β -Ga₂O₃ material properties, growth technologies, and devices: a review

Masataka Higashiwaki 回

Abstract

Rapid progress in β -gallium oxide (β -Ga₂O₃) material and device technologies has been made in this decade, and its superior material properties based on the very large bandgap of over 4.5 eV have been attracting much attention. β -Ga₂O₃ appears particularly promising for power switching device applications because of its extremely large breakdown electric field and availability of large-diameter, high-quality wafers manufactured from melt-grown bulk single crystals. In this review, after introducing material properties of β -Ga₂O₃ that are important for electronic devices, current status of bulk melt growth, epitaxial thin-film growth, and device processing technologies are introduced. Then, state-of-the-art β -Ga₂O₃ Schottky barrier diodes and field-effect transistors are discussed, mainly focusing on development results of the author's group.

Keywords: Gallium oxide (Ga₂O₃)

1 Introduction

There is no room for doubt that silicon (Si) has been the fundamental material serving as the backbone technology of semiconductor device electronics. Generally speaking, up to now, the vast majority of electronic systems are based on Si devices such as metal-oxide-semiconductor field-effect transistors (MOSFETs), bipolar transistors, and some types of diodes. Their performance has tremendously improved by means of uninterrupted innovation in its material and device processing technologies for over the last 70 years. However, performance of Si devices has almost reached the fundamental upper limit expected from its material properties, and it is difficult to keep improving the performance at the same pace as before. In this current situation, research and development (R&D) of FETs and diodes exploiting new semiconductors, which have better physical properties for specific applications than those of Si, has been getting more active from expectations that they may open up a new field of semiconductor electronics and/or elicit characteristics that far

Correspondence: mhigashi@nict.go.jp

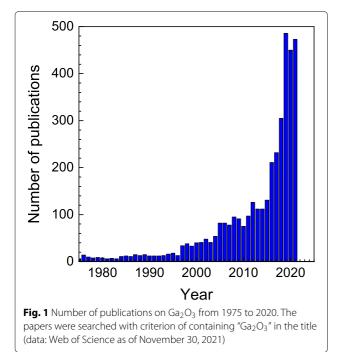
Green ICT Device Laboratory, Koganei Frontier Research Center, Advanced ICT Research Institute, National Institute of Information and Communications Technology, 4–2–1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan

exceed those of Si devices. Most of semiconductor physical properties are determined by their bandgap; therefore, bandgap engineering has been one of the main directions for exploring new materials, and a new semiconductor should have a different bandgap energy (E_g) from that of any existing material. Among a variety of new materials, wide bandgap (WBG) semiconductors are expected to be promising for power switching applications, since the WBG devices can offer advantages of high efficiency and power density over Si devices. The two most promising WBG semiconductors are silicon carbide (SiC) and gallium nitride (GaN); their FETs and diodes have already penetrated into the market.

Recently, a new category called "ultrawide bandgap (UWBG) semiconductor" has attracted great attention due to their strong potential providing new and exciting research opportunities for various applications, and R&D on UWBG materials and devices continues to expand over the years [1]. The UWBG semiconductors are defined by $E_{\rm g}$ exceeding those of SiC (3.3 eV) and GaN (3.4 eV). High Al-content AlGaN, diamond, and cubic boron nitride are included in the UWBG materials. A new semiconductor gallium oxide (Ga₂O₃), which is the main topic of this

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Open Access



AAPPS Bulletin

article, is a key material among the UWBG semiconductors. Ga_2O_3 can offer two fundamental advantages over SiC and GaN: a very large E_g and ease of bulk wafer production.

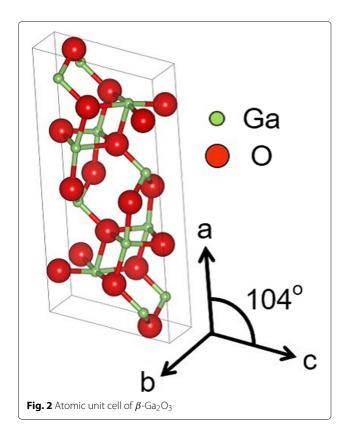
 Ga_2O_3 is by no means a novel material; it has a long R&D history for over 70 years [2]. However, Ga_2O_3 had been largely ignored by a majority of semiconductor researchers and engineers, which resulted in it falling behind SiC and GaN. The achievement of the first single-crystal Ga_2O_3 FET in 2011 is widely credited with changing the situation and invigorating Ga_2O_3 R&D [3]. As shown in Fig. 1, the number of publications on Ga_2O_3 significantly increases in recent years according to increased recognition among semiconductor researchers and engineers that Ga_2O_3 has unique and attractive material properties for various optoelectronics applications.

This article provides a comprehensive review on current β -Ga₂O₃ material and device technologies. It should be noted that although several polymorphs exist for Ga₂O₃ as introduced in Section 2.1, discussions in this review will just focus on β -Ga₂O₃. Following this introduction in Section 1, Section 2 describes basic physical properties of β -Ga₂O₃. Sections 3 and 4 provide melt bulk and epitaxial thin-film growth technologies for β -Ga₂O₃, respectively. Selected elemental device processing technologies are given in Section 5. Development history of β -Ga₂O₃ Schottky barrier diodes (SBDs) and FETs in the author's group are introduced in Sections 6 and 7, respectively, together with representative achievements reported from other institutes. Section 8 concludes this article.

2 Physical properties

The important material parameters of β -Ga₂O₃ for electronic device applications are listed in Table 1, together with those of Si, SiC, and GaN. The material parameters and the other important features are discussed in this section.

2.1 Polymorph


Five types of Ga₂O₃ polymorphs denoted by α , β , γ , δ , and ϵ were first reported in 1952 [2]. The β phase is a thermodynamically stable form, and the others are metastable. β -Ga₂O₃ has the β -gallia monoclinic structure with lattice constants of 12.2, 3.0, and 5.8 Å in the *a*, *b*, and *c* axes, respectively, and the angle between the *a* and *c* axes is about 104° [4]. A schematic of the β -Ga₂O₃ unit cell is depicted in Fig. 2. The β -Ga₂O₃ crystal structure is composed of two inequivalent Ga sites and three inequivalent O sites. Ga(I) and Ga(II) are tetrahedrally and octahedrally coordinated with O, respectively. O(I) and O(II) have threefold Ga coordination, while O(III) has fourfold. The important feature of β -Ga₂O₃ in contrast to the other polymorphs is that bulk single crystals can be synthesized by melt growth methods; the details will be given in Section 3.

2.2 Band structure

 β -Ga₂O₃ has an isotropic and dispersive conduction band minimum comprised of the Ga 4*s* states, and an anisotropic and fairly flat valence band maximum made up of the O 2*p* states with contributions of the Ga 3*d* and 4*s* orbitals [5–7]. These band structures provide sufficient electron conduction associated with a reasonable electron effective mass of ~0.3*m*₀ (*m*₀: free electron mass)

Table 1 Comparisons of material properties between major semiconductors and β -Ga₂O₃

	Si	4H-SiC	GaN	β -Ga ₂ O ₃
Bandgap E _g (eV)	1.1	3.3	3.4	4.5
Relative dielectric constant ϵ	11.8	9.7	9.0	10.2-12.4
Breakdown electric field E _{br} (MV/cm)	0.3	2.5	3.3	> 7
Room-temperature electron mobility μ (cm ² /Vs)	1400	1000	1200	~200
Saturation electron velocity V_{sat} (×10 ⁷ cm/s)	1.0	2.0	2.5	1.0–1.5
Thermal conductivity (W/cmK)	1.5	2.7	2.1	0.11-0.27
Baliga's figure of merit $(=\epsilon \mu E_{br}^{3})$	1	340	870	1570–1900
Johnson's figure of merit ($= E_{br}^2 V_{sat}^2$)	1	280	760	540-1200

[5–8] and limited hole conduction due to three factors described in Section 2.6.2.

First-principles calculations based on hybrid density functional theory predicted an $E_{\rm g}$ of 4.6–4.9 eV for β -Ga₂O₃ [5–7]. For a long term, there has also been intense discussion on whether β -Ga₂O₃ is a direct or an indirect semiconductor. As an answer to this scientific question, Onuma et al. reported that energies of absorption edges in β -Ga₂O₃ melt-grown bulk single crystals can be divided into six ranges within 4.4-5.3 eV according to the selection rules of optical transition caused by the anisotropic valence band maximum and that the direct and indirect $E_{\rm g}$ were estimated to be 4.48 and 4.43 eV, respectively [9]. In other words, these experimental results indicate that the energy difference between the direct and indirect $E_{\rm g}$ of β -Ga₂O₃ is negligibly small at room temperature.

2.3 Breakdown electric field

The breakdown electric field $(E_{\rm br})$ is an intrinsic property that each material has and corresponds to the maximum electric field that the material structure can support before avalanche breakdown. The larger $E_{\rm br}$ leads to greater voltage blocking capability of devices, that is, a larger breakdown voltage ($V_{\rm br}$). Theoretical calculation predicted that β -Ga₂O₃ possesses an extremely large $E_{\rm br}$ of over 8 MV/cm [10]. However, in fact, the breakdown events for all of the Ga₂O₃ FETs and diodes reported so far were caused by their permanent failure due to electric field concentration at a gate or an anode electrode edge; therefore, the intrinsic $E_{\rm br}$ of β -Ga₂O₃ in terms of the avalanche breakdown has never been observed. For reference, the maximum $E_{\rm br}$ experimentally derived from structural failure of a high-k dielectric/*n*-Ga₂O₃ diode was ~7 MV/cm [11].

