens using the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen) following 

assessment of tumor content by a pathologist, and macrodissection of tumor bed if required. 

RNA quality was assessed on an Agilent 2100 Bioanalyzer using the Agilent RNA 6000 Nano 

Chip with smear analysis to determine DV200 and original RNA concentration. Based on RNA 

quality, 40-80ng of total RNA from each sample then underwent library preparation using the 

Illumina TruSeq RNA Access Library Prep kit according to the manufacturer’s protocol. Barcoded 

libraries were pooled to produce final 10-12 plex pools prior to sequencing on an Illumina 

NextSeq sequencer using one high-output run per pool of 76bp paired-end reads, generating 8 

fastq files (4 lanes, paired reads) per sample. 

RNA-seq data processing and quality check. RNA-seq FASTQ files were first processed 

through FastQC (v0.11.5)39, a quality control tool to evaluate the quality of sequencing reads at 

both the base and read levels.  The reads that had ≥15 contiguous low-quality bases (phred 

score <20) were removed from the FASTQ files. STAR 2-pass alignment (v2.5.3)40 was then 

performed on the filtered FASTQ files with default parameters to generate RNA-seq BAM file for 

each sequencing event. After that, RNA-SeQC (v1.1.8)41 was run on the aligned BAM files to 

generate a series of RNA-seq related quality control metrics including read counts, coverage, 

and correlation. A matrix of Spearman correlation coefficients was subsequently generated by 

RNA-SeQC among all sequencing events. The correlation matrix was carefully reviewed and the 



sequencing event generated from one library pool that showed poor correlation with other library 

pools from the same RNA sample were removed before sample-level merging of BAM files. 

Gene expression quantification and normalization. HTSeq-count (v0.9.1)42  tool was applied 

to aligned RNA-seq BAM files to count for each gene how many aligned reads overlap with its 

exons. The raw read counts generated from HTSeq-count (v0.9.1)42 were normalized into 

fragments per kilobase of transcript per million mapped reads (FPKM) using the RNA-seq 

quantification approach suggested by the bioinformatics team of NCI Genomic Data Commons 

(GDC)43. Briefly, FPKM normalizes read count by dividing it by the gene length and the total 

number of reads mapped to protein-coding genes using a calculation described below: 

"  

RCg, number of reads mapped to the gene; RCpc: number of reads mapped to all protein-coding 

genes; L, length of the gene in base pairs (calculated as the sum of all exons in a gene). The 

FPKM values were then log2-transformed for further downstream processes. 

RNA Sequencing and Analysis for OpACIN trial. RNA sequencing and data analysis were 

performed as previously described33. 

Affymetrix Microarray for RCC. The Affymetrix microarray data were created using the 

Affymetrix ClariomTM D Assay (Human). There are 28 available pre-treatment samples from 3 

arms: Nivolumab (n= 6), Nivolumab+Bevacizumab (n= 14) and Nivolumab+Ipilimumab (n= 8). 

The raw CEL files were normalized using the built-in SST-RMA method of the Affymetrix 

Transcriptome Analysis Console (TAC, v4.0) software. The cell lineage scores were calculated 

using the R package MCP-counter algorithm (v. 1.1.0). The Limma R software package44 was 

used to identify DEGs from normalized microarray data for the RCC cohort. 

TCGA SKCM and KIRC data downloading and patient selection. The normalized RNA-seq 

expression data of TCGA skin cutaneous melanoma (TCGA-SKCM) and Kidney Renal Clear 

FPKM =
RCg*109

RCpc*L



Cell Carcinoma (TCGA-KIRC) was downloaded from NCI Genomic Data Commons (GDC, 

https://portal.gdc.cancer.gov) and the relevant clinical data was downloaded from recent TCGA 

