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Abstract We consider a simple extension of the Standard

Model with flavor-dependent U (1)′, that has been proposed

to explain some of B-meson anomalies recently reported at

LHCb. The U (1)′ charge is chosen as a linear combination

of anomaly-free B3 − L3 and Lμ − Lτ . In this model, the fla-

vor structure in the SM is restricted due to flavor-dependent

U (1)′ charges, in particular, quark mixings are induced by

a small vacuum expectation value of the extra Higgs dou-

blet. As a result, it is natural to get sizable flavor-violating

Yukawa couplings of heavy Higgs bosons involving the bot-

tom quark. In this article, we focus on the phenomenology

of the Higgs sector of the model including extra Higgs dou-

blet and singlet scalars. We impose various bounds on the

extended Higgs sector from Higgs and electroweak preci-

sion data, B-meson mixings and decays as well as unitarity

and stability bounds, then discuss the productions and decays

of heavy Higgs bosons at the LHC.

1 Introduction

The observed fermion masses and mixing angles are well

parametrized by the Higgs Yukawa couplings in the Stan-

dard Model (SM). However, the neutrino masses and mixing

angles call for the addition of right-handed (RH) neutrinos or

physics beyond the SM and, moreover, the flavor structures

of quarks and leptons are not understood yet. As there is no

flavor changing neutral current at tree level in the SM due

to the GIM mechanism, the observation of flavor violation

is an important probe of new physics up to very high energy

scales and it can be complementary to direct searches at the

LHC. In particular, the violation of lepton flavor universality

would be a strong hint at new physics.
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Recently, there have been interesting reports on the

anomalies in rare semileptonic B-meson decays at LHCb

such as RK [1], RK ∗ [2–4], P ′
5 [5,6]. The reported value of

RK = B(B → Kμ+μ−)/B(B → K e+e−) is

RK = 0.745+0.097
−0.082, 1 GeV2 < q2 < 6 GeV2, (1.1)

which deviates from the SM prediction by 2.6σ . On the other

hand for vector B-mesons, RK ∗ = B(B → K ∗μ+μ−)/B

(B → K ∗e+e−) is

RK ∗ = 0.66+0.11
−0.07(stat) ± 0.03(syst),

0.045 GeV2 < q2 < 1.1 GeV2,

RK ∗ = 0.69+0.11
−0.07(stat) ± 0.05(syst),

1.1 GeV2 < q2 < 6.0 GeV2, (1.2)

which again differs from the SM prediction by 2.1–2.3σ and

2.4–2.5σ , depending on the energy bins. Explaining the B-

meson anomalies would require new physics violating the

lepton flavor universality at a few 100 GeV up to a few

10 TeV, depending on the coupling strength of new parti-

cles to the SM. We also note that there have been inter-

esting anomalies in B → D(∗)τν decays, the so called

RD(∗) = B(B → D(∗)τν)/B(B → D(∗)ℓν) with ℓ = e,

μ, whose experimental values are deviated from the SM val-

ues by more than 2σ [7–11].

Motivated by the B-anomalies RK (∗) , some of the authors

recently proposed a simple extension of the SM with extra

U (1)′ gauge symmetry with flavor-dependent couplings [12].

The U (1)′ symmetry is taken as a linear combination of

U (1)Lμ−Lτ
and U (1)B3−L3

, which might be a good symme-

try at low energy and originated from enhanced gauge sym-

metries such as in the U (1) clockwork framework [13]. In

this model, the quark mixings and neutrino masses/mixings

require an extended Higgs sector, which has one extra Higgs

doublet and multiple singlet scalars beyond the SM. As
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Table 1 U (1)′ charges of fermions and scalars

q3L u3R d3R ℓ2L e2R ν2R ℓ3L e3R ν3R

Q′ 1
3

x 1
3

x 1
3

x y y y −x − y −x − y −x − y

S H1 H2 �1 �2 �3

Q′ 1
3

x 0 − 1
3

x −y x + y x

a result, nonzero off-diagonal components of quark mass

matrices are obtained from the vacuum expectation value

(VEV) of the extra Higgs doublet and correct electroweak

symmetry breaking is ensured by the VEV of one of the sin-

glet scalars.

In this paper, we study the phenomenology of the heavy

Higgs bosons in the flavored U (1)′ model mentioned above.

We first show that the correct flavor structure of the SM is

well reproduced in the presence of the VEV of the extra

Higgs doublet. In particular, in the case with a small VEV

of the extra Higgs doublet or small tan β, we find that the

heavy Higgs bosons have sizable flavor-violating couplings

to the bottom quark and reduced flavor-conserving Yukawa

couplings to the top quark such that LHC searches for heavy

Higgs bosons can be affected by extra or modified production

and decay channels. We also briefly mention the implication

of our extended Higgs sector for RD(∗) anomalies. We discuss

various constraints on the extended Higgs sector from Higgs

and electroweak precision data, flavor data such as the B-

meson mixings and decays, as well as unitarity and stability

bounds. For certain benchmark points that can evade such

bounds, we study the productions and decays of the heavy

Higgs bosons at the LHC and show distinct features of the

model with flavor-violating interactions in the Higgs sector.

This paper is organized as follows. First, we begin with a

summary of the U (1)′ model with the extended Higgs sector

and new interactions. The Higgs spectrum and Yukawa cou-

plings for heavy Higgs bosons are presented in Sect. 3. We

then discuss various theoretical and phenomenological con-

straints on the Higgs sector are studied in Sect. 4, and collider

signatures of the heavy Higgs bosons at the LHC are stud-

ied in Sect. 5. Finally, conclusions are drawn. There are four

appendices dealing with the extended Higgs sector, unitarity

bounds, quark Yukawa couplings, and the U (1)′ interactions.

2 Flavored U(1)′ model

We consider a simple extension of the SM with U (1)′, where

a new gauge boson Z ′ couples specifically to heavy fla-

vors. It is taken as a linear combination of U (1)Lμ−Lτ
and

U (1)B3−L3
with

Q′ ≡ y(Lμ − Lτ ) + x(B3 − L3)

for real parameters x and y [12].1 Introducing two Higgs

doublets H1,2 is necessary to have right quark masses and

mixings. We add one complex singlet scalar S for a correct

vacuum to break electroweak symmetry and U (1)′. More-

over, in order to cancel the anomalies, the fermion sector is

required to include at least two RH neutrinos νi R (i = 2, 3).

One more RH neutrino ν1R with zero U (1)′ charge as well as

extra singlet scalars, �a (a = 1, 2, 3), with U (1)′ charges

of −y, x + y, x , respectively, are also necessary for neutrino

masses and mixings. As Lμ − Lτ is extended to RH neutri-

nos, Lμ−Lτ and L2 −L3 can be used interchangeably in our

model. The U (1)′ charge assignments are given in Table 1.

The Lagrangian of the model is given as

L = −1

4
Z ′

μν Z ′μν − 1

2
sin ξ Z ′

μν Bμν + LS + LY (2.1)

with

LS = |DμH1|2+|DμH2|2+|DμS|2+
3

∑

a=1

|Dμ�a |−V (φi ),

(2.2)

where Z ′
μν = ∂μZ ′

ν − ∂ν Z ′
μ is the field strength of the U (1)′

gauge boson, sin ξ is the gauge kinetic mixing between U (1)′

and SM hypercharge, and Dμφi = (∂μ − igZ ′ Q′
φi

Z ′
μ)φi are

covariant derivatives. Here Q′
φi

is the U (1)′ charge of φi ,

gZ ′ is the extra gauge coupling. The scalar potential V (φi )

is given by V = V1 + V2 with

V1 = μ2
1|H1|2 + μ2

2|H2|2 − (μSH
†
1 H2 + h.c.)

+ λ1|H1|4 + λ2|H2|4 + 2λ3|H1|2|H2|2

+ 2λ4(H
†
1 H2)(H

†
2 H1)

+ 2|S|2(κ1|H1|2 + κ2|H2|2) + m2
S|S|2 + λS|S|4,

(2.3)

V2 =
3

∑

a=1

(μ2
�a

|�i |2 + λ�a |�a |4)

1 We note that we can take two independent parameters for the Z ′

couplings to be either (xgZ ′ , ygZ ′ ) or (x/y, gZ ′ ) by absorbing y into

gZ ′ . Our following discussion does not depend on the choice of the Z ′

couplings.
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+ (λS3S3�
†
3 + μ4�1�2�

†
3 + h.c.)

+ 2

3
∑

a=1

|�a |2(βa1|H1|2 + βa2|H2|2 + βa3|S|2)

+ 2
∑

a<b

λab|�a |2|�b|2. (2.4)

The extended Higgs sector is presented in the next section and

studied in more detail in Appendix A. For a set of quartic cou-

plings for S and H1,2 that are relevant for electroweak sym-

metry and U (1)′ breaking, we have collected unitarity bounds

in Appendix B, which are used to constrain the parameter

space of the Higgs sector in Sect. 4.

The Yukawa Lagrangian for quarks and leptons is given

by

−LY = q̄i (yu
i j H̃1 + hu

i j H̃2)u j + q̄i (yd
i j H1 + hd

i j H2)d j

+ yℓ
i j ℓ̄i H1e j + yν

i j ℓ̄i H̃1ν j R

+ (νi R)c(Mi j + �az
(a)
i j )ν j R + h.c. (2.5)

with H̃1,2 ≡ iσ2 H∗
1,2. After electroweak symmetry and

U (1)′ are broken by the VEVs of scalar fields, 〈H1,2〉 =
v1,2/

√
2 with v2

1 + v2
2 = v2 = (246 GeV)2 , 〈S〉 = vs/

√
2

and 〈�a〉 = ωa/
√

2, the quark and lepton mass terms are

given as

LY = −ūMuu − d̄ Md d − ℓ̄Mℓℓ − ℓ̄MDνR − (νR)c MRνR + h.c.

(2.6)

with the following flavor structure:

Mu =

⎛

⎜

⎝

yu
11〈H̃1〉 yu

12〈H̃1〉 0

yu
21〈H̃1〉 yu

22〈H̃1〉 0

hu
31〈H̃2〉 hu

32〈H̃2〉 yu
33〈H̃1〉

⎞

⎟

⎠
, (2.7)

Md =

⎛

⎜

⎝

yd
11〈H1〉 yd

12〈H1〉 hd
13〈H2〉

yd
21〈H1〉 yd

22〈H1〉 hd
23〈H2〉

0 0 yd
33〈H1〉

⎞

⎟

⎠
, (2.8)

Mℓ =

⎛

⎜

⎝

yℓ
11〈H1〉 0 0

0 yℓ
22〈H1〉 0

0 0 yℓ
33〈H1〉

⎞

⎟

⎠
, (2.9)

MD =

⎛

⎜

⎜

⎝

yν
11〈H̃1〉 0 0

0 yν
22〈H̃1〉 0

0 0 yν
33〈H̃1〉

⎞

⎟

⎟

⎠

, (2.10)

MR =

⎛

⎜

⎜

⎝

M11 z
(1)
12 〈�1〉 z

(2)
13 〈�2〉

z
(1)
21 〈�1〉 0 z

(3)
23 〈�3〉

z
(2)
31 〈�2〉 z

(3)
32 〈�3〉 0

⎞

⎟

⎟

⎠

. (2.11)

Since the mass matrix for charged leptons is already diago-

nal, the lepton mixings come from the mass matrix of RH

neutrinos. There are four other categories of neutrino mixing

matrices [14,15], that are compatible with neutrino data. In

all the cases, we need at least three complex scalar fields with

different U (1)′ charges, similarly to the case given in (2.11).