2.4 Electron mobility

The primitive cell of β -Ga₂O₃ gives rise to many phonon modes due to a lack of symmetry for its monoclinic structure. Among the various modes, the longitudinal optical (LO) phonon with energies of 20–40 meV has the highest impact on low-field electron mobility (μ) in β -Ga₂O₃ bulks [12]. This is the main factor why the room temperature μ of *n*-Ga₂O₃ is theoretically expected to be limited up to ~200 cm²/Vs [13, 14], even though the electron effective mass is comparable to those of the other WBG semiconductors. Actually, the peak room temperature and low temperature μ of *n*-Ga₂O₃ films experimentally measured were 150–180 and 5000–10,000 cm²/Vs, respectively [15–18].

2.5 Saturation electron velocity

The high-field carrier transport is another important factor having a large impact on electronic device performance. The saturation electron velocity (v_{sat}) in β -Ga₂O₃ was theoretically predicted to be $1-2 \times 10^7$ cm/s [19], which is equivalent to that in Si and about half of those in SiC and GaN. It should be noted that the v_{sat} is sufficiently good for many of high-frequency applications.

2.6 Doping

2.6.1 n-type

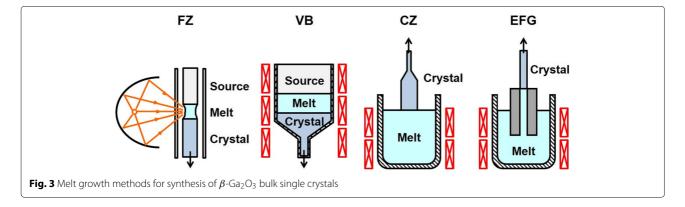
Si, germanium (Ge), and tin (Sn) are often used as donor dopants for β -Ga₂O₃. These group IV elements form shallow donor states in Ga₂O₃ [20, 21], and their activation ratios at room temperature are very high (~100% for Si). The electron density (*n*) in β -Ga₂O₃ can be precisely controlled in a wide range of 10¹⁵-10²⁰ cm⁻³ by using the donor dopants. As for controllability of *n*-type conductivity, Ga₂O₃ is absolutely the same as other semiconductors.

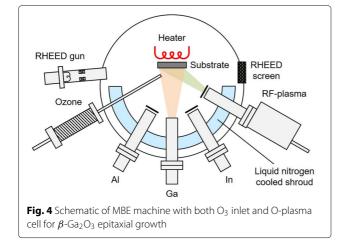
2.6.2 p-type

Contrary to the ease of *n*-type doping, a major drawback of Ga_2O_3 has been a lack of hole-conductive *p*-type material, which is the most serious limitation for development of Ga_2O_3 devices. In fact, there has been no report on successful *p*-type doping with effective hole conduction, even though there are some potential acceptor dopants: magnesium (Mg), zinc (Zn), and beryllium (Be) as cation substituting dopants and nitrogen (N) as an anion substituting one. There are three factors to make it almost impossible to realize hole-conductive *p*-type Ga_2O_3 . First, it is generally difficult for single-crystal oxide semiconductors to form shallow acceptor states, since their valence band states are mainly composed of the weakly interacting O 2p orbitals as discussed in Section 2.2. Theoretical calculations predicted that all the acceptor candidates would exhibit extremely large activation energies of over 1 eV [22, 23]. Another expected factor limiting hole conductivity is the very low μ and diffusion constant owing to the heavy hole effective mass originated from the flat valence band maximum [5-7]. Furthermore, it was also theoretically predicted that holes localize in β -Ga₂O₃ as small polarons due to lattice distortion, as opposed to being free holes widely populating [24–26]. From the three factors, hole-conductive p-Ga₂O₃ seems to be hardly realized. However, p-Ga₂O₃ layers formed by the deep-acceptor doping are useful to form a large energy barrier of over 3 eV in n-Ga₂O₃ by utilizing the built-in potential at the p-njunction.

2.7 Thermal conductivity

The thermal conductivity is one of the important parameters to make a great impact on performance of highpower devices, since it limits dissipation capacity of heat generated by on-state conduction loss in the channel and/or drift regions. Ga2O3 has a significantly lower thermal conductivity compared to those of the other power semiconductors as listed in Table 1 [27-30]. The thermal conductivity of β -Ga₂O₃ is anisotropic due to the monoclinic lattice structure; they were estimated to be 0.22-0.27 W/cmK in the [010] direction (highest) and 0.11-0.14 W/cmK in the [100] direction (lowest). The low thermal conductivity will not only hamper high-power device performance but also limit long-term device reliability. Hence, thermal management is one of the key technical challenges for future practical applications and industrialization of Ga₂O₃ RF and power devices.


2.8 Device figure of merit


There are several device figures of merit (FOMs) to estimate how suitable a semiconductor material is for specific device application. Here, two FOMs are discussed: Baliga's FOM (BFOM) [31, 32] and Johnson's FOM (JFOM) [33]. BFOM is commonly used as a parameter to estimate potential of semiconductor materials for power switching device applications. The BFOM of β -Ga₂O₃ is several times larger than those of SiC and GaN. This is because BFOM is proportional to the cube of $E_{\rm br}$ but only linearly proportional to μ . Therefore, we can expect from the BFOM that β -Ga₂O₃ power devices can offer lower conduction loss compared with the other semiconductor devices listed in Table 1 when designing the structure for a given voltage.

We use JFOM to estimate material potential for RF power FET applications. The JFOM of β -Ga₂O₃ is estimated to be the same level as or a little inferior to that of GaN. However, the actual power efficiency of FETs used in RF amplifiers is generally ~50%, that is, the other half loss converts to heat. Thus, it is expected that the poor heat dissipation capacity of β -Ga₂O₃ attributed to its low thermal conductivity becomes much more serious for applications to RF devices rather than power switching devices.

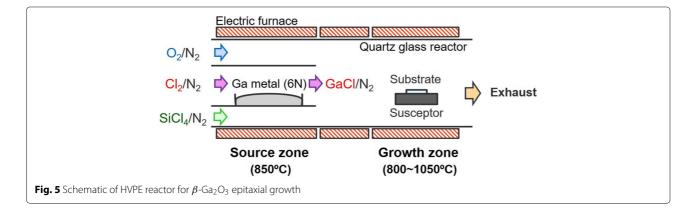
3 Melt bulk growth

The availability of affordable native wafers manufactured from melt-grown bulk single crystals is one of the distinctive features for β -Ga₂O₃ and offers a significant advantage of Ga2O3 over SiC and GaN in terms of wafer size, crystal quality, and production cost, because SiC and GaN bulk crystals require alternative synthesis techniques using higher pressure and temperature. β -Ga₂O₃ bulk single crystals have been synthesized by various melt growth methods illustrated in Fig. 3, such as floating zone [34, 35], Czochralski (CZ) [36, 37], vertical Bridgman [38], and edge-defined film-fed growth (EFG) [35, 39]. Si or Sn is usually used as a donor dopant to control n_1 , and semi-insulating Ga₂O₃ bulks are producible through compensation of residual donors with Fe or Mg doping. Now, *n*-type and semi-insulating β -Ga₂O₃ wafers manufactured from CZ and EFG bulks are made commercially available to the public, which are of sufficiently high quality for development of various Ga₂O₃ devices.

4 Epitaxial growth

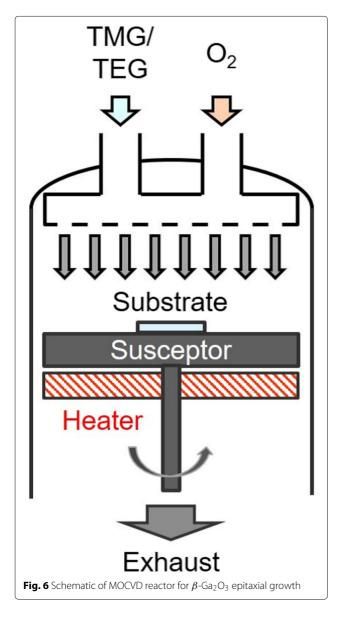
4.1 Molecular beam epitaxy

Molecular beam epitaxy (MBE) is an epitaxial growth technique conducted in ultrahigh vacuum and enables precise control of layer thickness. As other compound semiconductors, MBE has been the most commonly used for thin-film growth of Ga₂O₃ in the early days of R&D. Figure 4 depicts a schematic of a typical MBE machine for Ga_2O_3 growth. An effusion cell is used to sublimate a Ga metal source in order to form molecular beam flux that travels in a line of sight toward a substrate. Ga₂O₃ epitaxial growth happens on the substrate by means of oxidization of supplied Ga atoms using oxidant such as ozone (O₃) and oxygen (O) radicals. Two-step reaction happens between Ga and O during Ga_2O_3 MBE growth [40]. In the first stage of growth, volatile gallium suboxides (Ga₂O) are formed by oxidization of supplied Ga atoms on the growth surface. Then, in the second stage, Ga2O desorbs from the growth surface or is incorporated into a Ga₂O₃ epitaxial layer by becoming Ga₂O₃ through a further oxidization process. Due to this unique growth kinetics, the growth rate strongly depends on growth parameters such as O/Ga flux ratio, growth temperature, and substrate orientation, since it is determined by competition between the Ga₂O


desorption and oxidization processes. Intentional *n*-type doping has been demonstrated by using Si, Sn, and Ge as donor dopants [41–44]. However, it is difficult to control a low doping density on the order of 10^{16} cm⁻³ or less, because the surface of the dopant source in an effusion cell is easily oxidized during the MBE growth by background O species, resulting in the dopant flux hardly controlled. Furthermore, there is a specific issue only for Sn atoms that they tend to segregate on the growth surface without being incorporated into the epitaxial film [45]. At present, MBE-grown β -Ga₂O₃ epitaxial wafers are mainly utilized for fabrication of lateral FETs, and both of the MBE methods using O₃ and O radicals can provide high-quality β -Ga₂O₃ films sufficient for the device development.

