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Abstract
B cells play a central role in the immunopathogenesis of glomerulonephritides and transplant rejection. B cells
secrete antibodies that contribute to tissue injury via multiple mechanisms. In addition, B cells contribute to
disease pathogenesis in autoimmunity and alloimmunity by presenting antigens as well as providing costimulation
and cytokines to T cells. B cells also play an immunomodulatory role in regulating the immune response by
secreting cytokines that inhibit disease onset and/or progression. B cell–targeted approaches for treating immune
diseases of the kidney and other organs have gained significant momentum. However, much remains to be un-
derstood about B-cell biology in order to determine the timing, duration, and context of optimal therapeutic
response to B cell–targeted approaches. In this review, we discuss the multifaceted roles of B cells as enhancers
and regulators of immunity with relevance to kidney disease and transplantation.
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Introduction
Historically, immune responses have been classified
as cellular or humoral. Cellular responses are medi-
ated by T lymphocytes, which recognize and attack
their targets directly or indirectly by enlisting the help
of other immune cells, while humoral responses are
characterized by the production of antibodies by B
lymphocytes and their progeny, plasma cells. These
antibodies permeate extracellular spaces, where they
protect against infection and also contribute to tissue
injury in autoimmunity and transplantation. B cells
have therefore traditionally been associated with
humoral immunity, but we now know that they are
equally critical to cellular immunity. B cells participate
in T-cell activation via antigen presentation, costimu-
lation and cytokine production; affect antimicrobial
defenses and tissue inflammation; and, importantly,
serve as regulatory cells that modulate both cellular
and humoral responses. Here, we review the classic
humoral and the more recently described cellular
functions of B cells, with particular emphasis on their
roles in the pathogenesis of GN, transplant rejection,
and AKI.

Primer in B-Lymphocyte Biology
B-Lymphocyte Lineage Subsets

Three principal classes of B lymphocytes exist in
mice and humans, classified on the basis of their
ontogeny and anatomic localization: B1 and B2 B
lymphocytes, consisting of the marginal zone (MZ)
and follicular (FO) B cells (Figure 1). B1 lymphocytes
arise from B1 progenitors in fetal liver and persist as a
self-renewing population beyond the neonatal period,
with little input from the bone marrow (BM) in adult-
hood, while B2 lymphocytes develop from transitional
2 (T2) B cells that originate from BM precursors with
continued output throughout life (1–4). In mice, B1 B
cells predominantly reside in the peritoneal and pleural

cavities and produce IgM antibodies directed against
so-called thymus- or T-independent antigens, usually
carbohydrate or phospholipid antigens present on
commensal bacteria. They are called T independent be-
cause they do not require T-cell help to elicit antibody
production. Such antibodies are polyreactive or poly-
specific in that they can bind to both self-antigens and
microbial antigens.
A prototypical example of antibodies secreted by B1

B cells are those directed against ABO blood groups,
which arise naturally during the first few months of
life because of structural similarities between the ABO
system and bacterial carbohydrate antigens recognized
by B1 B cells (5,6). Natural IgM antibodies secreted by
B1 B cells play an important role in maintaining tissue
homeostasis because of their ability to bind altered self-
antigens, such as those expressed by apoptotic cells in
ischemia-induced tissue injury and oxidized LDLs in
atherosclerosis (7). In addition to IgM, B1 B cells also
produce polyreactive IgA antibodies that contribute to
mucosal immunity along with IgA secreted by FO B
cells (8). Although the existence of B1 B cells as a dis-
tinct lineage in humans has been controversial, B cells
expressing CD5 that are the source of poorly glycosy-
lated IgA1 and thought to be B1 B cells are increased
in patients with IgA nephropathy and contribute to
disease pathogenesis (9–11).
MZ B cells develop from transitional B cells after

induction of neurogenic locus notch homolog protein
2 (NOTCH2) and engagement of its ligand delta-like 1
on endothelial cells, with subsequent retention
within the marginal sinus of the spleen mediated by
sphingosine-1-phosphate, integrins lymphocyte
function–associated antigen 1, and very late antigen
4 (a4b1-integrin, CD49d/CD29), and cannabinoid
receptor 2 (4). MZ B cells express polyreactive B-cell
receptor (BCRs), complement receptors (CD21 and
CD35), and MHC class 1–like molecule CD1d; they
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produce polyreactive IgM antibodies that facilitate clearance
of blood-borne microorganisms and apoptotic cells (4).
Similar to B1 B cells, MZ B cells recognize T-independent
carbohydrate and phospholipid antigens, a classic example
being the recognition of pneumococcal capsular polysaccha-
rides; thus, the susceptibility of splenectomized individuals
to systemic pneumococcal infection (12). Both B1 and MZ B
cells constitutively express Toll-like receptors (TLRs) and can
readily respond to pathogen-associated or endogenous TLR
ligands, with or without antigen recognition via their BCR.
Thus, B1 and MZ B cells respond like innate cells in
mediating rapid IgM antibody responses (approximately
1–3 days) that bridge the temporal gap in immunity
against infections until the emergence of FO B cell–derived
IgG antibodies (about 7 days). Unlike B1 B cells, MZ B cells
also participate in responses to T-dependent protein anti-
gens by generating high-affinity isotype switched antibodies
and transporting complement-bound opsonins onto FO
dendritic cells (DCs) in splenic follicles aiding germinal center
(GC) reactions (13). MZ B cells thus represent a versatile
population in their ability to rapidly generate antibodies
via not only T-independent but also T-dependent pathways
that were previously attributed solely to FO B cells. Abnormal
increases in B1 and MZ B cells are described in murine
models as well as in patients with autoimmune diseases,
including lupus (3,4,14).
Finally, FO B cells, which reside in spleen and lymph

nodes, are the conventional B lymphocytes of the adaptive
immune system and are the most numerous of all B cell
lineages. FO B cells arise from transitional B cells in the
spleen through a pathway dependent on Bruton tyrosine

kinase induced by BCR-mediated signals (2). Although FO
B cells participate in T-independent IgM responses, they are
primarily responsible for the generation of long-lasting,
high-affinity IgG antibodies with the help of T lymphocytes,
critical for classic humoral immunity mediating protection
after infection or vaccination. As will be discussed later, FO
B cells specific to self-antigens or transplantation antigens
also play a key role in the pathogenesis of autoimmune
kidney disease and transplant rejection.