The quark Yukawa couplings to Higgs bosons are summa-

rized in Appendix C.

We find the Z -like (Z1) and Z ′-like (Z2) masses as

m2
Z1,2

= 1

2

(

m2
Z + m2

22 ∓
√

(m2
Z − m2

22)
2 + 4m4

12

)

,

(2.12)

where m2
Z ≡ (g2 + g2

Y )v2/4, and

m2
22 ≡ m2

Z s2
W t2

ξ + m2
Z ′/c2

ξ − c−1
W egZ ′ Q′

H2
v2
wtξ/cξ ,

m2
12 ≡ m2

Z sW tξ − 1

2
c−1

W s−1
W egZ ′ Q′

H2
v2

2/cξ (2.13)

with

m2
Z ′ = g2

Z ′

(

1

9
x2v2

s + y2ω2
1 + (x + y)2ω2

2 + x2ω2
3

)

.

(2.14)

Here sϕ ≡ sin ϕ, cϕ ≡ cos ϕ, and tϕ ≡ tan ϕ. The modified

Z boson mass can receive constraints from electroweak pre-

cision data, which is studied in Sect. 4. We note that for a

small mass mixing, the Z ′-like mass is approximately given

by m2
Z2

≈ m2
Z ′ and we can treat m Z ′ and gZ ′ to be inde-

pendent parameters due to the presence of nonzero ωi ’s. The

U (1)′ interactions are collected in Appendix D.

3 Higgs spectrum and Yukawa couplings

We here specify the Higgs spectrum of our model and

identify the quark and lepton Yukawa couplings of neutral

and charged Higgs bosons for studies in next sections. The

expressions are based on results in Appendices A and C .

3.1 The Higgs spectrum

The Higgs sector of our model has two Higgs doublets, which

are expressed in components as

H j =
(

φ+
j

(v j + ρ j + iη j )/
√

2

)

( j = 1, 2), (3.1)

and the complex singlet scalar decomposed into S =
(vs + SR + i SI ) /

√
2.
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In the limit of negligible mixing with the C P-even sin-

glet scalar, the mass eigenstates of C P-even neutral Higgs

scalars, h and H , are given by

h = − sin α ρ1 + cos α ρ2,

H = cos α ρ1 + sin α ρ2. (3.2)

The general case where the C P-even part of the singlet

scalar S mixes with the Higgs counterpart is considered

in Appendix A. The mass eigenvalues of C P-even neutral

Higgs scalars are denoted as mh1,2,3 with mh1 < mh2 < mh3 ,

alternatively, mh ≡ mh1 , m H ≡ mh2 and ms ≡ mh3 , and

there are three mixing angles, α1,2,3: α1 = α in the limit

of a decoupled C P-even singlet scalar, while α2 and α3

are mixing angles between ρ1,2 and SR , respectively. For

2κ1v1vs ≈ μv2/
√

2 and 2κ2v2vs ≈ μv1/
√

2, the mixing

between ρ1,2 and SR can be neglected. For a later discussion,

we focus mainly on this case.

The C P-odd parts of the singlet scalars, S and �a , can mix

with the Higgs counterpart due to a nonzero U (1)′ charge of

the second Higgs H2, but for a small x and small VEV of

H2, the mixing effect is negligible. In this case, the neutral

Goldstone boson G0 and the C P-odd Higgs scalar A0 are

turned out to be

G0 = cos β η1 + sin β η2,

A0 = sin β η1 − cos β η2 (3.3)

with tan β ≡ v2/v1. The massless combination of η1 and η2

is eaten by the Z boson, while a linear combination of SI and

other pseudoscalars of �a is eaten by the Z ′ boson if the Z ′

mass is determined dominantly by the VEV of S. The other

combination of the C P-odd scalars from two Higgs doublets

has the mass of

m2
A = μ sin β cos β√

2vs

(

v2 + v2
s

sin2 β cos2 β

)

. (3.4)

On the other hand, the charged Goldstone bosons G+ and

charged Higgs scalar H+ identified as

G+ = cos β φ+
1 + sin β φ+

2 ,

H+ = sin β φ+
1 − cos β φ+

2 (3.5)

with nonzero mass eigenvalue given by

m2
H+ = m2

A −
(

μ sin β cos β√
2vs

+ λ4

)

v2. (3.6)

We remark that in the limit of μvs ≫ v2, the heavy scalars

in the Higgs doublets become almost degenerate as m2
A ≈

m2
H ≈ m2

H+ ≈ μvs/(
√

2 sin β cos β) and m2
s ≈ 2λSv

2
s from

Eqs. (3.4), (3.6) and (A.5). In this limit, the mixing angles

between the SM-like Higgs and extra scalars can be negligi-

bly small and the resulting Higgs spectrum is consistent with

Higgs data and electroweak precision tests (EWPT) as will

be discussed in Subsec 4.2. But, as μvs is constrained by per-

turbativity and unitarity bounds on the quartic couplings with

Eqs. (A.7) or (A.9), as will be discussed in Sect. 4, the extra

scalars in our model remain non-decoupled. Since it is suffi-

cient to take almost degenerate masses for two of m A, m H ,

and m H+ for EWPT, we henceforth consider more general

scalar masses but with small mixings between the SM-like

Higgs and the extra neutral scalars.

3.2 Quark mass matrices

We now consider the quark mass matrices and their diagonal-

ization. After two Higgs doublets develop VEVs, we obtain

the quark mass matrices from Eqs. (2.7) and (2.8) as

(Mu)i j = 1√
2
v cos β

⎛

⎜

⎜

⎝

yu
11 yu

12 0

yu
21 yu

22 0

0 0 yu
33

⎞

⎟

⎟

⎠

+ 1√
2
v sin β

⎛

⎜

⎜

⎝

0 0 0

0 0 0

hu
31 hu

32 0

⎞

⎟

⎟

⎠

, (3.7)

(Md)i j = 1√
2
v cos β

⎛

⎜

⎜

⎝

yd
11 yd

12 0

yd
21 yd

22 0

0 0 yd
33

⎞

⎟

⎟

⎠

+ 1√
2
v sin β

⎛

⎜

⎜

⎝

0 0 hd
13

0 0 hd
23

0 0 0

⎞

⎟

⎟

⎠

. (3.8)

The quark mass matrices can be diagonalized by

U
†
L MuUR = M D

u =

⎛

⎝

mu 0 0

0 mc 0

0 0 mt

⎞

⎠ ,

D
†
L Md DR = M D

d =

⎛

⎝

md 0 0

0 ms 0

0 0 mb

⎞

⎠ , (3.9)

thus the CKM matrix is given as VCKM = U
†
L DL . We

note that the Yukawa couplings of the second Higgs doublet

are sources of flavor violation, which could be important

in meson decays/mixings and collider searches for flavor-

violating top decays and/or heavy Higgs bosons [16–19].

The detailed derivation of flavor-violating Higgs couplings

is presented in the next section.

123



Eur. Phys. J. C (2018) 78 :306 Page 5 of 25 306

Since hu
31 and hu

32 correspond to rotations of right-handed

up-type quarks, we can take UL = 1, so VCKM = DL . In

this case, we have an approximate relation for the down-

type quark mass matrix, Md ≈ VCKM M D
d , up to md,s/mb

corrections. Then the Yukawa couplings between the third

and first two generations are given as follows.

hd
13 =

√
2mb

v sin β
Vub, hd

23 =
√

2mb

v sin β
Vcb. (3.10)

For Vub ≃ 0.004 ≪ Vcb ≃ 0.04, we have hd
13 ≪ hd

23. The

down-type Yukawa couplings are determined as

yd
11 =

√
2md

v cos β
Vud , yd

12 =
√

2ms

v cos β
Vus ,

yd
21 =

√
2md

v cos β
Vcd , yd

22 =
√

2ms

v cos β
Vcs , yd

33 =
√

2mb

v cos β
Vtb.

(3.11)

On the other hand, taking UL = 1 as above, we find

another approximate relation for the up-type quark mass

matrix: Mu = M D
u U

†
R . Then the rotation mass matrix for

right-handed down-type quarks becomes U
†
R = (M D

u )
−1

Mu ,

which is given as

U
†
R = 1√

2

⎛

⎜

⎜

⎝

v
mu

cos β yu
11

v
mu

cos β yu
12 0

v
mc

cos β yu
21

v
mc

cos β yu
22 0

v
mt

sin β hu
31

v
mt

sin β hu
32

v
mt

cos β yu
33

⎞

⎟

⎟

⎠

.

(3.12)

From the unitarity condition of UR we further find the fol-

lowing constraints on the up-type quark Yukawa couplings:

|yu
11|2 + |yu

12|2 = 2m2
u

v2 cos2 β
, (3.13)

|yu
21|2 + |yu

22|2 = 2m2
c

v2 cos2 β
, (3.14)

|yu
33|2 + tan2 β(|hu

31|2 + |hu
32|2) = 2m2

t

v2 cos2 β
, (3.15)

yu
11(yu

21)
∗ + yu

12(yu
22)

∗ = 0, (3.16)

yu
21(h

u
31)

∗ + yu
22(h

u
32)

∗ = 0, (3.17)

yu
11(h

u
31)

∗ + yu
12(h

u
32)

∗ = 0. (3.18)

3.3 Quark Yukawa couplings

Using the results in Appendix C, we get the Yukawa interac-

tions for the SM-like Higgs boson h and heavy neutral Higgs

bosons H , A as

−L
h/H/A
Y = cos(α − β)√

2 cos β
b̄R(h̃d∗

13 dL + h̃d∗
23 sL)h

+
λh

b√
2

b̄RbL h + λh
t√
2

t̄R tL h

+ sin(α − β)√
2 cos β

b̄R(h̃d∗
13 dL + h̃d∗

23 sL)H

+
λH

b√
2

b̄RbL H + λH
t√
2

t̄R tL H

− i√
2 cos β

b̄R(h̃d∗
13 dL + h̃d∗

23 sL)A

+
iλA

b√
2

b̄RbL A − iλA
t√
2

t̄R tL A + h.c. (3.19)

where

λh
b = −

√
2mb sin α

v cos β
+ h̃d

33 cos(α − β)

cos β
, (3.20)

λh
t = −

√
2mt sin α

v cos β
+ h̃u

33 cos(α − β)

cos β
, (3.21)

λH
b =

√
2mb cos α

v cos β
+ h̃d

33 sin(α − β)

cos β
, (3.22)

λH
t =

√
2mt cos α

v cos β
+ h̃u

33 sin(α − β)

cos β
, (3.23)

λA
b =

√
2mb tan β

v
− h̃d

33

cos β
, (3.24)

λA
t =

√
2mt tan β

v
− h̃u

33

cos β
. (3.25)

We note that h̃d ≡ D
†
L hd DR and h̃u ≡ U

†
L huUR . Thus, by

taking UL = 1 we get h̃u = huUR and h̃d = V
†
CKMhd . In

this case, as compared to two-Higgs-doublet model type I,

extra Yukawa couplings are given by

h̃u
33 =

√
2mt

v sin β

(

1 − v2 cos2 β

2m2
t

|yu
33|2

)

, (3.26)

h̃d
13 = 1.80 × 10−2

(

mb

v sin β

)

, (3.27)

h̃d
23 = 5.77 × 10−2

(

mb

v sin β

)

, (3.28)

h̃d
33 = 2.41 × 10−3

(

mb

v sin β

)

. (3.29)

We find that the flavor-violating couplings for light up-type

quarks vanish, while the top quark Yukawa can have a siz-

able modification due to nonzero h̃u
33. On the other hand, the

flavor-violating couplings for down-type quarks can be large

if tan β is small, even though the couplings have the sup-

pression factors of CKM mixing and smallness of bottom

quark mass. The couplings can be constrained by bounds
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from B-meson mixings and decays as is discussed in the

next section. We note that the flavor-violating interactions of

the SM-like Higgs boson are turned off in the alignment limit

where α = β − π/2.