4.2 Halide vapor phase epitaxy

High-speed β -Ga₂O₃ thin-film growth attained by halide vapor phase epitaxy (HVPE) was first reported in 2014 [46]. The crystal quality of the HVPE-grown β -Ga₂O₃ films was excellent from the beginning. Figure 5 illustrates a schematic of an HVPE reactor for Ga2O3 growth. Gallium monochloride (GaCl) and O₂ are typically used as Ga and O precursors, respectively. The growth rate of β - Ga_2O_3 thin films can be increased up to 20 μ m/h without any degradation of crystal quality. The background n of unintentionally doped (UID) β -Ga₂O₃ (001) films is very low, which is less than 1×10^{13} cm⁻³ [47]. Si doping performed by simultaneous supply of SiCl₄ during the Ga₂O₃ growth can provide accurate control of *n* in a wide range from 10^{15} to 10^{19} cm⁻³ [15]. The maximum electron μ in HVPE-grown Si-doped *n*-Ga₂O₃ films is \sim 150 cm²/Vs at room temperature reported so far [15]. In recent years, epitaxial wafers with HVPE-grown n-Ga₂O₃ layers are mass produced and widely utilized for development of vertical FETs and SBDs around the world.


4.3 Metalorganic chemical vapor deposition

Metalorganic chemical vapor deposition (MOCVD) is a well-established epitaxial growth technique for compound semiconductors and is often employed for

production of high-quality epitaxial wafers on an industrial scale. There used to be some limitations for Ga₂O₃ MOCVD growth, such as low growth rate, high-density background *n*, and low electron μ . However, most of the technical issues have been resolved within the last 5 years, and MOCVD can provide high-quality β -Ga₂O₃ films required for device development now. In a Ga₂O₃ MOCVD reactor as shown in Fig. 6, traditional Ga precursors such as trimethylgallium (TMGa) and triethylgallium (TEGa), and high-purity O₂ and H₂O are generally used for the growth. Si donor doping can be done by simultaneous supply of Si-containing precursors.

The growth rate has been increased to $\sim 4 \ \mu m/h$ through optimization of growth condition [48]. The background *n* of MOCVD-grown UID β -Ga₂O₃ films is now at a low level of less than 1×10^{16} cm⁻³ [17, 49]. The

peak electron μ of Si-doped *n*-Ga₂O₃ films were ~180 and ~10,000 cm²/Vs at room temperature and 45 K, respectively [16–18]. These electrical properties are comparable with those of HVPE-grown films. Furthermore, MOCVD can offer high-quality β -(AlGa)₂O₃ thin films and β -(AlGa)₂O₃/Ga₂O₃ heterostructures [50, 51]; this is an important advantage of MOCVD over HVPE.

5 Device process technologies

5.1 Ion implantation doping

For β -Ga₂O₃, ease of ion implantation doping has gained less attention compared with other features; however, this is definitely important for mass production of β -Ga₂O₃ devices in the future. Here, ion implantation doping processes developed for β -Ga₂O₃ by the author's group are presented.

5.1.1 n-type

Si-ion implantation doping process was developed to fabricate ohmic electrodes on *n*-Ga₂O₃ [52]. Implanted Si atoms start to be activated by annealing at 800°C, and the activation ratio becomes the highest at 900-1000°C. Note that the activation ratio also depends on the Si doping density. The highest *n* of Si-doped β -Ga₂O₃ layers formed by implantation was 3×10^{19} cm⁻³ for a Si density of 5×10^{19} cm⁻³, which is high enough to form decent ohmic electrodes with a low contact resistance. The typical room-temperature electron μ of *n*-Ga₂O₃ layers with an *n* of low- to mid- 10^{17} cm⁻³ formed by Si-ion implantation is $\sim 100 \text{ cm}^2/\text{Vs}$ [53], which is comparable with those of *n*-Ga₂O₃ layers prepared by in-situ donor doping during epitaxial growth. The Si-ion implantation doping is useful for formation of not only ohmic electrodes but also FET channels; the author's group has been using this technique to form *n*-Ga₂O₃ active regions in various types of devices.

5.1.2 Deep acceptor p-type

The author's group attempted to develop ion implantation doping processes for deep acceptor species to form a large energy barrier in *n*-Ga₂O₃ provided by the built-in potential of the *p*-*n* junction rather than a hole-conductive *p*-Ga₂O₃ layer. We first tried Mg as a deep-acceptor candidate, because it is predicted to be the most stable cation-site acceptor with the lowest formation energy in β -Ga₂O₃ [22, 23]. Mg-ion implantation doping into *n*-Ga₂O₃ bulk crystals and subsequent annealing converts the *n*-type conductivity into semi-insulating, which is attributed to compensation of the donors by the doped Mg [54]. However, implanted Mg atoms significantly diffuse during the activation annealing; in consequence, it is difficult to precisely control their depth profile.

We chose N as an alternative candidate of deep acceptor for β -Ga₂O₃. N is the closest to O in terms of ionic size and electronic structure and thus can be expected to be the most possible anion-substituting acceptor. Implanted N atoms in *n*-Ga₂O₃ effectively activate by annealing at temperatures of higher than 1100°C and contribute to compensation of the background donors [54]. Furthermore, the N atoms exhibit much lower diffusivity in β -Ga₂O₃ than Mg atoms, which helps to keep the doping profile even after high-temperature activation annealing.

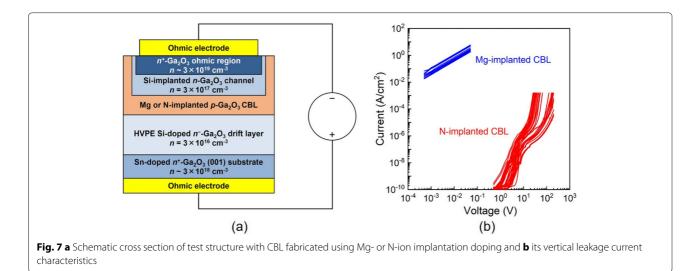
Test structures with a Mg- or a N-doped current blocking layer (CBL) as shown in Fig. 7a were fabricated by ion implantation processes to compare their leakage characteristics. The N-doped structure provided much lower leakage current compared with the Mg-doped one [Fig. 7b], because the N profile was maintained even after activation annealing due to its less diffusivity. These results indicate that N-ion implantation is more useful for device fabrication than Mg-ion implantation.

5.2 Metal/n-Ga₂O₃ contacts

5.2.1 Schottky contact

A variety of Schottky metals including tungsten (W), copper (Cu), nickel (Ni), iridium (Ir), platinum (Pt), and gold (Au) have been reported for n-Ga₂O₃ [55–57]. Pt and Ni are the most common ones used for device fabrication among them. The Schottky contacts on n-Ga₂O₃ are usually of high quality, which is typified by an ideality factor close to unity. The barrier height between the metal and n-Ga₂O₃ reported so far is 1.0–1.5 eV, depending on the metal species and the crystal orientation of β -Ga₂O₃ surface. Layered oxide metal PdCoO₂ also forms a high-quality Schottky junction with n-Ga₂O₃ [58].

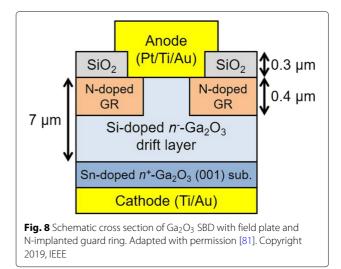
5.2.2 Ohmic contact


Titanium (Ti)-based metal stacks typified by Ti/Au have been commonly used to fabricate ohmic electrodes on n-Ga₂O₃. It should be noted that Ti-based electrodes formed on n-Ga₂O₃ can provide ohmic characteristics only in case of $n > 10^{18}$ cm⁻³; therefore, formation of n^+ -Ga₂O₃ is absolutely necessary to fabricate ohmic contacts. Si-ion implantation doping and regrowth have been utilized to form n^+ -Ga₂O₃ ohmic regions [52, 59, 60]. The post-metallization annealing provides short-range intermixing of Ti and Ga₂O₃ at the interface, resulting in further reduction in contact resistance and improvement in reliability and endurance [61–63]. The routine process developed in the author's group based on the Si-ion implantation doping described in Section 5.1.1 and postmetallization annealing can provide a low specific contact resistance of less than $1 \times 10^{-5} \Omega \text{cm}^2$. Transparent amorphous oxides such as indium tin oxide and zinc oxide have also been tested as ohmic electrodes [64–66].

5.3 Etching

Dry etching processes such as BCl₃-based reactive-ion etching (RIE) and inductively coupled plasma RIE (ICP-RIE) are most commonly used for fabrication of β -Ga₂O₃ devices [67, 68]. It is also possible to perform wet etching of β -Ga₂O₃ using hot acid such as H₃PO₄ and H₂SO₄ [69, 70]. Dry etching often causes plasma damage on the Ga₂O₃ surface [71], and wet etching is effective to remove the damaged region [72]. Metal-assisted chemical etching, which is a technique to use Pt having a catalytic effect as an etching mask, is unique and useful to fabricate mesa structures and fin arrays with a high aspect ratio [73].