Antibody Types
Because a principal function of B lymphocytes is anti-

body production, it is important at this point to summarize
the salient features of these defense molecules and describe
their different isotypes or classes. Antibodies, also known
as immunoglobulins, are glycosylated protein molecules
present on the surface of B cells (surface immunoglobulins)
serving as antigen receptors (BCR), or are secreted into the
extracellular space where they can bind and neutralize their
target antigens (15). A single antibody molecule consists of
four protein chains: two “heavy” and two “light,” linked
to each other by disulfide bonds (Figure 2). The N-terminus
regions of the heavy and light chains, which collectively
make up the antigen-binding site, are where the variability
between one antibody molecule and another resides, hence
determining specificity.
Five isotypes, or classes, of antibodies (IgM, IgD, IgG, IgA,

and IgE) exist, and they are distinguished according to the
C-terminus regions of the heavy chains, which are constant
and therefore do not participate in antigen binding. Instead,
these regions (designated Fc) are important for the effector

Figure 1. | B-cell lineage subsets and functions. B lymphocytes of all lineages arise from progenitors derived from hematopoietic stem cells
(HSCs). Most B1 B lymphocytes develop from B1 progenitors in the fetal liver with little input from bone marrow beyond the perinatal period.
B2 B lymphocytes develop from transitional 2 (T2) B cells derived from B-cell progenitors in the bone marrow, with subsequent differentiation
into marginal zone (MZ) and follicular (FO) lineages occurring in the spleen. Stronger B-cell receptor (BCR) signals induce Bruton tyrosine
kinase (BTK) and support maturation to FO B cells, while weaker BCR signals allow expression of neurogenic locus notch homolog protein
2 (NOTCH2) giving rise to MZ B cells. B lymphocytes of each lineage have distinct and overlapping functions in recognizing antigens via
T-independent and T-dependent pathways, production of rapid IgM, and long-lasting IgG antibody responses essential for host defense.
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functions of antibodies, the means by which antibodies
eliminate pathogens or alternatively cause tissue injury. In
addition, there are four subclasses or isotypes of IgG
antibodies (IgG1, IgG2, IgG3, and IgG4). Antibodies exert
effector functions in three principal ways: They neutralize
their targets (e.g., they bind to a virus and prevent it from
entering a cell), they activate macrophages and other im-
mune cells by binding to Fc receptors (FcRs) that recognize

the constant regions of specific antibody classes, or they
activate the classic pathway of the complement system by
binding to C1q (Table 1). Which effector mechanism dom-
inates is determined by the heavy-chain isotype and bind-
ing affinities of activating and inhibitory FcR on immune
cells. For example, IgM and IgG3 are excellent complement
activators, while IgG1 and IgE bind FcR to activate macro-
phages and mast cells, respectively (15).

Table 1. Immunoglobulin isotypes and functions

Characteristic
Immunoglobulin Isotype

IgM IgG1 IgG2 IgG3 IgG4 IgA IgE

Heavy chain m g1 g2 g3 g4 a «

Molecular mass, kDa 970 146 146 165 146 160 188
Serum level (mean adult), mg/ml 1.5 9 3 1 0.5 2.1 531025

Half-life in serum, days 10 21 20 7 21 6 2
Polysaccharide antigens 11 1 111 1/2 1/2 11 11

Protein antigens 1 11 1/2 11 11 1 1

Placental transfer – 111 1 11 –∕1 – –

Neutralization 1 11 11 11 11 11 –

Classic pathway of complement activation 1111 11 1 111 – – –

Sensitization for killing by natural killer cells – – 11 – 11 – –

Binding to macrophage and phagocyte Fc receptors – 1 – 1 –∕1 1 1

Binding to mast cells and basophils – 1 – 1 – – 111

1 denotes relative presence and – denotes relative absence of response to type of antigen or specified characteristic.

Figure 2. | Antibody structure. Antibodies (immunoglobulins) are composed of two heavy chains (VH andCH) and two light chains (VL andCL).
The antigen-binding fragment, Fab, is composed of one variable domain from each heavy and light chain (VH and VL). The variable domains
contain the complementarity determining regions (CDRs) with the most sequence variations and determine antibody specificity. The constant
domains CH2 and CH3 of the heavy chain make up the crystallizable fragment, Fc, which mediates effector functions through binding to Fc
receptors (FcRs) on cells and to complement (C1q).
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Pathogenic antibodies in patients with autoimmunity,
such as lupus and transplant rejection, are usually IgG,
with the isotype influenced by the nature of the antigen
(e.g., polysaccharide antigens incite IgG2, whereas protein
antigens induce IgG1; Table 1) and concomitant cytokine
milieu of the immune response (e.g., IL-4 and IL-21 induce
IgG1 and IgG3) (16). Among IgG isotypes, IgG1 and IgG3
bind FcgR most efficiently and also activate complement,
contributing to their associated proinflammatory effects.
IgG1 is the predominant isotype, constituting 60%–75%
of serum IgG and has a longer half-life (3 weeks), pro-
viding the basis for the commonly used dosing regimens
(every 3–6 weeks) of intravenous immunoglobulin (IVIG)
when used as replacement in immunoglobulin deficien-
cies or treatment of autoimmune diseases. Efficient bind-
ing of IgG to its FcgR is influenced by post-translational
modifications of the sugar moieties attached to the CH2
domain of the Fc fragment, affecting structural stability
and function (17).
Differences in glycosylation of antibody molecules due to

altered expression of glycosyltransferases are observed in
various disease states and contribute to pathogenesis (18). For
example, poorly galactosylated IgA1 aggregates form im-
mune complexes with IgG that trigger a cascade of proin-
flammatory events upon binding to mesangial cells in IgA
nephropathy (19); nonfucosylated IgG-Fc, which increases
binding to FcgRIIIa and antibody-dependent cellular cytotox-
icity, is observed in patients with antiplatelet alloantibodies
and controllers of HIV infection (20,21); degalactosylated IgG
is found in several autoimmune diseases, suggesting its path-
ogenicity; and increased terminal sialic acid residues linked to
IgG Fc fragment confer potent anti-inflammatory properties

of IVIG by binding to DC-specific intercellular adhesion mol-
ecule 3–grabbing nonintegrin expressed on macrophage and
DC subpopulations, and causing upregulation of the inhibi-
tory FcgRIIb (22–24). In addition to changes in glycosylation,
binding affinity to FcR is also influenced by polymorphisms
in activating (e.g., FcgRIIIa) and/or inhibitory (e.g., FcgRIIb)
FcRs and contributes to pathogenesis in autoimmune diseases
such as lupus (25,26).