The Yukawa terms of the charged Higgs boson are given

as

− L
H−
Y = b̄(λH−

tL
PL + λH−

tR
PR)t H−

+ b̄(λH−
cL

PL + λH−
cR

PR)cH−

+ λH−
uL

b̄PL u H− + h.c., (3.30)

where

λH−
tL

=
√

2mb tan β

v
V ∗

tb − (VCKMh̃d)∗33

cos β
, (3.31)

λH−
tR

= −
(√

2mt tan β

v
− h̃u

33

cos β

)

V ∗
tb, (3.32)

λH−
cL

=
√

2mb tan β

v
V ∗

cb − (VCKMh̃d)∗23

cos β
, (3.33)

λH−
cR

= −
√

2mc tan β

v
V ∗

cb, (3.34)

λH−
uL

=
√

2mb tan β

v
V ∗

ub − (VCKMh̃d)∗13

cos β
(3.35)

with

VCKMh̃d =

⎛

⎜

⎜

⎝

0 0 Vud h̃d
13 + Vus h̃d

23 + Vubh̃d
33

0 0 Vcd h̃d
13 + Vcs h̃d

23 + Vcbh̃d
33

0 0 Vtd h̃d
13 + Vts h̃d

23 + Vtbh̃d
33

⎞

⎟

⎟

⎠

. (3.36)

If yu
33 = ySM

t =
√

2mt/v, the Higgs coupling to top quark

becomes

λH
t = ySM

t cos(α − β), (3.37)

and λA
t = λH−

tR
= 0.

3.4 Lepton Yukawa couplings

As seen in (2.9), the mass matrix for charged leptons e j is

already diagonal due to the U (1)′ symmetry. Thus, the lepton

Yukawa couplings are in a flavor-diagonal form given by

−L
ℓ
Y = −

me j
sin α

v cos β
ē j e j h +

me j
cos α

v cos β
ē j e j H

+
ime j

tan β

v
ē jγ

5e j A0

+
√

2me j
tan β

v

(

ν̄ j PR e j H+ + h.c.
)

(3.38)

4 Constraints on the Higgs sector

In this section we consider various phenomenological con-

straints on the model coming from B-meson mixings and

decays as well as Higgs and electroweak precision data on

top of unitarity and stability bounds on the Higgs sector.

We also show how to explain the deficits in RK and RK ∗

in the B-meson decays at LHCb in our model, and discuss

the predictions for RD and RD∗ through the charged Higgs

exchange.

4.1 Unitarity and stability bounds

Before considering the phenomenological constraints, we

consider unitarity and stability bounds for the Higgs sector.

As derived in Appendix B, the conditions for perturbativity

and unitarity are

|λ1,2,3,S| ≤ 4π, |κ1,2| ≤ 4π,

|λ3 ± λ4| ≤ 4π, |λ3 + 2λ4| ≤ 4π,
√

λ3(λ3 + 2λ4) ≤ 4π,

|λ1 + λ2 ±
√

(λ1 − λ2)2 + 4λ2
4| ≤ 8π

a1,2,3 ≤ 8π, (4.1)

where a1,2,3 are the solutions to Eq. (B.7). The vacuum sta-

bility conditions of the scalar potential can be obtained by

considering the potential to be bounded from below along

the directions of large Higgs doublet and singlet scalar fields.

Following Refs. [20–22], we obtain the stability conditions

as follows:

λ1,2,S > 0
√

λ1λ2 + λ3 + λ4 > 0,
√

λ1λ2 + λ3 > 0,
√

λ1λS + κ1 > 0,
√

λ2λS + κ2 > 0,
√

(κ2
1 − λ1λS)(κ

2
2 − λ2λS) + λ3λS > κ1κ2,

√

(κ2
1 − λ1λS)(κ

2
2 − λ2λS) + (λ3 + λ4)λS > κ1κ2. (4.2)

The stability conditions along the other scalar fields �a can

be obtained in the similar way, but they are not relevant for our

study because �a’s do not couple directly to Higgs doublets

as long as the extra quartic couplings for �a are positive and

large enough.

The unitarity and stability bounds are depicted in Figs. 1

and 2 for the parameter space in terms of mh2 and tan β, or vs

and μ, with assuming the alignment limit, cos(α−β) = 0.05,

and zero mixing between heavy C P-even scalars. In each
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Fig. 1 Parameter space in terms of mh2 and tan β. The gray regions

are excluded by unitarity and stability bounds. vs = 2mh3 = 1 TeV and

cos(α − β) = 0.05 with mh2 = m A and m H± = 500 GeV in the left,

and mh2 = m H± and m A = 140 GeV in the right panel. The mixing

between heavy C P-even scalars is taken to be zero

[ ]

[
]

= = = ( − )=

[ ]

[
]

= = = ( − )=

Fig. 2 Parameter space in terms of vs and μ for mh3 = m H± = mh2 = 0.5 TeV and cos(α−β) = 0.05. The gray regions are excluded by unitarity

and stability bounds. tan β = 1 (0.5) in the left (right) panel. The mixing between heavy C P-even scalars is taken to be zero

figure, the gray region corresponds to the parameter space

excluded by the unitarity and stability conditions. In Fig. 1,

we have taken the different choices of Higgs masses: mh2 =
m A and m H± = 500 GeV in the left, while mh2 = m H±

and m A = 140 GeV in the right panel. On the other hand,

the parameter space in terms of vs and μ has been shown in

Fig. 2, with setting mh3 = m H± = mh2 = 0.5 TeV, but tak-

ing different values of tan β. We note that the unitarity and

stability bounds are sensitive to the choice of tan β, while

insensitive to the mixing angle of heavy C P-even scalars,

in constraining the mass parameters. The allowed parame-

ter space for mass parameters becomes narrower as tan β is

smaller.

4.2 Higgs and electroweak precision data

Provided that the Higgs mixings with the singlet scalar are

small, the mixing angle α between C P-even Higgs scalars
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Fig. 3 Parameter space for sin α and tan β allowed by Higgs data

within 1σ (green), 2σ (yellow), and 3σ (dark gray). The gray regions

corresponds to the unitarity and stability bounds. yu
33 = ySM

t in the left

and yu
33 = ySM

t / cos β in the right panel. mh2 = m H± = 450 GeV,

m A = 140 GeV and vs = 1 TeV has been taken in all panels

are constrained by Higgs precision data [23–32]. The param-

eter space for sin α and tan β allowed by the Higgs data is

shown in Fig. 3. We take the (33) component of the up-type

Higgs Yukawa coupling to be yu
33 = ySM

t in the left, and

yu
33 = ySM/ cos β in the right panel. For illustration, we

have also imposed unitarity and stability bounds discussed

in the previous subsection for mh2 = m H± = 450 GeV,

m A = 140 GeV and vs = 1 TeV. As a result, we find

a wide parameter space close to the line of the alignment,

α = β − π/2, that is consistent with both the Higgs data

and unitarity/stability bounds for tan β � 0.1. Thus, hence-

forth, for the phenomenology of the extra Higgs scalars,

we focus on the parameter space near the alignment limit,

cos(α − β) ∼ 0.

To see bounds from electroweak precision data, we obtain

effective Lagrangian after integrating out W and Z bosons

as follows [33,34]:

Leff = − 4G F√
2g2 sec2 θW

(

sec2 θW J
μ

W+ JW−,μ + ρ J
μ
Z JZ ,μ

+ 2a J
μ
Z JZ ′,μ + bJ

μ

Z ′ JZ ′,μ

)

+ · · · , (4.3)

where J
μ
Z = J

μ
3 − sin2 θ∗ J

μ
EM with θ∗ being the modified

Weinberg angle. Here the non-oblique terms, a and b, are

determined at tree level as

a = ρ sin ζ sec ξ

cos ζ + sin θW tan ξ sin ζ
, b = a2

ρ
. (4.4)

From the Z -boson like mass given in Eq. (D.6) and the Z–Z ′

mixing angle in Eq. (D.7), we find the correction to the ρ

parameter as

�ρ =
m2

W

m2
Z1

cos2 θW

(cos ζ + sin θW tan ξ sin ζ )2 − 1

≃ sin2 θW

cos2 ξ

m2
Z

m2
Z ′

[

(

2Q′
H2

gZ ′

gY

)2
sin4 β − sin2 ξ

]

, (4.5)

where we assumed that tan 2ζ ≃ 2m2
12/m2

Z2
≪ 1. Taking

the limit of zero gauge kinetic mixing, i.e. sin ξ = 0, we have

�ρ =
m2

W

m2
Z cos2 θW

− 1

≃ 10−4
( x

0.05

)2

g2
Z ′ sin4 β

(

400 GeV

m Z ′

)2

, (4.6)

which is consistent with the result in Ref. [12]. Therefore,

for tan β ≃ 1, gZ ′ ≃ 1, and x ≃ 0.05, Z ′ with the mass

m Z ′ � 400 GeV is consistent with electroweak precision

data. The mass splittings between extra Higgs scalars can

also be constrained by the electroweak precision data, but it

can be easily satisfied if we take mh2 = m H± or mh2 = m A,

and a small mixing between C P-even scalars.

4.3 B-meson anomalies from Z
′

Before considering constraints from B-meson mixings and

decays, we show how to explain the B-meson anomalies in
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our model and identify the relevant parameter space for that.

This section is based on the detailed results on U (1)′ interac-

tions presented in Appendix D and phenomenological find-

ings in Ref. [12].

From the relevant Z ′ interactions for B-meson anomalies

and the Z ′ mass term,

L
′
Z ′ = gZ ′ Z ′

μ

(

1

3
x V ∗

ts Vtb s̄γ μ PLb + h.c. + yμ̄γ μμ

)

+1

2
m2

Z ′ Z
′2
μ , (4.7)

we get the classical equation of motion for Z ′ as

Z ′
μ = − gZ ′

m2
Z ′

(

1

3
x V ∗

ts Vtb s̄γμ PL b + h.c. + yμ̄γμμ

)

.

(4.8)

Then, by integrating out the Z ′ gauge boson, we obtain the

effective four-fermion interaction for b̄ → s̄μ+μ− as fol-

lows.

Leff,b̄→s̄μ+μ− = −
xyg2

Z ′

3m2
Z ′

V ∗
ts Vtb (s̄γ μ PL b)(μ̄γμμ) + h.c.