PanCancer clinical data study45. The information of SKCM genomic subtypes was obtained from 

the TCGA-SKCM study36.To achieve a uniform cohort of patients with Stage III (non-recurrent) 

melanoma for analysis, we applied an appropriate set of sequential filters:  The TCGA-SKCM 

cohort was filtered to include patients with biospecimen tissue sites that included regional lymph 

node or regional subcutaneous metastases.  We excluded patients presenting with Stage IV 

disease.  Then, to exclude patients with recurrent Stage III disease, we excluded all patients for 

whom the number of days from the diagnosis of the primary to the accession date was > 90 

days.  Additionally, for a patient to be included, their tumor must also have had a defined 

melanoma driver type.  Finally, we eliminated those lacking sufficient gene expression data, 

yielding a final Stage III TCGA-SKCM cohort of n=136. Survival data missing for 9 or 136 

samples, so n=127 for overall survival analyses. For TCGA-KIRC, the cases without available 

expression data were excluded and a total of 526 cases were taken into subsequent analysis.  

Identification of differentially expressed genes. The HTSeq normalized read count data for 

all expressed coding transcripts was processed by Deseq2 (v3.6)46 software to identify 

differentially expressed genes (DEGs) between two response (R versus NR) groups. A cut-off of 

gene expression fold change of ≥2 or ≤0.5 and a FDR q-value of ≤0.05 was applied to select the 

most differentially expressed genes. The Limma R software package44 was used to identify 

DEGs from normalized microarray data for the RCC cohort. 

Deconvolution of the cellular composition with MCP-counter. The R package software 

MCP-counter18 was applied to the normalized log2-transformed FPKM expression matrix to 

produce the absolute abundance scores for 8 major immune cell types (CD3+ T-cells, CD8+ T-

cells, cytotoxic lymphocytes, NK cells, B lymphocytes, monocytic lineage cells, myeloid dendritic 

cells, and neutrophils), endothelial cells, and fibroblasts. The deconvolution profiles were then 

hierarchically clustered and compared across response and treatment groups. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/neutrophil-granulocyte


Pathway Enrichment Analyses. The network based pathway enrichment analysis was 

performed using differentially expressed genes across responder and non-responder groups in 

the bulk-tissue RNA sequencing data from melanoma neoadjuvant cohort and single-cell RNA 

sequencing data from metastatic melanoma cohort. In the bulk-tissue, the differentially 

expressed genes which had a q-value <0.05 and log2foldchange >1.5 were & < -1.5 were 

selected as input for network based pathway enrichment analysis using ReactomeFiViz47 

application in Cytoscape48,49. In single-cell, the differentially expressed genes with q-value<0.1 

were selected as input for pathway enrichment analysis. Pathway enrichment was calculated 

using several biological databases (KEGG, NCBI, Reactome, Biocarta, and Panther) with 

hypergeometric test false discovery rate (FDR) <0.01. 

Survival analyses.  In TCGA cohort, survival data was not available for 9 samples and these 

were excluded from survival analysis. As described previously36, the survival time for each 

patient was “Curated TCGA survival (i.e., from time of TCGA biospecimen procurement). The 

time to event was defined as the time interval from date of accession for each sample to date of 

d e a t h o r c e n s o r i n g f r o m a n y c a u s e ( c u r a t e d v a l u e 

CURATED_TCGA_days_to_death_or_last_follow-up; aka TCGA post-accession survival). The 

survival analysis was performed using Cox Proportional Hazards model and survival curves 

were plotted using Kaplan-Meier method. The statistical comparison of the survival curves was 

done using the log rank test. The analysis was done using R package survival 50.  

Statistical analyses.  The statistical comparison between responder and non-responder groups 

for a given continuous variable was performed using two-sided Mann-Whitney U test. The 

association between two continuous variables was assessed using Spearman’s rank correlation 

coefficient. To control for multiple comparisons, we applied the Benjamini-Hochberg method51 

and calculated adjusted P-values. Univariable and multivariable analysis predicting response to 

ICB was performed using logistic regression modeling.  

Single Immunohistochemistry 



Hematoxylin (H&E) and immunohistochemistry (IHC) staining were performed on FFPE tumor 

tissue sections. The tumor tissues were fixed in 10% formalin, embedded in paraffin, and 

transversely sectioned. 4 µm sections were used for the histo-pathological study. 