B-Lymphocyte Development and Mechanisms of Self-
Tolerance
B lymphocytes primarily originate in the BM, except for B1

B cells, which arise from fetal liver as previously discussed
(1,3). B lymphocytes develop from common lymphoid pro-
genitors of hematopoietic stem cells, which also give rise to T
lymphocytes and natural killer cells with commitment to
B-cell lineage being determined by the expression of paired
box protein 5 (Pax5) (27). B-cell development progresses
through sequential maturation steps within the BM before
release of immature B cells into the circulation and subse-
quent completion of differentiation into mature B cells
within the spleen. Developing B cells progress through re-
arrangement of immunoglobulin heavy- and light-chain
gene segments (variable V, diversity D, joining J) from
pro-B to pre-B to immature B cells, culminating in the ex-
pression of IgMmature BCR on the cell surface that can bind
antigens (Figure 3) (28). The maturation steps depend on
close interactions between developing B cells and BM stro-
mal cells, which provide critical adhesive integrins, growth
factors, chemokines, and cytokines (e.g., Fms-like tyrosine
kinase 3, thrombopoietin, C-X-C motif chemokine ligand
[CXCL] 12, and IL-7) (27). Immature B cells exiting the BM

Figure 3. | B-cell development and mechanisms of self-tolerance. B-cell development begins in the bone marrow and is completed in pe-
ripheral lymphoid tissues, such as the spleen. Development in the bone marrow progresses sequentially through pro-B, pre-B, and immature B
cell stages and expression of surface IgM, mature B-cell receptor (BCR). Immature B cells with strong reactivity to self-antigen undergo clonal
deletion or rearrange their immunoglobulin gene segments; this is called receptor editing, which eliminates self-reactivity and allows entry to
the transitional B-cell pool. Transitional B cells depend on B cell–activating factor (BAFF) for survival and differentiate intomature B cells in the
spleen. Those transitional 1 and 2 (T1/T2) B cells with strong self-reactivity undergo clonal deletion or remain outside splenic follicles as
hyporesponsive anergic B cells that can be rescued upon receiving T cell help to enter the mature B-cell pool. Mature B cells that are activated
by foreign antigen and enter germinal center (GC) reactions give rise to isotype-switched memory B cells and plasma cells. During the process
of somatic hypermutation (SHM), a fewmemory B cells acquire self-reactivity due to random immunoglobulin gene rearrangements and persist
as IgG1 self-reactive clones in the periphery.
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home to the spleen, where they differentiate into transitional
1 and 2 B cells, which mature into MZ or FO B cells guided
by BCR signals, B cell–activating factor (BAFF), and expres-
sion of transcription factors, NOTCH2 and BTK (2,4,28). MZ
B cells are retained in the spleen while FO B cells recirculate,
populating various secondary lymphoid tissues (e.g., lymph
nodes, tonsils, and gut-associated lymphoid tissues, such as
Peyer patches).
The random rearrangement process of immunoglobulin

genes during B-cell development ensures the generation
of a vast repertoire of BCRs capable of recognizing a huge
diversity of antigens. This results in inherent generation of
B cells that also recognize various self-antigens. In fact, 75%
of immature B cells in humans are estimated to be self-
reactive (29). These self-reactive or autoreactive B cells must

be eliminated during development to avoid autoimmunity,
while still preserving a diverse BCR repertoire in the mature
B-cell pool essential for host defense. Developing B cells
transit through several selection processes in the BM and
spleen that serve as checkpoints in purging autoreactive
clones and establishing self-tolerance (28). BCR recognition
of self-antigen within the BM and the threshold of generated
signals determine selection of immature B cells to move
forward to the transitional B-cell stage: positive selection
of clones with low-level (also referred to as “tonic”) BCR
signals; clones with no BCR signals fail to survive; and
clones with strong signals are targeted for apoptosis
(clonal deletion, also termed negative selection), unless
they rearrange their light-chain immunoglobulin gene
segments (termed receptor editing), and re-express a

Figure 4. | B-cell activation and differentiation intomemory B cells and plasma cells. B cells that have encountered antigenmigrate to the T–B
border by upregulating C-C chemokine receptor 7 (CCR7) and Epstein-Barr virus–induced receptor 2 (EBI2), where they first encounter cognate
T cells that mature into T follicular helper cells (Tfhs). B cells can differentiate into extrafollicular plasma blasts or memory B cells independent
of germinal centers (GCs). B cells that express B-cell lymphoma 6 (Bcl6) return to the follicles, where they are retained via sphingosine-1-
phosphate receptor 2 (S1PR2) expression to form GCs with Tfhs. Within GCs, B cell–Tfh interactions via MHC 2–T-cell receptor, B7–CD28,
CD40–CD40L, inducible costimulator ligand (ICOSL)–inducible costimulator (ICOS), programmed cell death protein ligand 1 (PDL1)–
programmed cell death protein 1 (PD1), and IL-21 receptor (IL-21R)–IL-21 facilitate somatic hypermutation and immunoglobulin isotype class-
switch recombination (CSR) that generate high-affinity GC-dependent memory B cells and long-lived plasma cells. Following antigen
re-exposure, extrafollicular memory B cells now enter GCs to generate isotype-switched and high-affinity secondary memory B cells and
plasma cells, while GC-dependent memory B cells can rapidly differentiate into secondary plasma cells or re-enter GC to produce secondary
memory B cells and plasma cells. DC, dendritic cell.
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BCR that now meets the threshold for positive selection
into the transitional B-cell pool (Figure 3).
B-cell repertoire modification of immature B cells that

occurs within the BM by clonal deletion and receptor
editing is termed central tolerance, and the latter mechanism
contributes to elimination of a majority of self-reactive clones
(20%–50%). Additional selection mechanisms occurring
within the spleen remove the remaining autoreactive clones
that recognize peripheral self-antigens: Transitional B cells
with strong BCR signals undergo clonal deletion or attain a
state of hyporesponsiveness, termed anergy, with shortened
survival (1–5 days) (Figure 3) (30). However, these periph-
eral tolerance mechanisms can be circumvented by elevated
levels of BAFF and T-cell help of anergic B cells, enabling
autoreactive clones to enter the mature B-cell pool (31).
Self-reactive B lymphocytes that escape clonal deletion,
receptor editing, or anergy are eliminated by CD41 T cells
via Fas receptor–Fas ligand and CD40–CD40L interactions
in addition to being held in check by CD41 T cells and B
cells with regulatory properties (Tregs and Bregs, respec-
tively) (32,33). Failure of one or more of the self-tolerance
checkpoints described earlier is central to development of
autoimmune diseases, such as lupus, that also affect the
kidneys (31). For example, in patients with systemic lupus
erythematosus (SLE), defects in BCR signaling due to muta-
tions in BTK or protein tyrosine phosphatase nonreceptor
type 22 (PTPN22) gene polymorphism disrupt central toler-
ance, and elevated serum BAFF levels and Fas receptor–Fas
ligand polymorphisms contribute to observed defects in

peripheral tolerance (31,34). Despite the absence of autoreactive
clones entering the naive B cell pool, following foreign
antigen-mediated activation and GC reaction, some IgG1

memory B cells acquire self-reactivity as a consequence of
somatic hypermutation that also contribute to autoanti-
bodies in SLE (31).

