
284 Supplement of the Progress of Theoretical Physics, No. 55, 1974 

B 

Initial Value Problems of One-Dimensional Self-Modulation 
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The initial value problems for the nonlinear modulation of dispersive waves are 
investigated by virtue of the method developed by Zakharov and Shabat. It is studied 
in general how the modulated waves evolve to decay into solitons moving with their re­
spective speeds or to form the bound state of solitons. The perturbation analysis is ap­
plied to investigate the condition for the bisymmetric decay of modulated waves into 
moving solitons. As a special example, the initial condition of a hyperbolic function type 
is considered in details. The numerically computed solutions are also shown. 

§ 1. Introduction 

It is well known that the self-modulation of one-dimensional waves in 
nonlinear dispersive systems can be described by the so-called nonlinear 
Schrodinger equation,l)""'4) 

(0) 

where subscripts t and x denote partial differentiation with respect to t and 
x, respectively. If pq<O, a plane wave in this system is stable for the modu­
lation and, otherwise, is unstable. Especially in the latter case there exist 
special families of solutions, which are called envelope solitons and show 
various interesting phenomena.2),5) In this paper we confine ourselves to 
the case pq>O. Without loss of generality p and q may be put equal to 1/2 
and 1, respectively: 

(1) 

A solitary wave solution of Eq. (1), S(x, t), is represented by 

S(x, t)=Asech (Ax) exp ( -z'A2tf2). (2) 
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Initial Value Problems of Nonlinear Schrodinger Equation 285 

Since Eq. (1) is invariant under the Galilei transformation, 

Vt, 

u'(x', t')=exp(iVx-iV2tf2)u(x, t), 
(3) 

we find that the function, 

u=A sech [A(x- Vt)] exp [ -iVx+i( V2-A2)t/2], (4) 

is also the solution of Eq. (1). The solution (4) represents the soliton moving 

with the velocity V, while the solution (2) the soliton being at rest. 

Previously, Outi and one of the authors, N.Y., solved Eq. (1) numerically 

· and showed that the envelope soliton is extremely stable. 5) Recently Zakharov . 

and Shabat proposed a method to solve analytically the initial va~ue problem 

for Eq. (1) with the boundary condition that u tends to zero as x---+±oo, 

together with all its x-derivatives. 6) It is an application of the method which 

is developed by Gardner, Greene, Kruskal and Miura for the Korteweg-de 

Vries equation 7) and extended by Lax for a wide class of nonlinear equation. 8) 

Zakharov and Shabat obtained the important results; the stability of solitons, 

the existence of infinite numbers of conservation laws and so on. In 'their 

work, however, the initial value problem for Eq. (1) is insufficiently considered, 

that is, it remains still unsolved how the initial disturbance evolves and with 

what initial conditions it decays into envelope solitons. In this paper, applying 

the method of Zakharov and Shabat, we study the initial value problem for 

Eq. (1). 

In the rest of this section, the result of Zakharov and Shabat is sum­

marized in the form suitable for our discussion. To begin with, we consider 

the following eigenvalue equation: 

where the eigenfunction v is a two-component column vector, 

v=( :~) 
and aa and U are 2 X 2 matrices, 

0'3 -( 1 - 0 

u=(o 
u* 

(5) 

(6) 

(7) 

(8) 

Here and hereafter, asterisk denotes complex conjugate. The eigenvalue 

' is generally complex. If u in Eq. (8) is the solution of Eq. (1), ' is inde­

pendent of time and v develops with increasing time according to 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.5

5
.2

8
4
/1

9
1
1
2
7
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



286 J. SATSUMA and N. YAJIMA' 

(9) 

(lO) 

where C is a constant independent of x. 

Let' be real (=g) in Eq. (5). Attending to u~o as lxl~ oo, we introduce 

the solutions of Eq. (5), 4>(x; g), ljJ(x; g) and tft(x; g), which satisfy the boundary 

conditions, 

4>(x; g)=(~) exp ( -z'gx) 

ljJ(x; g) ( ~) exp (z'gx) 

~(x; g)=( 6 )exp(-z'gx) 

at x=-oo, 

at x=oo, 

at x= oo. 

(11 a) 

(11 b) 

(11 c) 

The function ~ is called the adjoint function of ljJ (as for the definition of 

adjoint, see §2). We can write 4> in terms of ljJ and ~ as 

(12) 

where the coefficients a and b satisfy 

(13) 

Here, g may be analytically continued to the upper half-plane of' (lm(O>O) 

in Eq. (12). The zeros of a(,), 'k's, 

k=1, 2, ···, N, (14) 

determine the set of the discrete eigenvalues of Eq. (5) because the function 

4> tends to zero as I xI~ oo. Now we introduce the quantities 

Ak= [b(,k)/a'(,k)]112 exp Ct''kX-z',~t), 

c(x, g)=(b(g)/a(g)) exp (2z'gx-2£g2t), 

(15 a) 

(15 b) 

where a' is the derivative of a with respect to its argument. The method of 

the inverse scattering problem tells us6) that the solution of Eq. (1) is given 

by 

u(x, t)=2 ~kA~IjJ~ 2 +(rrz')-l J:O<l <P2dg, (16 a) 

fxoolu(x', t)1 2 dx'=-2z'~kAkljJk1+7T-l J_: <P1dg, (16 b) 
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lnz"tz'al Value Problems of Nonlz'near Schrodinger Equation 287 

