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b-Lactams are the most widely used class of antibiotics. Since the discovery of benzylpeni-
cillin in the 1920s, thousands of new penicillin derivatives and related b-lactam classes of
cephalosporins, cephamycins, monobactams, and carbapenems have been discovered.
Each new class of b-lactam has been developed either to increase the spectrum of activity
to include additional bacterial species or to address specific resistance mechanisms that
have arisen in the targeted bacterial population. Resistance to b-lactams is primarily
because of bacterially produced b-lactamase enzymes that hydrolyze the b-lactam ring,
thereby inactivating the drug. The newest effort to circumvent resistance is the development
of novel broad-spectrum b-lactamase inhibitors that work against many problematic b-lac-
tamases, including cephalosporinases and serine-based carbapenemases, which severely
limit therapeutic options. This work provides a comprehensive overview of b-lactam anti-
biotics that are currently in use, as well as a look ahead to several new compounds that are
in the development pipeline.

W
hen Alexander Fleming was searching for

an antistaphylococcal bacteriophage in

his laboratory in the 1920s, he deliberately left

plates out on the bench to capture airborne

agents that might also serve to kill staphylococci

(Fleming 1929). His success was greater than he

must have hoped for. His initial publication on

benzylpenicillin described a substance that was

unstable in aqueous solution but that might

serve as an antiseptic or as a selective agent for

isolation of Gram-negative bacteria that were

present in mixed cultures of staphylococci and

streptococci. As the potential utilityof penicillin

G as a parenteral therapeutic agent became

more obvious, Fleming, Abraham, Florey, and

a consortium of scientists from England and the

United States were able to optimize the isolation

and identification of benzylpenicillin to assist in

the treatment of Allied soldiers in World War II

(Macfarlane 1979). These activities set the stage

for the launch of the most successful class of

antibiotics in history.

b-Lactam antibiotics are currently the most

used class of antibacterial agents in the in-

fectious disease armamentarium. As shown in

Figure 1, b-lactams account for 65% of all

prescriptions for injectable antibiotics in the

United States. Of the b-lactams, cephalosporins

comprise nearly half of the prescriptions (Table

1). The b-lactams are well tolerated, efficacious,
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and widely prescribed. Their major toxicity is

related to an allergic response in a small per-

centage of patients who react to related side

chain determinants; notably, these reactions

are most common with penicillins and cepha-

losporins with minimal reactivity caused by

monobactams (Saxon et al. 1984; Moss et al.

1991). The bactericidal mechanism of killing

by b-lactams is perceived to be a major advan-

tage in the treatment of serious infections.

When these agents were threatened by the rapid

emergence of b-lactamases, b-lactamase-stable

agents were developed, as well as potent b-lac-

tamase inhibitors (BLIs). In this introductory

description of the b-lactams, the most com-

monly available b-lactams and BLIs will be pre-

sented, with a brief summary of their general

characteristics. Occasional agents have been in-

cluded for their historical or scientific impor-

tance. Note that resistance mechanisms will

be discussed in detail in other articles in this

collection.

MECHANISM OF ACTION

b-Lactam antibiotics are bactericidal agents

that interrupt bacterial cell-wall formation as

a result of covalent binding to essential penicil-

lin-binding proteins (PBPs), enzymes that are

involved in the terminal steps of peptidoglycan

cross-linking in bothGram-negative andGram-

positive bacteria. Every bacterial species has its

own distinctive set of PBPs that can range from

Tetracyclines

Trimethoprim/sulfa

Macrolides/ketolides

Fluoroquinolones

Aminoglycosides

Glycopeptides

Polymyxins

All other antibacterials

β-Lactams

Figure 1. Proportion of prescriptions in the United States for injectable antibiotics by class for years 2004–2014.
The percentage of standard units for each injectable antibiotic prescribed in the United States from 2004 to 2014
is shown as follows: b-lactams, 65.24%; glycopeptides, 9%; fluoroquinolones, 8%; macrolides/ketolides, 6%;
aminoglycosides, 5%; polymyxins, 1%; trimethoprim/sulfamethoxazole, 0.5%; tetracyclines (excluding tigecy-
cline), 0.4%; all other antibiotics (including daptomycin, linezolid, and tigecycline), 4.21%. (Data from the IMS
MDART Quarterly Database on file at AstraZeneca.)

Table 1.Usage of parenteral b-lactams by class from
2004–2104 in the United States

Class of b-lactam

Percentage of

prescriptionsa

Narrow spectrum penicillins 3.12

Broad spectrum penicillinsb 36.54

Cephalosporins 47.49

Monobactams 1.66

Carbapenems 11.20
aThe percentage for each injectable antibiotic class

prescribed in the United States from 2004 to 2014. (Data

from the IMS MDART Quarterly Database on file at

AstraZeneca.)
bBroad-spectrum penicillins include the b-lactam/

b-lactam-inhibitor combinations piperacillin-tazobactam,

ticarcillin-clavulanate, and ampicillin-sulbactam.
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three to eight enzymes per species (Georgopa-

padakou and Liu 1980). The inhibition of bac-

terial peptidoglycan transpeptidation by penicil-

lin was described mechanistically in a classical

paper by Tipper and Strominger (1965), who

noted a structural similarity of penicillin G to

the terminal D-Ala-D-Ala dipeptide of the na-

scent peptidoglycan in the dividing bacterial

cell. This mechanism is now known to involve

binding of penicillin, or anotherb-lactam, to an

active site serine found in all functional PBPs

(Georgopapadakou et al. 1977). The resulting

inactive acyl enzyme may then slowly hydrolyze

the antibiotic to form a microbiologically inac-

tive entity (Frère and Joris 1985). In addition to

these functionalities, recent work has shown

the binding of selected b-lactams, such as cef-

taroline, to an allosteric site in PBP2a from

Staphylococcus aureus, resulting in an increased

sensitization of the organism to the antibiotic

(Otero et al. 2013; Gonzales et al. 2015).