Sections were stained with mouse or rabbit anti-human monoclonal antibodies against CD20 

(Dako, cat# M0755, 1:1400), CD21 (Novocastra, NCL-L-CD21-2G9, 1:10 or Leica, CD21-2G9; 

1:20), CD23 (Leica, CD23-1B12, 1:15), CD4 (Novocastra, CD4-368-L-A, 1:80) CD8 (Thermo 

Scientific, MS-457-S, 1:25), FoxP3 (Biolegend, Cat# 320102, 1:50). All sections were 

counterstained with hematoxylin, dehydrated, and mounted. All sections were processed with 

peroxidase-conjugated avidin/biotin and 3’-3-diaminobenzidine (DAB) substrate (Leica 

Microsystem) and slides were scanned and digitalized using the scanscope system from 

Scanscope XT, Aperio/Leica Technologies. 

Quantitative analysis of IHC staining was conducted using the image analysis software 

ImageScope-Aperio/Leica. Five random areas (1 mm2 each) were selected using a customized 

algorithm for each marker in order to determine the number of positive cells at high power field 

(HPF). The data is expressed as a density (total number of positive cells/mm2 area). IHC 

staining was interpreted in conjunction with H&E stained sections. 

Tertiary lymphoid structure quantification 

Tertiary lymphoid structures (TLS) were qualified and quantified using both H&E and CD20 IHC 

staining. Structures were identified as aggregates of lymphocytes having histologic features with 

analogous structures to that of lymphoid tissue with follicles, appearing in the tumor area52-55. 

For the current study, criteria used for the quantification of TLS includes: 1) the total number of 

structures identified either within the tumoral area or in direct contact with the tumoral cells on 

the margin of the tumors (numbers of TLS / mm2 area); and 2) a normalization of the total area 

occupied by the TLNs in relation of the total area of the tumor analyzed (ratio: area of TLS / area 

tumor + TLNs). 

Multiplex immunofluorescence assay and analysis 



For Images shown in Figure 2, Extended Data Fig. 7 and 10.  For IF multiplex staining, we 

followed the staining method for the following markers: CD20 (Dako, cat# M0755, 1:500) with 

subsequent visualization using fluorescein Cy3 (1:50); CD21 (Novocastra, NCL-L-CD21-2G9, 

1:10) with subsequent visualization using fluorescein Cy5 (1:50); CD4 (CM153BK, Biocare, 1:25) 

with subsequent visualization using fluorescein Cy5.5 (1:50); CD8 (1:200, M7103, Dako) with 

subsequent visualization using fluorescein Cy3.5 (1:50); FoxP3 (Biolegend, Cat# 320102, 1:50) 

with subsequent visualization using fluorescein FITC (1:50) and nuclei visualized with DAPI 

(1:2000). All of the sections were cover-slipped using Vectashield Hardset 895 mounting media. 

The slides were scanned using the Vectra slide scanner (PerkinElmer). For each marker, the 

mean fluorescent intensity per case was then determined as a base point from which positive 

calls could be established. For multispectral analysis, each of the individually stained sections 

was utilized to establish the spectral library of the fluorophores. Five random areas on each 

sample were analyzed blindly by a pathologist at 20X magnification. 

For additional multiplex images shown in Extended Data Figure 8.  For additional multiplex 

staining, we followed similar methods to the above for the following markers: MECA79-Dy550 

(Novus, MECA-79, 1:100); CD20-Dy594 (Novus, IGEL/773; 1:100); CD4-AF647 (abcam, 

ERP6855, 1:100,); and nuclei visualized with Syto13 at 500 nM. The slides were scanned with 

the GeoMx DSP machine as described below. 