In the above expressions lf!~cv lf!~ 2 , <1>11 <P~ are the solutions of the simultaneous 

equations, 

q,l-c( X. m (l + T) /2]4>~ =-c(x, ~ :E k T,\ ~,f "'~2· 

c*(x, g)((1- T)/2]<1>1 +<P~=c*(x, g)+c*(x, g) :E~c-y A~c,-;;t/Jkb 

X:-1lf!11 + 2:: ~cC,,-,t)- 1 Atlf!~2= _}_~_ Joo ~J(~) dg, 
' 2m ~e-0 

-2:: ~ccn-,~c)- 1 A~clf!~cl+Aj- 1 lf!12= 1 +- } __ ;_ Joo _<~>leg~ dg, 
27Tt -oo e-,, 

where T is the Hilbert transformation operator, 

T<P 

(17 a) 

(17 b) 

(18 a) 

(18 b) 

(P denotes principal value). Once a and b are obtained for an initial value, 

u(x, t=O), then we can get u(x, t) at an arbitrary instant through Eqs. (15), 

(16), (17) and (18). 

According to Zakharov and Shabat, the soliton solution corresponds to 

the discrete eigenvalue '~c=e~c+i7Jk (gk and 1Jk are both real); 

S~c(x,t)=27Jk sech [27}~c(x-2e~ct-x~c)] 

X exp [ -2ig~cx+2i(gi-7Ji)t], 

x~c=(27Jk)-lln [b(,~c)/a'('k)]/(27}Jc). 

(19) 

Comparing Eq. (19) with Eq. (4) ,we find that the real and imaginary part 

of 'k are connected with the velocity and the amplitude of the soliton, re­

spectively, such as V =2gk and A =27Jk· 

In §2, the symmetry properties of Eq. (5) are investigated. If the initial 

value of Eq. (1) is a real and not antisymmetric function of x, it is found from 

such symmetry properties that u(x, t) does not decay into the series of solitons 

moving with their respective velocities but indicates the formation of the 

bound state of solitons. In §3, the perturbation method is developed to make 

clear the condition for the decay of the initial modulated wave into the series 

of moving solitons. It is found that the bound state is, in general, not stable 

but decays into a series of solitons under an appropriate perturbation. In 

§4, the long-time asymptotic behaviors of modulated waves are considered. 

The non-soliton part is shown to decay as rll2 and the soliton part to play the 

main role in the temporal development of solutions at t---+oo. In §5, as a solva­

ble example the special type of initial values, u(x, t=O) sech(x), is studied. 

The results of the numerical computation are also given. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.5

5
.2

8
4
/1

9
1
1
2
7
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



288 J. SATSUMA and N. YAJIMA 

§ 2. Eigenvalue problem 

2-1 The Galilez' and Gauge transformations 

In the preceding section we note that Eq. (1) is invariant under the Galilei 
transformation. We now examine the invariance property of Eq. (5). Sub­
stituting Eq. (3) into Eq. (5), U is transformed to 

U'(x') = ( ei0¢112 0 ) U( '\ ( e-i¢112 0 ) 
e-i¢112 X; 0 ei¢12 ' (20 a) 

cp= V x- V 2t/2+a, (20 b) 

where a is an arbitrary constant. If the eigenfunction v(x) is transformed as 

( 

ei¢112 
v'(x')= 

0 
0 )·' e~i¢112 v(x), (21) 

then Eq. (5) becomes 

iv~,+ U'v' . ('- Vj2)aav'. (22) 

It is seen that in the frame moving with the velocity V the eigenvalue is reduced 
by V/2 compared with that in the rest frame. This reflects the fact that, as 
is shown in Eq. (19), the velocity of the soliton is given by 2Re(,k)· 

When cf> is constant, i.e., cp=a in Eqs. (20a) and (21), the eigenvalue is 
unchanged because V=O. This implies that Eq. (1) is invariant under the 
gauge transformation, u' =exp(ia)u(x). 

2-2 Discrete eigenvalue 

We consider the case that the eigenfunction of Eq. (5) satisfies the boundary 
condition, v=O as I xI-+ oo so that the eigenvalues constitute a discrete set. 
Let Jhe eigenvalues and the corresponding eigenfunctions be ,1, ,2, · · ·, 'N 
and V!,V2, ···, VN; 

n=1, 2, ... , N. (23) 

For the following discussions we may introduce the Hermitian matrices 
defined by 

and (24) 

which are called Pauli's spin matrices together with a3 given by Eq. (7). 
Between them hold the relations, 
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Initial Value Problems of Nonlinear Schrodinger Equation 289 

O'tuJ+O'jO'i=20ij, 

r O'i, O'j] =atuj-O'jO'i=2iak. 
(25) 

In the second relation i, j, k denote 1, 2, 3 and its cyclic permutations. We 

can rewrite U(x) by using a1 and a2 

U(x)= Re(u(x))a1- Im(u(x))a2. (8') 

We now investigate the orthogonality of the set of eigenfunctions. Multi­

plying Eq. (23) by a2 from the left and transposing the resulting equation, we 

find 

where the superscript T denotes transpose. Multiplying it by vn from the 

right and Eq. (22) by vl;,.a2 from the left and subtracting one from the other, 

we obtain 

In deriving the above equation the boundary conditions, vn, vm~O as I xI ~oo, 

are taken into account. This immediately yields the ortho-normal condition, 

Next we proceed to study the symmetry properties of Eq. (5). 