PBPs may be divided into classes according

to molecular mass (Goffin and Ghuysen 1998;

Massova and Mobashery 1998), with low-mo-

lecular-mass PBPs serving mainly as mono-

functional D-Ala-D-Ala carboxypeptidases.

High-molecular-mass PBPs have been divided

into two subclasses, one of which (class A) in-

cludes bifunctional enzymes with both a trans-

peptidase and a transglycosylase domain, and

the second of which (class B) encompasses D-

Ala-D-Ala-dependent transpeptidases. At least

one PBP is deemed to be essential in each spe-

cies, with a unique specificity for b-lactam

binding that varies among each species and

each b-lactam class (Curtis et al. 1979; Georgo-

papadakou and Liu 1980). In Gram-negative

bacteria, essential PBPs include the high-molec-

ular-weight PBPs 1a and 1b that are involved

in cell lysis, PBP2, the inhibition of which re-

sults in a cessation of cell division and the for-

mation of spherical cells, and PBP3 for which

inhibition arrests cell division, resulting in fila-

mentation. Cell death may occur as a result of

inhibiting one or more of these PBPs (Spratt

1977, 1983). The roles of PBPs in Gram-positive

bacteria and Mycobacterium tuberculosis are

discussed in detail in Fisher and Mobashery

(2016).

PENICILLINS

Penicillin G (benzylpenicillin) was the first b-

lactam to be used clinically, most frequently to

treat streptococcal infections for which it had

high potency (Rammelkamp and Keefer 1943;

Hirsh and Dowling 1946). Another naturally

occurring penicillin, penicillin V (phenoxy-

methylpenicillin), in an oral formulation is still

used therapeutically and prophylactically for

mild to moderate infections caused by suscep-

tible Streptococcus spp., including use in pedi-

atric patients (Pottegard et al. 2015). However,

the selection of penicillin-resistant penicillin-

ase-producing staphylococci in patients treated

with penicillin G led to decreased use of this

agent, and prompted the search for more pen-

icillins with greater stability to the staphylococ-

cal b-lactamases (Kirby 1944, 1945; Medeiros

1984). A list of historically important and clin-

ically useful penicillins is provided in Table 2.

Among the penicillinase-stable penicillins of

clinical significance are methicillin, oxacillin,

cloxacillin, and nafcillin, with the latter suggest-

ed as the b-lactam of choice for skin infections,

catheter infections, and bacteremia caused by

methicillin-susceptible S. aureus (Bamberger

and Boyd 2005). All were used primarily for

staphylococcal infections until the emergence

of methicillin-resistant S. aureus (MRSA) in

1979–1980 (Hemmer et al. 1979; Saroglou et

al. 1980).

Penicillins with improved activity against

Gram-negative pathogens included the orally

bioavailable ampicillin and amoxicillin, both

of which were introduced in the 1970s. These

agents were initially used for the treatment of

infections caused by Enterobacteriaceae and did

not effectively inhibit the growth of Pseudomo-

nas aeruginosa, which became more of a con-

cern during the late 1970s. Carbenicillin was

the first antipseudomonal penicillin to be in-

troduced, but lacked stability to b-lactamase

hydrolysis and was less potent than piperacillin

or ticarcillin, later antipseudomonal penicil-

lins. These latter drugs were considered to be

potent broad-spectrum penicillins that includ-

ed penicillin-susceptible staphylococci, enteric

bacteria, anaerobes, and P. aeruginosa in their

b-Lactams and b-Lactamase Inhibitors
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Table 2. Penicillins of current and historical utility

N

O

HN
S

CO2H

CH3

C

O

R2 CH3

R1

Name R1 R2

Route of

administration Approval dateb,c Status

Benzylpenicillin (penicillin G) —H
H2C

IM or IV 1946 Approved worldwide

Phenoxymethylpenicillin

(penicillin V)

—H
O CH2

Oral 1968 Approved worldwide

Methicillin —H OCH3

OCH3

IV 1960 No longer available; of historical interest

Oxacillin —H

N
O CH3

Oral, IV 1962 Widely available, but not in the United

Kingdom

Cloxacillin —H

N
O CH3

Cl Oral, IV 1974 Widely available, but not in the United

Kingdom

Ampicillin —H NH2 Oral, IV 1963 Widely available
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Table 2. Continued

Name R1 R2

Route of

administration Approval dateb,c Status

Nafcillin —H

O

IV 1970 Limited availability

Amoxicillin —H NH2

HO

Oral, IV 1972 Widely available

Carbenicillin —H H
C

HO
O

Oral 1972 Discontinued

Ticarcillin —H

S

H
C

O
HO

IV 1976 Limited availability

Piperacillin —H

N
N

O
O

O

N
H

IV 1981 Widely available, primarily in

combination with tazobactam

Temocillin —OCH3

S

H
C

O
HO

IV 1985 in Europe

(Harvengt 1985)

Limited availability (Europe)

Mecillinam

N

O

N
S

CO2H

CH3

CH3

N
IV 1978 Limited availability

IM, Intramuscular; IV, intravenous.
aFDA approval unless otherwise noted.
bDates were updated from Medeiros (1997) (www.accessdata.fda.gov/scripts/cder/drugsatfda; www.drugs.com).
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spectrum of activity. They were used extensively

to treat serious nosocomial infections, especial-

ly when combined with a b-lactamase inhibitor

(see below).