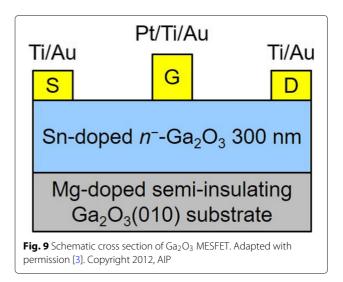
5.4 Direct wafer bonding


The performance of many types of semiconductor devices is limited by their heat dissipation capacity, since heat generation under high-power operation is inevitable even for high-efficiency power devices, and an electrical resistance of the drift layer increases with rising operation temperature due to a decrease in electron

 μ . Therefore, for Ga₂O₃ device technologies, the low thermal conductivity is a serious potential weakness, and thermal management is one of the most important R&D challenges. One of the effective ways to improve heat dissipation from Ga₂O₃ devices is heterogeneous integration of Ga₂O₃ active layers with foreign substrates having high thermal conductivity such as SiC and diamond by direct bonding [74–77]. The author's group performed surface activated bonding between single-crystal β -Ga₂O₃ and cost-effective polycrystalline SiC substrates. The Ga₂O₃/SiC bonded substrate demonstrated superior characteristics such as a large mechanical bonding strength of over 10 MPa, a small specific electrical resistance of $2 \times 10^{-4} \ \Omega \text{cm}^2$, and a negligibly small thermal resistance at the bonding interface [74].

6 SBD

WBG- and UWBG-semiconductor SBDs can offer some advantages against Si diodes mainly based on their large BFOMs: higher $V_{\rm br}$, lower on-resistance ($R_{\rm on}$), higher efficiency, and faster switching speed. A variety of Ga₂O₃ SBDs have been developed over the last decade. Primitive Ga_2O_3 SBDs were fabricated with a β -Ga₂O₃ bulk wafer synthesized by EFG [78]. At the time, β -Ga₂O₃ epitaxial wafers with a thick drift layer having $n < 10^{17}$ cm⁻³ were hardly available, since MBE was the only technique that could provide high-purity epitaxial layers but was not able to provide n-Ga₂O₃ layers with a low *n* satisfying requirement for fabrication of highvoltage devices due to technical limitation of donor doping [45]. The HVPE technology became a breakthrough for the development of vertical β -Ga₂O₃ devices, because high-quality, low-doped n-Ga₂O₃ drift layers were made available thanks to it. Simple β -Ga₂O₃ SBDs with HVPEgrown drift layers demonstrated excellent current-voltage output characteristics following the thermionic emission and thermionic field emission models at forward- and reverse-bias conditions, respectively [79], which are typical behaviors for WBG and UWBG semiconductors. The next step was enhancement of $V_{\rm br}$ to prove that β -Ga₂O₃ SBDs are useful for high-voltage applications. First demonstration of Ga_2O_3 SBDs with $V_{br} > 1$ kV was achieved by applying a field plate to mitigate electric field concentration at the edge of the anode electrode [80]. The field-plated SBDs also showed good on-state device characteristics such as an R_{on} of 5.1 m Ω cm² and an ideality factor of 1.03. Another edge-termination structure often employed for power SBDs is a guard ring. Our latest SBDs with both a field plate and a N-implanted guard ring, which is schematically illustrated in Fig. 8, achieved an enhancement of V_{br} to 1.43 kV with keeping the same level of R_{on} [81]. Mg-ion implantation doping and fluorine treatment were also employed to form guard rings [82, 83].

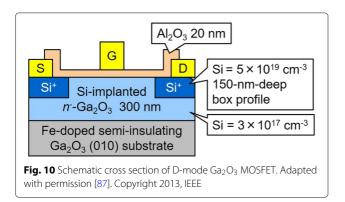

As another attempt to increase $V_{\rm br}$, β -Ga₂O₃ trench SBDs have also been developed [84–86]. An anode electrode was formed to cover trench sidewalls on which an Al₂O₃ dielectric was deposited. At the reverse-bias condition, the depletion region laterally spreads from the sidewalls, leading to an increase in $V_{\rm br}$. A very high $V_{\rm br}$ of over 2 kV was demonstrated for the trench SBDs with keeping a low $R_{\rm on}$ of ~10 m Ω cm².

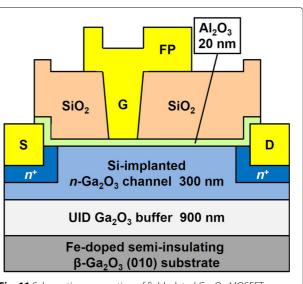
7 FET

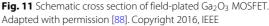
7.1 Lateral FET

7.1.1 MESFET

The first demonstration of single-crystal Ga₂O₃ transistors was achieved in the form of metal-semiconductor FET (MESFET) as shown in Fig. 9, which was fabricated using a 300-nm-thick Sn-doped *n*-Ga₂O₃ channel layer grown on a Mg-doped semi-insulating β -Ga₂O₃ (010) substrate by MBE [3]. The MESFET met a basic standard

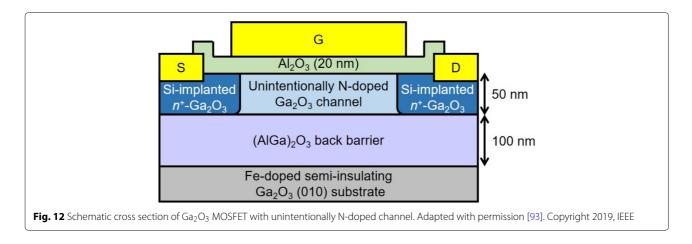

required as a transistor: drain current (I_d) modulation from the on-state to the off-state by gate voltage (V_g) swing. Although it was the first experimental attempt on fabricating Ga₂O₃ FETs, fundamental device characteristics were reasonably good, such as a maximum I_d of 15 mA/mm at a drain voltage (V_d) of 40 V, a large threeterminal off-state V_{br} of ~250 V, and a high I_d on/off ratio of over four orders of magnitude. However, two shortcomings of poor source/drain ohmic contacts and small surface leakage were noted for the MESFET.


7.1.2 Depletion-mode MOSFET


To improve the ohmic contact, the Si-ion implantation doping process was developed [52], as described in Sections 5.1.1 and 5.2.2. As a next step of β -Ga₂O₃ FET development, we fabricated depletion-mode (Dmode) MOSFETs with Si-implanted *n*-Ga₂O₃ channel and *n*⁺-Ga₂O₃ ohmic regions, and an Al₂O₃ gate dielectric formed by plasma-assisted atomic layer deposition (ALD), as illustrated in Fig. 10 [87]. Thanks to a large reduction in the ohmic contact resistance, the maximum *I*_d was largely increased to 65 mA/mm. The gate dielectric contributed to increasing the off-state *V*_{br} to ~400 V and drastically suppressing an off-state leakage current, which led to a large increase in the *I*_d on/off ratio to over 10¹⁰.

7.1.3 Field-plated MOSFET

Based on the D-mode MOSFETs, β -Ga₂O₃ field-plated MOSFETs were fabricated to further enhance $V_{\rm br}$ by preventing electric field concentration at the drain-side edge portion of the gate metal. Figure 11 shows a crosssectional schematic of the Ga₂O₃ MOSFET structure with a gate-connected field plate [88]. The field plate successfully contributed to a large enhancement of $V_{\rm br}$ to ~750 V without any degradation of on-state device characteristics from those of the D-mode MOSFETs. The field-plated MOSFETs also exhibited no DC–RF dispersion by virtue of the effect of the thick SiO₂ passivation and high operation stability up to 300°C. Due to the continued development, the $V_{\rm br}$ of lateral β -Ga₂O₃ field-plated MOSFETs has increased to over 2 kV [89, 90].



From the material properties typified by the large E_{g} , β -Ga₂O₃ is expected to have high resistance against stresses caused by high temperature, radiation, and corrosive gases, as well as being suited for power devices. Hence, it can be considered that β -Ga₂O₃ FETs have a large potential even for wireless communications and signal processing circuits in harsh environments in which it is difficult for existing semiconductor devices to keep operating for a long term. Based on the idea, we also investigated gamma-ray tolerance of the Ga2O3 fieldplated MOSFETs [91]. The MOSFETs showed only small degradation of DC I_d – V_d output characteristics even after high-dose cumulative gamma-ray irradiation up to 1.6 MGy. Note that the irradiation dose is at a level of exceeding requirements for typical space applications. These results indicate a great potential of β -Ga₂O₃ FETs for applications to high-temperature and/or radiation-hard electronics.