(I) If u(x) satisfies u( -x)=u*(x)J vn(x) has the symmetry) 

,8= ±1. 

(26) 

Proof: Replacing x with -x in Eq. (23) and multiplying by a2 from the 

left, we find 

Since [a2vn( -x)] is also the eigenfunction associated with 'nand behaves just 

like vn(x) in the asymptotic region, i.e., 

for lxl ~ oo, 

it can be concluded that · 

a2vn( -x)=,Bvn(x). 

Using the relation twice, 1 can be shown, 
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290 J. SATSUMA and N. YAJIMA 

(I') If u( -x)= -u*(x)J Vn(x) satisfies the symmetry property vn( -x)= 

f3a1vn(x)J where f3= l. 

The proof goe$ parallel to that in (I) by putting a2 in place of a1 in the 

· above verification. 

(II) If u(x) is a symmetric (or antz'symmetric) function of X 1 i.e. 1 u( -x) 

±u(x)) '~ z's also the eigenvalue as well as 'n and the corresponding eigen-

function Wn is w~)(x) a1v~( -x) (w~a)(x) a2v~( -x)). The suffix s (or a) 

to the eigenfunction Wn speczjies that u is symmetric (or antisymmetric). 

Proof: · Let us consider the case u( -x)=u(x). Replacing x with -x in 

Eq. (23) and taking complex conjugate, we obtain 

i-fx- [a 1 v~( -x)]+ U(x)[a 1 v~( -x)]= _,~a 3 [a 1 v~( -x)]. 

Compared with Eq. (23), the above equation implies that _,~ is also the 

eigenvalue and the associated eigenfunction w~)(x) equals to a1vh( -x) with 

the arbitrariness of the proportional coefficient. For the case u( -x) -u(x), 

the proof is performed by replacing a1 with a2 in the above verification. 

These symmetry properties are useful to take a general view of the solution 

of Eq. (1). As is noted in §1, the real part of the eigenvalue, gn, corresponds 

to the velocity of a soliton and the imaginary part, 'Y'Jn, the amplitude. Then, 

it can be seen that if u(x, t), whose initial value has the symmetry u(x, t=O) 

±u( -x, t=O), breaks to the series of solitons, the decay is bisymmetric 

corresponding to the eigenvalues 'n and - '~· 

If u(x) is real, the symmetry property (I) yields 

wC:)(-x) a1[ -f3a2v~( -x)] =f3a2wC:>(x), 

w~a\ -x)=a2[f3a1vh(- x)] =- f3a1w~a)(x), 

that is to say, wC:)(x) has the same parity as Vn(x), while w~a)(x) has the oppo­

site one. When u( -x) -u(x), therefore, provided that 'n is pure imaginary 

('n=- '~) the eigenvalues degenerate corresponding to the positive and 

negative parity eigenfunctions. 

(III) If u(x) is real and not antz'symmetric1 then the eigenvalue 'n is pure 

imaginary) i.e. 1 Re(,n)=O. 

Proof: From Eq. (23) and its Hermitian conjugate, we find 

(27) 

where Re and lm denote the real and imaginary part, respectively. The 

matrix element (m I Q(x) In) is defined by 

(miQ(x)ln)= J_:vkQ(x)vndx, (28) 
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Initial Value Problems of Nonlz'near Schrodinger Equation 291 

where dagger represents Hermitian conjugate. In deriving Eq. (27) the 

identity, [U, a1]=2iim(u)aa, is used. It can be seen from Eq. (27) that 

Re(,n) vanishes if u is real and (n I a2l n)=f=O. When u is a real and antisym­

metric function of x, the symmetry property (I') gives the relation 

(n I a2l n)=f32J:oo vk( -x)a1a2a1vn( -x)dx 

-(n la2ln), 

and then (n I a21 n)=O. With the exception of this case, (n I a2l n) is expected 

not to vanish. Indeed, the example in §5 assures (n I a2l n)=f=O. 

(IV) If the 'initial value takes the form as u=exp(i V x) X r(x)J where r(x) 

is a real and not antisymmetric function of x) all the e'igenvalues have the 

common real part) V/2. 

This can be easily shown by applying the discussion of the Galilei trans­

formation in §2-1 to the theorem (III). 

The conclusion is as follows: When u(x, t=O)=exp(z' V x) X r(x), where 

r(x) is real and· not antisymmetric for x, the solution does not decay to the 

series of solitons moving with the different velocities, but indicates the formation 

of the bound state of solitons (as for the definition of the bound state of solitons, 

see Ref. 6)). In this case, the real parts are common to all the eigenvalues, 

that is, the relative velocities of the solitons vanish. 

(V) If u is a real and not antz'symmetric function of x) it holds that 

r= l.. (29) 

Proof: Remembering that Re(,n)=O and taking the complex conjugate 

of Eq. (23), we see that v~(x)ocaavn(x). Substitution of Eq. (29) into the 

normalization condition (26) proves that y= l. 