GeoMx Digital Spatial Profiling 

Microscope and fluidics system overview.  For immune profiling of T cells located within and 

outside TLS structures in patient samples, the GeoMx Digital Spatial Profiler (NanoString, 

Seattle WA), a custom-built high-speed automated system and integrated instrument software, 

was utilized. A multiplexed cocktail of primary antibodies with UV photocleavable indexing oligos 

and 4 fluorescent markers was applied to a slide-mounted FFPE tissue section. For the 

fluorescent markers, we utilized Syto13 at 500uM for nuclei visualization; CD20-Dy594 (Novus, 



IGEL/773; 1:100); CD3-AF647 (Novus, C3e/1308; 1:100); and PMEL-Dy550 (Novus, HMB45; 

1:100) with S100B-Dy550 (Novus, 15F4NB; 1:100). 20x images were assembled to yield a high-

resolution image of the tissue area of interest. The specific regions of interest (ROIs) for 

molecular profiling were then selected based on location (TLS or non-TLS areas of tumor) and 

CD3-positive staining and sequentially processed by the microscope automation. ROIs was 

selectively illuminated with UV light to release the indexing oligos by coupling UV LED light with 

a double digital mirror device (DDMD) module. Following each UV illumination cycle, the eluent 

was collected from the local region via microcapillary aspiration and transferred to an individual 

well of a microtiter plate. Once all ROIs were processed, pools of released indexing oligos were 

hybridized to NanoString optical barcodes for digital counting and subsequently analyzed with an 

nCounter Analysis System.  

nCounter hybridization assay for photocleaved oligo counting. Hybridization of cleaved 

indexing oligos to fluorescent barcodes was performed using the nCounter Protein PlexSet 

reagents based on manufacturer’s directions. Hybridizations were performed at 65°C overnight 

in a thermocycler. After hybridization, samples were processed using the nCounter Prep Station 

and Digital Analyzer as per manufacturer instructions. 

B-Cell Clonotype Analyses 

The modified TRUST algorithm56 was applied to extract the B-cell immunoglobin hypervariable 

regions from the bulk RNA-seq data and assembly the complementarity-determining region 3 

(CDR3) sequences of the B-cell heavy chain (IgH) and light chain (IgL). BCR clonotypes were 

identified and the clonal fraction was automatically calculated by TRUST. The output of TRUST 

was parsed by the R package tcR (version 3.4.1)57 for downstream analyses. Only in-frame 

productive clonotypes were taken into subsequent analysis. The total number of BCR clonotypes 

detected per sample was normalized by the corresponding sequencing depth of each individual 

sample and calculated as per 100 million mapped reads. The top 5 clonotypes were selected by 



their clonal expression abundance.  The BCR repertoire diversity was calculated by entropy from 

the tcR package57.  

Single-cell sequencing and analysis of CD45+ B-cells 

Fresh isolated tumor samples were dissociated using the human tumor dissociation kit (Miltenyi 

Biotec; 130-095-929), sorted into 96 well plates containing 10µl of TCL buffer (Qiagen) with 1% 

β-mercaptoethanol, using the following anti-human antibodies: FcX (Biolegend, 422302), CD45-

PE (Biolegend, 304008), CD3-APC (Biolegend, 300412), CD235a-APC/Cy7 (Biolegend, 349116) 

and HLA-A,B,C-FITC (Biolegend, 311426). Sorting of viable cells was performed using the live/

dead dye Zombie Violet (Biolegend, 77477). Single-cell libraries were generated using a 

modified version of the full length Smart-seq2 protocol a previously described58, and were 

sequenced on a NextSeq 500 sequencer (Illumina), resulting in a median of ~1.4 million paired-

end reads and a median of 2588 genes detected per cell. A cutoff of log2(TPM+1)≥2 was used to 

define a gene as expressed in each single cell. For each sample we computed the fraction of B-

cells using pre-defined markers (CD19 and/or MS4A1). Notably, this is a is a plate based 

protocol; thus, for each patient, we collected and sequenced the same number of cells (n=384 

CD45+ cells per plate). Thus, the number of cells per patient is equal, and the frequency reflects 

patients with either high or low B-cell infiltrate. 