Two parenteral penicillins with unusual

chemical structures, mecillinam and temocillin

(Table 2), were introduced to treat infections

caused by enteric bacteria before the global

emergence of extended-spectrum b-lactamases

(ESBLs) in the late 1980s. Mecillinam (also

known as amdinocillin), with a 6-b-amidino

side chain, is a narrow-spectrum b-lactam that

binds exclusively to PBP2 in enteric bacteria

(Curtis et al. 1979). Because of this specificity,

it shows synergy in vitro in combination with

other b-lactams that bind to PBPs 1a/1b and/
or PBP3 in Gram-negative bacteria (Hanberger

et al. 1991), thus decreasing the possibility that

a point mutation in a single PBP would lead

to resistance (Hickman et al. 2014). Temocillin,

the 6-a-methoxypenicillin analog of ticarcillin,

had greater stability than ticarcillin to hydrolysis

by serine b-lactamases, but lost antibacterial

activity against Gram-positive bacteria, anaero-

bic Gram-negative pathogens, and some enteric

bacteria that included the important pathogens

Enterobacter spp. and Serratia marcescens (Mar-

tinez-Beltran et al. 1985). Mecillinam and te-

mocillin are currently enjoying a resurgence in

interest owing to their stability to many ESBLs

(Livermore et al. 2006; Rodriguez-Villalobos

et al. 2006), often resulting in greater than

90% susceptibility when tested against many

contemporary ESBL-producing Enterobacter-

iaceae (Giske 2015; Zykov et al. 2016).

Because increasing numbers of b-lactamas-

es have compromised the use of penicillins as

single agents (Bush 2013), there is currently

limited therapeutic use of the penicillins as

monotherapy. Ampicillin, amoxicillin, pipera-

cillin, and ticarcillin have continued to be use-

ful, primarily as a result of their combination

with an appropriate b-lactamase inhibitor (see

below). However, even ampicillin, amoxicillin,

penicillin G, and penicillin V are still active

as monotherapy against Group A streptococci,

and Treponema pallidum, two of the few bacte-

rial species that do not produce b-lactamases

(Schaar et al. 2014).

CEPHALOSPORINS

During the 1950s, the discovery of the naturally

occurring penicillinase-stable cephalosporin C

opened a new pathway to the development of

hundreds of novel cephalosporins (Newton and

Abraham 1956; Abraham 1987) to treat infec-

tions caused by the major penicillinase-pro-

ducing pathogen of medical interest at that

time, S. aureus. Dozens of cephalosporins were

introduced into clinical practice (Abraham

1987), either as parenteral or oral agents. The

molecules exhibited antibacterial activity with

MICs often �4 mg/mL against not only staph-

ylococci, but also Streptococcus pneumoniae and

non-b-lactamase-producing enteric bacteria.

The parenteral agents were generally eightfold

more potent than the oral agents that were used

in some cases to replace oral penicillins in pen-

icillin-allergic patients. The early cephalospo-

rins, for example, those in the cephalosporin

I subclass (Bryskier et al. 1994) introduced

before 1980, were labile to hydrolysis by many

b-lactamases that emerged following their in-

troduction into clinical practice, so that only a

few of the early molecules remain in use (see

Table 3), primarily to treat mild to moderate

skin infections caused by methicillin-suscepti-

ble S. aureus (MSSA) (Giordano et al. 2006).

Cefazolin with high biliary concentrations is

still used for surgical prophylaxis and for treat-

ment of abdominal infections (Sudo et al. 2014)

and is effective as empiric therapy in 80% of

Japanese children with their first upper urinary

tract infection (Abe et al. 2016).

When the TEM-1 penicillinase began to ap-

pear on transmissible plasmids inNeisseria gon-

orrhoeae (Ashford et al. 1976) andHaemophilus

influenzae (Gunn et al. 1974; Khan et al. 1974),

it was quickly recognized that the penicillins

and cephalosporins in medical use were becom-

ing ineffective, not only in treating those TEM-

1-producing organisms, but also for the enteric

bacteria and P. aeruginosa that could all acquire

this enzyme. Another surge of synthetic activ-

ity in the pharmaceutical industry provided

both oral and parenteral cephalosporins with

stability to this common enzyme. These agents

tended to have decreased potency against the

K. Bush and P.A. Bradford
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Table 3. Cephalosporins of current clinical utility or of historical interest

 HN S

OHO

N

O
R1

R2R3

O

Name Subclassa R1 R2 R3

Route of

administration Approval dateb,c Status

Cephalexin Cephalosporin I H
C

NH2

–H –CH3 Oral 1971 Limited availability

Cefaclor Cephalosporin I –Cl –H NH2 Oral 1979 Widely available

Cefixime Cephalosporin V –H

S

H2N
N

N
O

OH Oral 1989 Widely available

Cefpodoxime Cephalosporin IV O
CH3

–H N

S
N

O

H2N

CH3

Oral 1992 Widely available

Ceftibutin Cephalosporin III –H –H O

OH

N

S

H2N

Oral 1995 Widely available
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Table 3. Continued