(4.9)

Consequently, as compared to the effective Hamiltonian with

the SM normalization,

�Heff,b̄→s̄μ+μ− = −4G F√
2

V ∗
ts Vtb

αem

4π
C

μ,NP
9 O

μ
9 (4.10)

with O
μ
9 ≡ (s̄γ μ PLb)(μ̄γμμ) and αem being the electro-

magnetic coupling, we obtain new physics contribution to

the Wilson coefficient,

C
μ,NP
9 = −8xyπ2αZ ′

3αem

(

v

m Z ′

)2

(4.11)

with αZ ′ ≡ g2
Z ′/(4π), and vanishing contributions to other

operators, C
μ,NP
10 = C

′μ,NP
9 = C

′μ,NP
10 = 0. We note that

xy > 0 is chosen for a negative sign of C
μ
9 , being consis-

tent with B-meson anomalies. Requiring the best-fit value,

C
μ, NP
9 = −1.10 [35–41], (while taking [−1.27,−0.92] and

[−1.43,−0.74] within 1σ and 2σ errors), to explain the B-

meson anomalies yields

m Z ′ = 1.2 TeV ×
(

xy
αZ ′

αem

)1/2

. (4.12)

Therefore, m Z ′ ≃ 1 TeV for xy ≃ 1 and αZ ′ ≃ αem. For

values of xy less than unity or αZ ′ � αem, Z ′ can be even

lighter.

Various phenomenological constraints on the Z ′ interac-

tions coming from dimuon resonance searches, other meson

decays and mixing, tau lepton decays and neutrino scattering

have been studied in Ref. [12], leading to the conclusion that

the region of xgZ ′ � 0.05 for ygZ ′ ≃ 1 and m Z ′ � 1 TeV is

consistent with the parameter space for which the B-meson

anomalies can be explained.

4.4 Bounds from B-meson mixings and decays

We now consider the bounds from B-meson mixings and

decays. After integrating out the heavy Higgs bosons, the

effective Lagrangian for Bs(d) → μ+μ− from the flavor-

violating Yukawa interactions in (3.19) is

�Leff,Bs(d)→μ+μ− = −
√

2mμ sin(α − β) cos α

2m2
H v cos β

× ((h̃d
23)

∗b̄RsL + (h̃d
13)

∗b̄RdL + h.c.)(μ̄μ)

−
√

2mμ tan β

2m2
Av cos β

× ((h̃d
23)

∗b̄RsL + (h̃d
13)

∗b̄RdL + h.c.)(μ̄γ 5μ). (4.13)

The extra contributions to the effective Hamiltonian for

Bs → μ+μ− are thus

�Heff,Bs→μ+μ− = −
G2

F m2
W

π

×[CBSM
S (b̄PL s)(μ̄μ) + CBSM

P (b̄PLs)(μ̄γ 5μ)] (4.14)

with

CBSM
S = − π

G2
F m2

W

√
2mμ sin(α − β) cos α

2m2
H v cos2 β

· (h̃d
23)

∗,

CBSM
P = − π

G2
F m2

W

√
2mμ tan β

2m2
Av cos β

· (h̃d
23)

∗. (4.15)

In the alignment limit with α = β − π/2 and m A ≃ m H ,

the Wilson coefficients become identical and suppressed for

a small tan β. The effective Hamiltonian in the above leads

to the corrections of the branching ratio for Bs → μ+μ− as

follows [42]:

B(Bs → μ+μ−) =
G4

F m4
W

8π5

(

1 −
4m2

μ

m2
Bs

)1/2

m Bs f 2
Bs

m2
μ τBs

×

⎡

⎣

∣

∣

∣

∣

∣

m2
Bs

(CP − C ′
P )

2(mb + ms)mμ

− (CA − C ′
A)

∣

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∣

m2
Bs

(CS − C ′
S)

2(mb + ms)mμ

∣

∣

∣

∣

∣

2 (

1 −
4m2

μ

m2
Bs

)

⎤

⎦ ,

(4.16)
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where m Bs , fBs , and τBs are mass, decay constant, and life-

time of Bs-meson, respectively. C
(′)
A , C

(′)
S , C

(′)
P are Wilson

coefficients of the effective operators, O
(′)
A = [b̄γμ PL(R)s]

[μ̄γ μγ 5μ], O
(′)
S = [b̄PL(R)s][μ̄μ] and O

(′)
P = [b̄PL(R)s]

[μ̄γ μγ 5μ], respectively. We note that there is no contribu-

tion from Z ′ interactions to Bs → μ+μ− since the muon

couplings to Z ′ are vector-like. On the other hand, in the

alignment limit the bounds obtained from Bs,d → μ+μ− in

Ref. [42] can be translated to our case as

∣

∣

∣
h̃d

23

∣

∣

∣
< 3.4 × 10−2

(

cos β

tan β

)

( m H,A

500 GeV

)2

,

∣

∣

∣
h̃d

13

∣

∣

∣
< 1.7 × 10−2

(

cos β

tan β

)

( m H,A

500 GeV

)2

. (4.17)

From Eqs. (3.27) and (3.28), we find that flavor constraints

are satisfied as far as

sin β <

√

1 − 0.033

(

500 GeV

m H,A

)2

. (4.18)

This leads to tan β < 5.4 for m H,A = 500 GeV.

The flavor-violating Yukawa couplings of heavy Higgs

bosons as well as Z ′ interactions [12] can modify the Bs–B̄s

mixing. The additional effective Hamiltonian relevant for the

mixing is given by

�Heff,Bs−B̄s
= C ′

2(s̄α PRbα)(s̄β PRbβ)

+
G2

F m2
W

16π2
(V ∗

ts Vtb)
2 CNP

V L L

×(s̄αγ μ PL bα)(s̄βγμ PLbβ), (4.19)

with

C ′
2 = h̃d

23

4 cos2 β m2
H

×
(

m2
H

m2
A

− sin2(α − β) −
m2

H cos2(α − β)

m2
h

)

,

(4.20)

CNP
V L L = 16π2

9

(xgZ ′)2v4

m2
Z ′m

2
W

= 0.27
( xgZ ′

0.05

)2
(

300 GeV

m Z ′

)2

. (4.21)

The mass difference in the Bs system becomes

�MBs = 2

3
m Bs f 2

Bs
Bs

123(μ)

×
[

G2
F m2

W

16π2
(V ∗

ts Vtb)
2
(

CSM
V L L + CNP

V L L

)

+ |C ′
2|

]

,

(4.22)

where Bs
123(μ) is a combination of bag-parameters [43] and

CSM
V L L ≃ 4.95 [44]. The SM prediction and the experimental

values of �Ms are given by (�MBs )
SM = (17.4±2.6) ps−1

[44] and (�MBs )
exp = (17.757 ± 0.021) ps−1 [45], respec-

tively. Then, taking into account the SM uncertainties, we

obtain the bounds on �MBs as 16 (13) ps−1 < �MBs <

21 (23) ps−1 or (�MBs )
BSM < 3.0 (5.6) ps−1 at 1σ (2σ )

level for new physics. We also note that the most recent lat-

tice calculations show considerably large values for the bag

parameters, leading to (�MBs )
SM = (20.01 ± 1.25) ps−1

[46]. It needs an independent confirmation, but if it is true,

the new physics contributions coming from the heavy Higgs

bosons and Z ′ would be constrained more tightly.

Taking the SM prediction as (�MBs )
SM = (17.4 ±

2.6) ps−1 [44], from Eq. (4.22) with Eqs. (4.20) and (4.21),

we get the bound on the flavor-violating Yukawa coupling in

the alignment limit of heavy Higgs bosons as

|h̃d
23|

cos β

∣

∣

∣

∣

m2
H

m2
A

− 1

∣

∣

∣

∣

1/2(
500 GeV

m H

)

< 4.6(6.4) × 10−3

×

√

1 − 0.1(0.06)
( xgZ ′

0.05

)2
(

300 GeV

m Z ′

)2

. (4.23)

Here, since we need to choose xgZ ′ � 0.05 for m Z ′ � 1 TeV

to satisfy the B-meson anomalies and the LHC dimuon

bounds at the same time as discussed in the previous sec-

tion, we can safely ignore the contribution of Z ′ interactions

to the Bs–B̄s mixing on the right-hand side of Eq. (4.23).

Furthermore, with the Z ′ contribution ignored, the Bd–B̄d

mixing leads to a similar bound [43]:

∣

∣

∣
h̃d

13

∣

∣

∣
< 0.91(1.3)×10−3 cos β

∣

∣

∣

∣

m2
H

m2
A

−1

∣

∣

∣

∣

−1/2(
m H

500 GeV

)

.

(4.24)

Comparing to the bounds from Bs → μ+μ− in (4.17), the

B–B̄ mixings could lead to tighter constraints on the flavor-

violating Yukawa couplings for down-type quarks unless m H

and m A are almost degenerate. The upper frames of Fig. 4

show that a wide range of heavy Higgs masses up to 600–

700 GeV are allowed for mh2 = m A and tan β = O(1).

On the other hand, for tan β = 0.5, the neutral Higgs boson

can be as heavy as 400 GeV, but the charged Higgs mass is

constrained as 240 GeV � m H± � 650 GeV. For illustration,

the case with mh2 = m H± has also been shown in the lower

frames of Fig. 4, where the narrower region is allowed as

compared with the case with mh2 = m A.

Another important bound comes from the inclusive radia-

tive decay, B → Xsγ . The effective Hamiltonian relevant

for the b → sγ transition is
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Fig. 4 Parameter space in terms of mh2 and m H± (upper frames), and

m A (lower frames). tan β = 1 in the left and 0.5 in the right panels. We

have chosen vs = 2mh3 = 1 TeV, cos(α − β) = 0.05, and yu
33 = ySM

t

in all frames. The mixing between heavy C P-even scalars is taken to be

zero. The gray regions are excluded by unitarity and stability bounds.

The magenta regions are excluded by B → Xsγ , and cyan region is

excluded by Bs → μ+μ−. The yellow and orange regions are excluded

by Bs and Bd mixings, respectively

Heff,b→sγ = −4G F√
2

VtbV ∗
ts(C7O7 + C8O8) (4.25)

with

O7 = e

16π2
mb s̄σμν PRb Fμν,

O8 = gs

16π2
mb s̄σμν PR T ab Ga

μν . (4.26)

The charged Higgs contributions to the Wilson coefficients

are given by [19,47]

CBSM
7 = v2

2m2
t

(λH−
tR

)∗λH−
tR

VtbV ∗
ts

C
(1)
7 (xt )

+ v2

2mt mb

(λH−
tL

)∗λH−
tR

VtbV ∗
ts

C
(2)
7 (xt ),

CBSM
8 = v2

2m2
t

(λH−
tR

)∗λH−
tR

VtbV ∗
ts

C
(1)
8 (xt )

+ v2

2mt mb

(λH−
tL

)∗λH−
tR

VtbV ∗
ts

C
(2)
8 (xt ) (4.27)
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= ( − )=
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= ( − )=

Fig. 5 Parameter space for m H± and tan β excluded by B → Xsγ within 2σ (red) and unitarity bounds (gray) with yu
33 = ySM

t for m A = mh2 =
160 GeV (left panel) and m A = mh2 = 350 GeV (right panel)

with xt ≡ (mt/m H±)2, and

C
(1)
7 (x) = x

72

{

−8x3 + 3x2 + 12x − 7 + (18x2 − 12) ln x

(x − 1)4

}

,

C
(2)
7 (x) = x

12

{

−5x2 + 8x − 3 + (6x − 4) ln x

(x − 1)3

}

,

C
(1)
8 (x) = x

24

{

−x3 + 6x2 − 3x − 2 − 6x ln x

(x − 1)4

}

,

C
(2)
8 (x) = x

4

{

−x2 + 4x − 3 − 2 ln x

(x − 1)3

}

. (4.28)

Here λH−
tL ,R

are given by Eqs. (3.31) and (3.32). The Wil-

son coefficients in the SM at one loop are given by CSM
7 =

3C
(1)
7 (m2

t /m2
W ) and CSM

8 = 3C
(1)
8 (m2

t /m2
W ). CBSM

8 mixes

into the CBSM
7 at the scale of μb = mb through the renormal-

ization group equations and contribute to B(B → Xsγ ) [48].