B-Lymphocyte Activation and Differentiation
A hallmark of humoral immunity is the generation of

long-lived memory B cells and plasma cells that produce
high-affinity, isotype-switched antibodies essential for host
defense. B-cell activation and differentiation into extra-
follicular or GC-driven memory B cells, plasma blasts, or
plasma cells are guided by integration of (1) nature of an-
tigen, such as polysaccharide, glycolipid, or protein; (2) as-
sociated TLR signals; and (3) cytokine and costimulatory
helper signals (35). Polysaccharide and glycolipid antigens
are poor activators of T cells, and in general, B1 and MZ B
cells responding to these antigens are activated indepen-
dent of conventional T-cell help. However, unlike FO B
cells, B1 and MZ B cells express TLR in their nascent state,
which allows them to integrate signals from TLR ligands
(such as LPS, Cytosine-phosphate-Guanine DNA, and
double-stranded RNA) derived from pathogens or dam-
aged cells, along with antigen recognition, to differentiate
rapidly into IgM or isotype-switched short-lived plasma
blasts and memory B cells in extrafollicular areas without
entering the GC (36). MZ B cells also interact with other
helper cells, such as natural killer T cells, neutrophils, and

Figure 5. | B cell–activating factor (BAFF), a proliferation-inducing ligand (APRIL), and their receptors. BAFF and APRIL are transmembrane
proteins of the TNF family that can be proteolytically cleaved toproduce soluble forms. Theyare producedbymyeloid cells, such as dendritic cells
(DCs), neutrophils, monocytes, macrophages, and stromal cells. BAFF binds strongly to receptors, B cell–activating factor-receptor (BAFF-R) and
transmembraneactivator andcyclophilin ligand interactor (TACI), andweakly toB-cellmaturation antigen (BCMA),whereasAPRIL binds strongly to
BCMAandmoderately to TACI. APRIL can also exist bound to heparin sulfate proteoglycan (HSPG) in extracellularmatrix and interactswith TACI in
this form. BAFF promotes survival andmaturation of transitional B cells intomatureB cells, supports B cell proliferation, class-switch recombination
(CSR), and plasma cell survival. APRIL is critical for T-independent responses and supports CSR and survival of plasma cells.
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DCs, that provide cytokines (BAFF, a proliferation-inducing
ligand [APRIL], IL-21, IL-6, and IL-10) and costimulatory
signals (CD40L) within the extrafollicular areas, facilitating
limited somatic hypermutation and antibody diversifica-
tion (36). Thus, B1 and MZ B cells generate predominantly
low-affinity IgM or isotype-switched IgG antibodies in
extrafollicular areas independent of conventional T-cell
help (4).
For protein antigens that are recognized primarily by FO

B cells, activation is initiated upon antigen recognition by
the BCR and critical helper signals derived from antigen-
specific CD4 T cells (Figure 4). Upon binding antigen, the
BCR sets two key processes in motion. First, it signals to
the cell’s interior to trigger essential gene expression pro-
grams. Second, it internalizes the antigen and delivers it to
endosomal compartments, where it is degraded into pep-
tides that are then bound to MHC-2 molecules and recycled

to the surface of the B lymphocyte. These peptide–MHC-2
complexes are what antigen-specific CD4 T cells recognize to
establish intimate contacts with B cells and provide them
with the help needed for their proliferation and differentia-
tion. Because the CD4 T cell providing help is activated by
the same antigen as the B cell, the contact and interaction
between these T and B cells is referred to as “cognate” or
“linked.” T–B interactions required for B lymphocyte activa-
tion are orchestrated not only in time but also in space (37).
They take place within secondary lymphoid tissues guided
by the expression of chemokine receptors and corresponding
ligands (38). Naive B cells, for example, express C-X-C motif
chemokine receptor 5 and are retained in clearly delineated
areas, called primary lymphoid follicles or B-cell zones, in
lymph nodes by CXCL13 from FO DCs (38). After antigen
recognition, B cells upregulate C-C chemokine receptor 7
and Epstein-Barr virus–induced receptor to migrate to the

Figure 6. | Cellular functions of B cells. B cells interactwith T cells and innate cells, such as dendritic cells (DCs), via several mechanisms that
influence the outcome of the immune response. Antigen presentation, costimulation (such as CD40–CD40L, inducible costimulator ligand
[ICOSL]–inducible costimulator [ICOS]), and cytokine production (such as IL-6 and TNF-a) contribute to enhanced T-cell activation and
differentiation (e.g., T follicular helper cells), cytokine polarization (e.g., Th1 and Th17), and formation of long-lived memory T cells.
Lymphotoxin (LTa) produced by B cells contributes to formation of tertiary lymphoid organs in peripheral tissues that are sites of in situ
immune responses causing tissue injury. B cells and plasma cells also secrete cytokines, such as IL-10 and IL-35, that reduce T-cell acti-
vation and cytokine production and increase T cells with regulatory properties in addition to modulating functions of innate cells, such as
DCs (e.g., decreased IL-6 and IL-12), to attenuate immune responses.
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boundary of the follicle adjacent to the T-cell zone (referred
to as T–B border), where they initiate cognate interactions
with early T follicular helper cells (Tfhs) (39,40). T-cell
help for B cells comes in the form of costimulatory li-
gands (CD40L; inducible costimulator ligand) and cyto-
kines (e.g., IL-4, IL-21, and IFN-g) that stimulate B-cell
proliferation and differentiation.
Some of the activated B cells develop into extrafollicular

plasmablasts and early memory B cells without entering
the follicles (extrafollicular pathway). Activated B cells that
upregulate B-cell lymphoma 6 (Bcl6) return to the follicles
(FO pathway), where they are retained by the expression
of sphingosine-1-phosphate receptor 2 to form GCs with
Tfhs, which support affinity maturation of immunoglobu-
lin antigen–binding sites and immunoglobulin class
switching (40,41).
Within the GC, IL-21 and costimulatory signals derived

from Tfh (Figure 4) sustain extensive B-cell proliferation
and induce gene expression programs essential for somatic
hypermutation (SHM) and class-switch recombination
(CSR) to generate high-affinity class-switched memory B
cells and plasma cells (41). SHM and CSR require the ex-
pression of the DNA-editing enzyme activation-induced
cytidine deaminase: SHM induces point mutations within
the immunoglobulin gene segments that encode the vari-
able antigen-binding regions, enabling selection of high-affinity
clones into memory and plasma cell pools by competition
for antigen within the GC; CSR replaces genes that deter-
mine isotype classes, allowing generation of antibodies with
different effector functions without changing their antigen
specificities (42–44).
GC B cells that have successfully acquired Tfh signals