Name Subclassa R1 R2 R3

Route of

administration Approval dateb,c Status

Cefdinir Cephalosporin V –H HO

N

S

NH2N

Oral 1997 Widely available

Cefazolin Cephalosporin I S

N N

S –H
N

N

N

N

IV 1973 Widely available

Cefuroxime Cephalosporin II O NH2

O

–H H3C O

N

O

Oral,d IV 1983 Widely available

Cefotaxime Cephalosporin III O CH3

O

–H

S

H2N N

N

O

CH3 IV 1981 Widely available

Cefoperazone Cephalosporin III
S

N N

N

N

–H

N
N

O
O

N
H

O

OH IV 1982 Widely available

Ceftriaxone Cephalosporin III S

N
N
H

N O

O

–H

S

H2N N

N

O

CH3 IV 1984 Widely available
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Table 3. Continued

Name Subclassa R1 R2 R3

Route of

administration Approval dateb,c Status

Ceftazidime Cephalosporin III

N
+

–H

S

H2N N

N

O

C

H3C

CH3

OH

O

IV 1985 Widely available

Cefepime Cephalosporin IV
N

+
–H

S

H2N N

N

O

CH3 IV 1996 Widely available

Ceftaroline

(fosamil)

Anti-MRSA

cephalosporin

S S

N

N
+
Me –H

N

S N

H
N

H2O3P

N

OCH2CH3 IV 2010 Widely available

Ceftobiprole Anti-MRSA

cephalosporin N

NH

O

–H

N
N

S N

H2N

OH IV 2013 (Europe) Limited availability

Ceftolozane Antipseudomonal

cephalosporin–

cephalosporin VI

N
+ N

Me

NH2

HN

O

HN

NH2 –H

N O

N

S N

H2N

CO2HH3C

CH3 IV 2014 Limited availability
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Table 3. Continued

Name Subclassa R1 R2 R3

Route of

administration Approval dateb,c Status

S-649266 Siderophore

cephalosporin–

cephalosporin V
N

+

N
H

O Cl

OH

OH

–H

S

H2N N

N

O
C

H3C

CH3

OH

O

IV Not approved Phase 2

Cefoxitin Cephamycin O NH2

O

–OCH3

S

IV 1978 Widely available

Moxalactam Oxacephem

O

OHO

N

O

S

OCH3

N N

N
N

HN

O

O

HO

HO IV 1982e Limited availability

IM, Intramuscular; IV, intravenous.
aSubclasses assigned according to CLSI (2016), Bryskier et al. (1994), or Bryskier and Belfiglio (1999).
bFDA approved unless otherwise noted.
cDates were updated from Medeiros (1997) (www.accessdata.fda.gov/scripts/cder/drugsatfda; www.drugs.com; www.price-rx.com/lists/lantibiotics.shtml).
dOral when dosed as cefuroxime axetil.
eAnonymous (1982).
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staphylococci, but gained antibacterial activity

against Gram-negative pathogens. Cefuroxime,

dosed parenterally or orally as the axetil ester,

was the only member of the cephalosporin II

class (Bryskier et al. 1994) with both oral and

systemic dosage forms, but its stability to b-lac-

tamase hydrolysis was diminished compared to

later oral cephalosporins (Jacoby and Carreras

1990). As seen with cefuroxime, acceptable oral

bioavailability of cefpodoxime required esterifi-

cation through addition of a proxetil group to

attain sufficient absorption for efficacy (Brys-

kier and Belfiglio 1999). Of the oral agents

approved after 1983 in Table 3, cefdinir was

generally more stable to hydrolysis, not only

to the original TEM enzyme, but also to the

AmpC cephalosporinases that are produced at

a basal level in many enteric bacteria and

P. aeruginosa (Payne and Amyes 1993; Labia

and Morand 1994).

Among the parenteral agents introduced in

the 1980s were the cephamycin cefoxitin, and

cephalosporins in the cephalosporin III and

cephalosporin IV subclasses (Bryskier et al.

1994), which continue to serve as important

antibiotics for the treatment of serious infec-

tions caused by Gram-negative pathogens. The

novel oxacephem moxalactam, or latamoxef,

which had similar antimicrobial activity to the

cephalosporin III/IV subclasses, has exquisite

stability to hydrolysis by b-lactamases (Sato

et al. 2015), but was not a highly successful an-

tibiotic owing, in part, to a relatively high fre-

quency of bleeding in patients treated with this

drug (Brown et al. 1986). The cephamycin ce-

foxitin is notable for its characteristic 7-me-

thoxy side chain that confers stability to the

TEM-type b-lactamases, including ESBLs. It

has useful antibacterial activity against MSSA

and enteric bacteria that do not produce high

levels of AmpC cephalosporinases (Jacoby and

Han 1996). Cefotaxime, cefoperazone, ceftriax-

one, and ceftazidime, designated as subclass

cephalosporin III, and cefepime in the cepha-

losporin IV subclass, are also known as expand-

ed-spectrum cephalosporins with increased

hydrolytic stability to the common penicillinas-

es, SHV-1 and TEM-1 b-lactamase (Martinez-

Martinez et al. 1996). These agents have dimin-

ished activity against staphylococci and entero-

cocci compared to earlier cephalosporins, but

have more potent activity against Gram-nega-

tive organisms. Cefepime tends to have lower

MICs against enteric bacteria than the other

expanded-spectrum cephalosporins, attributed

to greater penetration through theOmpFouter-

membrane porin protein (Nikaido et al. 1990;

Bellido et al. 1991). Cefotaxime and ceftriaxone

are often used to treat susceptible streptococcal

infections; all can be used to treat serious infec-

tions caused by enteric bacteria if the organisms

test susceptible. Notably, ceftazidime and cefe-

pime have maintained their observed activity

against P. aeruginosa, with recent susceptibility

rates exceeding 80% (Sader et al. 2015). A lia-

bility of the expanded-spectrum cephalospo-

rins, however, began to emerge only a few years

after the introduction of cefotaxime, when the

ESBLs were identified with the ability to hydro-

lyze all of the b-lactams, with the exception of

the carbapenems. These enzymes, in addition to

both serine and metallo-carbapenemases, have

severely compromised the activity of almost all

penicillins and cephalosporins, necessitating

the development of combination therapy with

other b-lactams, b-lactamase inhibitors, or an-

tibiotics from other classes.