The next-to-next-leading order SM prediction for B(B →
Xsγ ) is [49,50]

B(B → Xsγ ) = (3.36 ± 0.23) × 10−4, (4.29)

whereas the experimentally measured value of B(B → Xsγ )

from HFAG is [45]

B(B → Xsγ ) = (3.43 ± 0.21 ± 0.07) × 10−4. (4.30)

As a result, the SM prediction for B → Xsγ is consistent

with experiments, so we obtain the bounds on the modified

Wilson coefficients as −0.032 < CBSM
7 (μb) < 0.027 at 2σ

level [51]. This constrains tan β in terms of charged Higgs

mass as shown in Fig. 5, where unitarity and stability bounds

are displayed as well. We also find that the case with yu
33 =

ySM
t / cos β has been excluded by B → Xsγ , hence the case

with yu
33 = ySM

t is considered in Figs. 4 and 5 and collider

studies in the next section.

4.5 Predictions for RD and RD∗

We briefly discuss the implications of flavor-violating cou-

plings with charged Higgs on RD and RD∗ . The effective

Hamiltonian relevant for B → D(∗)τν in our model is given

as follows:

Heff = Ccb
SM(c̄LγμbL)(τ̄Lγ μνL) + Ccb

R (c̄LbR)(τ̄RνL)

+ Ccb
L (c̄RbL)(τ̄RνL), (4.31)

where the Wilson coefficient in the SM is Ccb
SM = 2Vcb/v

2,

and the new Wilson coefficients generated by charged Higgs

exchanges are

Ccb
R = −

√
2mτ tan β

v m2
H±

(λH−
cL

)
∗
,

Ccb
L = −

√
2mτ tan β

v m2
H±

(λH−
cR

)
∗
. (4.32)

See Eqs. (3.33) and (3.34) for λH−
cL ,R

.

The ratios of the branching ratios for B → D(∗)τν to

B → D(∗)ℓν with ℓ = e, μ are defined by

RD(∗) = B(B → D(∗)τν)

B(B → D(∗)ℓν)
. (4.33)
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Fig. 6 The ratios of RD/RD,SM and RD∗/RD∗,SM as the functions of

charged Higgs mass for given tan β

The SM expectations are RD = 0.300 ± 0.008 and RD∗ =
0.252 ± 0.003 [52], but the experimental results for RD(∗)

are deviated from the SM values by more than 2σ [7–11].

Including the additional contributions from charged Higgs

exchanges, we find the simplified forms for RD and RD∗ as

follows [47,53]:

RD = RD,SM

⎡

⎣1 + 1.5 Re

(

Ccb
R

+ Ccb
L

Ccb
SM

)

+
∣

∣

∣

∣

∣

Ccb
R

+ Ccb
L

Ccb
SM

∣

∣

∣

∣

∣

2
⎤

⎦ ,

RD∗ = RD∗,SM

[

1 + 0.12 Re

(

Ccb
R

− Ccb
L

Ccb
SM

)

+ 0.05

∣

∣

∣

Ccb
R

− Ccb
L

Ccb
SM

∣

∣

∣

2
]

. (4.34)

As can be seen in Fig. 6, a light charged Higgs is neces-

sary to have large deviations of RD and RD∗ . However, it is

excluded by B → Xsγ . [See Fig. 5]. Therefore, our model

cannot explain the experimental results for RD(∗) simultane-

ously with the other bounds.

5 Productions and decays of heavy Higgs bosons at the

LHC

We investigate the main production channels for heavy Higgs

bosons at the LHC, including the contributions from flavor-

violating interactions of quarks. The decay modes of the

heavy Higgs bosons for some benchmark points are also stud-

ied, and we discuss smoking gun signals for heavy Higgs

searches at the LHC. In this section, mixings with singlet

scalar have been neglected and the heavy neutral Higgs

boson H denotes h2. h ≡ h1 is the SM-like Higgs with

mh = 125 GeV.

5.1 Heavy neutral Higgs boson

The main channels for neutral Higgs productions are the

gluon fusion gg → H , bottom-quark fusion bb̄ → H , and

additional productions through the flavor-violating interac-

tions for the bottom quark, bd̄i → H and di b̄ → H , where di

denotes light down-type quarks, di = d, s. There are bottom

quark associated productions, bg → bH and di g → bH , as

well.

The leading-order cross section for the gluon fusion pro-

cess at parton level is

σ̂ (gg → H) =
α2

s m2
H

576πv2

×
∣

∣

∣

∣

∣

3

4

∑

q

(

cos α

cos β
+ v sin(α − β)√

2mq cos β
h̃

q
33

)

AH
1/2(τq)

∣

∣

∣

∣

∣

2

×δ(ŝ − m2
H ), (5.1)

where τq = m2
H /(4m2

q). The loop function AH
1/2(τ ) is given

in Ref. [54]. ŝ is the partonic center-of-mass energy. Here

the contributions of only top and bottom quarks have been

taken into account. Note that the top quark contribution is

vanishing if one takes yu
33 = ySM

t and the alignment limit as

can be seen in Eq. (3.37). The parton-level cross section for

bottom-quark fusion bb̄ → H is

σ̂ (bb̄ → H) =
πm2

b

18v2

(

cos α

cos β
+ v sin(α − β)√

2mb cos β
h̃d

33

)2

×
(

1 −
4m2

b

m2
H

)1/2

δ(ŝ − m2
H ). (5.2)

There are other single Higgs production channels through the

flavor-violating interactions, bd̄i → H and di b̄ → H . The

corresponding cross section is given by

σ̂ (di b̄ → H) =
π |h̃d

i3|2 sin2(α − β)

72 cos2 β
δ(ŝ − m2

H ), (5.3)

and σ̂ (bd̄i → H) = σ̂ (di b̄ → H) at parton level.

The bottom quark associated production of the Higgs

boson can occur by initial states with a bottom quark, that

is, bg → bH , through the flavor-conserving interactions or

initial states with a light down-type quark, di g → bH , via

the flavor-violating interactions. The former is nonvanishing

even if all the components of h̃d are zero. The diagrams of

the bottom quark associated production are shown in Fig. 7.

The differential cross section for bg → bH at parton level is

dσ̂

dt̂
(bg → bH) =

αs(λ
H
b )2

96(ŝ − m2
b)

2

[

2F1 − F2
2 − 2G1G2

(ŝ − m2
b)(t̂ − m2

b)

+2m2
b

(

G1

(ŝ − m2
b)

2
+ G2

(t̂ − m2
b)

2

)]

, (5.4)
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Fig. 7 Diagrams of the bottom quark associated productions of neutral Higgs bosons

Fig. 8 Production cross sections of the heavy neutral Higgs H at 14 TeV proton-proton collisions. We have chosen tan β = 1 (left panel) and

tan β = 0.5 (right panel) with cos(α − β) = 0.05 and yu
33 = ySM

t

where

F1 = ŝ t̂ − m4
b, F2 = ŝ + t̂ − 2m2

b,

G1 = m2
H − m2

b − ŝ, G2 = m2
H − m2

b − t̂,

and λH
b is given in (3.22). For the di g → bH process, it is

dσ̂

dt̂
(di g → bH) =

αs |h̃d
i3|2

96ŝ2(t̂ − m2
b)

sin2(α − β)

cos2 β

×
[

2F1 − F2
2 − 2G1G2

ŝ
+

2m2
bG2

t̂ − m2
b

]

(5.5)

with

F1 = ŝ t̂, F2 = ŝ + t̂ −m2
b, G1 = m2

H −m2
b − ŝ, G2 = m2

H − t̂ .

And again, σ̂ (d̄i g → b̄H) = σ̂ (di g → bH) at parton level.

We perform the integration by using the Monte Carlo

method to obtain the production cross sections at proton-

proton collisions of 14 TeV and employ the NNPDF2.3 par-

ton distribution function (PDF) set [55] via the LHAPDF

6 library [56]. The renormalization and factorization scales

are set to m H , and mb = 4.7 GeV. The resulting production

cross sections as a function of m H are shown in Fig. 8. In

all frames we set cos(α − β) = 0.05, close to the alignment

limit, and yu
33 = ySM

t . A constant K -factor of 2.5 has been

multiplied to the gluon fusion production cross section, while

the leading-order expressions have been used for the other

production channels.

In the alignment limit, the neutral Higgs coupling to the

top quarks λH
t is vanishing as can be seen in Eq. (3.37).

In this case, the single Higgs production through the gluon

fusion process is suppressed compared to the SM case,

though nonvanishing due to the bottom quarks in the loop.

Still, the gluon fusion production convoluted with PDF is

the most dominant channel for the single Higgs production

and bb̄ → H is the subdominant one for tan β � O(0.1).

On the other hand, for smaller tan β, the flavor-violating

Higgs couplings to light quarks become larger and contribu-
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tions from the initial states with the light down-type quarks

di b̄ → H is subdominant, and become even the most dom-

inant channel in the case of very small tan β = O(0.01).

However, since we find that such scenarios with very small

tan β have been excluded by bounds from the experimen-

tal results on B-meson mixings and decays, particularly by

B → Xsγ as seen in the previous section, we have cho-

sen tan β = 1 and 0.5 as benchmarks for this study. For

m H = 200 GeV and tan β = 1 (0.5), σpp→H ≃ 225.2

(110.5) fb, and (σbd̄i →H + σdi b̄→H )/σgg→H = 0.62%

(1.6%), while (σbd̄i →H +σdi b̄→H )/σbb̄→H ≃ 1.6% (10.9%)

at the LHC. As the neutral Higgs gets heavier, the produc-

tion cross sections rapidly decreases. For m H = 400 GeV

and tan β = 1 (0.5), σpp→H ≃ 38.4 (31.7) fb.

As can be seen in Fig. 8, the production cross section

of the bottom quark associated process increases as tan β

is smaller since the effect of the flavor-violating couplings

become larger. In particular, if m H � 200 GeV the produc-

tion cross section is O(10) fb, so it can be served as a good

search channel at the LHC. Meanwhile, if m H � 2mt , the

cross section decreases down to � O(1) fb.

We now turn to the decay widths of the neutral Higgs

bosons and obtain their branching ratios. Ignoring the mixing

among the SM-like Higgs and singlet scalar, the partial decay

widths to quarks are

Ŵ(H → bd̄i ) = Ŵ(H → di b̄)

=
3|h̃d

i3|2 sin2(α − β)

32π cos2 β
m H

(

1 −
m2

b

m2
H

)2

,

Ŵ(H → qq̄) =
3(λH

q )
2

16π
m H

(

1 −
4m2

q

m2
H

)3/2

, (5.6)

where q = t , b, c. λH
b and λH

t are given in (3.22) and (3.23),

and

λH
c =

√
2mc cos α

v cos β
. (5.7)

On the other hand, the Higgs interactions to the charged lep-

tons are flavor-conserving and the corresponding decay width

is given as

Ŵ(H → τ+τ−) = m2
τ cos2 α

8πv2 cos2 β
m H

(

1 − 4m2
τ

m2
H

)3/2

. (5.8)

The partial widths to electroweak gauge bosons V = W ,

Z are given as

Ŵ(H → V V ) =
δV m3

H cos2(α − β)

32πv2

×
(

1 −
4m2

V

m2
H

)1/2 (

1 −
4m2

V

m2
H

+
12m4

V

m4
H

)

, (5.9)

where δW = 2 and δZ = 1. These partial widths are vanishing

in the alignment limit. If m H > 2m Z ′ , the decay mode of

H → Z ′Z ′ opens. Ignoring the small mixing with the Z

boson, the decay width is

Ŵ(H → Z ′Z ′) =
g4

Z ′ x
4m3

H v2 sin2 β sin2 α

2592πm4
Z

(

1 −
4m2

Z ′

m2
H

)1/2

×
(

1 −
4m2

Z ′

m2
H

+
12m4

Z ′

m4
H

)

. (5.10)

However, we find that this decay mode is almost negligible

for small gZ ′ x ≃ O(0.05) and m Z ′ � 400 GeV, which would

be necessary to evade constraints from the Z ′ searches at the

LHC.