and competed for the limited antigen within the GC with
high-affinity interactions upregulate Bcl2 family prosurvival
factors and are selected into the memory B-cell or plasma
cell pools (37,45–47). Productive Tfh interactions with GC B
cells initiate sequential expression of transcription factors,
IFN regulatory factor 4, B lymphocyte–induced maturation
protein 1 (also known as PR domain zinc finger protein 1),
and X-box binding protein 1, which commit their differenti-
ation into long-lived plasma cells after repression of Bcl6
(48,49). Blimp1 expression is essential for sustaining plasma
cell development via both extrafollicular and FO pathways,
while Xbp1 functions to support immunoglobulin secretion
(35,50–52).
Plasma cells home to the BM via C-X-C motif chemokine

receptor 4, where they reside in survival niches supported
by stromal cells secreting CXCL12 and cytokines (IL-6;
APRIL) and produce antibodies maintaining serologic
memory independent of further antigen exposure (35).
Memory B cells recirculate and form extrafollicular or FO
aggregates in lymphoid tissues, where they differentiate
rapidly into plasma blasts (GC-dependent memory) or
re-enter GCs upon antigen rechallenge (extrafollicular
and GC-dependent memory), resulting in further diversi-
fied secondary antibody responses (47,53–56) (Figure 4).
Memory B cells and plasma cells generate high-affinity
immunoglobulin class-switched diversified antibodies,
which are the basis of long-lived humoral immunity and
are difficult therapeutic targets in autoimmune diseases.
At this juncture, it’s relevant to discuss the two key cyto-

kines, BAFF (also known as B-lymphocyte stimulator) and

APRIL of the TNF family, required for survival of B cells
during various stages from their initial development to
terminal differentiation (Figure 5). BAFF and APRIL are
produced by myeloid cells (such as DCs, macrophages,
and neutrophils) and stromal cells (57,58) and bind to recep-
tor transmembrane activator and cyclophilin ligand inter-
actor (TACI) and B-cell maturation antigen, while BAFF
also signals through B cell–activating factor-receptor (BAFF-R)
(Figure 5) (57). BAFF is essential for survival and matura-
tion of transitional B cells, sustains GC reaction, and sup-
ports CSR (57,59). Signaling through TACI, both BAFF and
APRIL, promote T-independent antibody responses and
CSR, while BAFF also functions in limiting B-cell expansion
through TACI (57,60). Plasma cell survival requires APRIL
and/or BAFF signaling through B-cell maturation antigen,
whereas immunoglobulin class-switched memory B cells are
maintained independent of BAFF or APRIL (57,61,62). Dys-
regulation of BAFF is associated with autoimmune diseases,
such as SLE and ANCA-associated vasculitis (AAV), and
targeting soluble BAFF using belimumab has shown benefit
for patients with lupus nephritis (63–65).

B Lymphocytes as Enhancers and Regulators of
Cellular Immunity
In addition to their obvious role in humoral immunity, it

is now established that B lymphocytes contribute directly
to cellular immunity via at least three mechanisms: (1) they
serve as antigen-presenting cells (APCs) that enhance T
lymphocyte–mediated immunity; (2) they function as bona
fide cellular effectors that produce inflammatory cytokines;
and (3) a subgroup of them, known as Bregs characterized
by IL-10 secretion, modulate immune responses (Figure 6)
(66,67). Moreover, B cells maintain secondary lymphoid or-
gan architecture, particularly of the spleen, and promote the
formation of ectopic lymphoid tissues (tertiary lymphoid
tissues) at sites of chronic inflammation, which then become
hot spots of local T- and B-lymphocyte activation (Figure 6)
(68–72). Together, these “cellular” functions of B cells signif-
icantly contribute to the pathogenesis of autoimmunity and
allograft rejection.

B Lymphocytes as APCs
Antigen captured by the BCR is internalized into endo-

somal compartments, where it is processed into peptides
that then reemerge on the cell surface bound to MHC-1 and
-2 molecules. This allows B lymphocytes to present anti-
genic peptides to both CD4 and CD8 lymphocytes as a
“professional” APC (e.g., a DC) would. In addition, and
similar to DCs, B cells express the necessary costimulatory
molecules and cytokines required for full activation of the
T lymphocytes they engage. These include B7 and CD40
molecules, which ligate the T lymphocyte costimulatory
receptors CD28 and CD40L, respectively, and the cytokines
IL-6 and IFN-g (73–75). B cells also express innate TLRs,
which respond to pathogen-associated molecular patterns,
further enhancing their APC function (75–77). Although
on a per-cell basis B cells are not as potent APCs as DCs,
the fact that they proliferate in response to antigen gives
them a clear numeric advantage. Experimental data in
mouse models of antimicrobial as well as lupus and anti-
graft immunity have established that antigen presentation
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by B cells ensures optimal T-cell activation, cytokine produc-
tion, and generation of long-lasting memory T cells
(73,75,78–82). In the absence of this B-APC function, mem-
ory T-cell numbers and function are impaired after an anti-
genic challenge and organ damage is attenuated in lupus.

B Lymphocytes as Cellular Effectors
It is increasingly recognized that during an immune

response, some B cells acquire the ability to produce effector
cytokines with inflammatory properties (83). Examples of
these are IFN-g, TNF-a, and IL-17 (67,75,84,85). IFN-g and
TNF-a have direct injurious effects on endothelial and
epithelial cells, thus contributing to both allograft rejection
and inflammatory renal disease (86–89). Similarly, IL-17
stimulates cytokine and chemokine production by endothelia,
epithelia, and fibroblasts, which then drive neutrophil in-
filtration and inflammation (90). Effector cytokines from
B cells also influence activation of CD4 T cells, their cytokine
production, and memory development (67,75,84,85), likely
in a bystander fashion, unlike antigen presentation by B
cells, which requires cognate interactions.