2-3 Continuous eigenvalue states 

Consider the case where the eigenvalue of Eq. (5) is real, i.e., '=g( =real): 

i ~~ Uv=gaav. (30) 

It can be readily shown that the adjoint function of v, which is defined by 

is also the solution of Eq. (30); 

. dv+ u c t-d-- v=saav. 
x. 

It follows from Eqs. (30) and (30') that 

(31) 

(30') 
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292 J. SATSUMA and N. YAJIMA 

Using the boundary conditions (11a~c) in Eq. (32), we find 

c/>tc/>=o/tt/1= ~t~= 1, 

~to/=o/t~=O. 

These are brought into Eq. (12) to yield 

a=~tcf>, b=o/tcf>. 

§ 3. Perturbation analysis 

(32) 

(33 a) 

(33 b) 

(34) 

As is pointed out in §2, as long as the real (not antisymmetric) initial value 

is considered the solution does not decay into moving solitons but indicates 

the formation of the bound state of solitons' pulsating with the proper frequency. 

We here develop the perturbation analysis in order to make clear under 

what initial values the solutions evolve to decay into moving solitons. 

Assume that u undergoes a small change in Eq. (5), i.e., 

(35) 

and then the corresponding U varies by the quantity .d U, 

( 
0 Llu ) 

Llu* 0 · 
(36) 

We here investigate the variation of the eigenvalue which is caused by the 

small change in u. 

3~1 Shzfts of ez'genvalues I 

Suppose that the change in u makes 'n and Vn into 'n+Ll'n and vn+ 

Llvn, respectively. Equation (23) becomes in the first order of the variations 

[;-fx+C U-,nua)}:lvn+(A U-A,nua)vn=O. 

Multiplying by vl; a2 from the left and integrating with respect to x over 

(-oo, oo), we see that 

Ll'n=-i J_00

00 

vh'a2Ll Uvndx 

-J_: vh' Re(Llu)aavndx+z' J_oooo vf; Im(Llu)vndx. 

If u is a real and not antisymmetric function of x, Eq. (29) holds and the 
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. ln£tz'al Value Problems of Nonlinear Schrodz'nger Equatz'on 293 

above expression is then written in the f~rm 

Ll'n=r(n I Im(Llu)aal n)+z'r(n I Re(Llu) In}. (37) 

Note that the matrix elements (nllm(Llu)aaln) and (niRe(Ju)ln) are real in 

view of their definitions. Equation (37) indicates that if (n I Im(Llit)asl n)=F=O 

the perturbation Llu makes the real part of the eigenvalue non~vanishing, i.e., 

the solution of Eq. (1) for the initial value, u(x)+.du(x), breaks up into moving 

solitons with the respective velocities 2Re(Ll,n)· 

If u is real and either symmetric or antisymmetric for x, the symmetry 

properties (I) and (I') provide that 

(nl Im(Ju)asln)=-(nl Im(Ju( -x))asln). 

Hence, in this case we can see that if Im(Llu) is a symmetric function, 

(nllm(Llu)asln) vanishes, i.e., Re(Ll,n)=O and the soliton bound state does 

not resolve into moving solitons even in the presence of perturbation Llu. 

3~2 Shzjts of eigenvalues II 

We deal with the double-humped initial values given by 

u(x)=uo(x-xo)+exp(z'a)uo(x+xo), (38) 

where uo(x) is a real and symmetric function of x and xo, a are considered to 

be real. Corresponding to this u(x), the eigenvalue equation is 

i ·fx wn(x)+ U(x)wn(x) 'naswn(x), 

U(x)= U1(x)+ U2(x), 

U1(x)=a1uo(x-xo), 

U 2( x) = fcos( a )a1-sin( a )a2]uo( x+ xo). 

We now define the eigenfunction Vn(x) by 

r-fx· vn(x)+ Uo(x)vn(x)='W)aavn(x), 

(39) 

(40) 

(41 a) 

(41 b) 

(42) 

where Uo(x)=a1uo(x). Since Uo(x) is the real and symmetric function of 

x, it is obvious from (1), (III) and (V) in §2~2 that 'W) is pure imaginary and 

Vn( -x)=f3a2vn(x), 

v~(x)=z'raavn(x), 

1, 

r=±l. 

(43 a) 

(43 b) 

To apply the perturbation analysis, we assume that xo is so large that the 

overlapping of two humps in u(x) is small and that the eigenfunction wn(x) 

is approximated as 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.5

5
.2

8
4
/1

9
1
1
2
7
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



294 J. SATSUMA and N. YAJIMA 

wn(x)=wC:)(x)+L.Iv(x), 

w<j!>(x) [vin>(x)±v~n>(x)J/{2, l (44) 

where Llv is the first order quantity of the overlapping, and vin\ v~m satisfy 

the equations 

The eigenfunction vi~~ can ·be c·onnected with vn(x) m Eq. (42); 

vim(x)=vn(x-x0), 

v~n)(x)= [ cos(a/2)+£ sin(a/2)as]vn(x+ xo) 

(45) 

(46 a) 

(46 b) 

(as for v~n>(x), remember the discussions in §2-l). Substituting Eqs. (46a) 

and (46b) into Eq. (44), transforming x into -x and using Eq. (43a), we 

obtain the symmetry property 

Equation (47) yields the orthogonality between w~m and w~); 

J_: w~:nr(x)a 1 w~)(x)dx=0. 