Unsupervised clustering of immune cells. To cluster all cells that passed QC we applied the 

k-means algorithm with a correlation distance metric, testing ( . The algorithm was 

applied using all genes with variance >6, yielding ~4000 genes. This value was selected based 

on the relation between the variance and the fraction of cells expressing each gene. To 

determine the optimal number of clusters we applied the following steps: (1) We first examined 

how much of the complexity each cluster captures by applying the elbow method. This was done 

by computing the Pearson correlation matrix (  and the distance matrix (  as ( . We then 

computed the sum of pair-wise distances  between all cells in different clusters 

(   and the total distance ( . The ratio 
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between these two measures (  was used to estimate the variance explained by 

a given solution, such that in the extreme case where all cells are clustered together or the case 

where each cell is a single cluster, this ratio would be 0 and 1, respectively. Exploring this ratio, 

we then select the solutions that are near plateau (( ). (2) We then performed 

differential expression analysis (see below) to search for gene markers that are significantly 

more highly expressed in a specific cluster as compared to all other clusters. Then, in order to 

avoid complex solutions, we excluded solutions with clusters that have too few marker genes 

(<20) distinguishing between them and the rest of the cells. (3) Finally, we performed a 

robustness analysis and selected the clustering solution with the highest median robustness 

score. Specifically, to determine the robustness of each clustering solution, we performed 100 

iterations in which we randomly removed 10% of the cells, and re-ran the k-means algorithm and 

checked the stability of the clustering solution. We quantified the agreement of a given solution 

with the original one as the number of pairs of cells that were either clustered together, or not 

clustered together, in both solutions, divided by the total number pairs shared between the runs. 

This process yielded a median robustness measure of 0.96 for the selected ( . 

Differential expression analysis. In all cases, differential expression analysis was applied to all 

genes that had an average expression level log2(TPM+1) > 2 in either tested groups,  and 

( . Then, for each gene ( , we count the number of cells in (  and (  that express it with an 

expression level log2(TPM+1) > 2  or  2. We then apply Fisher’s Exact test for the 

corresponding 2x2 table. To identify significant differences, we considered genes with a 

Bonferroni-corrected q-value  0.05 and log2(fold-change) > 0.5. 

Details for Mass Cytometry (CyTOF) 

Antibody conjugation.  In-depth characterization of R and NR B-cells was performed using 

metal-tagged antibodies. Metal conjugated antibodies were purchased from Fluidigm or 

conjugated to unlabeled antibodies in-house. All unlabeled antibodies were purchased in carrier-
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free form and conjugated with the corresponding metal tag using Maxpar X8 polymer per 

manufacturer’s instructions (Fluidigm). Metal isotopes were acquired from Fluidigm and indium 

(III) chloride was acquired from Sigma-Aldrich. Antibody concentration was determined by 

measuring the amount of A280 protein using Nanodrop 2000 (Thermo Fisher Scientific). 

Conjugated antibodies were diluted using PBS-based antibody stabilizer supplemented with 

0.05% sodium azide (Sigma-Aldrich) to a final concentration of 0.5 mg/ml. The list of antibodies 

with the corresponding metal tag isotopes is shown in table below. 

TARGET Clone ISOTOPE Source

CD45 HI30 89Y Fluidigm

CD80 2D10 115In Biolegend

CD138 MI15 141Pr BD Biosciences

CD19 HIB19 142Nd Fluidigm

CD5 UCHT2 143Nd Fluidigm

HLA-ABC EMR8-5 144Nd BD Biosciences

CD178 NOK-1 145Nd Biolegend

IgD IA6-2 146Nd Biolegend

CD20 2H7 147Sm Fluidigm

PDL-1 29E.2A3 148Nd Fluidigm

HLA-DR L243 149Sm Biolegend

CD25 2A3 150Nd BD Biosciences

IGM MHM-88 151Eu Biolegend

CD95 DX2 152Sm BD Biosciences

CXCR5 RF8B2 153Eu Fluidigm

CD86 IT2.2 154Sm BD Biosciences

CD27 L128 155Gd Fluidigm

CXCR3 G025H7 156Gd Biolegend

CD10 HI10a 158Gd Fluidigm

PDL-2 24F.10C12 159Tb Biolegend

CD39 A1 160Gd Fluidigm

BAFF-R 11C1 161Dy Biolegend



Sample preparation and acquisition.  Peripheral blood mononuclear cells (PBMCs) and tumor 

cells were harvested and washed twice with wash buffer (0.5% bovine serum albumin (BSA) in 