Bregs
A regulatory function for B cells has been demonstrated

in multiple mouse models of autoimmunity and trans-
plantation, whereby indiscriminate B-cell depletion or
deficiency paradoxically caused worsening of disease
outcomes (66,91–95). In each case, the regulatory function
could be attributed to IL-10 production by a small subset of
B cells. Overall, IL-10–producing Bregs constitute about 1%
of all B lymphocytes in the mouse and appear to be present

in all known major B-cell subpopulations (e.g., FO and MZ
B cells) (96). Recent data have shown that T cell immuno-
globulin mucin 1 (TIM-1), a member of the T immunoglob-
ulin and mucin domain family of proteins, serves as an
inclusive marker for Breg (about 6%–8% of all B lym-
phocytes in the mouse express TIM-1 and about 30% of
these produce IL-10) (96). A monoclonal antibody binding
TIM-1 enhances allograft survival in a Breg-dependent
manner. In addition to B cells, some plasmablasts
(IgM1CD1381) exert regulatory functions via production
of the cytokine IL-35 (97). Via IL-10 or IL-35, Bregs mod-
ulate innate cells, such as DCs, macrophages, or natural
killer cells (e.g., decreased IL-6 and IL-12), decrease inflam-
matory T-cell cytokines, and increase regulatory Tregs, cur-
tailing the ongoing immune response (95,97–101). Bregs
have also been identified in humans, specifically in the
CD24highCD38high transitional and CD24highCD271 memory
B-cell subsets, and their numbers correlate with better re-
nal transplant outcomes (102–104). Altered numbers and/
or function of Bregs have been described in SLE and AAV,
contributing to disease pathogenesis and/or relapse
(102,105–107). The presence of potent Bregs could explain
why pan-depletion of B cells in humans using anti-CD20
(rituximab) has led to paradoxical or unsatisfactory clini-
cal results in renal transplantation, as well as autoimmune
renal disease (108,109). Similarly, indiscriminate use of an-
tibodies targeting BAFF could be detrimental because Breg
development and IL-10 production appear to depend on
BAFF signaling through TACI (110,111). Selective agents
that spare or enhance Bregs are therefore greatly needed to
optimize B cell–targeting therapies.

Figure 7. | B cells as enhancers and regulators of immunity in kidney disease and transplantation. B cells can promote or inhibit immune
responses, mediating kidney injury, GN, and transplant rejection by various mechanisms of action, and the balance between
these functions influences disease outcomes. Isotype-switched antibodies contribute to antibody-mediated rejection (AMR) and GN
(e.g., lupus, IgA nephropathy, ANCA-associated vasculitis [AAV]) by forming immune complexes and activating FcgR while natural
IgM antileukocyte antibodies are protective in ischemia-reperfusion injury (IRI). Antibody-independent functions of B cells contribute
to lupus and ischemia-reperfusion injury and mediate graft rejection by presenting antigen and driving T-cell activation. B cells
form tertiary lymphoid structures that are the sites of local immune responses causing tissue injury in lupus nephritis, AAV, idiopathic
membranous nephropathy (IMN) and graft rejection. Various B-cell populations with regulatory functions (e.g., IL-10) contribute to
graft survival and GN remission (e.g., AAV), and their disrupted numbers or function are observed in transplant rejection and GN relapse
(e.g., AAV and lupus).

Clin J Am Soc Nephrol 11: 137–154, January, 2016 B Cells in Renal Disease and Transplantation, Hoffman et al. 145



Role of Antibodies and B Lymphocytes in Renal Disease
Role in Renal Transplantation
Interest in B lymphocytes and antibodies as causative

agents in transplant rejection stems from the beginnings of
renal transplantation, when it was realized that patients
with preformed antibodies against donor antigens reject
their grafts within minutes to hours after transplantation
(so-called hyperacute rejection) (112). Preformed antibodies
that cause hyperacute rejection are those against the ABO
blood antigens or HLA. Careful ABO matching of donors
and recipients and careful testing of the recipient’s serum for
antibodies against the donor’s HLA before transplantation
have eliminated hyperacute rejection in the clinic. However,
the dilemma of what to do with prospective renal transplant
recipients on the waiting list who are highly sensitized to the
general population (i.e., those with high panel-reactive anti-
bodies) remained, many of them dying before a suitable
donor could be identified. Strategies have therefore been
devised to desensitize such patients, allowing them to
receive a deceased- or living-donor kidney once their an-
tidonor antibody titers had subsided. Successful strate-
gies include the use of plasmapheresis and IVIG, the
latter likely exerting its effects via Fc receptors by down-
modulating B-cell function and Fab-mediated effects on
target cells (23). Of note, ABO-incompatible heart trans-
plantation, and possibly other organ transplantation, is
feasible in infants before the development of significant
anti-ABO antibody titers (113). Transplanted infants in
fact acquire tolerance to the incompatible ABO antigen,
providing firm proof that human B cells are prone to
tolerance if challenged while the immune system is still
relatively immature (114).
More recently, the significance of donor-specific anti-

bodies (DSAs) that arise after transplantation has come to
the fore. These antibodies, usually against donor HLA but
sometimes directed against non-HLA epitopes, are associ-
ated with poor renal allograft outcomes because of acute or
chronic antibody-mediated rejection (AMR) (115–119).
AMR is often associated with acute or chronic cellular re-
jection and the presence of DSAs also correlates with in-
creased risk of isolated cellular rejection, indicating
that DSAs are a useful biomarker for heightened antidonor
immunity (120–124). Strategies to combat the develop-
ment of DSA have largely relied on the use of adequate
T-lymphocyte immunosuppression, such as with tacroli-
mus, because pathophysiologic antidonor antibodies
belong to T cell–dependent isotypes, usually complement-
fixing (for example, IgG3) and the requisite role of T-cell
help for B-cell differentiation. B-cell depletion with rit-
uximab has been attempted as a prophylactic therapy at
the time of renal transplantation (induction therapy) to
improve graft outcomes or as a treatment for AMR (125–
127). In the former case, it was paradoxically associated
with increased, rather than decreased, risk of acute re-
jection and in the latter the results have been ambiguous
(108,127).
These clinical studies highlight the heterogeneity of

targeted B-lymphocyte populations (memory B cells,
plasma cells) and functions (effector versus regulatory) and
therefore the need to devise more selective depletional
approaches. In addition, dysregulation of BAFF levels,
especially after depletion of cells consuming BAFF,

contribute to pathogenic antibody responses, indicating
that pan-depletion of B cells can have deleterious effects on
disease progression (128–131). Long-lived plasma cells lack
CD20, the target of rituximab, and account for alloantibody
production even after mature B cells that express CD20 are
depleted. Targeting plasma cells using proteasome inhibitors
alone has limited efficacy, likely due to rapid differentiation
of memory B cells into plasma cells to repopulate depleted
niches, underscoring the challenges in efficacious removal of
pathogenic B cells (132).
Data emerging from experimental models and humans

strongly suggest that B cells contribute to rejection in-
dependently of their antibody-producing role. In mice, B
cells promote both acute and chronic rejection by func-
tioning as APCs, and B-lymphocyte participation in the
pathogenesis of chronic rejection can occur in the absence
of secreted antibody (80,133). A recent study in human
renal allograft recipients provided compelling evidence
that although activation of B cells resulted in production
of both TNF-a and IL-10, it was the relative abundance of
TNF-a to IL-10 expression in transitional B cells that
correlated strongly with acute rejection and 3-year graft
outcomes (104). Patients with stable renal allograft func-
tion had similar numbers of transitional B lymphocytes and
similar IL-10–to–TNF-a ratios as healthy individuals,
while those with graft dysfunction had reduced transi-
tional B-lymphocyte numbers and reduced IL-10–to–TNF-a
ratios. B-lymphocyte clusters have also been observed
within renal allografts undergoing acute and chronic rejec-
tion, contributing to local immune response and causing
graft injury (134–137). Together, these findings underscore
the importance of the cellular functions of B cells, whether
regulatory or effector, in shaping renal allograft outcomes
(Figure 7).
The role of B cells in renal transplantation tolerance has