The norm of wC:) is calculated from Eqs. (44), (46a) and (46b); 

II wC:)(x) II= J_: wC:)T(x)alwc_;)(x)dx 

=l±[cos(a/2) J_: v'(x-xo)alvn(x+xo)dx 

+sin(a/2) J_: v' (x-xo)a2vn(x+xo)dx], 

(47) 

(48) 

(49) 

where vn(x) is assumed to satisfy the ortho-normal condition (26). The 

deviation of II wC:\x) II from unity is proportional to the overlapping integral, 

which can be taken to be small. 

Substituting Eq. (44) into Eq. (39), letting ,>;-) '~>+L.J,~t) and usmg 

Eq. (45), we get, up to the first order for the overlapping integral, 

L.l'~±) -(£/2)[J_: vin)T a 2 U2vin)dx+ J:oo v~mT a 2 U 1 v~n)dx] 

=f(£/2{J_
00

00 

v~n>T a2 U2vin>dx+ J_: vin>T a 2 U 1 v~mdx], (50) 

where the double sign corresponds to that in Eq. (44). Using Eqs. (41), 

(43) and (46), we can show 
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J
oo. v<n>T a U v<n>dx-Joo V(n)T a U v<n>dx 

1 221- 2 212 
-oo ~oo 

= -r cos a(n I uo(x+2xo) In) 

+irsina(n I aauo(x+2xo) In), 

Joo v<n>T a U v<n>dx-Joo V(n)T a U v<n>dx 
2 221- 1 212 

-oo -~ 

We finally obtain 

cos( aj2)(n I uo(x)exp[2xo(d/dx)]l n) 

sin( a/2)( n I aauo( x )exp [2xo( dj dx)] In). 

Ll '~> r[ sin a(n I aauo(x+ 2xo) In) 

=fsin(a/2)(n I aauo(x)exp[2xo(d/dx)] In)] 

+ir[cosa(n luo(x+2xo) In) 

±cos( a/2)( nl uo(x)exp[2xo(djdx)] In)]. 

Note that the matrix elements in Eq. (51) are all real. 

(51) 

When a=O, i.e., u(x) is real and symmetric, Ll'~±) becomes pure im­

aginary. This is also expected from the general discussion in §2-2 (III). 

When a---:1r, i.e .. , u(x) i,s real and antisymmetric, LJ'~±) possesses the real 

part; 

Re[LJ,~±>( a=7T)] = r(n I aauo(x) exp [2xo(d/dx)] In), 

Im[Ll,~±>(a=7T)]= -r(n I uo(x+,2xo) In). 

(52 a) 

(52 b) 

Equations (52a) and (52b) imply that the solutions develop to decay into paired 

solitons and each pair consists of solitons with the equal amplitude moving 

in the opposite directions at the equal speed. This case corresponds to the 

exceptional case shown in §2-2 (I II). 

For arbitrary a's, it is shown from Eq. (51) that the solutions break up 

into even number of moving solitons which are different both in the speed and 

in the amplitude. 

Of course, in the above discussions the coefficients b(g) does not vanish 

in general, so that the non-solito'n part affects the behavior of solutions. When 

the long time asymptotic solutions are considered, however, the non-soliton 

part becomes unimportant (see §4). 

3-3 Variations of a(') and b(0 

Assume that </> and !/; vary as 

(53) 

corr~sponding to the small change Llu, Llrf> and Ll!f; satisfying the boundary 

conditions, 
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296 }. SATSUMA and N. YAJIMA 

at x=-oo, 

at x=+oo. 

Then a and b also undergo small changes, 1.e., 

a'=a+Ja, b'=b+Jb. 

(54) 

(55) 

Substituting Eq. (53) into Eq. (29) and making use of the first order pertur­

bation theory, we find 

(56) 

The corresponding solution is easily obtained as 

(57 a) 

Similarly, we have 

We here notice Eq. (57b) directly assures that J~ satisfies the relation (30), 

i.e., J~=ia2.dt/J*. Substituting Eqs. (53) and (55) into ~q. (11) and taking 

Eqs. (57a) and (57b) into account, we get 

Ja=z'b J_:~tJ Uifidx'-ia J: tjJtJ Uifidx', 

.db= ib J_00

00 

tjJtJ Ut/Jdx' +ia {J_: ~tJ Ut/Jdx'} *, 

where we use the relations, 

J: ~tJ U ~dx=- J_: tjJfJ Uifidx, 

. J_00

00 

tjJfJ U ~dx= {J_: ~tJ Ut/Jdx} *. 

(58 a) 

(58 b) 

Remembering Eq. (13), we can show that the shifts of the eigenvalues studied 

in §3-1 are connected with Ja through 

(59) 

From Eqs. (13) and (58a), this reduces to 

(59') 
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Initial Value Problems of Nonlinear Schrodt'nger Equation 297 

We note that the above result does not contradict Eq. (36) if the relation 

is satisfied. 