The neutral Higgs boson can also decay into γ γ and gg

through fermion or gauge boson loops. At leading order, the

decay widths are given as

Ŵ(H → γ γ ) = α2m3
H

256π3v2

∣

∣

∣

∣

∑

q=t, b

3Q2
q

λH
q v

√
2mq

AH
1/2(τq)

+ cos α

cos β
AH

1/2(ττ ) + cos(α − β)AH
1 (τW )

∣

∣

∣

∣

2

,

Ŵ(H → gg) =
α2

s m3
H

72π3v2

∣

∣

∣

∣

∣

∣

3

4

∑

q=t, b

λH
q v

√
2mq

AH
1/2(τq)

∣

∣

∣

∣

∣

∣

2

,

(5.11)

where Qq is the electric charge of the quark and τi ≡
m2

H /(4m2
i ). The loop functions AH

1/2 and AH
1 can be found

in Ref. [54].

If m H > 2mh , the heavy neutral Higgs can decay into a

pair of SM-like Higgs bosons.2 The triple interaction comes

from the scalar potential in (2.3),

V1 ⊃ gHhhv

2
Hhh, (5.12)

where

gHhh = 3(λ1 sin α cos β + λ2 cos α sin β) sin(2α)

+ (λ3 + λ4) [3 cos(α + β) cos(2α) − cos(α − β)] .

(5.13)

2 If the singlet scalar h3 = S is light enough, additional decay modes

such as H → Sh can occur and become important channels (See, for

example, [57,58]). Here we assume that S is heavy, mS � 0.5–1 TeV,

and the mixings with doublet Higgs bosons are negligible.
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Fig. 9 Branching ratios of the heavy neutral Higgs H . tan β = 1 and μ = 200 GeV (left panel), and tan β = 0.5 and μ = 50 GeV (right panel)

have been taken. vs = 1 TeV and cos(α − β) = 0.05 for both panels

The decay width for the H → hh process is given as

Ŵ(H → hh) =
g2

Hhhv2

32πm H

(

1 −
4m2

h

m2
H

)1/2

. (5.14)

The quartic couplings in the Higgs potential can be eval-

uated by choosing values of μvs , tan β, sin α, and m H if

mixing with the singlet scalar is negligible, α2 ≃ α3 ≃ 0.

See Appendix A.

By combining all the decay widths, we obtain the branch-

ing ratio of each decay mode. Fig. 9 shows the branching

ratios of the neutral Higgs boson H for cos(α − β) = 0.05

and vs = 1 TeV, but with different values of μ to sat-

isfy the unitary and stability bounds studied in Sect. 4.1.

We observe that H → bd̄i /di b̄ is the predominant decay

mode if m H < 2mh , whereas the di-Higgs mode H → hh

becomes the most important if the mode is kinematically

allowed, irrespective of tan β. In practice, the branching ratio

of di-Higgs mode B(H → hh) depends on the choice of

μvs value. If we take a smaller μvs value, for instance,

μ = 200 GeV and vs = 500 GeV with tan β = 1, we

find that H → bd̄i /di b̄ is always the most dominant decay

mode. The dip near m H = 580 GeV in the left panel of

Fig. 9 is due to the accidental cancellation in the Higgs triple

coupling (5.13). The position of dip also depends on the

value of μvs for given tan β and cos(α − β). On the other

hand, the bb̄ mode and diboson modes such as W W/Z Z are

subdominant.

From these observations, we expect that the search strate-

gies would be different depending on the mass of the heavy

Higgs boson. For m H < 2mh , pp → H → bd̄i /di b̄, i.e.,

dijet final states containing one b jet is the most important,

but for m H > 2mh , the di-Higgs channel, and possibly in

conjunction with the dijet channel with one b jet, is important

to search the heavy neutral Higgs boson at the LHC. Thus,

the neutral Higgs boson with m H < 250 GeV can receive

constraints from dijet searches [59–61]. Although the dijet

channel has typically been used to seek for heavy resonances

in a few TeV scales, it can probe lower scales if it is associ-

ated with a hard photon or jet from initial state radiations. The

ATLAS collaboration has searched light resonance with dijet

invariant mass down to 200 GeV in the final states of dijet in

association with a photon [62,63]. In our case, gluon fusion

production is the most dominant channel and it is not associ-

ated with a hard photon. It can have a hard jet from the gluons

in the initial states, but the mass region below 250 GeV has

not been searched yet in the final states of dijet in association

with a hard jet. For m H > 250 GeV, bounds from di-Higgs

searches can be imposed, but we find that they do not have

enough sensitivities for heavy neutral Higgs bosons in our

model yet [64–67].

5.2 Heavy charged Higgs boson

One of the conventional search channels for the heavy

charged Higgs with m H± > mt at hadron colliders is the

top quark associated production, bg → t H−, by the similar

diagrams as bg → bH . Since the charged Higgs boson can

have enhanced couplings with the light up-type quarks due

to nonzero components of h̃d , we can also have a sizable pro-

duction cross section of the bottom quark associated process

from the initial states with light up-type quarks, ui g → bH+

where ui = u, c.3

3 We note that there have been collider studies on the production of

heavy Higgs bosons due to flavor-violating interactions for up-type

quarks. See, for instance, Refs. [17,18].
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Fig. 10 Production cross sections of the heavy charged Higgs H± at 14 TeV proton-proton collisions. We have chosen tan β = 1 (left panel) and

tan β = 0.5 (right panel) with yu
33 = ySM

t

The differential cross section for bg → t H− at parton

level is

dσ̂

dt̂
= αs

48(ŝ − m2
b)

2

[

(

|λH−
tL

|2 + |λH−
tR

|2
)

×
(

2F1 − F2
2 − 2G1G2

(ŝ − m2
b)(t̂ − m2

t )
+

2m2
bG1

(ŝ − m2
b)

2
+ 2m2

t G2

(t̂ − m2
t )

2

)

+
(

λH−
tL

(λH−
tR

)∗ + λH−
tR

(λH−
tL

)∗
) 4mbmt m

2
H±

(ŝ − m2
b)(t̂ − m2

t )

×
(

1 − F1 F2

m2
H±(ŝ − m2

b)(t̂ − m2
t )

)]

, (5.15)

where

F1 = ŝ t̂ − m2
bm2

t , F2 = ŝ + t̂ − m2
b − m2

t ,

G1 = m2
H± − m2

t − ŝ, G2 = m2
H± − m2

b − t̂ . (5.16)

Since the diagrams contributing to bottom quark associ-

ated processes has the same Lorentz structure as those for

bg → t H−, we can obtain their parton-level cross sections

by replacing λH−
tL ,R

with λH−
ui L ,R

, mb with mui
≃ 0, and mt with

mb. They are given as

dσ̂

dt̂
(ui g → bH+) =

αs(|λH−
ui L

|2 + |λH−
ui R

|2)
48ŝ2(t̂ − m2

b)

×
[

2F1 − F2
2 − 2G1G2

ŝ
+

2m2
bG2

t̂ − m2
b

]

(5.17)

with

F1 = ŝ t̂, F2 = ŝ + t̂ − m2
b, G1 = m2

H± − m2
b − ŝ,

G2 = m2
H± − t̂ . (5.18)

The leading-order cross sections evaluated by convoluting

the partonic cross section with the PDFs at proton-proton

collisions of 14 TeV are shown in Fig. 10. In each figure,

σ(pp → H±q) = σ(pp → H+q) + σ(pp → H−q). The

production cross sections are quite sensitive to tan β. For

tan β = 1, the top quark associated production, pp → H±t ,

is the dominant channel, while the bottom quark associated

production, pp → H±b, which is the characteristic channel

of our model, can also be served as a good channel to search

the charged Higgs boson at the LHC. On the other hand,

for smaller tan β, the bottom quark associated production

becomes the dominant channel due to the enhanced charged-

Higgs couplings with light up-type quarks. The suppression

of top quark associated production is also due to the partial

cancellation of two terms in λH−
tL

.

Concerning the decays of charged Higgs, the most impor-

tant fermionic decay mode is H+ → t b̄. The decay width

is

Ŵ(H+ → t b̄) = Ŵ(H− → bt̄)

= 3

16π
m H±

[(

1 − (mt + mb)
2

m2
H±

)(

1 − (mt − mb)
2

m2
H±

)]1/2

×
[

(

|λH−
tL

|2 + |λH−
tR

|2
)

(

1 −
m2

t + m2
b

m2
H±

)

−2
(

λH−
tL

(λH−
tR

)∗ + λH−
tR

(λH−
tL

)∗
) mt mb

m2
H±

]

. (5.19)

By replacing mt with mc or mu and λH−
tL ,R

with λH−
cL ,R

or

λH−
uL ,R

, one can obtain the decay widths of H+ → cb̄ and
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Fig. 11 Branching ratios of the heavy charged Higgs H±. tan β = 1 (left panel) and tan β = 0.5 (right panel) have been taken. cos(α −β) = 0.05

and yu
33 = ySM

t for both panels

H+ → ub̄. The other fermionic decay modes are H+ → cs̄

and cd̄ , whose decay widths are proportional to tan2 β|Vcs |2
and tan2 β|Vcd |2, respectively. The decay widths of leptonic

decay modes are given as

Ŵ(H+ → ℓ+ν) = Ŵ(H− → ℓ−ν̄)

=
m2

ℓ tan2 β

8πv2
m H±

(

1 −
m2

ℓ

m2
H±

)2

. (5.20)

Meanwhile, if H+ → W + A and W + H are kinematically

forbidden, the only non-fermionic decay mode is H+ →
W +h. The decay width is

Ŵ(H+ → W +h) = Ŵ(H− → W −h)

=
g2 cos2(α − β)m3

H±

64πm2
W

×

⎡

⎣

(

1 −
m2

W

m2
H±

−
m2

h

m2
H±

)2

−
4m2

W m2
h

m4
H±

⎤

⎦

3/2

. (5.21)

By combining all the decay modes in the above we obtain

the branching ratios of the heavy charged Higgs, which are

shown in Fig. 11. Interestingly, the dominant decay mode of

the charged Higgs boson is H+ → W +h if it is kinemati-

cally allowed, although we have taken the alignment limit.

H+ → t b̄ is subdominant. Together with the production,

we expect that pp → H±b → W ±h + b can be served as

the important process to probe the charged Higgs boson at

the LHC and future hadron colliders. Most LHC searches for

W +h have been dedicated to heavy resonances [68–70] that

decay directly into W +h, so our model is not constrained

by W +h at the moment. On the other hand, the t b̄ mode is

next-to-dominant and this is not constrained by the current

LHC data [71,72], because the production cross section for

the heavy charged Higgs in our model is less than 10 fb in

most of the parameter space.

