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Decays of B mesons into light mesons offer the possibility to access the less well

known entries in the CKM quark mixing matrix such as Vub and Vts. The measure-

ment of rare penguin-induced B decays may also give hints at new physics in the form

of loop-induced effects. With new data of hitherto unknown precision from the new

experimental facilities BaBar at SLAC and Belle at KEK expected to be available in

the near future, the demands for accuracy of theoretical predictions are ever increas-

ing. The central problem of all such predictions, our failure to solve non-perturbative

QCD, is well known and so far prevents a rigorous calculation of form factors from

first principles. Theorists thus concentrate on providing various approximations. The

maybe most prominent of these, simulations of QCD on the lattice, have experienced

considerable progress over recent years; the current status for B decays is summarized

in [1]. It seems, however, unlikely that lattice calculations will soon overcome their

main restriction in describing b → u and b → s transitions, namely the effective up-

per cut-off that the finite lattice spacing imposes on the momentum of the final-state

meson. The cut-off restricts lattice predictions of B decay form factors to rather large

momentum transfer q2 of about 15 GeV2 or larger. The physical range in B decays,

however, extends from 0 to about 20 GeV2, depending on the process; for radiative de-

cays like B → K∗γ it is exactly 0 GeV2. Still, one may hope to extract from the lattice

data some information on form factors in the full physical range, as their behaviour

at large q2 restricts the shape at small q2 via the analytical properties of a properly

chosen vacuum correlation function. The latter function, however, also contains poles

and multi-particle cuts whose exact behaviour is not known, which limits the accuracy

of bounds obtained from such unitarity constraints and until now has restricted their

application to B → π transitions [2, 3]. The most optimistic overall theoretical uncer-

tainty one may hope to obtain from this method is the one induced by the input lattice

results at large q2, which to date is around (15–20)% [4, 2]. A more model-dependent

extension of the lattice form factors into the low q2 region is discussed in [5].

An alternative approach to heavy-to-light transitions is offered by QCD sum rules

on the light-cone. In contrast and complementary to lattice simulations, it is just the

fact that the final-state meson does have large energy and momentum of order ∼ mB/2

in a large portion of phase-space that is used as starting point (which restricts the

method to not too large momentum transfer, to be quantified below). The key-idea

is to consider b → u and b → s transitions as hard exclusive QCD processes and

to combine the well-developed description of such processes in terms of perturbative

amplitudes and non-perturbative hadronic distribution amplitudes [6] (see also [7] for

a nice introduction) with the method of QCD sum rules [8] to describe the decaying

hadron. The idea of such “light-cone sum rules” was first formulated and carried out in

[9] in a different context for the process Σ→ pγ, and its first application to B decays

was given in [10]. Subsequently, light-cone sum rules were considered for many B decay

processes, see [11, 12] for reviews. As light-cone sum rules are based on the light-cone

expansion of a correlation function, they can be systematically improved by including

higher twist contributions and radiative corrections to perturbative amplitudes. The

first calculation in [10] was done at tree-level and to leading twist 2 accuracy. In [13, 14],

twist 3 and 4 contributions were included, and in [15], one-loop radiative corrections to
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the twist 2 contribution to the form factor fπ+ were calculated. In [16], the corresponding

radiative corrections to the decays of B mesons into the vector mesons ρ,K∗, φ were

calculated. In [17], the scalar form factor fπ0 was calculated at tree-level. In the present

letter, I calculate the remaining radiative corrections to all semileptonic and penguin

B → π and B → K transitions and present new and more accurate results for the

corresponding form factors.

Let me begin by defining the relevant quantities. The semileptonic form factors are

defined as (q = pB − p)

〈P (p)|q̄γµb|B(pB)〉 = fP+ (q2)

{
(pB + p)µ −

m2
B −m

2
P

q2
qµ

}
+
m2
B −m

2
P

q2
fP0 (q2) qµ, (1)

where P stands for the pseudoscalar meson π or K and q = u for the π and q = s for

the K. The penguin form factor is defined as

〈P (p)|q̄σµνq
ν(1 + γ5)b|B(pB)〉 ≡ 〈P (p)|s̄σµνq

νb|B(pB)〉

= i
{

(pB + p)µq
2 − qµ(m2

B −m
2
K)
} fPT (q2)

mB +mK

. (2)

The physical range in q2 is 0 ≤ q2 ≤ (mB − mP )2. Although there are of course no

semileptonic decays B → Keν, the above form factors contribute to, say, B → K`¯̀.