Ceftolozane, recently approved in combi-

nation with tazobactam for the treatment of

complicated urinary tract infections and com-

plicated intraabdominal infections, shows po-

tent antipseudomonal activity, and includes

activity against enteric bacteria that produce

some ESBLs (Zhanel et al. 2014), particularly

CTX-M-producing isolates (Estabrook et al.

2014). Another recent addition to the cephalo-

sporin family is the siderophore-substituted

cephalosporin S-649266 with a catechol in the

3-position, thus allowing the molecule to enter

the cells via an iron transport mechanism (Ko-

hira et al. 2015). In addition to increased pen-

etrability, the cephalosporin is stable to hydro-

lysis by many carbapenemases, resulting in

activity against many b-lactam-resistant enteric

bacteria (Kohira et al. 2015).

In the mid-1990s, reports began to emerge

describing cephalosporins with MICs ,4 mg/
mL against MRSA (Hanaki et al. 1995) as a
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result of targeted binding to PBP2a. PBP2a is an

acquired low-affinity PBP responsible for the

observed lack of antibacterial activity of most

b-lactams in MRSA isolates. Ceftobiprole (Ha-

naki et al. 1995; Hebeisen et al. 2001) and cef-

taroline (Moisan et al. 2010), two cephalospo-

rins with IC50 values ,1 mg/mL for binding to

the staphylococcal PBP2a, have been developed

for clinical use (Table 3). Ceftaroline is approx-

imately twofold to fourfold more potent than

ceftobiprole in inhibiting staphylococcal and

streptococcal growth (Karlowsky et al. 2011),

but ceftobiprole is up to fourfold more potent

against Enterococcus faecalis (Karlowsky et al.

2011). Ceftobiprole generally has at least four-

fold to eightfold lower MICs than ceftaroline

against enteric bacteria, P. aeruginosa, and Aci-

netobacter spp. (Pillar et al. 2008; Karlowsky

et al. 2011). Neither cephalosporin is stable to

hydrolysis by ESBLs or carbapenemases (Pillar

et al. 2008; Castanheira et al. 2012), although

the combination of ceftaroline with the b-lac-

tamase inhibitor avibactam overcomes many of

these issues (Mushtaq et al. 2010; Flamm et al.

2014) (see below). Both drugs are highly insol-

uble and have been derivatized as prodrugs for

therapeutic use, as ceftaroline fosamil (Talbot

et al. 2007) and ceftobiprole medocaril (He-

beisen et al. 2001), respectively.

CARBAPENEMS

Thienamycin was identified in the mid-1970s

as a potent broad-spectrum antibiotic with

the typical four-membered b-lactam structure

fused to a novel five-membered ring in which

carbon rather than sulfur was present at the

1-position (Kahan et al. 1979). Because of its

chemical instability, this carbapenem was never

developed as a therapeutic agent, but was stabi-

lized by adding the N-formimidoyl group to

the 2-position, resulting in imipenem (Table

4). Imipenem has been widely used for infec-

tions caused by Gram-positive, Gram-negative,

nonfermentative, and anaerobic bacteria based

on its sustained high activity against these or-

ganisms, particularly among non-carbapene-

mase-producing enteric bacteria (Bradley et al.

1999; Kiratisin et al. 2012). Carbapenems, in

general, bind strongly to PBP2 in Gram-nega-

tive bacteria, but may also bind to PBP1a, 1b,

and 3, thus providing supplemental killing

mechanisms that may serve to lessen the emer-

gence of resistance (Sumita and Fukasawa 1995;

Yang et al. 1995). Carbapenems are notable for

their stability to most b-lactamases (Bonfiglio

et al. 2002), with the exception of the emerging

carbapenemases found primarily in Gram-neg-

ative bacteria (Bush 2013). Because of the labil-

ity of imipenem to hydrolysis by the human

renal dehydropeptidase (DHP) causing inacti-

vation of the drug (Kropp et al. 1982), it is dosed

in combination with cilastatin, a DHP inhibitor

that also acts as a nephroprotectant (Kahan et

al. 1983).

Based on the potent broad-spectrum activ-

ity of the early carbapenems, other related

agents, including meropenem, ertapenem, and

doripenem, have been developed for global use,

with generally the same group of organisms in-

cluded in their activity spectrum (Baughman

2009). All these carbapenems are more stable

chemically than imipenem, thus allowing for a

longer shelf life for the formulated drug and the

potential for prolonged infusion times (Cie-

lecka-Piontek et al. 2008; Prescott et al. 2011).