also been an intense area of study. Several independent
reports provided evidence that operationally tolerant
kidney transplant recipients (those who have stable graft
function in the absence of all pharmacologic immunosup-
pression) exhibit various B-cell alterations within their
peripheral blood mononuclear cells, including increased
B-cell numbers, B cell–specific gene expression, transitional
B cells producing IL-10, memory B cells with an inhibitory
phenotype, and granzyme B–expressing B cells that curtail
proliferation and cause apoptosis of CD4 effector T cells
(138–142). These studies provide the impetus to explore
new strategies to induce or enhance regulatory B cells in
humans for the purpose of achieving tolerance or minimiz-
ing long-term, conventional immunosuppression after kid-
ney transplantation.

Role in GN
B lymphocytes are incriminated in the pathogenesis of

both systemic and kidney-targeted autoimmune diseases
(Figure 7). They are responsible for the generation of
autoantibodies and circulating immune complexes that de-
posit in the kidney and cause GN. As discussed previously,
they can also contribute to tissue injury by producing in-
flammatory cytokines and by presenting antigen to T
lymphocytes. The significance of B lymphocytes in human
GN can be best inferred from studies that correlate circu-
lating or renal interstitial B cell phenotype and function
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with disease activity and from studies that attempted
B-lymphocyte depletion or inhibition to treat the disease.
These include SLE, AAV, Henoch-Schönlein purpura
(HSP), cryoglobulinemia, and idiopathic membranous ne-
phropathy (IMN).
Lupus Nephritis. SLE results from systemic loss of B-cell

tolerance, leading to production of high titers of autoan-
tibodies against double-stranded DNA (dsDNA), RNA,
and nuclear proteins (143–145). Dysregulated BAFF levels
and augmented signal transduction downstream of the
BCR, specifically in the BtK-Lyn-Syk kinase pathway, con-
tribute to increased B-cell activation with increased fre-
quencies of memory and plasma cells in patients with
SLE (65,131,144,146–148). The presence of anti-dsDNA an-
tibodies identifies patients at risk of lupus nephritis, con-
sistent with experimental evidence that these antibodies
have a causative role in GN when deposited as immune
complexes in the kidney. However, B cell–deficient but not
antibody-deficient mice are protected from lupus nephri-
tis, indicating that cellular functions of B cells also contribute
to disease pathogenesis (149,150). In addition to glomerular
lesions, lupus nephritis is characterized by inflammation and
scarring of the renal interstitium, which predicts progression
to renal failure.
Recent studies on human renal biopsy specimens have

established the presence of conspicuous interstitial B
lymphocyte infiltrates in lupus nephritis (151,152). These
are often organized along with T cells and DCs into lymph
node–like structures that are known as tertiary lymphoid
tissues (151,153,154). B lymphocytes within these struc-
tures are actively dividing (supported by local BAFF and
APRIL), are undergoing somatic hypermutation, and
sometimes form germinal centers (151,153–155). The pres-
ence of germinal centers is strongly associated with tubu-
lar basement membrane immune complexes, providing a
highly plausible link between local B-lymphocyte activa-
tion and progression of lupus nephritis in humans
(151,153,154).
On the basis of the causal relationship between

B-lymphocyte activation and SLE, B lymphocyte–targeting
therapies have been tested in the clinic in patients with SLE
who have or do not have lupus nephritis. First tested were
the monoclonal anti-CD20 antibodies, rituximab and ocre-
lizumab, which target the B-lymphocyte surface molecule
CD20 expressed on mature B cells, causing depletion of
these cells. Two large randomized phase 3 trials failed to
demonstrate statistically significant superiority of B-cell de-
pletion with either agent over standard-of-care therapy in
patients with active proliferative lupus nephritis (156,157).
However, a trend toward more patients reaching complete
or partial remission at 1 year (primary endpoint), and im-
proved proteinuria and renal function (secondary end-
points) was observed in the B-lymphocyte depletion
groups (109,156,157). Patients treated for class 3 lupus ne-
phritis attained complete remission most successfully,
while those with class 5 lupus nephritis were the least
likely to respond (109). It is unclear whether adjunct ther-
apies, such as those also targeting T cells, would improve
response rates because T cells can contribute to B-cell ac-
tivation and mediate tissue damage in SLE (158). Favor-
able outcomes with rituximab treatment were associated
with attaining complete B-cell depletion, reconstitution of

predominantly naive and immature B cells, and sustained
suppression of memory B cells and plasma cells, whereas
changes in anti-dsDNA antibodies did not correlate with
response (159–161). Development of antichimeric anti-
bodies against rituximab and elevated BAFF levels with
poor B-cell repopulation were associated with lack of re-
sponse (109,130,162).
Belimumab is a monoclonal IgG1 humanized antibody

against soluble BAFF and is the first biologic therapy to be
approved by the US Food and Drug Administration for
SLE in 50 years. Depletion of B cells by BAFF deprivation
using belimumab normalized complement levels and re-
duced dsDNA titers and SLE severity in two phase 3
randomized clinical trials (163). Post hoc analysis of the trial
data demonstrated improvement in renal flare rates and re-
duction in proteinuria with anti-BAFF, with greatest benefit
in those with high disease activity, suggesting efficacy in
lupus nephritis, while serologic memory to past vaccine im-
munizations was preserved (163–165). It remains to be ex-
amined whether the beneficial effects of anti-BAFF in lupus
are due to resetting aberrant checkpoints of peripheral B-cell
tolerance eliminating autoreactive clones and/or attenuating
T-cell activation by blocking costimulatory functions of
BAFF (65,166).
In contrast to anti-BAFF, treatment with atacicept,

a recombinant fusion protein that blocks both BAFF
(membrane-bound and soluble) and APRIL, led to severe
hypogammaglobulinemia with serious infections and wors-
ening proteinuria when given with mycophenolate mofetil
in lupus nephritis (60).
Taken together, these studies confirm the key require-

ment for APRIL and not BAFF in maintaining serologic
memory (60,165). Small molecule inhibitors of Btk and Syk
have shown early promise in mouse models of lupus ne-
phritis and await examination of efficacy in patients with
lupus nephritis (167).