§ 4. Long-time asymptotic behavior of solutions 

It is rather difficult to solve the singular integral equations (17) and (18) 

unless b(e) vanishes. The long-time asymptotic solutions, however, can be 

easily obtained, showing the non-soliton part decays as t-l/2 in the asymptotic 

region, t-+oo. 

The coefficient c(x, e) (or c*(x, g)) in Eq. (17) includes the rapid oscillating 

exponential factors with respect to g as t-+oo. Thus, one can show that 

j_: f/J1dg, J_: fiJ2de= o(t-1'2), (60 a) 

J_: f/Jl;ce-,;)de, J_: fiJ2/ce-,,)de= o(t-112) (60 b) 

as t-+oo (see Appendix). Inserting Eqs. (60a) and (60b) into Eqs. (16) and 

(18), we see that the non-soliton part of solutions, which includes the factor 

b(g), does not contribute as t-+oo and, hence, only the soliton part is important. 

In the asymptotic region t-+oo, we can estimate the norm of the soliton 

part of solutions: Equation (16b) yields 

11 u lloo= J_: I u(x, t= oo) 12dx 

With the aid of Eq. (60b) and the fact that AJ(X= 

Following Ref. 6), we can solve Eq. (62); 

N 

[,.\k~kl]X=-oo= n (,k_,j)/ n ('k-,j), 
J=l 1"~-k 

We can then obtain 

(61) 

oo Eq. (l8b) reduces 

(62) 

k=1, 2, ... , N. 

N J N 2:: [,.\k~kl]X=-oo=(2i1T)-l d' n (,-,j)/('-'j), 
k~ 1~ 

where the integration is performed· along the closed path involving all poles, 
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298 J. SATSUMA and N. YAJIMA 

(63) 

On the other hand, the norm of the soliton corresponding to the discrete eigen­

value with the imaginary part TJJ is calculated from Eq. (19), to yield 

N 

II u lloo= I:: II S1(x, t) 11. 
i=l 

(64) 

It .must be noted here that the norm of the long-time asymptotic solutions is 

equal to the sum of that of each soliton. 

§ 5. Example ; u(x, t=O)=A sechx 

We consider the case u(x, t=O)=Asechx as an example solved easily 

by means of the inverse-problem method. Eliminating v2 in Eq. (5) and 

using u=Asechx, we find 

s(1 
d2 . d 

s) ds2 v1 +(1/2-s) ds v1 

+[A
2 + '2+z.,(l-2s) J _

0 _ 4s(l-s) Vl- ' 
(65) 

where s=(1-tanhx)/2. We here note that the boundary x=oo corresponds 

to s=O and x=- oo to s= 1. Further transformation of the dependent variable 

Vl into sa(l-s).Swl reduces Eq. (65) to the hypergeometric equation, presenting 

the two linearly independent solutions 

vj_l>(s)=siC12(l-s)-iC12F(-A, A, i,+l/2; s), 

vj_2> ( s) = sll2-iCI2(l-s) -iCI2 

xF(l/2-z.,+A, 1/2-i,-A, 3/2-£'; s), 

(66) 

where F(a, {3, y; s) is the hypergeometric function. The two linearly inde­

pendent solutions v~ 1 > and v~ 2 ) can be obtained by replacing ' with -' in 

Eq. (66), i.e., 

v~l>(s)=s-iC 1 2(1-s)iC 1 2F(-A, A, -z',+l/2; s), 

v~2>( s) = s112+iCI2(1- s )iCI2 (67). 

xF(l/2+£,+A, l/2+z.,-A, 3/2+z.,; s). 

Let us construct the functions cp, t/; and ~ which satisfy the boundary 

conditions (l1a),_,(llc) for a continuous eigenvalue g, and seek for the co­

efficients a, b defined by Eq. (12). After the tedious but straightforward 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.5

5
.2

8
4
/1

9
1
1
2
7
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Initial Value Problems of Nonlinear Schrodinger Equation 299 

calculations, we obtain 

(68) 

a(g)=[F( -ig+ l/2)]2/[F( -ig+A l/2)F( -ig-A 1/2)], (69 a) 

b(g)=i I F(z'g+ 1/2) i2/[F(A)F(1-A)] 

=i sin (1rA)jcosh (1rg). (69 b) 

As is noted in §1, the discrete eigenvalues of Eq. (5) are given as the zeros 

of a(,), which is the analytic continuation of Eq. (69a) .into the upper half­

plane of '· We then obtain 

1/2), (70) 

where r must be positive integers satisfying A -r+1f2>0, i.e., Irn(,r)>O. 

From Eq. (15}-'(17) and (68)"-'(70), u(x, t) is foub.d at an arbitrary 

instant. 

5-1 A=N 

. At first we consider the case A =N (positive integer). It follows from 

Eq. (70) that there exist N discrete eigenvalues, all of which are purely im­

aginar.y, i.e., the solitons are in the bound state. It is easily seen from Eq. 

(69b) that b(g) vanishes, so that the solution in this case consists only of soliton 

part. By means of Eq. (70), a(') reduces to 

(71) 

which coincides with the expression for a(') obtained from the general discus­

sion under the assumption of b(g)=O by Zakharov and Shabat.6> From Eqs. 

(69b) and (70), we obtain 

(72) 

The coefficient c(x, g) defined by Eq. (15b) is equal to zero and Eqs. (17a) and 

(17b) yield 

cJ>l=cJ>;=o. 