Like imipenem, they are stable to most b-lacta-

mases, other than the carbapenemases (Bush

2013). Following the introduction of imipen-

em, later carbapenems contained a 1b-methyl

group that conferred stability to the human

DHP, thus negating the necessity for coadmin-

istration of an inhibitor such as cilastatin (Zha-

nel et al. 2007). In terms of antibacterial activity,

meropenem is generally twofold to fourfold

more potent that imipenem against enteric bac-

teria (Jorgensen et al. 1991), is similar in poten-

cy against P. aeruginosa, but may have twofold

to eightfold less antibacterial activity against

Gram-positive bacteria (Neu et al. 1989). In

addition, meropenem and doripenem retain

greater activity against isolates of P. aeruginosa

lacking the outer membrane porin protein

OprD than imipenem (Riera et al. 2011). Mer-

openem is the only carbapenem approved for

use in meningitis because of its excellent pene-

tration into the meninges (Dagan et al. 1994).

Doripenem, a carbapenem with somewhat
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higher chemical stability than imipenem or

meropenem (Prescott et al. 2011), follows the

antibacterial profile of meropenem, but is

slightly more potent against Gram-negative or-

ganisms (Nordmann et al. 2011). Ertapenem,

recognized for its long elimination half-life in

humans because of its high protein binding

(95%) (Majumdar et al. 2002), may be effective-

ly administered once daily (Kattan et al. 2008)

in contrast to the other carbapenems that are

dosed most commonly two or three times a

day. Although its antibacterial spectrum is sim-

ilar to the other carbapenems against Entero-

bacteriaceae, ertapenemdiffers from imipenem,

meropenem, and doripenem in that it has no

useful activity againstP. aeruginosa (Kohler et al.

1999). Two carbapenems approved for use only

in Japan include biapenem, with an antimicro-

bial spectrum similar to meropenem and dor-

ipenem (Neu et al. 1992; Papp-Wallace et al.

Table 4. Carbapenems of current clinical utility

O

N
R2

OH
O

OH
R1

Name R1 R2 Approval datea,b Status

Imipenem H

S

N

NH

H

H 1985 Widely available

Meropenem CH3

S

H
N

N

O 1996 Widely available

Ertapenem CH3

S

NH

N
H

O

CO2H 2001 Widely available

Doripenem CH3 H
N

N
H

S
NH2

O O

S

2007 Widely available

Biapenem CH3

N
+

N

N

S

2001 (Japan) Available in Japan

Tebipenemc CH3

S

N

N
S

2009 (Japan) Available in Japan

aFDA approved unless otherwise noted.
bDates were updated from Medeiros (1997) (www.accessdata.fda.gov/scripts/cder/drugsatfda; www.drugs.com; adisin

sight.springer.com/drugs/800010812).
cFormulated as the pivoxil ester.

b-Lactams and b-Lactamase Inhibitors

Cite this article as Cold Spring Harb Perspect Med 2016;6:a025247 13

w
w

w
.p

e
rs

p
e

c
ti

v
e

si
n

m
e

d
ic

in
e

.o
rg

 on August 25, 2022 - Published by Cold Spring Harbor Laboratory Press http://perspectivesinmedicine.cshlp.org/Downloaded from 

http://www.accessdata.fda.gov/scripts/cder/drugsatfda/
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/
http://www.drugs.com/
http://www.drugs.com/
http://www.drugs.com/
http://adisinsight.springer.com/drugs/800010812
http://adisinsight.springer.com/drugs/800010812
http://adisinsight.springer.com/drugs/800010812
http://adisinsight.springer.com/drugs/800010812
http://perspectivesinmedicine.cshlp.org/


2011), and tebipenem, which lacks appreciable

antipseudomonal activity (Fujimoto et al.

2013) (Table 4). Tebipenem is notable for its

dosing as the pivoxil ester, rendering it orally

bioavailable for use in pediatric respiratory in-

fections (Kato et al. 2010). Like the other carba-

penems, they are stable to hydrolysis by most

serine b-lactamases, but can be hydrolyzed by

both serine and metallo-carbapenemases. Bia-

penem has been reported to have better hydro-

lytic stability to metallo-b-lactamases (MBLs)

compared to imipenem or meropenem (Neu

et al. 1992; Inoue et al. 1995; Yang et al. 1995)

with at least fourfold lower MICs than imipe-

nem when tested against organisms producing

IMP, VIM, or NDM MBLs (Livermore and

Mushtaq 2013).

MONOCYCLIC b-LACTAMS

Aztreonam, a monocyclic b-lactam with an

N1-sulfonic acid substituent, originated as a de-

rivative from a novel antibiotic isolated from

the New Jersey Pine Barrens (Cimarusti and

Sykes 1983) (Table 5), and is the only mono-

bactam to gain regulatory approval for thera-

peutic use. It has targeted activity against aero-

bic enteric bacteria and P. aeruginosa, with

MICs against S. aureus, S. pneumoniae, and

E. faecalis �50 mg/mL (Sykes et al. 1982). It

binds tightly to PBP3 in Gram-negative rods,

with weaker binding to PBP1a, leading to fila-

mentation followed by cell lysis (Sykes et al.

1982). At the time that it was introduced into

clinical practice, aztreonamwas stable to hydro-

lysis by all of the common b-lactamases (Sykes

et al. 1982); the emergence of ESBLs and the

serine carbapenemases has since rendered it

less effective against multidrug-resistant b-

lactamase-producing organisms (Wang et al.

2014). However, the monobactam nucleus is

not a good substrate for hydrolysis by MBLs,

thus leading to a unique opportunity for this

monobactam to be used in combination thera-

py with a serine b-lactamase inhibitor to treat

infections caused by multi-b-lactamase-pro-

ducing bacteria (see below) (Wang et al. 2014).