AAV. AAV comprises systemic syndromes character-
ized by necrotizing inflammation of blood vessels; the most
significant clinicopathologic manifestation in the kidney is
rapidly progressive GN (168). AAV is characterized by
circulating ANCA, the principal targets of which are pro-
teinase 3 and myeloperoxidase present in neutrophils and
monocytes. In mouse models, the transfer of antimyeloper-
oxidase antibodies or B cells from affected animals trans-
fers disease to healthy animals (169). In humans,
B-lymphocyte clusters have been observed in rapidly pro-
gressive GN kidneys, similar to those described in lupus
nephritis (170). Aberrations in circulating B cells have been
described in patients with active disease in AAV with in-
creased BCR signaling, altered proportions of CD51 B cells,
and decreased Breg numbers or function (105–107,171). Not
surprisingly, therefore, rituximab in combination with corti-
costeroids is an effective (and Food and Drug Administration–
approved) therapy for inducing remission in patients
with AAV, but its efficacy in treating patients with advanced
renal disease has not been established yet (172). Rituximab
has also been successfully used to treat relapsing or refrac-
tory AAV and to maintain remission, and neither extent of
B-cell depletion nor ANCA titers correlate consistently with
response (173). The observation that circulating levels of
BAFF correlate with disease activity has prompted an ongo-
ing phase 3 trial to test belimumab combined with
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azathioprine in the maintenance of remission in patients
with AAV (63,173–175). Recent studies suggest an inverse
relationship between circulating Bregs in the peripheral
blood and disease activity or relapse in patients with
AAV, highlighting the need to better understand the role
of these important regulatory cells in controlling autoimmu-
nity (105–107,171).
HSP. HSP represents a spectrum of IgA nephropathy

with multiorgan involvement and vasculitis of small vessels.
Immune complexes formed with aberrantly glycosylated
IgA1 cause vasculitis that affects the kidney in approximately
50% of patients with HSP, with similar renal lesions as in IgA
nephropathy. CD5-expressing B1 B cells are increased in
patients with IgA nephropathy and are the source of
galactose-deficient IgA, which contributes to disease path-
ogenesis (9). Although anecdotal reports have shown a sig-
nificant response to rituximab in patients with HSP who
did not respond to conventional therapy, further studies
are needed to examine the use of B-cell depletion in treating
HSP (176–178).
Cryoglobulinemia. Polyclonal IgG with or without

monoclonal IgM forms immune complex deposits, causing
vasculitis and renal disease in patients with mixed cryo-
globulinemia. Hepatitis C virus (HCV) infection is the
main cause of mixed cryoglobulinemic vasculitis, and the
most common renal lesion is membranoproliferative GN.
HCV-related MZ B-cell expansion and aberrant activation-
induced cytidine deaminase expression sustains B-cell
activation and immunoglobulin production (179,180).
Rituximab treatment of HCV-associated mixed cryoglobu-
linemic vasculitis is superior to conventional therapy,
supporting a key role for B cells in disease pathogenesis
(181,182).
Idiopathic Membranous Nephropathy. Subepithelial

deposition of IgG in the glomerular capillary wall is a
hallmark of idiopathic membranous nephropathy and,
along with the presence of B cells in renal biopsy
specimens, implicates B lymphocytes in the pathogenesis
of the disease (183). Moreover, approximately 80% of
patients have antibodies against the podocyte-derived
antigen, phospholipase A2 receptor (PLA2R) (184).
Circulating levels of anti-PLA2R antibodies are a biomarker
for disease activity and response to treatment (185). Single-
arm studies suggest a role for rituximab in treating idiopathic
membranous nephropathy; however, responses are
detected in only about 60% of patients, with others pro-
gressing to ESRD (186). An ongoing phase 3 randomized
trial is comparing efficacy of rituximab to cyclosporine in
inducing long-term remission in idiopathic membranous
nephropathy (187). Results of another phase 2 open-label
clinical trial testing the efficacy of belimumab in PLA2R
autoantibody-positive idiopathic membranous nephrop-
athy on remission of proteinuria and autoantibodies are
awaited (ClinicalTrials.gov NCT01610492). An important
need is development of immunologic or other biomarkers to
help identify patients who are likely to successfully respond
to B-lymphocyte depletion.

Role in AKI
It is increasingly recognized that immune cells play an

important role in the pathogenesis of AKI caused by sepsis,
ischemia, or toxins. Recent studies identify the contribution

of B cells and antibodies in renal ischemia-reperfusion
injury (IRI). Following IRI, B cells infiltrate the kidney and
interfere with the repair phase, and in their absence injury
is attenuated with increased tubular proliferation (188,189).
Conversely, adoptive transfer of serum recapitulated
renal injury and transfer of B cells worsened tubular
atrophy (188,189). B1 B cells infiltrated kidneys under-
going IRI, and reduction of peritoneal B cells only
partially attenuated IRI; this finding suggests that other
B-cell lineages, such as FO and MZ B cells, could also
contribute to injury (189,190). Natural IgM enriched in
antileukocyte autoantibodies protected against IRI by
markedly attenuating leukocyte infiltration and activa-
tion of pathogenic T cells (191). Thus, early antibodies
produced by B cells, such as natural IgM, play a pro-
tective role, while their later antibody responses and/or
cellular functions could be pathogenic in IRI.

Concluding Remarks
B cells link the innate and adaptive arms of immune

response by their ability to respond rapidly to damage-
associated molecular patterns and antigenic stimuli, and
also form long-lived serologic memory. B cells perform
diverse functions, such as antibody secretion, cytokine pro-
duction, antigen presentation, and lymphoid architecture
organization, that intersect with both innate (such as DCs)
and adaptive T-cell roles in shaping the outcome of the
immune response toward immunity or tolerance (Figures 6
and 7). Disruption of B-cell tolerance by cell-intrinsic (BCR
signaling) or cell-extrinsic (BAFF, T-cell help) defects, dysre-
gulated BAFF levels, and impaired regulatory functions con-
tribute to pathogenesis of autoimmunity. Depleting B cells
could therefore potentially re-establish B-cell tolerance by
purging autoreactive clones, eliminate pathogenic anti-
body-producing B cells, and interrupt cellular functions of
B cells that enhance pathogenic T cell activation. However,
nonselective pan-depletion of B cells can also remove the
beneficial Bregs, increase BAFF levels, and potentially
worsen disease. Instead, targeting B cells to correct specific
defects or remove pathogenic B cells while sparing others
would prevent undesired immune activation or immune
deficiency. Future studies aimed at disease-specific under-
standing of how pathogenic B cells arise could facilitate not
only the development of novel selective therapies but also
the optimal use of existing therapies, such as rituximab and
belimumab, for best outcomes.
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Grützkau A, Grün JR, Horn K, Kühl AA, Dörner T, Bar-Or A,
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