B-CONVEXITY AND REFLEXIVITY IN BANACH SPACES

BY
DEAN R. BROWN ${ }^{1}$)

Abstract

A proof of James that uniformly nonsquare spaces are reflexive is extended in part to B-convex spaces. A condition sufficient for non- B-convexity and related conditions equivalent to non- B-convexity are given. The following theorem is proved: A Banach space is B-convex if each subspace with basis is B-convex.

0 . Introduction. The notion of a B-convex Banach space was introduced by A. Beck [1], [2] as a characterization of those Banach spaces X having the property that a certain strong law of large numbers holds for X valued random variables.

Definition. Let k be a positive integer and ϵ a positive number. X is said to be k, ϵ-convex if for any $\left\{x_{1}, \cdots, x_{k}\right\},\left\|x_{i}\right\| \leq 1, i=1, \cdots, k$, there is some choice of signs ξ_{1}, \cdots, ξ_{k} so that $\left\|\Sigma_{i=1}^{k} \xi_{i} x_{i}\right\| \leq k(1-\epsilon) . X$ is said to be B-convex if it is k, ϵ-convex for some k and ϵ.

Further study of B-convex spaces has been done by R. C. James [6], [7], D. P. Giesy [5] and C. A. Kottman [8]. Giesy showed that B-convex spaces have many of the properties of reflexive spaces. James conjectured that all B-convex spaces are reflexive, and proved the conjecture true for $2, \epsilon$-convex spaces. Both James and Giesy proved the conjecture true for B-convex spaces having an unconditional basis. Kottman extended James' 2, ϵ-convex proof to a larger subclass, P-convex spaces. Examples are known of spaces which are reflexive but not B-convex.
§1 of this paper adopts a part of James' $2, \epsilon$-convex theorem to all non- B-convex spaces, presents a condition sufficient for non- B-convexity, and gives related characterizations of non- B-convex spaces, though the conjecture of James remains open. §2 proves a theorem on B-convexity and subspaces with basis analogous to a theorem of Pelczyński on reflexivity and subspaces with basis.

For a Banach space $X, U(X)$ will denote the closed unit ball $\{x:\|x\| \leq 1\}$ of X.
I. Non-B-convexity. In James' proof [6] that 2, ϵ-convex spaces are reflexive, he defines for a Banach space X a sequence of numbers K_{n}, and shows that if X

[^0]is not reflexive then $K_{n} \leq 2 n$, and in that case X cannot be $2, \epsilon$-convex. We will extend the second step of this result to show that if K_{n} is a bounded sequence then X cannot be B-convex. The numbers K_{n}^{\prime}, to be defined almost the same as James' K_{n}, will be used instead of K_{n}. Another condition, which implies that $\left\{K_{n}^{\prime}\right\}$ is bounded, is introduced and is shown to be sufficient for non-B-convexity by a much simpler proof.

Let X be a Banach space. For each sequence $\left\{f_{j}\right\}$ of continuous linear functionals with unit norms and each increasing sequence of integers $\left\{p_{1}, \cdots, p_{2 n}\right\}$, let $S\left(p_{1}, \cdots, p_{2 n},\left\{f_{j}\right\}\right)$ denote the set of all x such that, for all k and $i, 3 / 4 \leq$ $(-1)^{i-1} f_{k}(x)$ if $p_{2 i-1} \leq k \leq p_{2 i}$ and $1 \leq i \leq n$. Let

$$
\begin{aligned}
K\left(n,\left\{f_{j}\right\}\right)= & \lim _{p_{1} \rightarrow \infty} \inf \lim _{p_{2} \rightarrow \infty} \inf \\
& \cdots \lim _{p_{2 n} \rightarrow \infty} \inf \left\{\|z\|: z \in S\left(p_{1}, \cdots, p_{2 n} ;\left\{f_{j}\right\}\right)\right\}
\end{aligned}
$$

and

$$
K_{n}^{\prime}=\inf \left\{K\left(n,\left\{f_{j}\right\}\right):\left\|f_{j}\right\|=1 \text { for all } j\right\} .
$$

James' definition of K_{n} is similar. It follows from the definitions that $K_{n}^{\prime} \leq K_{n}$ and $K_{n}^{\prime} \leq K_{n_{+1}}^{\prime}$ for all n.