BAL30072 is a novel monosulfactam with

an N1-O-sulfate group, an activity-enhancing

3-dihydropyridone siderophore substituent,

and a 4-gem-dimethyl substitution on the aze-

tidinone ring (Page et al. 2010) (Table 5). Its

spectrum of activity is similar to aztreonam,

but supplemented with activity against addi-

Table 5. Monocyclic b-lactams

N

O R1

XR2

Name Subclass R1 R2 Approval date Status

Aztreonam Monobactam —SO3H

HNC

O

C

N

O

C
H3C

CO2
-

CH3

N

SH2N

1986a Widely available

X ¼ a-methyl

BAL30072 Monosulfactam —OSO3H

H
N

O

N
N

S

H2N

O
N

HO

O

OH

Not approved Phase 1

X ¼ gem-dimethyl

aU.S. approval date provided in Medeiros (1997).
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tional nonfermentative bacteria. As a result of

the increased penetration of BAL30072 via iron

uptake mechanisms, it is more potent against

some Gram-negative bacteria than other b-lac-

tams, with activity against Acinetobacter spp.

and Burkholderia spp. eightfold to .256-fold

better than imipenem (Page et al. 2010). It is

susceptible to hydrolysis by ESBLs and many

carbapenemases, and has shown synergistic

activity in combination with b-lactamase in-

hibitors (Mushtaq et al. 2013) or meropenem

(Hofer et al. 2013; Hornsey et al. 2013). Like

aztreonam, it is stable to hydrolysis by MBLs;

additionally, it was hydrolyzed 3000-fold less

efficiently by the KPC-2 serine carbapenemase

compared to aztreonam (Page et al. 2010).

b-LACTAMASE INHIBITORS

Attempts to identify inhibitors of common

b-lactamases began in the mid-1970s, triggered

by the appearance of the transferable TEM-1

penicillinase in Neisseria gonorrhoeae (Ashford

et al. 1976) and Haemophilus influenzae (Gunn

et al. 1974; Khan et al. 1974). As the result of

natural product screening, clavulanic acid with

a novel clavam structure (Table 6) was identified

as a broad spectrum inhibitor of the staphylo-

coccal penicillinases andmost of the recognized

plasmid-encoded penicillinases found in enter-

ic bacteria (Reading and Cole 1977; Cole 1982),

including the highly prevalent TEM and SHV

enzymes (Simpson et al. 1980). The TEM b-

lactamase was shown to be inactivated by this

suicide inhibitor that initially acylates the active

site serine with transient inhibition that in-

cludes hydrolysis of the inhibitor before com-

plete enzyme inactivation (Charnas et al. 1978;

Charnas and Knowles 1981). The spectrum of

the inhibitor is now recognized to include most

class A b-lactamases, including ESBLs (Steward

et al. 2001) and, to a lesser extent, serine carba-

penemases (Nordmann and Poirel 2002; Yigit

et al. 2003). Clavulanic acid acts synergistically

with penicillins and cephalosporins against b-

lactamase-producing enteric bacteria to inhibit

sensitive b-lactamases, thus allowing the com-

panion b-lactam to kill the bacteria. It has been

combined with ticarcillin as a parenteral com-

bination for nosocomial infections that include

P. aeruginosa as a causative pathogen (Neu

1990), and with amoxicillin as an orally bio-

available formulation for therapeutic use espe-

cially in pediatric populations (Klein 2003). It is

also used in phenotypic testing to determine the

presence of ESBLs in Escherichia coli and Kleb-

siella pneumoniae (Steward et al. 2001).

Following the discovery of clavulanic acid,

medicinal chemists synthesized a number of

penicillanic acid sulfones (Table 6) with b-lac-

tamase inhibitory activity (English et al. 1978;

Fisher et al. 1981; Aronoff et al. 1984). Of these,

sulbactam (English et al. 1978) and tazobactam

(Aronoff et al. 1984) were successfully commer-

cialized. Both had a similar spectrum of activity

as clavulanic acid. Against class A b-lactamases,

sulbactam had less inhibitory activity than clav-

ulanic acid or tazobactam based on IC50 values,

but both sulfones were better inhibitors of class

C cephalosporinase b-lactamases (Bush et al.

1993). Each followed the same general inhibito-

ry/inactivation-mechanism as for clavulanic

acid (Easton and Knowles 1984; Bush et al.

1993). The number of hydrolytic events before

inactivation was at least 25-fold higher for sul-

bactam than for clavulanic acid or tazobactam

for the TEM-2 b-lactamase (Bush et al. 1993;

Easton and Knowles 1984). In contrast to clav-

ulanic acid, the sulfone inhibitors do not func-

tion as inducers of chromosomally mediated

AmpC b-lactamase (Weber and Sanders 1990).

Sulbactam has been combined with ampi-

cillin for general global use (Neu 1990) andwith

cefoperazone to provide additional synergistic

activity against nonfermentative and anaerobic

bacteria, primarily in Japan (Eliopoulos et al.

1989). Tazobactam has been combined with

piperacillin and, more recently, with cefopera-

zone and ceftolozane for nosocomial infections,

including those caused by P. aeruginosa (Lister

2000). In general, none of the inhibitors has

useful antibacterial activity as monotherapy, al-

though there are several notable exceptions.