PBS). For tumor, this included 9 R and 9 NR, and for PBMCs, 8 R and 8 NR. To determine the 

live population, cells were stained with cisplatin 1µM for 3 minutes. The reaction was stopped 

with FACS buffer (2% Fetal Bovine Serum (FBS) in PBS), and the cells were washed once with 

wash buffer. Cells were then incubated with 5 µl of Fc receptor blocking buffer reagent (Miltenyi) 

for 10 minutes at room temperature. Cells were incubated with surface antibodies at room 

temperature for 60 minutes, washed twice with wash buffer and stored overnight in 1ml of 1.6% 

paraformaldehyde (EMD Biosciences) in PBS with 125 nM iridium nucleic acid intercalator 

(Fluidigm). The next day, samples were washed twice with cell staining buffer, re-suspended in 1 

CD79b CB3.1 162Dy Fluidigm

CD1d 51.1 163Dy Biolegend

CD23 EBVCS-5 164Dy Fluidigm

CD40 5C3 165Ho Biolegend

CD24 ML5 166Er BD Biosciences

CD38 HIT2 167Er BD Bioscience

CD21 Bu32 168Er Biolegend

ICOS C398.4A 169Tb Biolegend

CTLA-4 14D3 170Er Fluidigm

CD9 HI9a 171Yb Biolegend

CD11c Bu15 172Yb Biolegend

CD14 HCD14 173Yb Biolegend

PD1 PD1.3.1.3 174Yb Miltenyi

CXCR4 12G5 175Lu Biolegend

CD22 HIB22 176Yb Biolegend

CD3 UCHT-1 194Pt Biolegend

Cisplatin 198Pt Fluidigm

CD16 3G8 209Bi Fluidigm



ml of MilliQ dH2O, filtered through a 35 µm nylon mesh (cell strainer cap tubes, BD, San Jose, 

CA) and counted. Before analysis, samples were resuspended in MilliQ dH2O supplemented 

with EQTM four element calibration beads at a concentration of 0.5x105/ml. Samples were 

acquired at 300 events/second on a Helios instrument (Fluidigm) using the Helios 6.5.358 

acquisition software (Fluidigm). 

Data analysis.  Mass cytometry data were normalized based on EQTM four element signal shift 

over time using Fluidigm normalization software 2. Initial data processing was performed using 

Flowjo version 10.2. Mass cytometry data were normalized based on EQTM four element 

signal shift over time using Fluidigm normalization software 2. Initially, all R and NR 

normalized FCS files were either concatenated or separately exported for downstream 

analyses. Data were processed and analyzed using Cytobank; CD19+ sample ‘clean-up’ was 

performed by gating on intact (191Ir+ DNA stain), no beads (140Ce−), live (198Pt−), no T-cells 

CD3-(194Pt), no monocytes CD14-(173Yb) and CD45+(89Y), no NK Cells CD16-(209Bi), CD19+ B-

cells. Mass cytometry complex data were analyzed using viSNE, in combination with heat 

map, to identify distinct subpopulations using the following parameters:  CD19(142Nd), 

CD20(147Sm), CD5(143Nd), HLA-ABC(144Nd), IgD(146Nd), PDL-1(148Nd), HLA-DR(149Sm), 

CD25(150Nd), IgM(151Eu), CD95(152Sm), CXCR5(153Eu), CD86(154Sm), CD27(155Gd), 

CXCR3(156Gd), CD10(158Gd), CD39(160Gd), BAFFR(161Dy), CD79b(162Dy), CD1d(163Dy), 

CD23(164Dy), CD40(165Ho), CD24(166Er), CD38(167Er), CD9(171Yb), CD11c(172Yb), 

CXCR4(175Lu), and CD22(176Yb). Samples with less than 200 CD45+CD19+ B-cells were not 

utilized for downstream analyses. Percentages of different sub-populations of B-cells were 

measured in aggregated R and NR PBMC and tumor samples for each run; statistical 

analyses performed via unpaired Student’s t-test. 