Theorem 1.1. If the sequence $\left\{K_{n}^{\prime}\right\}$ for a Banach space X is bounded, then X is not B-convex.

Proof. For any positive integer k and any $0<\delta<2$ we will show X is not k, δ-convex by showing there are $x_{1}, \cdots, x_{k} \in U(X)$ such that for any choice of signs ξ_{1}, \cdots, ξ_{k} we have $\left\|\Sigma_{i=1}^{k} \xi_{i} x_{i}\right\|>k(1-\delta)$. Since the sequence $\left\{K_{n}^{\prime}\right\}$ is bounded, and monotone, we can choose m such that $K_{2 m}^{\prime} / K_{3 m 2}^{\prime}>1-\delta / 3$. Let $3 m 2^{k}=M$. Choose $\mu,\left\{f_{j}\right\}$ where $\left\|f_{j}\right\|=1$, and ϵ such that $0<\mu<\left(K_{M}^{\prime}\right)^{2} \delta / 3 K_{2 m}^{\prime}$, $K_{M}^{\prime}+\mu>K\left(M,\left\{f_{j}\right\}\right)$ and $0<\epsilon<\left(K_{M}^{\prime}\right)^{2} \delta / 3\left(K_{2 m}^{\prime}+K_{M}^{\prime}\right)$. From these inequalities, it follows that

$$
\left(K\left(2 m,\left\{f_{j}\right\}\right)-\epsilon\right) /\left(K\left(M,\left\{f_{j}\right\}\right)+\epsilon\right)>1-\delta .
$$

As will be described below, it is possible to choose an increasing set of integers $P=\left\{p_{i, j}: i=1, \ldots, k ; j=1, \ldots, 2 M\right\}$ having the following properties:
(1) For each $i=1, \cdots, k$ there is $u_{i} \in S\left(p_{i, 1}, \cdots, p_{i, 2 M} ;\left\{f_{j}\right\}\right)$ such that $\left\|u_{i}\right\| \leq K\left(M,\left\{f_{j}\right\}\right)+\epsilon$.
(2) For each choice of signs ξ_{1}, \ldots, ξ_{k} there is an increasing set of integers $\left\{\sigma_{1}, \cdots, \sigma_{4 m}\right\} \subset P$ such that
(2a) $(1 / k) \sum_{i=1}^{k} \xi_{i} u_{i} \in S\left(\sigma_{1}, \cdots, \sigma_{4 m} ;\left\{f_{j}\right\}\right)$, and
(2b) any element of $S\left(\sigma_{1}, \cdots, \sigma_{4 m} ;\left\{f_{j}\right\}\right)$ has norm greater than or equal to $K\left(2 m,\left\{f_{j}\right\}\right)-\epsilon$.

Let $x_{i}=u_{i} / K\left(M,\left\{f_{j}\right\}\right)+\epsilon$ for $i=1, \ldots, k$. From property (1), $\left\|x_{i}\right\| \leq 1$. From property (2), for any choice of signs ξ_{1}, \ldots, ξ_{k} we have

$$
\left\|\frac{1}{k} \sum_{i=1}^{k} \xi_{i} x_{i}\right\| \geq \frac{K\left(2 m,\left\{f_{j}\right\}\right)-\epsilon}{K\left(M,\left\{f_{j}\right\}\right)+\epsilon}>1-\delta
$$

which completes the proof except for the choice of P.
The choice of P is rather tedious. Integers are chosen successively in m blocks of increasing integers:

$$
\begin{aligned}
& P_{1}=\left\{p_{i, j}: i=j, \ldots, k ; j=1, \ldots, 2 \mathrm{M} / \mathrm{m}\right\} \\
& P_{2}=\left\{p_{i, j}: i=1, \ldots, k ; j=(2 \mathrm{M} / \mathrm{m})+1, \ldots, 4 \mathrm{M} / m\right\} \\
& \vdots \\
& P_{m} .
\end{aligned}
$$