Substituting the above results into Eqs. (l8a) and (18b) and using Eqs. (15a), 

(71) and (72), we can solve the equations for ~kl and !f;%2. The eigenfunctions 

for A=1 and A=2 are given in Table I. 

We can write down explicitly the solutions in the cases N = 1 and 2; 

u(x, t)=exp ( -#/2) sechx for N=l, 
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300 J. SATSUMA and N. YAJIMA 

Table I. The eigenvalues and the eigenfunctions for A=1, 2. The coefficients 

f.J and y in §~2-2 (I) and (V) are also given. 

A= 1 (One-eigenvalue state): 

( 
i-l/2e-X/2 ) 

r=1; '=z'/2, v=(sechx/2) ill2exl2 , 

f.J=1, y=l. 

A= 2 (Two-eigenvalue state): 

( 

i-1/2e-X/2 ) 
r=1; '=3if2, v=(3/8)1.1 2 sech2 x ill2exl2 , 

f.J=1, y=l. 

( 
z'-112e-XI2(2eX-e-X) ) 

r=2; '=i/2, v=8-112sech2x ill2eX12(ex_
2

e-x) , 

f.J=-1, 

u(x, t)=4exp( -z"t/2)[ch(4x)+4ch(2x)+3cos(4t)]-1 

X [ch(3x).+3exp( -4z't)ch(x)] for N=2. 

When N=l, the solution corresponds to the one-soliton state, keeping its 
initial shape in the course of time. When N =2, on the other hand, the solution 
represents the bound state of solitons and its envelope pulsates with the frequen­
cy ?T/2. Beyond this point, the calculations rapidly become lengthier. There­
fore we merely illustrate the results for N=l, 2, 3 in Fig. l. 

2 
lui N:::: 1 N::: 3 

Fig. 1. Exact solutions for u(x, t=O)=Nsechx. 

5-2 , A .:_N+a, lai<I/2 

In this case, a(') has N zeros, in other words, there exist N eigenvalues, 
but b(e) is not zero. Equation (5) with non-vanishing b(e) is complicated to 
be solved. As is shown in §4, however, the long-time asymptotic solutions 
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Initial Value Problems of Nonlinear Schrodinger Equation 301 

have relatively simple structure, consisting of only the solitons. 

In view of Eq. (70) the norm of the j-th soliton is obtained, 

II S1 11=4r)J=4(N +a-J+ l/2). 

Substituting this into Eq. (64), we get 

II u lloo=2N(N +2a). 

The initial norm is given by 

!lullo= J_: !A sechxi2dx=2(N+a)2. 

The ratio of the norms is then obtained, 

II U lloo/11 u llo= l-a2/(N +a)2. (73) 

We may say from Eq. (73) that the norm associated with the non-soliton part 

may be a2f(N +a)2 and that the long-time asymptotic solutions can be well 

described only by the soliton terms in the limit N)> l. Such a circumstance 

is illustrated in Fig. 2, where the time evolutions of the maximum value of 

lui are shown for A =0~8.-,1.4 which are the cases only one soliton exists. 

All cases tend to steady levels oscillating around them. 

0.5 
--------------. 0.6 

l 
0 5 10 15 

Fig. 2. Time development of the maximum value of I u(.x) I for u(.x, 

X sech .x. Straight lines denote the steady level the solutions converge. The 

relative errors are estimated; 1..1Il/Ill=2.52% and IJI2/I2l=l.90% forA= 

1.4, j..1Il/IIJ=0.25% and jJI2/I2I=0.38% for A=1.25, J..111/ltl=0.41% 

and IJI2/I2I=0.62% for A=l.l, j..1II/hl=0.10% and jJI2/I2l=0.83% 
for A=0.8. In these cases1 the maximum of I u I occurs at .x=O. 
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302 J. SATSUMA and N. YAJIMA 

5-3 Numerical solutz'ons 

First, we deal with the initial values given by 

u(x)=sech (x-xo)+exp (ia) sech (x+xo), (74) 

where xo and a are both real. If xo)> l, we can apply the perturbation analysis 

in §3-2. Substituting the eigenfunction in Table I into Eq. (51), we obtain 

after the lengthy calculations 

'±=-sin a[l-2xo coth (2xo)]/sinh (2xo) 

±sin (a/2)[l-2xo/sinh (2xo)]/(2 sinh (xo)) 

+i {l/2+cos a[2xo/sinh(2xo)] 

±cos (a/2)[1 +2xo/sinh (2xo)]/(2 cosh(xo))}. (75) 

When xo becomes ,;:Sl, the perturbation analysis cannot be applied. 

For this case, the behavior of solutions can be studied by analyzing numerically 

computed solutions of Eq. (1). In Fig. 3 the case of xo=0.6 and a=7T/2 is 

illustrated. We can observe there the soliton of the amplitude ,_,1.70 moving 

with the velocity ,_,0.35. It is expected from Eq. (75) that there exist two 

eigenvalues, ,l~0.4l+l.Oi and '2::::::0.18-0.03i. The observed soliton may 

correspond to the eigenvalue ,1, which implies the velocity of soliton to be 

2 X 0.41,_,0.8 and the amplitude 2 X 1.0,_,2.0. Another eigenvalue, ,2, has 

negative imaginary part and, therefore, corresponds to no real soliton. These 

· values have only rough meaning since the perturbation analysis is less 

reliable in this case. 