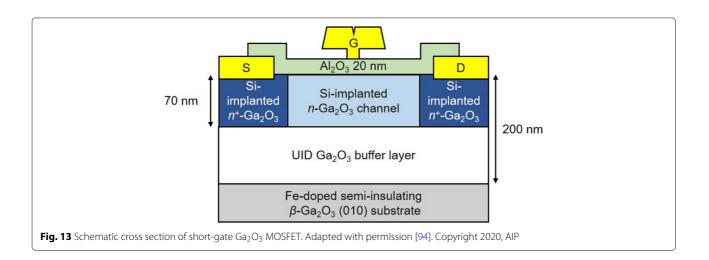
7.1.4 Normally-off MOSFET

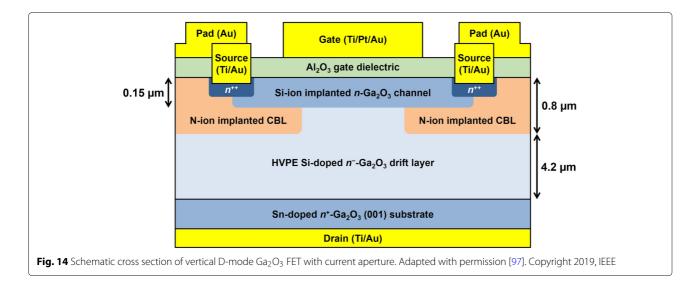
Enhancement-mode (E-mode) β -Ga₂O₃ MOSFETs realizing normally-off operation were fabricated by decreasing a thickness and/or a doping concentration of a channel layer to enable full channel depletion under a gate at V_g = 0 V [92]. β -Ga₂O₃ MOSFETs having an unintentionally N-doped Ga₂O₃ channel layer grown by plasma-assisted MBE as illustrated in Fig. 12 demonstrated normally-off operation with a large turn-on threshold V_g of over +8 V [93]. The channel layer with UID N and Si densities of respectively 1×10^{18} and 2×10^{17} cm⁻³ is equivalent to *p*-type, since deep-acceptor N impurities compensate donor Si ones. These results would imply formation of an

inversion channel at the interface between the $\rm Al_2O_3$ gate dielectric and the N-doped $\rm Ga_2O_3$ layer.

7.1.5 High-frequency MOSFET

The author's group fabricated highly scaled β -Ga₂O₃ MOSFETs as shown in Fig. 13, which aimed for applications to high-frequency wireless communications and logic circuits operating in harsh environments [94]. The MOSFETs with a gate length (L_g) of 200 nm demonstrated a current-gain cutoff frequency (f_T) of 9 GHz and a maximum oscillation frequency (f_{max}) of 27 GHz. Note that comparable RF small-signal characteristics were also reported from other institutes [95, 96]. These RF device characteristics indicate that β -Ga₂O₃ FETs can be used for wireless communications at frequencies up to ~10 GHz.


7.2 Vertical FET


As of the time of this writing, there have been a few groups developing vertical β -Ga₂O₃ FETs in the world. Two representative developments are discussed in this subsection.

7.2.1 Current-aperture FET

Vertical FETs with a current aperture were often selected as a first target in the history of vertical transistor developments due to its simple structure. Figure 14 shows a schematic cross section of a vertical D-mode β -Ga₂O₃ MOSFET with a current aperture that is bounded laterally by N-implanted CBLs [97]. It should be noted that three ion implantation processes were conducted to form the N-doped p-Ga₂O₃ CBLs, a Si-doped n-Ga₂O₃ channel, and heavily Si-doped n^{++} -Ga₂O₃ source ohmic contact regions. Decent device characteristics such as a maximum I_d of 0.42 kA/cm² and a specific R_{on} of 31.5 m Ω cm² were demonstrated. The I_d on/off ratio of over 10^8 was recorded. The three-terminal off-state $V_{\rm br}$ was limited to less than 30 V owing to large electric field in the Al₂O₃ gate dielectric due to the high Si doping density of the channel.

E-mode operation of vertical β -Ga₂O₃ MOSFETs was also demonstrated [98]. The device fabrication process and structure of the E-mode MOSFETs were almost the same as those of the D-mode MOSFETs. There were two modifications from the D-mode structure: a decrease in Si

doping density of the channel from 1.5×10^{18} to 5.0×10^{17} cm⁻³ and formation of an n^{++} -region-gate overlap to avoid channel depletion in the gate-source access region at thermal equilibrium. A turn-on threshold $V_{\rm g}$ of larger than +3 V and an $I_{\rm d}$ on/off ratio of over 10^6 were attained. The off-state $V_{\rm br}$ was enhanced to ~250 V thanks to the reduction in the Si doping density in the channel.

7.2.2 Fin-channel FET

Top- and side-gate configuration formed on mesa trenches of fin-channel FETs allows superior gate controllability compared with that of planar FETs. The finchannel FET structures are often developed for low-voltage, high-speed applications; however, the gate configuration is also effective for vertical power FETs on electric-field management. The same group of Cornell University that developed the trench SBDs reported vertical β -Ga₂O₃ FETs with a sub- μ m fin channel [99]. E-mode operation was achieved for the devices by means of full channel depletion from the sidewalls at $V_{\rm g} = 0$ V. The fin-channel FETs demonstrated excellent device characteristics such as a large $I_{\rm d}$ of 1 kA/cm², a specific $R_{\rm on}$ of 10–20 m Ω cm², an $I_{\rm d}$ on/off ratio of ~10⁸, and an off-state $V_{\rm br}$ of ~1 kV.

8 Conclusions

This article presents an overview of current R&D status of β -Ga₂O₃ science and engineering, which covers material properties, melt bulk growth, epitaxial thin-film growth, device processing, and state-of-the-art device technologies. The extremely large BFOM and the availability of high-quality, large-diameter single-crystal wafers produced from melt-grown bulks are especially attractive from practical application perspectives. Over the past 10 years, all the aspects of β -Ga₂O₃ material and device technologies have significantly progressed, and several development milestones on the way to industrialization and commercialization of β -Ga₂O₃ FETs and SBDs have already been achieved. It is gratifying that Ga₂O₃ has gained a lot of popularity for the last 10 years thanks to the accomplishments and is now largely accepted as one of the promising UWBG materials in the semiconductor community. However, there is no room for doubt that the current β -Ga₂O₃ device technologies are still immature, and that we still have a long way to start to introduce them into markets. Future intense efforts are indispensable to develop advanced device structures to improve their characteristics. Overcoming the two shortcomings related to fundamental material properties, which are the absence of hole-conductive p-Ga₂O₃ and the poor thermal conductivity, should be tough challenges. The potential of β -Ga₂O₃ devices is worth putting the effort into the developments, because it can be expected that β -Ga₂O₃ power and harsh-environment devices will contribute to global energy saving and creation of new application fields of semiconductor device electronics, respectively. The continued efforts on material and device engineering should lead to generating far-reaching technological and socioeconomic impacts.

Acknowledgements

The author would like to express the deepest appreciation to co-workers and external collaborators for their tremendous contributions in the presented R&D.

Authors' contributions

The author read and approved the final manuscript.

Funding

Part of the work presented in this article was supported by Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), Next generation power electronics (funding agency: New Energy and Industrial Technology Development Organization), and the Strategic Information and Communications R&D Promotion Program (SCOPE) of the Ministry of Internal Affairs and Communications, Japan.

Availability of data and materials

All data and materials presented in this article are included in published articles listed in References.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication

Not applicable.

Competing interests

The author declares that he has no competing interests.

Received: 14 October 2021 Accepted: 6 December 2021 Published online: 17 January 2022

References

- J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. V. d. Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, J. A. Simmons, Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv. Electron. Mater. 4(1), 1600501 (2018). https://doi.org/10. 1002/aelm.201600501
- R. Roy, V. G. Hill, E. F. Osborn, Polymorphism of Ga₂O₃ and the system Ga₂O₃-H₂O. J. Am. Chem. Soc. **74**(3), 719–722 (1952). https://doi.org/10. 1021/ja01123a039
- M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Gallium oxide (Ga₂O₃) metal-semiconductor field-effect transistors on single-crystal β-Ga₂O₃ (010) substrates. Appl. Phys. Lett. **100**(1), 013504 (2012). https://doi.org/10.1063/1.3674287
- S. Geller, Crystal structure of β-Ga₂O₃. J. Chem. Phys. **33**(3), 676–684 (1960). https://doi.org/10.1063/1.1731237
- H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, M. Rérat, First-principles study of the structural, electronic, and optical properties of Ga₂O₃ in its monoclinic and hexagonal phases. Phys. Rev. B. **74**, 195123 (2006). https://doi.org/10.1103/PhysRevB.74.195123
- J. B. Varley, J. R. Weber, A. Janotti, C. G. Van de Walle, Oxygen vacancies and donor impurities in β-Ga₂O₃. Appl. Phys. Lett. **97**(14), 142106 (2010). https://doi.org/10.1063/1.3499306
- H. Peelaers, C. G. Van de Walle, Brillouin zone and band structure of β-Ga₂O₃. Phys. Status Solidi (b). 252(4), 828–832 (2015). https://doi.org/ 10.1002/pssb.201451551
- Y. Zhang, A. Neal, Z. Xia, C. Joishi, J. M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J. P. Heremans, S. Rajan, Demonstration of high mobility and quantum transport in modulation-doped β-(Al_xGa_{1-x})₂O₃/Ga₂O₃ heterostructures. Appl. Phys. Lett. **112**(17), 173502 (2018). https://doi.org/10.1063/1.5025704
- T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, M. Higashiwaki, Valence band ordering in β-Ga₂O₃ studied by polarized transmittance and reflectance spectroscopy. Jpn. J. Appl. Phys. 54(11), 112601 (2015). https://doi.org/10.7567/JJAP.54.112601
- K. Ghosh, U. Singisetti, Impact ionization in β-Ga₂O₃. J. Appl. Phys. **124**(8), 085707 (2018). https://doi.org/10.1063/1.5034120
- Z. Xia, H. Chandrasekar, W. Moore, C. Wang, A. J. Lee, J. McGlone, N. K. Kalarickal, A. Arehart, S. Ringel, F. Yang, S. Rajan, Metal/BaTiO₃/β-Ga₂O₃ dielectric heterojunction diode with 5.7 MV/cm breakdown field. Appl. Phys. Lett. **115**(25), 252104 (2019). https://doi.org/10.1063/1.5130669
- 12. T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, M. Higashiwaki, Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β -Ga₂O₃ single crystals. Appl. Phys. Lett. **108**(10), 101904 (2016). https://doi.org/10.1063/1.4943175
- 13. K. Ghosh, U. Singisetti, Ab initio calculation of electron–phonon coupling in monoclinic β -Ga₂O₃ crystal. Appl. Phys. Lett. **109**(7), 072102 (2016). https://doi.org/10.1063/1.4961308