Analysis of Peripheral Blood Exosomes 

Isolation of exosomes from human plasma. Approximately 1ml of plasma per patient sample 

contained in a cryovial was thawed rapidly in a 37ºC water bath. The plasma was transferred 

into a 1.5ml Eppendorf tube and centrifuged at room temperature (RT) for 5 min at 800g and 10 



min at 2,000g. The supernatant was filtered with a 0.22 µm filter (cat. #6789-1302) directly into 

an ultracentrifuge tube (Lot #Z80615SCA, ref. #331372). A distinct filter was used for each 500µl 

of plasma filtered, and each filter was subsequently cleared with 2 x 1 ml phosphate buffer saline 

(PBS), all of which was collected into the ultracentrifuge tube. Additional PBS was added to the 

ultracentrifuge tube to reach 11ml. The tubes were the ultracentrifuged at 4°C for 15 to 16 hours 

at 100,000g using a Beckman Optima XE-90 ultracentrifuge. The pellet was resuspended in 200 

to 300 µl of PBS by pipetting up and down. The exosomes contained in this resuspension were 

stored at -80°C until further use.  

Flow cytometry analyses of exosomes. Exosomes were thawed on ice. Concentration was 

determined using the NanoSight NS300 nanoparticle tracking analyzer according to the 

manufacturer’s directions, and 15 µl of exosomes (which was equivalent to approximately 4 x 

109 particles on average) were mixed with 30µl of pre-washed anti-human CD63-coated 

Dynabeads® (Invitrogen, 10606D). For one sample, the Nanosight measurement was erroneous 

and was excluded. All samples were included in the flow cytometric analyses. Round bottom 2 

ml tubes were used. All pre-wash and washes thereafter were performed using 0.22 µm filtered 

0.1% Bovine Serum albumin (BSA) in PBS (0.1% BSA/PBS) and the samples were mixed well 

by pipetting up and down at each wash steps. 100µl of 0.1% BSA/PBS was added to beads + 

exosomes mixture for a final volume of 145 µl (15 µl of exosomes + 30 µl of Dynabeads® + 100 

µl of 0.1% BSA/PBS). The samples were mixed by pipetting up and down and allowed to 

incubate for 4 to 16 hours at RT on a benchtop rotator. 300 µl 0.1% BSA/PBS was added to the 

samples and the samples were placed on a magnet (1 min incubation minimum). The 

supernatant was discarded and the beads (and bound exosomes) were washed once with 400 µl 

0.1% BSA/PBS.  

The beads (with bound exosomes) were resuspended in 400 µl of 0.1% BSA/PBS and 

subsequently split into 4 distinct round bottom 2 ml tubes, each containing 100 µl. To each of 



these tubes, either antibodies or isotype control were added. These include: PE/Cy7 anti-human 

CD20 (Biolegend, cat.# 302312, clone 2H7) or isotype control PE/Cy7 mouse IgG2b (Biolegend, 

cat.# 400326, clone MCP-11); APC/Cy7 anti-human CD27 (Biolegend, cat.# 356424, clone M-

T271) or isotype control APC/Cy7 mouse IgG1 (Biolegend, cat.# 400128, clone MOPC-21); PE/

Cy7 anti-human CD9 (Biolegend, cat.# 312116, clone HI9a) or isotype control PE/Cy7 mouse 

IgG1 (Biolegend, cat.# 400126, clone MOPC-21); and Alexa Fluor 647 anti-human CD63 

(Biolegend, cat.# 353016, clone H5C6) or isotype control Alexa Fluor 647 mouse IgG1 

(Biolegend, cat.# 400130, clone MOPC-21).  For each antibodies or isotype control, 0.4 µg per 

tube was added to each tube. The samples were allowed to incubate at RT for 1 to 3 hours, in 

the dark. 300µl 0.1% BSA/PBS was added to the samples and the samples were placed on a 

magnet (1min incubation). The supernatant was discarded and the beads (and bound 

exosomes) were washed once with 400 µl 0.1% BSA/PBS. The beads were visible on the 

magnet at each step of the procedure described above. The supernatant was discarded and the 

beads were resuspended in 200 µl of 0.1% BSA/PBS and transferred into flow cytometry (FC) 

tubes for FC analysis. The FC data were captured within 24 hours of completing the staining of 

the beads-exosomes samples. If not read immediately after completing the staining, the FC 

tubes were stored at 4°C in the dark. The data was subsequently analyzed using FlowJo. 