Let the k-tuples of signs $\left(\xi_{1}, \cdots, \xi_{k}\right)$ be denoted $\Xi_{1}, \cdots, \Xi_{2 k}$. The integers of P_{1} are chosen successively in 2^{k} sets of increasing integers $P_{1}\left(\Xi_{1}\right), \ldots, P_{1}\left(\Xi_{2 k}\right)$. The number of integers in $P_{1}\left(\Xi_{n}\right)$ depends on Ξ_{n}; as will be shown, four are chosen for each plus sign in Ξ_{n} and eight for each minus sign, so that P_{1} has $6 k 2^{k}=$ $2 \mathrm{kM} / \mathrm{m}$ integers.

Property (2a) is provided by the order of choice of the integers. This order may be illustrated by supposing $\Xi_{n}=\left(\xi_{1}, \cdots, \xi_{k}\right)$ where $\xi_{\eta}=-1(\eta \neq 1$ or $k)$ and $\xi_{i}=+1$ for $i \neq \eta$. Suppose for each $i=1, \cdots, k$, the last integers of $P_{1}\left(\Xi_{n-1}\right)$ are $p_{i, j(i)}$. The order of choice of integers of $P_{1}\left(\Xi_{n}\right)$ is shown in Figure 1. The integers $\sigma_{1}, \cdots, \sigma_{4}$ of property (2) for this choice of signs are $p_{k, j(k)+1}, p_{1, j(1)+1}$, $p_{k, j(k)+3}, p_{1, j(1)+4}$. The sets $P_{2}, P_{3}, \ldots, P_{m}$ are chosen in succession by the same method. The integers $\sigma_{1}, \cdots, \sigma_{4 m}$ for a choice of signs Ξ_{n} are in the set $\left\{P_{1}\left(\Xi_{n}\right), \ldots, P_{m}\left(\Xi_{n}\right)\right\}$. Properties (1) and (2b) are provided by requiring that the integers chosen satisfy appropriate inequalities at each step.

The proof of Theorem 1.1 is rather tedious. We now present a strengthening of the condition " $\left\{K_{n}^{\prime}\right\}$ bounded" which will be sufficient for non- B-convexity in a much simpler way.

Condition 1. For some $0<\epsilon<1, U\left(X^{*}\right)$ contains a sequence $\left\{f_{j}\right\}$ such that for any $m \geq 1$ and any choice of signs ξ_{1}, \cdots, ξ_{m} there is $x \in U(X)$ satisfying $f_{j}\left(\xi_{j} x\right)>\epsilon, j=1, \cdots, m$.

Theorem 1.2. If a Banach space satisfies Condition 1, then the sequence $\left\{K_{n}^{\prime}\right\}$ for that space is bounded.

Proof. We will show $K_{n}^{\prime} \leq 3 / 4 \epsilon$ by showing that for $\left\{f_{j}\right\}$ as asserted in Con-

Figure 1. Order of choice of $P_{1}\left(\Xi_{n}\right)$
For order of choice, read down first column, then down second column, etc.

$P_{1, j(1)+1}$	$P_{1, j(1)+2}$	$P_{1, j(1)+3}$	$P_{1, j(1)+4}$
\vdots	\vdots	\vdots	\vdots
$P_{\eta-1, j(\eta-1)+1}$	$P_{\eta-1, j(\eta-1)+2}$	$P_{\eta-1, j(\eta-1)+3}$	$P_{\eta-1, j(\eta-1)+4}$
$P_{\eta, j(\eta)+1}$			
$P_{\eta, j(\eta)+2}$			
$P_{\eta, j(\eta)+3}$	$P_{\eta, j(\eta)+4}$	$P_{\eta, j(\eta)+5}$	$P_{\eta, j(\eta)+6}$
			$P_{\eta, j(\eta)+7}$
			$P_{\eta, j(\eta)+8}$
$P_{\eta+1, j(\eta+1)+1}$	$P_{\eta+1, j(\eta+1)+2}$	$P_{\eta+1, j(\eta+1)+3}$	$P_{\eta+1, j(\eta+1)+4}$
\vdots	\vdots	\vdots	\vdots
$P_{k, j(k)+1}$	$P_{k, j(k)+2}$	$P_{k, j(k)+3}$	$P_{k, j(k)+4}$