- N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. G. Xing, D. Jena, Intrinsic electron mobility limits in β-Ga₂O₃. Appl. Phys. Lett. **109**(21), 212101 (2016). https://doi.org/10.1063/1.4968550
- 15. K. Goto, K. Konishi, H. Murakami, Y. Kumagai, B. Monemar, M. Higashiwaki, A. Kuramata, S. Yamakoshi, Halide vapor phase epitaxy of Si doped β -Ga₂O₃ and its electrical properties. Thin Solid Films. **666**, 182–184 (2018). https://doi.org/10.1016/j.tsf.2018.09.006
- 16. Z. Feng, A. F. M. Anhar Uddin Bhuiyan, M. R. Karim, H. Zhao, MOCVD homoepitaxy of Si-doped (010) β -Ga₂O₃ thin films with superior transport properties. Appl. Phys. Lett. **114**(25), 250601 (2019). https://doi.org/10.1063/1.5109678
- Y. Zhang, F. Alema, A. Mauze, O. S. Koksaldi, R. Miller, A. Osinsky, J. S. Speck, MOCVD grown epitaxial β-Ga₂O₃ thin film with an electron mobility of 176 cm²/V s at room temperature. APL Mater. 7(2), 022506 (2019). https:// doi.org/10.1063/1.5058059
- F. Alema, Y. Zhang, A. Osinsky, N. Valente, A. Mauze, T. Itoh, J. S. Speck, Low temperature electron mobility exceeding 10⁴ cm²/V s in MOCVD grown β-Ga₂O₃. APL Mater. 7(12), 121110 (2019). https://doi.org/10. 1063/1.5132954
- K. Ghosh, U. Singisetti, *Ab initio* velocity-field curves in monoclinic β-Ga₂O₃. J. Appl. Phys. **122**(3), 035702 (2017). https://doi.org/10.1063/1. 4986174
- T. Oishi, K. Harada, Y. Koga, M. Kasu, Conduction mechanism in highly doped β-Ga₂O₃ (201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes. Jpn. J. Appl. Phys. 55(3), 030305 (2016). https://doi.org/10.7567/jjap.55.030305
- A. T. Neal, S. Mou, S. Rafique, H. Zhao, E. Ahmadi, J. S. Speck, K. T. Stevens, J. D. Blevins, D. B. Thomson, N. Moser, K. D. Chabak, G. H. Jessen, Donors and deep acceptors in β-Ga₂O₃. Appl. Phys. Lett. **113**(6), 062101 (2018). https://doi.org/10.1063/1.5034474
- J. L. Lyons, A survey of acceptor dopants for β-Ga₂O₃. Semicond. Sci. Technol. **33**(5), 05–02 (2018). https://doi.org/10.1088/1361-6641/aaba98
- H. Peelaers, J. L. Lyons, J. B. Varley, C. G. Van de Walle, Deep acceptors and their diffusion in Ga₂O₃. APL Mater. 7(2), 022519 (2019). https://doi.org/ 10.1063/1.5063807
- J. B. Varley, A. Janotti, C. Franchini, C. G. Van de Walle, Role of self-trapping in luminescence and *p*-type conductivity of wide-band-gap oxides. Phys. Rev. B. 85(8), 081109 (2012). https://doi.org/10.1103/PhysRevB.85.081109
- P. Deak, Q. Duy Ho, F. Seemann, B. Aradi, M. Lorke, T. Frauenheim, Choosing the correct hybrid for defect calculations: a case study on intrinsic carrier trapping in β-Ga₂O₃. Phys. Rev. B. **95**(7), 075208 (2017). https://doi.org/10.1103/PhysRevB.95.075208
- T. Gake, Y. Kumagai, F. Oba, First-principles study of self-trapped holes and acceptor impurities in Ga₂O₃ polymorphs. Phys. Rev. Mater. 3(4), 044603 (2019). https://doi.org/10.1103/PhysRevMaterials.3.044603
- M. Handwerg, R. Mitdank, Z. Galazka, S. F. Fischer, Temperature-dependent thermal conductivity in Mg-doped and undoped β-Ga₂O₃ bulk-crystals. Semicond. Sci. Technol. **30**(2), 024006 (2015). https://doi.org/10.1088/0268-1242/30/2/024006
- Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena, T. Luo, Anisotropic thermal conductivity in single crystal β-gallium oxide. Appl. Phys. Lett. **106**(11), 111909 (2015). https:// doi.org/10.1063/1.4916078
- 29. M. Slomski, N. Blumenschein, P. P. Paskov, J. F. Muth, T. Paskova, Anisotropic thermal conductivity of β -Ga₂O₃ at elevated temperatures: effect of Sn and Fe dopants. J. Appl. Phys. **121**(23), 235104 (2017). https:// doi.org/10.1063/1.4986478
- P. Jiang, X. Qian, X. Li, R. Yang, Three-dimensional anisotropic thermal conductivity tensor of single crystalline β-Ga₂O₃. Appl. Phys. Lett. 113(23), 232105 (2018). https://doi.org/10.1063/1.5054573
- B. J. Baliga, Semiconductors for high voltage, vertical channel field effect transistors. J. Appl. Phys. 53(3), 1759–1764 (1982). https://doi.org/10. 1063/1.331646
- B. J. Baliga, Power semiconductor device figure of merit for high-frequency applications. IEEE Electron Device Lett. **10**(10), 455–457 (1989). https://doi.org/10.1109/55.43098
- E. Johnson, in 1958 IRE International Convention Record. Physical limitations on frequency and power parameters of transistors, vol. 13, (1965), pp. 27–34. https://doi.org/10.1109/IRECON.1965.1147520
- E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose, Large-size β-Ga₂O₃ single crystals and wafers. J. Cryst. Growth. 270(3), 420–426 (2004). https://doi.org/10.1016/j.jcrysgro.2004.06.027

- A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, S. Yamakoshi, High-quality β-Ga₂O₃ single crystals grown by edge-defined film-fed growth. Jpn. J. Appl. Phys. 55(12), 1202–2 (2016). https://doi.org/10.7567/ JJAP.55.1202A2
- 36. Z. Galazka, R. Uecker, D. Klimm, K. Irmscher, M. Naumann, M. Pietsch, A. Kwasniewski, R. Bertram, S. Ganschow, M. Bickermann, Scaling-up of bulk β -Ga₂O₃ single crystals by the Czochralski method. ECS J. Solid State Sci. Technol. **6**(2), 3007 (2016). https://doi.org/10.1149/2.0021702jss
- J. D. Blevins, K. Stevens, A. Lindsey, G. Foundos, L. Sande, Development of large diameter semi-insulating gallium oxide (Ga₂O₃) substrates. IEEE Trans. Semicond. Manuf. **32**(4), 466–472 (2019). https://doi.org/10.1109/ TSM.2019.2944526
- K. Hoshikawa, T. Kobayashi, E. Ohba, T. Kobayashi, 50 mm diameter Sn-doped (001) β-Ga₂O₃ crystal growth using the vertical Bridgeman technique in ambient air. J. Cryst. Growth. **546**, 125778 (2020). https://doi. org/10.1016/j.jcrysgro.2020.125778
- H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, Y. Yaguchi, Growth of β-Ga₂O₃ single crystals by the edge-defined, film fed growth method. Jpn. J. Appl. Phys. **47**(11R), 8506 (2008). https://doi.org/10.1143/JJAP.47. 8506
- P. Vogt, O. Bierwagen, Reaction kinetics and growth window for plasma-assisted molecular beam epitaxy of Ga₂O₃: incorporation of Ga vs. Ga₂O desorption. Appl. Phys. Lett. **108**(7), 072101 (2016). https://doi. org/10.1063/1.4942002
- 41. K. Sasaki, A. Kuramata, T. Masui, E. G. Villora, K. Shimamura, S. Yamakoshi, Device-quality β -Ga₂O₃ epitaxial films fabricated by ozone molecular beam epitaxy. Appl. Phys. Express. **5**(3), 035502 (2012). https://doi.org/10. 1143/APEX.5.035502
- E. Ahmadi, O. S. Koksaldi, S. W. Kaun, Y. Oshima, D. B. Short, U. K. Mishra, J. S. Speck, Ge doping of β-Ga₂O₃ films grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Express. **10**(4), 041102 (2017). https://doi.org/10.7567/APEX.10.041102
- 43. N. K. Kalarickal, Z. Xia, J. McGlone, S. Krishnamoorthy, W. Moore, M. Brenner, A. R. Arehart, S. A. Ringel, S. Rajan, Mechanism of Si doping in plasma assisted MBE growth of β -Ga₂O₃. Appl. Phys. Lett. **115**(15), 152106 (2019). https://doi.org/10.1063/1.5123149
- A. Mauze, Y. Zhang, T. Itoh, E. Ahmadi, J. S. Speck, Sn doping of (010) β-Ga₂O₃ films grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. **117**(22), 222102 (2020). https://doi.org/10.1063/5.0027870
- 45. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, Growth temperature dependences of structural and electrical properties of Ga₂O₃ epitaxial films grown on β-Ga₂O₃ (010) substrates by molecular beam epitaxy. J. Cryst. Growth. **392**, 30–33 (2014). https://doi.org/10. 1016/j.jcrysqro.2014.02.002
- 46. K. Nomura, K. Goto, R. Togashi, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, A. Koukitu, Thermodynamic study of β -Ga₂O₃ growth by halide vapor phase epitaxy. J. Cryst. Growth. **405**, 19–22 (2014). https://doi.org/10.1016/j.jcrysgro.2014.06.051
- H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, A. Koukitu, Homoepitaxial growth of β-Ga₂O₃ layers by halide vapor phase epitaxy. Appl. Phys. Express. 8(1), 015503 (2014). https://doi. org/10.7567/APEX.8.015503
- 48. M. J. Tadjer, F. Alema, A. Osinsky, M. A. Mastro, N. Nepal, J. M. Woodward, R. L. Myers-Ward, E. R. Glaser, J. A. Freitas, A. G. Jacobs, J. C. Gallagher, A. L. Mock, D. J. Pennachio, J. Hajzus, M. Ebrish, T. J. Anderson, K. D. Hobart, J. K. Hite, C. R. E. Jr, Characterization of β -Ga₂O₃ homoepitaxial films and MOSFETs grown by MOCVD at high growth rates. J. Phys. D Appl. Phys. **54**(3), 034005 (2021). https://doi.org/10.1088/1361-6463/abbc96
- 49. F. Alema, Y. Zhang, A. Osinsky, N. Orishchin, N. Valente, A. Mauze, J. S. Speck, Low 10^{14} cm²³ free carrier concentration in epitaxial β -Ga₂O₃ grown by MOCVD. APL Mater. **8**(2), 021110 (2020). https://doi.org/10. 1063/1.5132752
- 50. A. F. M. Anhar Uddin Bhuiyan, Z. Feng, J. M. Johnson, Z. Chen, H.-L. Huang, J. Hwang, H. Zhao, MOCVD epitaxy of β -(Al_xGa_{1-x})₂O₃ thin films on (010) Ga₂O₃ substrates and N-type doping. Appl. Phys. Lett. **115**(12), 120602 (2019). https://doi.org/10.1063/1.5123495
- P. Ranga, A. Bhattacharyya, A. Rishinaramangalam, Y. K. Ooi, M. A. Scarpulla, D. Feezell, S. Krishnamoorthy, Delta-doped β-Ga₂O₃ thin films and β-(Al_{0.26}Ga_{0.74})₂O₃/β-Ga₂O₃ heterostructures grown by