Clavulanic acid alone has been reported to

have an MIC as low as 1 mg/mL against N. gon-

orrhoeae (Wise et al. 1978); sulbactam hasmod-

est activity against wild-type Acinetobacter spp.

and Burkholderia cepacia, with MIC90 values
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�8 and 10 mg/mL, respectively (Jacoby and

Sutton 1989; Fass et al. 1990), but does not re-

tain activity against isolates with multiple resis-

tance mechanisms (Dong et al. 2014). None of

these inhibitors is effective in inhibiting the

hydrolytic activity of MBLs (Bush 2015), and

their modest activity against serine carbapene-

mases does not translate into clinical suscepti-

bility (Yigit et al. 2003; Woodford et al. 2004)

owing, at least in part, to the presence of mul-

tiple b-lactamases in the producing organisms

(Moland et al. 2007). Even the potent inhibitory

Table 6. b-lactamase inhibitors of current interest

Name Structure Subclass

Partner b-

lactam

Approval

datea Status

Clavulanic

acidb
N

O

O OH

O OH

Clavam Amoxicillin 1984 Widely

available

Sulbactamc

N

O

S

O OH

OO Penicillanic

acid

sulfone

Ampicillin 1986 Widely

available

Tazobactam

N

O

S

O OH

OO

N N
N

Penicillanic

acid

sulfone

Piperacillin

Ceftolozane

1993

2014

Widely

available

Available in

the United

States and

Europe

Avibactamd

N

N

O OSO3
-

O

H2N

DBOe Ceftazidimed 2015 Widely

available

Relebactam

N

N

O OSO3
-

O

HN

H2N+

DBO Imipenem Not

approved

Phase 3 in the

United States

RG6080

N

N

O OSO3

-

O

HN
O

H2N

DBO Not selected Not

approved

Phase 1

RPX7009

B
O

O

OHHO

H

N
S

O

Boronic acid Meropenem Not

approved

Phase 3 in the

United States

aDates provided in Medeiros (1997) or www.accessdata.fda.gov/scripts/cder/drugsatfda.
bAlso initially combined with ticarcilllin to provide parenteral activity against Pseudomonas aeruginosa.
cAlso combined with cefoperazone outside the United States.
dAlso in development with ceftaroline or aztreonam.
eDiazabicyclooctane.
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activity against individual ESBLs that is ob-

served with clavulanic acid and tazobactam is

not sufficient to protect their accompanying

penicillins in the presence of multiple b-lacta-

mases (Jones-Dias et al. 2014).

Following a hiatus of approximately two

decades, a unique class of non-b-lactam b-lac-

tamase inhibitors emerged, based on a novel

bridged diazabicyclooctane (DBO) structure

(Table 6) (Coleman 2011). The first of these

inhibitors, avibactam, has a broader spectrum

of activity than clavulanic acid and the sulfone

inhibitors. Not only are class A penicillinases,

ESBLs, and serine carbapenemases potently in-

hibited, but class C cephalosporinases and some

classDoxacillinases are also effectively inhibited

(Ehmann et al. 2012, 2013). Unlike the previous

inactivators described above, avibactam is a

tight-binding, covalent, reversible inhibitor for

most enzymes, with the KPC-2 enzyme, a nota-

ble exception for which slow avibactam hydro-

lysis was observed (Ehmann et al. 2012). In

addition, avibactam does not induce AmpC b-

lactamases at clinically relevant concentrations

(Coleman 2011). Avibactam has been approved

for therapeutic use in combination with cefta-

zidime, and is under development for ceftaro-

line–avibactam or aztreonam–avibactam com-

binations (Flamm et al. 2014; Biedenbach et al.

2015; Li et al. 2015). Other DBOs under devel-

opment include RG6080 and relebactam (MK

7655), in combination with imipenem. The

spectrum of relebactam shows a similar spec-

trum of activity to avibactam; however, it pro-

vides less potentiation against important classD

b-lactamases such as OXA-48 (Livermore et al.

2013). RG6080 (formerly OP0565) is a DBO

that has an inhibitory spectrum similar to the

other DBOs but has the additional benefit of

exhibiting some intrinsic antibacterial activity

against enteric bacteria (Livermore et al. 2015).

The boronic acid inhibitor RPX7009 (Table

6) represents another novel class of synthetic

non-b-lactam b-lactamase inhibitors (Hecker

et al. 2015), although boronic acids have been

known for many years to be effective inhibitors

of serineb-lactamases (Kiener andWaley 1978).

Despite the inhibitory activity of RPX7009

against many groups of serine b-lactamases

(Hecker et al. 2015), it is being developed in

combination with meropenem to target patho-

gens producing serine carbapenemases (La-

puebla et al. 2015).

b-LACTAM RESISTANCE: CONCLUDING
REMARKS

Resistance to the b-lactams continues to in-

crease, especially in Gram-negative organisms

(Vasoo et al. 2015), because of the widespread

therapeutic dependence on these efficacious

and safe antibiotics (see Fig. 1).Major resistance

mechanisms will be expanded on in other

articles in this collection. PBP acquisition or

mutation is the major b-lactam-resistance

mechanism inGram-positive bacteria (see Fish-

er and Mobashery 2016). The most prevalent

and most damaging resistance mechanisms

among Gram-negative pathogens are represent-

ed by the b-lactamases (Babic et al. 2006; Liv-

ermore 2012), both chromosomally encoded

enzymes that may be produced at high levels

and transferable enzymes that travel on mobile

elements among species (Bush 2013). When

these targeted mechanisms are combined with

decreased uptake or increased efflux of the b-

lactam, high-level resistance becomes a major

clinical problem (see Bonomo 2016). Perhaps

themost encouraging prospect in counteracting

resistance is the emergence of new classes of b-

lactamase inhibitors that will provide protec-

tion for some of the most valuable antibiotics

in clinical practice, at least for the present time.
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