dition 1 , and any $p_{1}, \cdots, p_{2 n}$ there is $y \in S\left(p_{1}, \cdots, p_{2 n} ;\left\{f_{j} /\left\|f_{j}\right\|\right\}\right)$ and $\|y\| \leq$ $3 / 4 \epsilon$. Choose $\xi_{k}, k=1, \cdots, p_{2 n}$, so that if $p_{2 i-1} \leq k \leq p_{2 i}, 1 \leq i \leq n$, then $\xi_{k}=$ $(-1)^{i-1}$. Let $y=3 x / 4 \epsilon$, where x is that element asserted by Condition 1 .

Theorem 1.3. The following conditions are equivalent to non-B-convexity:
Condition 2. For some $0<\epsilon<1$ and any $k \geq 2, U\left(X^{*}\right)$ contains f_{1}, \cdots, f_{k} such that for any choice of signs ξ_{1}, \cdots, ξ_{k} there is $x \in U(X)$ satisfying $f_{j}\left(\xi_{j} x\right)>\epsilon, j=1, \cdots, k$.

Condition 3. For some $0<\epsilon<1$ and any $k \geq 2, U(X)$ contains x_{1}, \cdots, x_{k} such that for any choice of signs ξ_{1}, \cdots, ξ_{k} there is $f \in U\left(X^{*}\right)$ satisfying $f\left(\xi_{j} x_{j}\right)>\epsilon, j=1, \cdots, k$.

Proof. We first show non- B-convexity implies Condition 2. Choose any $0<\epsilon<1$. For a given $k \geq 2$ choose δ such that $k-1+\epsilon<k(1-2 \delta)$. Since X is not B-convex, by [5 , Theorem II-3], X^{*} is not B-convex. Hence there is $f_{1}, \cdots, f_{k} \in U\left(X^{*}\right)$ such that for all choices of signs $\xi_{1}, \cdots, \xi_{k},\left\|\sum_{i=1}^{k} \xi_{i} f_{i}\right\|>k(1-\delta)$. Thus, for each choice of signs there is $x \in U(X)$ such that $\sum_{i=1}^{k} \xi_{i} f_{i}(x)>k(1-2 \delta)$. If there were some j such that $f_{j}\left(\xi_{j} x\right) \leq \epsilon$, then $\sum_{i=1}^{k} \xi_{i} f_{i}(x) \leq k-1+\epsilon<k(1-2 \delta)$.

To prove the converse, suppose X is B-convex and that Condition 2 is satisfied. Since X^{*} is also B-convex, by [5, Lemma I-4], $\lim _{k \rightarrow \infty} a_{k}\left(X^{*}\right)=0$, where

$$
a_{k}\left(X^{*}\right)=\sup \left\{\inf \left\{\frac{1}{k} \sum_{i=1}^{k} \xi_{i} x_{i}: \xi_{1}, \cdots, \xi_{k}= \pm 1\right\}: f_{1}, \cdots, f_{k} \in U\left(X^{*}\right)\right\}
$$

and we may choose k so that $a_{k}\left(X^{*}\right)<\epsilon$. Therefore, for f_{1}, \cdots, f_{k} asserted by Condition 2 there is some choice of signs such that $\left\|\sum_{j=1}^{k} \xi_{j} f_{j}\right\|<k \epsilon$. But by Condition $2, f_{j}\left(\xi_{j} x\right)>\epsilon$, so that $\sum_{j=1}^{k} \xi_{j} f_{j}(x)>k \epsilon$ and $\left\|\sum_{j=1}^{k} \xi_{j} f_{j}\right\|>k \epsilon$ which is a contradiction.

Condition 3 may be shown equivalent to non-B-convexity by similar proofs.
Corollary 1.4. If a Banach space satisfies Condition 1 it is not B-convex.
We do not know whether nonreflexivity implies $\left\{K_{n}^{\prime}\right\}$ bounded or Condition 1. There is however a large class of nonreflexive, non-B-convex spaces satisfying Condition 1 , listed in the following easily proved proposition.