metalorganic vapor-phase epitaxy. Appl. Phys. Express. **13**(4), 045501 (2020). https://doi.org/10.35848/1882-0786/ab7712

- 52. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, Si-ion implantation doping in β -Ga₂O₃ and its application to fabrication of low-resistance ohmic contacts. Appl. Phys. Express. **6**(8), 086502 (2013). https://doi.org/10.7567/APEX.6.086502
- M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Electron channel mobility in silicon-doped Ga₂O₃ MOSFETs with a resistive buffer layer. Jpn. J. Appl. Phys. 55(12), 1202–9 (2016). https://doi.org/10.7567/ JJAP.55.1202B9
- 54. M. H. Wong, C.-H. Lin, A. Kuramata, S. Yamakoshi, H. Murakami, Y. Kumagai, M. Higashiwaki, Acceptor doping of β -Ga₂O₃ by Mg and N ion implantations. Appl. Phys. Lett. **113**(10), 102103 (2018). https://doi.org/10. 1063/1.5050040
- Y. Yao, R. Gangireddy, J. Kim, K. K. Das, R. F. Davis, L. M. Porter, Electrical behavior of β-Ga₂O₃ Schottky diodes with different Schottky metals. J. Vac. Sci. Technol. B. **35**(3), 03–113 (2017). https://doi.org/10.1116/1. 4980042
- E. Farzana, Z. Zhang, P. K. Paul, A. R. Arehart, S. A. Ringel, Influence of metal choice on (010) β-Ga₂O₃ Schottky diode properties. Appl. Phys. Lett. 110(20), 202102 (2017). https://doi.org/10.1063/1.4983610
- L. A. M. Lyle, K. Jiang, E. V. Favela, K. Das, A. Popp, Z. Galazka, G. Wagner, L. M. Porter, Effect of metal contacts on (100) β-Ga₂O₃ Schottky barriers. J. Vacuum Sci. Technol. A. **39**(3), 033202 (2021). https://doi.org/10.1116/6. 0000877
- T. Harada, A. Tsukazaki, Control of Schottky barrier height in metal/β-Ga₂O₃ junctions by insertion of PdCoO₂ layers. APL Mater. 8(4), 041109 (2020). https://doi.org/10.1063/1.5145117
- Z. Xia, C. Joishi, S. Krishnamoorthy, S. Bajaj, Y. Zhang, M. Brenner, S. Lodha, S. Rajan, Delta doped β-Ga₂O₃ field effect transistors with regrown ohmic contacts. IEEE Electron Device Lett. **39**(4), 568–571 (2018). https://doi.org/ 10.1109/LED.2018.2805785
- 60. A. Bhattacharyya, S. Roy, P. Ranga, D. Shoemaker, Y. Song, J. S. Lundh, S. Choi, S. Krishnamoorthy, 130 mA mm⁻¹ β -Ga₂O₃ metal semiconductor field effect transistor with low-temperature metalorganic vapor phase epitaxy-regrown ohmic contacts. Appl. Phys. Express. **14**(7), 076502 (2021). https://doi.org/10.35848/1882-0786/ac07ef
- M.-H. Lee, R. L. Peterson, Interfacial reactions of titanium/gold ohmic contacts with Sn-doped β-Ga₂O₃. APL Mater. 7(2), 022524 (2019). https:// doi.org/10.1063/1.5054624
- M.-H. Lee, R. L. Peterson, Accelerated aging stability of β-Ga₂O₃-titanium/gold ohmic interfaces. ACS Appl. Mater. Interfaces. 12(41), 46277–46287 (2020). https://doi.org/10.1021/acsami.0c10598
- L. A. M. Lyle, T. C. Back, C. T. Bowers, A. J. Green, K. D. Chabak, D. L. Dorsey, E. R. Heller, L. M. Porter, Electrical and chemical analysis of Ti/Au contacts to β-Ga₂O₃. APL Mater. 9(6), 061104 (2021). https://doi.org/10.1063/5. 0051340
- T. Oshima, R. Wakabayashi, M. Hattori, A. Hashiguchi, N. Kawano, K. Sasaki, T. Masui, A. Kuramata, S. Yamakoshi, K. Yoshimatsu, A. Ohtomo, T. Oishi, M. Kasu, Formation of indium-tin oxide ohmic contacts for β-Ga₂O₃. Jpn. J. Appl. Phys. **55**(12), 1202–7 (2016). https://doi.org/10.7567/JJAP.55.1202B7
- P. H. Carey, J. Yang, F. Ren, D. C. Hays, S. J. Pearton, S. Jang, A. Kuramata, I. I. Kravchenko, Ohmic contacts on n-type β-Ga₂O₃ using AZO/Ti/Au. AIP Adv. **7**(9), 095313 (2017). https://doi.org/10.1063/1.4996172
- P. H. Carey, J. Yang, F. Ren, D. C. Hays, S. J. Pearton, A. Kuramata, I. I. Kravchenko, Improvement of ohmic contacts on Ga₂O₃ through use of ITO-interlayers. J. Vac. Sci. Technol. B. **35**(6), 061201 (2017). https://doi. org/10.1116/1.4995816
- J. E. Hogan, S. W. Kaun, E. Ahmadi, Y. Oshima, J. S. Speck, Chlorine-based dry etching of β-Ga₂O₃. Semicond. Sci. Technol. **31**(6), 065006 (2016). https://doi.org/10.1088/0268-1242/31/6/065006
- L. Zhang, A. Verma, H. G. Xing, D. Jena, Inductively-coupled-plasma reactive ion etching of single-crystal β-Ga₂O₃. Jpn. J. Appl. Phys. 56(3), 030304 (2017). https://doi.org/10.7567/JJAP.56.030304
- T. Oshima, T. Okuno, N. Arai, Y. Kobayashi, S. Fujita, Wet etching of β-Ga₂O₃ substrates. Jpn. J. Appl. Phys. **48**(4R), 040208 (2009). https://doi. org/10.1143/JJAP.48.040208
- Y. Zhang, A. Mauze, J. S. Speck, Anisotropic etching of β-Ga₂O₃ using hot phosphoric acid. Appl. Phys. Lett. **115**(1), 013501 (2019). https://doi.org/ 10.1063/1.5093188