12 X 

Fig. 3. Time development of solution for the initial condition, u(x, t=O)= 

sech(x-0.6)+isech(x+0.6). The amplitude converges to 1.70 with mean 

velocity 0.35. The relative errors are I £Jit/I1I =0.30% and I £JI2/I2I =2.73%. 
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Figure 4 illustrates the case of the antisymmetric u(x), i.e., a=1r and 

xo=0.6. In this case, the eigenvalues are estimated from Eq. (75) as '± 
±0.16-0.29£ so that no real solitons are expected to appear. The numerical 

solution recognizes such a tendency. 

In Fig. 5, the numerical computation for the antisymmetric case, u(x)= 

2sech(x-0.6)-2sech(x+0.6), is presented. The perturbation analysis (52) 

is applied to yield the eigenvalues ±0.14+0.17£ and ±0.02-1.35z', 

which imply the solitons of the amplitude ""'0.34 and the velocity ,._,±0.28 to 

Fig. 4. Time development of solution for the initial condition, u(x, t=O)= 

sech(x-0.6)-sech(x+0.6). The two peaks spread out to decay monoto­

nously. The relative errors are l.d/1/111=0.14% and j.J/2/121=0.07%. 

(U! 

-12 -8 

Fig. 5. Time development of solution for the initial condition, u(x, t=O)= 

2sech(x-0.6)-2sech(x+0.6). Two solitons with the same amplitude """'0.75 

and the opposite velocities with the same magnitude ,...,_,±0.65 are observed. 

The relative errors are l.dll/hl=0.07% and j.J/2/1:~1~0.75%. 
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be expected. The numerical computation indicates such a tendency, the 

symmetric decay of the initially modulated wave into the series of solitons. 

Finally anoth~r example is shown in Fig. 6, in which the initial value is 

expressed by u(x)=2sech(x)+isech(x)tanh(x). One can see that the solution 

decays into the two' solitons, one of which has the larger amplitude and velocity 

than the other. This is also qualitatively expected from the perturbation analy­

sis in §3-1. 

4 8 

Fig. 6. Time development of solution for the initial condition, u(x, 

2 sech (x)+£ sech (x) tanh (x). Two solitons emerge; one moves with the 

velocity ,....,...,-0.38 and has the amplitude "-'3.1, and the other with the velocity 

"-'0.16 and the amplitude ,.....,1.2. The relative errors are I iJft//11=0.22% 

and I iJ/2//2I =14.65%. 

The numerical analysis were made by replacing' Eq. (l) with the difference 

equation, i[ u(x, t+Llt)-u(x, t-L1t)]/(2Lit)= [ u(x+Llx, t)-2u(x, t)+u(x-Llx, 

t)]/(2Llx2)+ lu(x, t) 12u(x, t). We used the periodic boundary condition, u(x, t) 

=u(x+2L, t), -L<x<L. The value of L should be large enough not to 

influence on the behaviors of solutions. In our case L=40 was chosen. 

The mesh size was taken as L1x=0.08 and L1t=0.0016. The runs were in­

spected at every step by using the conserved quantities, /1 = J~L I u(x, t) 12dx 

and /2= J~L [I du(x, t)/dx 12-1 u(x, t) 14f2]dx. The maximum relative errors, 

IL1I1/f1l and I L1I2/l2l are written in each figure. 

Appendix 

Let us consider the integral 

(A·l) 
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where Ll (g) is analytiC without the pole-singularities. Introducing the new 
variable 7J by 7J=g-xj(2t), we get 

I =exp [ -ix2j(2t)] J_: Ll(xj2t+r;) exp (2£tr;2)dr;. 

By making use of the method of complex integral, one has 

l=exp [ -ix2j(2t)] {(i/(2t))ll2 

X J_: Ll(xf(2t)+i112pf(2t)112) exp ( -p2)dp 

+27Ti 2::1LI(,J) exp [2it(,J-x/(2t))2]}, 

where 'J is the pole of Ll involved in the fan-shape domain, 

Re( ,J_ x/ (2t)) Im( '' )>O, 

[Re(,1-x/(2t))]2- [Im(,1)]2>0. 

(A·2) 

(A·3) 

(A·4) 

In view of Eq. (A·4) the pole contributions in Eq. (A·3) decay exponentially 
as t~oo. Therefore, we obtain 

I==:.(i7Tj2t)li2LJ(x/2t)exp ( -ix2)2t)= O(t-112) (A·S) 

for t~oo. Similarly, one can obtain 

1* = J_:·LI*(g) exp [ -2it(g2_gxjt)]dg 

=:::.( -z'7Tj2t)l12LJ *(xf2t) exp (z'x2f2t)= O(t-112). (A·6) 

Integrating Eq. (17a) with respect to g over ( -oo, oo ), using 

(A·7) 

and applying Eqs. (A·S) and (A·6), one can show 

(A·8) 

Multiplying Eq. (17a) by (g-,j)-1 and integrating with respect to' g over 
(- oo, oo ), one obtain, after similar calculations as above, 

(A·9) 

Similar procedure yields 

(A·lO) 
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