Proposition 1.5. The Banach spaces $c_{0}, 1_{1}$, and all spaces containing c_{0} or 1_{1} satisfy Condition 1.
2. B-convexity and basis. It is known that a Banach space is reflexive if each subspace with basis is reflexive [9]. In this section we show that a Banach space is B-convex if each subspace with basis is B-convex.

As usual we say that $\left\{x_{i}\right\} \subset X$ is a basis for X if for each $x \in X$ there is a unique sequence of numbers $\left\{a_{i}\right\}$ so that $\lim _{n \rightarrow \infty}\left\|\sum_{i=1}^{n} a_{i} x_{i}-x\right\|=0$. It is well known that $\left\{x_{i}\right\}$ is a basis for X if there is some number k so that for any integers n and q and any sequence of numbers $\left\{a_{i}\right\}$ we have

$$
\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\| \leq k\left\|\sum_{i=1}^{n+q} a_{i} x_{i}\right\|
$$

We will prove the main theorem of this section by constructing a basic sequence in an arbitrary non- B-convex space in such a way that the span of this sequence is not B-convex. The technique for construction of this basic sequence is an adaption of the method of Day [3] and Gelbaum [4]. It relies on the following lemmas:

Lemma 2.1. If X is finite dimensional, for any $\epsilon>0$ there is $\left\{f_{i}\right\}_{i=1}^{n} \subset U\left(X^{*}\right)$ such that, for any x,

$$
\|x\| \leq(1+\epsilon) \max \left\{f_{i}(x): i=1, \cdots, n\right\} .
$$

Lemma 2.2. If $\left\{f_{i}\right\}_{i=1}^{n} \subset X^{*}$ and $Y=\bigcap_{i=1}^{n} f_{i}^{-1}(0)$, then Y is a space of finite codimension in X; that is, there is a finite dimensional subspace Z so that $X=Y \oplus Z$.

Theorem 2.3. If X is not B-convex it contains a subspace with basis not B-convex.

Proof. Let $\left\{\delta_{i}\right\}$ be a sequence of positive numbers less than one tending to zero. Let $\left\{k_{i}\right\}$ be a sequence of integers tending to infinity. Let $p(0)=0, p(m)=$ $\sum_{i=1}^{m} k_{i}, m=1,2, \cdots$.

The subspace to be constructed will be the closed span of a sequence $\left\{x_{i}\right\}$ having the following properties:
(1) there is a sequence $\left\{\epsilon_{i}\right\}$ tending to zero so that for each $m=1,2, \ldots$, the space $\left[x_{i}\right]_{i=p(m-1)+1}^{p(m)}$ is an ϵ_{m}^{i} isometric image of $1_{1}^{k_{m}}$, in particular,

$$
\left(1-\epsilon_{m}\right) \sum_{i=p(m-1)+1}^{p(m)}\left|a_{i}\right| \leq\left\|\sum_{i=p(m-1)+1}^{p(m)} a_{i} x_{i}\right\| \leq \sum_{i=p(m-1)+1}^{p(m)}\left|a_{i}\right|
$$

(2) For any $\left\{a_{i}\right\}, n, q$,

$$
\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\| \leq\left(3+\delta_{n}\right)\left\|\sum_{i=1}^{n+q} a_{i} x_{i}\right\|
$$

Property (1) shows that the subspace is not B-convex, and property (2) shows that $\left\{x_{i}\right\}$ is a basis.

For $\left\{\delta_{i}\right\},\left\{k_{i}\right\}$ as above there are $\left\{\epsilon_{i}\right\},\left\{\eta_{i}\right\}$ such that
(3) $\epsilon_{i} \rightarrow 0$.
(4) If $1 \leq n \leq p(1)$ then $\left(1+\eta_{1}\right) /\left(1-\epsilon_{1}\right) \leq 1+\delta_{n}$.
(5) If $p(m)<n \leq p(m+1)$ then

$$
1+\eta_{m}+\left(2+\eta_{m}+\eta_{m+1}\right) /\left(1-\epsilon_{m+1}\right) \leq 3+\delta_{n}
$$