- G. Alfieri, A. Mihaila, P. Godignon, J. B. Varley, L. Vines, Deep level study of chlorine-based dry etched β-Ga₂O₃. J. Appl. Phys. **130**(2), 025701 (2021). https://doi.org/10.1063/5.0050416
- Y. Zhang, A. Mauze, F. Alema, A. Osinsky, J. S. Speck, Near unity ideality factor for sidewall Schottky contacts on un-intentionally doped β-Ga₂O₃. Appl. Phys. Express. **12**(4), 044005 (2019). https://doi.org/10.7567/1882-0786/ab08ad
- H.-C. Huang, M. Kim, X. Zhan, K. Chabak, J. D. Kim, A. Kvit, D. Liu, Z. Ma, J.-M. Zuo, X. Li, High aspect ratio β-Ga₂O₃ fin arrays with low-interface charge density by inverse metal-assisted chemical etching. ACS Nano. 13(8), 8784–8792 (2019). https://doi.org/10.1021/acsnano.9b01709
- C.-H. Lin, N. Hatta, K. Konishi, S. Watanabe, A. Kuramata, K. Yagi, M. Higashiwaki, Single-crystal-Ga₂O₃/polycrystalline-SiC bonded substrate with low thermal and electrical resistances at the heterointerface. Appl. Phys. Lett. **114**(3), 032103 (2019). https://doi.org/10.1063/1.5051720
- T. Matsumae, Y. Kurashima, H. Umezawa, K. Tanaka, T. Ito, H. Watanabe, H. Takagi, Low-temperature direct bonding of β-Ga₂O₃ and diamond substrates under atmospheric conditions. Appl. Phys. Lett. **116**(14), 141602 (2020). https://doi.org/10.1063/5.0002068
- T. Matsumae, Y. Kurashima, H. Takagi, H. Umezawa, E. Higurashi, Low-temperature direct bonding of SiC and Ga₂O₃ substrates under atmospheric conditions. J. Appl. Phys. **130**(8), 085303 (2021). https://doi. org/10.1063/5.0057960
- Y. Song, D. Shoemaker, J. H. Leach, C. McGray, H.-L. Huang, A. Bhattacharyya, Y. Zhang, C. U. Gonzalez-Valle, T. Hess, S. Zhukovsky, K. Ferri, R. M. Lavelle, C. Perez, D. W. Snyder, J.-P. Maria, B. Ramos-Alvarado, X. Wang, S. Krishnamoorthy, J. Hwang, B. M. Foley, S. Choi, Ga₂O₃-on-sic composite wafer for thermal management of ultrawide bandgap electronics. ACS Appl. Mater. Interfaces. **13**(34), 40817–40829 (2021). https://doi.org/10.1021/acsami.1c09736
- K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, Ga₂O₃ Schottky barrier diodes fabricated by using single-crystal β-Ga₂O₃ (010) substrates. IEEE Electron Device Lett. **34**(4), 493–495 (2013). https://doi. org/10.1109/LED.2013.2244057
- 79. M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, S. Yamakoshi, Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga₂O₃ (001) Schottky barrier diodes fabricated on n⁻-Ga₂O₃ drift layers grown by halide vapor phase epitaxy. Appl. Phys. Lett. **108**(13), 133503 (2016). https://doi.org/10.1063/1. 4945267
- K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, M. Higashiwaki, 1-kV vertical Ga₂O₃ field-plated Schottky barrier diodes. Appl. Phys. Lett. **110**(10), 103506 (2017). https://doi.org/10.1063/1.4977857
- C.-H. Lin, Y. Yuda, M. H. Wong, M. Sato, N. Takekawa, K. Konishi, T. Watahiki, M. Yamamuka, H. Murakami, Y. Kumagai, M. Higashiwaki, Vertical Ga₂O₃ Schottky barrier diodes with guard ring formed by nitrogen-ion implantation. IEEE Electron Device Lett. **40**(9), 1487–1490 (2019). https:// doi.org/10.1109/LED.2019.2927790
- H. Zhou, Q. Yan, J. Zhang, Y. Lv, Z. Liu, Y. Zhang, K. Dang, P. Dong, Z. Feng, Q. Feng, J. Ning, C. Zhang, P. Ma, Y. Hao, High-performance vertical β-Ga₂O₃ Schottky barrier diode with implanted edge termination. IEEE Electron Device Lett. 40(11), 1788–1791 (2019). https://doi.org/10.1109/ LED.2019.2939788
- 83. Z. Hu, Y. Lv, C. Zhao, Q. Feng, Z. Feng, K. Dang, X. Tian, Y. Zhang, J. Ning, H. Zhou, X. Kang, J. Zhang, Y. Hao, Beveled fluoride plasma treatment for vertical β -Ga₂O₃ Schottky barrier diode with high reverse blocking voltage and low turn-on voltage. IEEE Electron Device Lett. **41**(3), 441–444 (2020). https://doi.org/10.1109/LED.2020.2968587
- W. Li, K. Nomoto, Z. Hu, D. Jena, H. G. Xing, Fin-channel orientation dependence of forward conduction in kV-class Ga₂O₃ trench Schottky barrier diodes. Appl. Phys. Express. **12**(6), 061007 (2019). https://doi.org/ 10.7567/1882-0786/ab206c
- W. Li, K. Nomoto, Z. Hu, D. Jena, H. G. Xing, Guiding principles for trench schottky barrier diodes based on ultrawide bandgap semiconductors: a case study in Ga₂O₃. IEEE Trans. Electron Devices. 67(10), 3938–3947 (2020). https://doi.org/10.1109/TED.2020.3003292
- W. Li, K. Nomoto, Z. Hu, D. Jena, H. G. Xing, On-resistance of Ga₂O₃ trench-MOS Schottky barrier diodes: role of sidewall interface trapping. IEEE Trans. Electron Devices. 68(5), 2420–2426 (2021). https://doi.org/10. 1109/TED.2021.3067856

- 87. M. Higashiwaki, K. Sasaki, M. H. Wong, T. Kamimura, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, in *2013 IEEE International Electron Devices Meeting*. Depletion-mode Ga₂O₃ MOSFETs on β -Ga₂O₃ (010) substrates with Si-ion-implanted channel and contacts, (2013), pp. 28–712874. https://doi.org/10.1109/IEDM.2013.6724713
- M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Field-plated Ga₂O₃ MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett. **37**(2), 212–215 (2016). https://doi.org/10.1109/ LED.2015.2512279
- J. K. Mun, K. Cho, W. Chang, H.-W. Jung, J. Do, 2.32 kV breakdown voltage lateral β-Ga₂O₃ MOSFETs with source-connected field plate. ECS J. Solid State Sci. Technol. 8(7), 3079–3082 (2019). https://doi.org/10.1149/2. 0151907jss
- 90. Y. Lv, H. Liu, X. Zhou, Y. Wang, X. Song, Y. Cai, Q. Yan, C. Wang, S. Liang, J. Zhang, Z. Feng, H. Zhou, S. Cai, Y. Hao, Lateral β -Ga₂O₃ MOSFETs with high power figure of merit of 277 MW/cm². IEEE Electron Device Lett. **41**(4), 537–540 (2020). https://doi.org/10.1109/LED.2020.2974515
- M. H. Wong, A. Takeyama, T. Makino, T. Ohshima, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Radiation hardness of β-Ga₂O₃ metal-oxidesemiconductor field-effect transistors against gamma-ray irradiation. Appl. Phys. Lett. **112**(2), 023503 (2018). https://doi.org/10.1063/1.5017810
- M. H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Enhancement-mode Ga₂O₃ MOSFETs with Si-ion-implanted source and drain. Appl. Phys. Express. **10**(4), 041101 (2017). https://doi.org/10.7567/ APEX.10.041101
- T. Kamimura, Y. Nakata, M. H. Wong, M. Higashiwaki, Normally-off Ga₂O₃ MOSFETs with unintentionally nitrogen-doped channel layer grown by plasma-assisted molecular beam epitaxy. IEEE Electron Device Lett. 40(7), 1064–1067 (2019). https://doi.org/10.1109/LED.2019.2919251
- T. Kamimura, Y. Nakata, M. Higashiwaki, Delay-time analysis in radio-frequency β-Ga₂O₃ field effect transistors. Appl. Phys. Lett. **117**(25), 253501 (2020). https://doi.org/10.1063/5.0029530
- K. D. Chabak, D. E. Walker, A. J. Green, A. Crespo, M. Lindquist, K. Leedy, S. Tetlak, R. Gilbert, N. A. Moser, G. Jessen, in 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). Sub-micron gallium oxide radio frequency field-effect transistors, (2018), pp. 1–3. https://doi.org/10.1109/IMWS-AMP.2018.8457153
- Z. Xia, H. Xue, C. Joishi, J. Mcglone, N. K. Kalarickal, S. H. Sohel, M. Brenner, A. Arehart, S. Ringel, S. Lodha, W. Lu, S. Rajan, β-Ga₂O₃ delta-doped field-effect transistors with current gain cutoff frequency of 27 GHz. IEEE Electron Device Lett. 40(7), 1052–1055 (2019). https://doi.org/10.1109/ LED.2019.2920366
- M. H. Wong, K. Goto, H. Murakami, Y. Kumagai, M. Higashiwaki, Current aperture vertical β-Ga₂O₃ MOSFETs fabricated by N- and Si-ion implantation doping. IEEE Electron Device Lett. **40**(3), 431–434 (2019). https://doi.org/10.1109/LED.2018.2884542
- 98. M. H. Wong, H. Murakami, Y. Kumagai, M. Higashiwaki, Enhancement-mode β -Ga₂O₃ current aperture vertical MOSFETs with N-ion-implanted blocker. IEEE Electron Device Lett. **41**(2), 296–299 (2020). https://doi.org/10.1109/LED.2019.2962657
- W. Li, K. Nomoto, Z. Hu, T. Nakamura, D. Jena, H. G. Xing, in 2019 IEEE International Electron Devices Meeting (IEDM). Single and multi-fin normally-off Ga₂O₃ vertical transistors with a breakdown voltage over 2.6 kV, (2019), pp. 12–411244. https://doi.org/10.1109/IEDM19573.2019. 8993526

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.