6 Conclusions

We have considered an extra local U (1) with flavor-

dependent couplings as a linear combination of B3 − L3

and Lμ − Lτ , that has been recently proposed to explain the

B-meson anomalies. In our model, we have reproduced the

correct flavor structure of the quark sector due to the VEV

of the second Higgs doublet, at the expense of new flavor

violating couplings for quarks and the violation of lepton

universality.

The extra gauge boson leads to flavor violating interac-

tions for down-type quarks appropriate for explaining B-

meson anomalies in RK (∗) whereas heavy Higgs bosons ren-

der up-type quarks have modified flavor-conserving Yukawa

couplings and down-type quarks receive flavor-violating

Yukawa couplings. We also found that the B-meson anoma-

lies in RD(∗) cannot be explained by the charged Higgs boson

in our model, due to small flavor-violating couplings.

We showed how the extended Higgs sector can be con-

strained by unitarity and stability, Higgs and electroweak

precision data, B-meson decays/mixings. Taking the align-

ment limit of heavy Higgs bosons from Higgs precision data,

we also investigated the production of heavy Higgs bosons

at the LHC. We found that there are reductions in the cross

sections of the usual production channels in 2HDM, such as

pp → H and pp → H±t at the LHC. In addition, new
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production channels such as pp → Hb and pp → H±b

become important for tan β � 1. Decay products of heavy

Higgs bosons lead to interesting collider signatures due to

large branching fractions of bd +bs modes for neutral Higgs

bosons and W ±h mode for charged Higgs boson if kinemat-

ically allowed, thus requiring a more dedicated analysis for

the LHC.
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Appendix A: The extended Higgs sector

By using the minimization condition of the Higgs potential

given by

μ2
1=

√
2μv2vs − 2λ1v

3
1 − 2λ3v1v

2
2 − 2λ4v1v

2
2 − 2κ1v1v

2
s

2v1
,

μ2
2=

√
2μv1vs − 2λ3v

2
1v2 − 2λ4v

2
1v2 − 2λ2v

3
2 − 2κ2v2v

2
s

2v2
,

m2
s =

√
2μv1v2 − 2κ1v

2
1vs − 2κ2v

2
2vs − 2λSv

3
s

2vs

, (A.1)

the mass matrix for C P-even scalars can be written as

MS =

⎛

⎜

⎜

⎜

⎜

⎝

2λ1v2
1 + μv2vs√

2v1
2v1v2(λ3 + λ4) − μvs√

2
2κ1v1vs − μv2√

2

2v1v2(λ3 + λ4) − μvs√
2

2λ2v2
2 + μv1vs√

2v2
2κ2v2vs − μv1√

2

2κ1v1vs − μv2√
2

2κ2v2vs − μv1√
2

2λSv2
s + μv1v2√

2vs

⎞

⎟

⎟

⎟

⎟

⎠

.

(A.2)

We introduce a rotation matrix R to change the interaction

basis (ρ1, ρ2, SR) to the physical mass eigenstates, h1, h2

and h3 as

⎛

⎝

h1

h2

h3

⎞

⎠ = R

⎛

⎝

ρ1

ρ2

SR

⎞

⎠ .

The mass matrix MS can be then diagonalized as

RMS RT = diag(m2
h1

, m2
h2

, m2
h3

). (A.3)

We use a convention such that the mass eigenstates are

ordered as mh1 < mh2 < mh3 . Here, the orthogonal matrix

R is parametrized in terms of the mixing angles α1 to α3 as

R =

⎛

⎝

cα1 cα2 sα1 cα2 sα2

−(cα1 sα2 sα3 + sα1 cα3 ) cα1 cα3 − sα1 sα2 sα3 cα2 sα3

−cα1 sα2 cα3 + sα1 sα3 −(cα1 sα3 + sα1 sα2 cα3) cα2 cα3

⎞

⎠ ,

(A.4)

where sαi
≡ sin αi and cαi

≡ cos αi . Without loss of gener-

ality the angles can be chosen in the range of

−π

2
≤ α1,2,3 <

π

2
.

In the text we focus mainly on the situation where mixings

between ρ1,2 and SR are small.

The mass eigenvalues of C P-even neutral scalars are

given by

m2
h1

= 1

2
(a + b −

√
D) ≡ m2

h,

m2
h2

= 1

2
(a + b +

√
D) ≡ m2

H ,

m2
h3

= 2λSv2
s + μv1v2√

2vs

≡ m2
s , (A.5)

where

a≡2λ1v
2
1 + μv2vs√

2v1

, b≡2λ2v
2
2 + μv1vs√

2v2

, D≡(a−b)2 +4d2

(A.6)

with d ≡ 2v1v2(λ3+λ4)−μvs/
√

2. We can trade off quartic

couplings, λ1,2,3,4 and κ1,2, for mixing angles and Higgs

masses.

λ1 =
2

∑

i m2
hi

R2
i1 −

√
2μvs tan β

4v2 cos2 β
,

λ2 =
2

∑

i m2
hi

R2
i2 −

√
2μvs cot β

4v2 sin2 β
,

λ3 + λ4 =
√

2μvs + 2
∑

i m2
hi

Ri1 Ri2

4v2 sin 2β
,

λS =
2vs

∑

i m2
hi

R2
i3 −

√
2μv2 sin β cos β

4v3
s

,

κ1 =
√

2μv sin β + 2
∑

i m2
hi

Ri1 Ri3

4vvs cos β
,

κ2 =
√

2μv cos β + 2
∑

i m2
hi

Ri2 Ri3

4vvs sin β
. (A.7)
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In the case when the Higgs mixings with the singlet scalar

are negligible, α2 ≃ α3 ≃ 0, the rotation matrix can be

simplified as

R ≈

⎛

⎝

cos α sin α 0

− sin α cos α 0

0 0 1

⎞

⎠ , (A.8)

where α = α1. Then the Higgs quartic couplings are given

by

λ1 ≈
2(m2

h cos2 α + m2
H sin2 α) −

√
2μvs tan β

4v2 cos2 β
,

λ2 ≈
2(m2

h sin2 α + m2
H cos2 α) −

√
2μvs cot β

4v2 sin2 β
,

λ3 + λ4 ≈
(m2

h − m2
H ) sin 2α +

√
2μvs

4v2 sin 2β
. (A.9)

Here h = h1 with mh = 125 GeV and H = h2. This relations

show that the values of quartic couplings can be evaluated

solely by m H if one chooses a benchmark point in terms of

μvs , tan β, and sin α.

Appendix B: Unitarity bounds

The initial scattering states can be classified by hyper-

charges and isospins [73–75]. In the basis of (φ+
1 φ−

1 ,

φ+
2 φ−

2 , η1η1/
√

2, ρ1ρ1/
√

2, η2η2/
√

2, ρ2ρ2/
√

2, SR SR/
√

2,

SI SI /
√

2), the scattering amplitude is

M1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

4λ1 2(λ3 + λ4)
√

2λ1

√
2λ1

√
2λ3

√
2λ3

√
2κ1

√
2κ1

2(λ3 + λ4) 4λ2

√
2λ3

√
2λ3

√
2λ2

√
2λ2

√
2κ2

√
2κ2√

2λ1

√
2λ3 3λ1 λ1 λ3 + λ4 λ3 + λ4 κ1 κ1√

2λ1

√
2λ3 λ1 3λ1 λ3 + λ4 λ3 + λ4 κ1 κ1√

2λ3

√
2λ2 λ3 + λ4 λ3 + λ4 3λ2 λ2 κ2 κ2√

2λ3

√
2λ2 λ3 + λ4 λ3 + λ4 λ2 3λ2 κ2 κ2√

2κ1

√
2κ2 κ1 κ1 κ2 κ2 3λS λS√

2κ1

√
2κ2 κ1 κ1 κ2 κ2 λS 3λS

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (B.1)

whose eigenvalues are 2λ1, 2λ2,λ1+λ2±
√

(λ1 − λ2)2 + 4λ2
4,

and 2λS .

In the basis of (φ+
1 SR , φ+

2 SR , φ+
1 SI , φ+

2 SI ), the submatrix

is given by

M2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2κ1 0 0 0

0 2κ2 0 0

0 0 2κ1 0

0 0 0 2κ2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(B.2)

with eigenvalues being 2κ1,2.

In the basis of (ρ1η1, ρ2η2, SR SI ), the matrix is

M3 =

⎛

⎜

⎜

⎜

⎝

2λ1 0 0

0 2λ2 0

0 0 2λS

⎞

⎟

⎟

⎟

⎠

(B.3)

with eigenvalues being 2λ1,2,s .

In the basis of (φ+
1 φ−

2 , φ+
2 φ−

1 , ρ1η2, ρ2η1, η1η2, ρ1ρ2),

we have

M4 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 2λ3 + 2λ4 iλ4 −iλ4 λ4 λ4

2λ3 + 2λ4 0 −iλ4 iλ4 λ4 λ4

iλ4 −iλ4 2λ3 + 2λ4 0 0 0

−iλ4 iλ4 0 2λ3 + 2λ4 0 0

λ4 λ4 0 0 2λ3 + 2λ4 0

λ4 λ4 0 0 0 2λ3 + 2λ4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(B.4)
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with eigenvalues being 2λ3, 2(λ3 + λ4), 2(λ3 + 2λ4), and

±2
√

λ3(λ3 + 2λ4).

Finally, in the basis of (ρ1φ
+
1 , ρ2φ

+
1 , η1φ

+
1 , η2φ

+
1 , ρ1φ

+
2 ,

ρ2φ
+
2 , η1φ

+
2 , η2φ

+
2 ), we obtain the matrix as

M5 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2λ1 0 0 0 0 λ4 0 iλ4

0 2λ3 0 0 λ4 0 −iλ4 0

0 0 2λ1 0 0 −iλ4 0 λ4

0 0 0 2λ3 iλ4 0 λ4 0

0 λ4 0 −iλ4 2λ3 0 0 0

λ4 0 iλ4 0 0 2λ2 0 0

0 iλ4 0 λ4 0 0 2λ3 0

−iλ4 0 λ4 0 0 0 0 2λ2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(B.5)

with eigenvalues being 2λ1, 2λ2, 2λ3, 2(λ3 ± λ4), and λ1 +
λ2 ±

√

(λ1 − λ2)2 + 4λ2
4.