$\left[x_{i}\right]_{i=1}^{p(m)}$ will be denoted by $L_{p(m)} .\left\{x_{i}\right\}$ will be constructed in blocks by induction on m. In the induction step, from a previously constructed subspace $\Lambda_{m-1},\left\{x_{i}\right\}_{i=p(m-1)+1}^{p(m)}$ will be chosen satisfying (1). Then a subspace Λ_{m} of Λ_{m-1}, of finite codimension in X, will be constructed so that $\Lambda_{m} \cap L_{p(m)}=0$ and the projection $P_{m}: \Lambda_{m} \oplus L_{p(m)} \rightarrow L_{p(m)}$ satisfies $\left\|P_{m}\right\|<1+\eta_{m}$. Finally (2) will be proved.

Let $m=1$. Since X is not B-convex, we can choose $\left\{x_{i}\right\}_{i=1}^{k_{1}=p(1)} \subset U(X)$ satisfying (1). To construct Λ_{1} choose $\left\{f_{i}\right\}_{i=1}^{q(1)} \subset U\left(L_{p(1)}^{*}\right)$ by Lemma 2.1 and extend them to X without increase of norm so that if $x \in L_{p(1)}$,

$$
\|x\| \leq\left(1+\eta_{1}\right) \max \left\{f_{i}(x): i=1, \cdots, q(1)\right\}
$$

Let $\Lambda_{1}=\bigcap_{i=1}^{q(1)} f_{i}^{-1}(0)$. By Lemma $2.2, \Lambda_{1}$ is of finite codimension in X, and $L_{p(1)} \cap \Lambda_{1}=0$, so there is a projection $P_{1}: L_{p(1)} \oplus \Lambda_{1} \rightarrow L_{p(1)}$. To see that $\left\|P_{1}\right\| \leq 1+\eta_{1}$ we have for any $x \in L_{p(1)}, \lambda \in \Lambda_{1}$, and some $i=1, \cdots, q(1)$, $\|P(x+\lambda)\|=\|x\| \leq\left(1+\eta_{1}\right) f_{i}(x)=\left(1+\eta_{1}\right) f_{i}(x+\lambda) \leq\left(1+\eta_{1}\right)\|x+\lambda\|$.

Now suppose we have $\left\{x_{i}\right\}_{i=1}^{p(1)}$ satisfying (1), $\left\{f_{i}\right\}_{i=1}^{q(m-1)} \subset U\left(X^{*}\right)$, and for
$n=1,2, \ldots, m-1, \Lambda_{n}=\bigcap_{i=1}^{q(n)} f_{i}^{-1}(0)$, such that $\left\|P_{n}\right\| \leq 1+\eta_{n}$ where $P_{n}: \Lambda_{n} \oplus$ $L_{p(n)} \rightarrow L_{p(n)}$. Since Λ_{m-1} is of finite codimension in X, by [5 , Theorem 2.12], it is not B-convex so that there are $\left\{x_{i}\right\}_{i=p(m-1)+1}^{p(m)} \subset U\left(\Lambda_{m-1}\right\}$ satisfying (1). By Lemma 2.1 choose $\left\{f_{i}\right\}_{i=q(m-1)+1}^{q(m)} \subset U\left(X^{*}\right)$ so that if $x \in L_{p(m)}$,

$$
\|x\| \leq\left(1+\eta_{m}\right) \max \left\{f_{i}(x): i=q(m-1)+1, \ldots, q(m)\right\} .
$$

Let $\Lambda_{m}=\bigcap_{i=1}^{q(m)} f_{i}^{-1}(0)$. Then exactly as in the $m=1$ case, $L_{p(m)} \cap \Lambda_{m}=0$ and $\left\|P_{m}\right\| \leq 1+\eta_{m}$.

To show (2) holds we first observe, for any $a_{i}, i=1,2, \cdots$,
A. $\left\|\Sigma_{i=1}^{p(m)} a_{i} x_{i}\right\| \leq\left(1+\eta_{m}\right)\left\|\Sigma_{i=1}^{p(m)+q} a_{i} x_{i}\right\|$ for any $q=1,2, \ldots$, since $\left\|P_{m}\right\|$ $\leq 1+\eta_{m}$.