Responder vs. non-responder status was blinded until FC data capture and FlowJo analyses 

were completed. 

For GPC1 staining, 3 tubes of beads with exosomes were processed parallelly. One tube did not 

receive any antibody (exosomes alone), one tube received primary antibody (1 hr) followed by 

secondary antibody (1 hr), and one tube received secondary antibody only (1 hr). All three tubes 

were processed similarly, including for a wash step after one hour (post primary antibody 

incubation, 300µl 0.1% BSA/PBS was added to the samples and the samples were placed on a 

magnet for 1min incubation, and then resuspended into 100µl of 0.1% BSA/PBS), and again 

another hour later (after the secondary antibody incubation), before transferred into a FC tube. 

All incubations were carried out at RT and covered from light, and beads were visible at each 



step when placed on the magnet. Rabbit anti-human GPC1 antibody was used (Sigma, 

SAB2700282, 3µl per tube), and Alexa Fluor 488 conjugated goat anti-rabbit IgG (Invitrogen, 

A-11008, 2µl per tube) were used. The samples were analyzed by FC and positive signal was 

gated on the secondary only-paired sample.  

Nanoimager analyses.  Beads with exosomes stained for FC analysis for CD63 (Alexa Fluor 

647 anti-human CD63) or isotype control described above (Flow cytometry analyses of 

exosomes) were evaluated by using the on the Nanoimager S Mark I from ONI (Oxford 

Nanoimaging) with the lasers 405nm/150mW, 488nm/200mW, 561nm/300mW, 640nm/1W and 

dual emission channels split at 560nm. Data was processed on NimOS (Version [1.25] ) from 

ONI. Briefly, 25 µl of sample was spotted onto a slide (Fisher Scientific, 12-550-15), covered with 

a 1.5H coverslip (Zeiss, 474030-9000), and immediately placed on the stage. All images were 

captured using HILO mode (highly inclined and laminated optical sheet) at an illumination angle 

of 35.0 degrees with a 10.0 ms exposure setting for 200 frames. To minimize photobleaching, 

the focal plane of the beads was found under the 405 nm laser at 37% power, then switched to 

the 640 nm laser at 25% power for image acquisition.  

Electron microscopy analyses.  Bead only and beads with exosomes were prepared as 

described above (Flow cytometry analyses of exosomes). The samples were magnetized and 

resuspended in 50µl of 1% glutaraldehyde/PBS at 4ºC, or in 30µl of 0.1% BSA/PBS, and mixed 

with 30µl of warm (60ºC) 1% agarose in distilled water. The agarose-bead mixture was allowed 

to cool on ice, and the gels were cut into ~1mm3 pieces and placed in 1% glutaraldehyde/PBS at 

4ºC. Fixed samples were washed in 0.1 M sodium cacodylate buffer and treated with 0.1% 

Millipore-filtered cacodylate buffered tannic acid, postfixed with 1% buffered osmium, and 

stained en bloc with 1% Millipore-filtered uranyl acetate. The samples were dehydrated in 

increasing concentrations of ethanol, infiltrated, and embedded in LX-112 medium. The samples 

were polymerized in a 60ºC oven for approximately 3 days. Ultrathin sections were cut in a Leica 



Ultracut microtome (Leica, Deerfield, IL), stained with uranyl acetate and lead citrate in a Leica 

EM Stainer, and examined in a JEM 1010 transmission electron microscope (JEOL, USA, Inc., 

Peabody, MA) at an accelerating voltage of 80 kV. Digital images were obtained using AMT 

Imaging System (Advanced Microscopy Techniques Corp, Danvers, MA). 

Statistical analyses 

Once unblinded and plotted into GraphPad prism, the samples were evaluated for statistically 

significant differences. The Kruskall-Wallis test or a two-sided Mann-Whitney test was used to 

determine significance as defined in the figure legend.  
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