The eigenvalues obtained in the above are constrained by

unitarity as

|2λ1,2,3,S| ≤ 8π, |2κ1,2| ≤ 8π,

|2(λ3 ± λ4)| ≤ 8π, |2(λ3 + 2λ4)| ≤ 8π,

|2
√

λ3(λ3 + 2λ4)| ≤ 8π,

|λ1 + λ2 ±
√

(λ1 − λ2)2 + 4λ2
4| ≤ 8π,

a1,2,3 ≤ 8π. (B.6)

Here a1,2,3 are three other solutions of the following equa-

tion:

x3 − 2x2(3λ1 + 3λ2 + 2λS)

− 4x
(

2κ2
1 + 2κ2

2 − 9λ1λ2 − 6λ1λS

−6λ2λS + 4λ2
3 + 4λ3λ4 + λ2

4

)

+ 16
(

3κ2
1 λ2 − 2κ1κ2(2λ3 + λ4) + 3κ2

2 λ1

+λS

(

(2λ3 + λ4)
2 − 9λ1λ2

))

= 0. (B.7)

Appendix C: The quark Yukawa couplings

The quark Yukawa couplings in the interaction basis are given

by

−L
q
Y = 1√

2
ūL((ρ1 − iη1)yu + (ρ2 − iη2)h

u)u R

+ 1√
2

d̄L((ρ1 + iη1)yu + (ρ2 + iη2)h
u)dR

− d̄L(yu(φ+
1 )∗ + hu(φ+

2 )∗)u R

+ ūL(ydφ+
1 + hdφ+

2 )dR + h.c. (C.1)

In the basis of mass eigenstates the quark Yukawa interactions

of the C P-even neutral scalars are

−L
q
Y = (ū′

L Y u
Hi

u′
R + d̄ ′

L Y d
Hi

d ′
R)Hi + h.c., (C.2)

where primed fields are mass eigenstates, and

Y u
H1

= − R11

v cos β
M D

u + R11 tan β − R12√
2

h̃u,

Y d
H1

= − R11

v cos β
M D

u + R11 tan β − R12√
2

h̃d ,

Y u
H2

= − R21

v cos β
M D

u + R21 tan β − R22√
2

h̃u,

Y d
H2

= − R21

v cos β
M D

d + R21 tan β − R22√
2

h̃d ,

Y u
H3

= − R31

v cos β
M D

u + R31 tan β − R22√
2

h̃u,

Y d
H3

= − R31

v cos β
M D

d + R31 tan β − R22√
2

h̃d , (C.3)

Assuming the singlet scalars are decoupled and using

Eqs. (3.2) to (3.5), the above quark Yukawa interactions

become

−Lq,Y = (ū′
L Y u

h u′
R + d̄ ′

L Y d
h d ′

R)h + (ū′
L Y u

H u′
R + d̄ ′

L Y d
H d ′

R)H

+ i(ū′
L Y u

Au′
R + d̄ ′

L Y d
Ad ′

R)A0

+ ū′(Y2,H+ PR + Y1,H+ PL)d ′ H+ + h.c., (C.4)

where

Y u
h = − sin α

v cos β
M D

u + cos(α − β)√
2 cos β

h̃u,

Y d
h = − sin α

v cos β
M D

d + cos(α − β)√
2 cos β

h̃d ,

Y u
H = cos α

v cos β
M D

u + sin(α − β)√
2 cos β

h̃u,

Y d
H = cos α

v cos β
M D

d + sin(α − β)√
2 cos β

h̃d ,

Y u
A = − tan β

v
M D

u + 1√
2 cos β

h̃u,

Y d
A = tan β

v
M D

d − 1√
2 cos β

h̃d ,

Y1,H+ = −
(

√
2 tan β

v
M D

u − 1

cos β
(h̃u)†

)

VCKM,

Y2,H+ = VCKM

(

√
2 tan β

v
M D

d − 1

cos β
h̃d

)

(C.5)

with

h̃u ≡ U
†
L huUR, h̃d ≡ D

†
L hd DR . (C.6)
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For UL = 1, we have h̃u = huUR . As a result,

h̃u
31 = 1√

2

v cos β

mu

(hu
31(yu

11)
∗ + hu

32(yu
12)

∗) = 0,

h̃u
32 = 1√

2

v cos β

mc

(hu
31(yu

21)
∗ + hu

32(yu
22)

∗) = 0,

h̃u
33 = 1√

2

v sin β

mt

(|hu
31|2 + |hu

32|2)

=
√

2mt

v sin β

(

1 − v2 cos2 β

2m2
t

|yu
33|2

)

, (C.7)

where use is made of Eqs. (3.15), (3.17), and (3.18). Other

components of h̃u are vanishing. Moreover, with h̃d =
V

†
CKMhd and using Eq. (3.10) for hd

13 and hd
23, we obtain

nonzero components of h̃u as

h̃d
13 = V ∗

ud hd
13 + V ∗

cd hd
23 =

√
2mb

v sin β
(V ∗

ud Vub + V ∗
cd Vcb)

= 1.80 × 10−2

(

mb

v sin β

)

,

h̃d
23 = V ∗

ushd
13 + V ∗

cshd
23 =

√
2mb

v sin β
(V ∗

us Vub + V ∗
cs Vcb)

= 5.77 × 10−2

(

mb

v sin β

)

,

h̃d
33 = V ∗

ubhd
13 + V ∗

cbhd
23 =

√
2mb

v sin β
(V ∗

ubVub + V ∗
cbVcb)

= 2.41 × 10−3

(

mb

v sin β

)

. (C.8)

Appendix D: U(1)′ interactions

The gauge kinetic terms and mass terms for U (1)′ and U (1)Y

are

Lg.kin = − 1

4
Bμν Bμν − 1

4
Z ′

μν Z ′μν − 1

2
sin ξ Z ′

μν Bμν

− 1

2
V T

μ M2
V V μ, (D.1)

where Vμ = (Bμ, W 3
μ, Z ′

μ)T, and

M2
V =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

m2
Z s2

W −m2
Z cW sW

1

2
c−1

W egZ ′ Q′
H2

v2
2

−m2
Z cW sW m2

Z c2
W −1

2
s−1

W egZ ′ Q′
H2

v2
2

1

2
c−1

W egZ ′ Q′
H2

v2
2 −1

2
s−1

W egZ ′ Q′
H2

v2
2 m2

Z ′

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (D.2)

After diagonalizing the terms simultaneously with

⎛

⎝

Bμ

W 3
μ

Z ′
μ

⎞

⎠ =

⎛

⎝

cW −sW −tξ
sW cW 0

0 0 1/cξ

⎞

⎠

⎛

⎝

1 0 0

0 cζ sζ

0 −sζ cζ

⎞

⎠

⎛

⎝

Aμ

Z1μ

Z2μ

⎞

⎠

=

⎛

⎝

cW −sW cζ + tξ sζ −sW sζ − tξ cζ

sW cW cζ cW sζ

0 −sζ /cξ cζ /cξ

⎞

⎠

⎛

⎝

Aμ

Z1μ

Z2μ

⎞

⎠ ,

(D.3)

where ζ is the mass mixing angle and sW ≡ sin θW , cW ≡
cos θW , etc, we obtain the mass eigenvalues for massive

gauge bosons:

m2
Z1,2

= 1

2

(

m2
Z + m2

22 ∓
√

(m2
Z − m2

22)
2 + 4m4

12

)

. (D.4)

Here m2
Z ≡ (g2 + g2

Y )v2/4 and

m2
22 ≡ m2

Z s2
W t2

ξ + m2
Z ′/c2

ξ − c−1
W egZ ′ Q′

H2
v2
wtξ/cξ ,

m2
12 ≡ m2

Z sW tξ − 1

2
c−1

W s−1
W egZ ′ Q′

H2
v2

2/cξ . (D.5)

We can rewrite the Z -boson like mass in terms of the heavy

Z ′ mass and the mixing angle ζ as

m2
Z1

=
2m2

Z sec 2ζ + m2
Z2

(1 − sec 2ζ )

1 + sec 2ζ
, (D.6)

and the mixing angle as

tan 2ζ =
2m2

12(m
2
Z2

− m2
Z )

(m2
Z2

− m2
Z )2 − m4

12

. (D.7)

We note that the modified Z -boson mass is constrained by

electroweak precision data, in particular, �ρ or T parameter.

The current interactions including Z ′ are given by

Lg = Bμ J
μ
B + W 3

μ J
μ
3 + Z ′

μ J
μ

Z ′ = Aμ J
μ
EM + Z1μ

×
(

tξ sζ cW J
μ
EM + (cζ − tξ sζ sW )J

μ
Z − sζ J

μ

Z ′/cξ

)

+ Z2μ

(

−tξ cζ cW J
μ
EM+(sζ −tξ cζ sW )J

μ
Z + cζ J

μ

Z ′/cξ

)

(D.8)
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with

J
μ
EM = e f̄ γ μQ f f,

J
μ
Z = e

2cW sW

f̄ γ μ(σ 3 − 2s2
W Q f ) f,

J
μ

Z ′ = gZ ′ f̄ γ μQ′
f f. (D.9)

Here Q f is the electric charge and Q′
f is the U (1)′ charge

of fermion f . For a small gauge kinetic mixing and/or the

mass mixing ζ , the Z ′-like gauge boson Z2μ couples to the

electromagnetic current with the overall coefficient of ε =
tξ cζ cW .

Ignoring the Z–Z ′ mixing, the interaction terms for Z ′

interactions is

LZ ′ = gZ ′ Z ′
μ

(

1

3
x t̄γ μt + 1

3
x b̄γ μb + yμ̄γ μμ

+ y ν̄μγ μ PLνμ − (x + y) τ̄ γ μτ

− (x + y) ν̄τγ
μ PLντ + y ν̄2Rγ μ PRν2R

− (x + y) ν̄3Rγ μ PRν3R

)

. (D.10)

Now we change the basis into the one with mass eigenstates

by dR = DRd ′
R , u R = URu′

R , dL = DLd ′
L and uL = ULu′

L

such that VCKM = U
†
L DL . Taking DR = UL = 1 and DL =

VCKM, the above Z ′ interactions become

LZ ′ = gZ ′ Z ′
μ

(

1

3
x t̄ ′γ μ PL t ′ + 1

3
x

v2 cos2 β|yu
33|2

2m2
t

t̄ ′γ μ PR t ′

+ 1

3
x d̄ ′

iγ
μŴd L

i j PLd ′
j + 1

3
x b̄′γ μ PRb′

+ yμ̄γ μμ − (x + y) τ̄ γ μτ + y ν̄μγ μ PLνμ

− (x + y) ν̄τγ
μ PLντ

+ y ν̄2Rγ μ PRν2R − (x + y) ν̄3Rγ μ PRν3R

)

,

(D.11)

where

Ŵd L ≡ V
†
CKM

⎛

⎝

0 0 0

0 0 0

0 0 1

⎞

⎠ VCKM

=

⎛

⎜

⎜

⎝

|Vtd |2 V ∗
td Vts V ∗

td Vtb

V ∗
ts Vtd |Vts |2 V ∗

ts Vtb

V ∗
tbVtd V ∗

tbVts |Vtb|2

⎞

⎟

⎟

⎠

. (D.12)

Considering the general mixing of C P-even scalars while

ignoring the Z–Z ′ mixing, we obtain the interaction between

neutral massive electroweak gauge bosons (V = W , Z ) and

Z ′ as

L
hi

V =
2m2

W

v

[

(cos β Ri1 + sin β Ri2)hi + 1

2v
h2

i

]

WμW μ

+
m2

Z

v

[

(cos β Ri1 + sin β Ri2)hi + 1

2v
h2

i

]

ZμZμ.

(D.13)

For a negligible mixing with the singlet scalar, the above

couplings become

L
h/H/A0

V =
2m2

W

v

[

− sin(α − β)h + cos(α − β)H

+ 1

2v
(h2 + H2 + (A0)2)

]

WμW μ

+
m2

Z

v

[

− sin(α − β)h + cos(α − β)H

+ 1

2v
(h2 + H2 + (A0)2)

]

ZμZμ. (D.14)

One can see that in the alignment limit with α = β − π/2

the gauge interactions of h are the same as for the SM Higgs

while the triple couplings of heavy Higgs boson to gauge

bosons vanish.
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