Further, we observe
B. If $p(m-1)<n \leq p(m)$ then

$$
\left\|\sum_{i=p(m-1)+1}^{n} a_{i} x_{i}\right\| \leq \frac{1}{1-\epsilon_{m}}\left\|\sum_{i=p(m-1)+1}^{p(m)} a_{i} x_{i}\right\|,
$$

since

$$
\left\|\sum_{i=p(m-1)+1}^{n} a_{i} x_{i}\right\| \leq \sum_{i=p(m-1)+1}^{n}\left|a_{i}\right| \leq \sum_{i=p(m-1)+1}^{p(m)}\left|a_{i}\right| \leq \frac{1}{1-\epsilon_{m}}\left\|\sum_{p(m-1)+1}^{p(m)} a_{i} x_{i}\right\|,
$$

using the inequalities of (1).
(2) can be proved in four cases as follows:

Case 1. $1 \leq n<n+q<p(1)$. Using B, with $m=1$, and (4) we obtain $\left\|\Sigma_{i=1}^{n} a_{i} x_{i}\right\| \leq\left(1+\delta_{n}\right)\left\|\sum_{i=1}^{n+q} a_{i} x_{i}\right\|$.

Case $2.1 \leq n \leq p(1)<n+q$. The above inequality can be-proved using B and A, where $m=1$, and (4).

Case 3. There is m so that $p(m)<n<n+q \leq p(m+1)$. Inequality (2) can be proved by using A, B with m replaced by $m+1$, and (5).

Case 4. There is m so that $p(m)<n \leq p(m+1)<n+q$. Inequality (2) can be proved by using A, B with m replaced by $m+1$, A with m replaced with $m+1$, and (5).

REFERENCES

1. A. Beck, A convexity condition in Banach spaces and the strong law of large numbers, Proc. Amer. Math. Soc. 13 (1962), 329-334. MR 24 \#A3681.
2. ——, On the strong law of large numbers, Ergodic Theory (Proc. Internat. Sympos., Tulane Univ., New Orleans, La., 1961), Academic Press, New York, 1963, pp. 21-53. MR 28 \#3470.
3. M. M. Day, On the bas is problem in normed spaces, Proc. Amer. Math. Soc. 13 (1962), 655-658. MR 25 \#1435.
4. B. Gelbaum, Notes on Banach spaces and bases, An. Acad. Brasil Ci. 30 (1958), 29-36. MR 20 \#5419.
5. D. P. Giesy, On a convexity condition in normed linear spaces, Trans. Amer. Math. Soc. 125 (1966), 114-146. MR 34 \#4866.
6. R. C. James, Uniformly non-square Banach spaces, Ann. of Math. (2) 80 (1964), 542-550. MR 30 \#4139.
7. Convexity and smoothness, Proc. Colloquium on Convexity (Copenhagen, 1965), Kぬbenhavns Univ. Mat. Inst., Copenhagen, 1967, pp. 165-167. MR 36 \#657.
8. C. A. Kottman, Packing and reflexivity in Banach spaces, Trans. Amer. Math. Soc. 150 (1970), 565-576. MR 42 \#827.
9. A. Pelczyński, A note on the paper of I. Singer, 'Basic sequences and reflexivity of Banach spaces,' Studia Math. 21 (1961/62), 371-374. MR 26 \#4156.

DEPARTMENT OF MATHEMATICS, YOUNGSTOWN STATE UNIVERSITY, YOUNGSTOWN, OHIO 44503

[^0]: Received by the editors July 7, 1971.
 AMS (MOS) subject classifications (1970). Primary 46B10; Secondary 46B05, 46B15.
 Key words and phrases. B-convexity, reflexivity, P-convexity, uniform-convexity, uniformly nonsquare, uniformly non $1_{n}^{(1)}$, geometry of the unit ball, Schauder basis.
 (1) This work represents a part of the author's Ph. D. thesis which was submitted to the Ohio Ŝtate University under the helpful direction of Professor David W. Dean.