Recalling the results of perturbative QCD for the π electromagnetic form factor as

summarized in [7], one may suppose that the dominant contribution to the above form

factors be the exchange of a hard perturbative gluon between, for instance, the u quark

and the antiquark; this possibility was advocated in [18]. This is, however, not the

case, and it was pointed out already in Ref. [10] that the dominant contribution comes

from the so-called Feynman mechanism, where the quark created in the weak decay

carries nearly all of the final-state meson’s momentum, while all other quarks are soft,

and which bears no perturbative suppression by factors αs/π. In an expansion in the

inverse b quark mass, the contribution from the Feynman mechanism is of the same

order as the gluon-exchange contribution with momentum fraction of the quark of order

1− ΛQCD/mb, but it dies off in the strict limit mb → ∞ due to Sudakov effects. This

means that — unlike the case of the electromagnetic π form factor — knowledge of the

hadron distribution amplitudes

φ(u, µ2) ∼
∫ µ2

0
dk2
⊥Ψ(u, k⊥),

where Ψ is the full Fock-state wave function of the B and π(K), respectively, u is the

longitudinal momentum fraction carried by the (b or u(s)) quark, k⊥ is the transverse

quark momentum, is not sufficient to calculate the form factors in the form of overlap

integrals

F ∼
∫ 1

0
du dv φ∗π(K)(u)Thard(u, v; q2)φB(v)
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(with Thard ∝ αs).
1 Instead, in the method of light-cone sum rules, only the light meson

is described by distribution amplitudes. Logarithms in k⊥ are taken into account by

the evolution of the distribution amplitudes under changes in scale, powers in k⊥ are

taken into account by higher twist distribution amplitudes. The B meson, on the

other hand, is described, as in QCD sum rules, by the pseudoscalar current d̄iγ5b

in the unphysical region with virtuality p2
B − m2

b ∼ O(mb), where it can be treated

perturbatively. The real B meson, residing on the physical cut at p2
B = m2

B, is then

traced by analytical continuation, supplemented by the standard QCD sum rule tools

to enhance its contribution with respect to that of higher single- or multi-particle states

coupling to the same current.

The starting point for the calculation of the form factors in (1) and (2) is thus the

correlation functions (jB = d̄iγ5b):

CFV = i
∫
d4yeiqy〈P (p)|T [q̄γµb](y)j†B(0)|0〉 = ΠP

+(q + 2p)µ + ΠP
−qµ, (3)

CFT = i
∫
d4yeiqy〈P (p)|T [q̄σµνq

νb](y)j†B(x)|0〉 = 2iF P
T (pµq

2 − (pq)qµ), (4)

which are calculated in an expansion around the light-cone x2 = 0. The expansion goes

in inverse powers of the b quark virtuality, which, in order for the light-cone expansion

to be applicable, must be of order mb. This restricts the accessible range in q2 to

m2
b − q

2 <
∼ O(mb) parametrically. For physical B mesons, I choose m2

b − q
2 ≤ 17 GeV2.

Note also that for very large q2 the influence of the next nearby pole (B∗ for fπ+)

becomes more prominent.

It proves convenient to perform the calculation for an arbitrary weak vertex Γ = {γµ,

σµνq
ν}, which, neglecting for the moment radiative corrections, yields:

CFΓ =
fπ
4

∫ 1

0
du

[
− φπ(u)Tr(ΓSb(Q)p̂)+

+
m2
π

mu +md

{
−φP (u)Tr(ΓSb(Q)) +

i

6
φσ(u)

∂

∂Qα

Tr(ΓSb(Q)σαβ)pβ
}

+
{
g1(u)−

∫ u

0
dv g2(v)

}
∂2

∂Qα∂Qα
Tr(ΓSb(Q)p̂)− g2(u)

∂

∂Qα

Tr(ΓSb(Q)γα)

]

+
fπ

4

∫ 1

0
dv
∫ 1

0
Dα

1

s̃2

[
4f3π

fπ
v(pq)φ3π(α)Tr(Γp̂) + (2φ⊥(α)− φ‖(α))Tr(Γ(q̂ +mb)p̂)

+ 2v
{
φ‖(α)Tr(Γp̂q̂)− 2(pq)φ⊥(α)Tr(Γ)

}
+
{

2φ̃⊥(α)−

−φ̃‖(α)
}
Tr(Γ(q̂ +mb)p̂) + 4ivφ̃⊥(α)Tr(Γσαβ)qαpβ

]
. (5)

1Note also that not much is known about φB , whereas the analysis of light meson distribution

amplitudes is facilitated by the fact that it can be organized in an expansion in conformal spin, much
like the partial wave expansion of scattering amplitudes in quantum mechanics in rotational spin.
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Explicit expressions for Π± and FT were already obtained in [13, 14]. Here Q =

q + ūp, s = m2
b − Q

2 = m2
b − up2

B − ūq2, Dα = dα1dα2dα3δ(1 − α1 − α2 − α3) and

s̃ = m2
b − (q + (α1 + vα3)p)2; Sb(Q) = (Q̂ + mb)/(−s) is the b quark propagator.

In the above expression, φπ,K is the leading twist 2 distribution amplitude, φP and φσ
are the two-particle distribution amplitudes of twist 3, g1 and g2 those of twist 4, all

of which are defined in [19]. The twist 3 and 4 two-particle distribution amplitudes

are determined completely in terms of the twist 3 and 4 three-particle distribution

amplitudes φ3π, φ‖,⊥ and φ̃‖,⊥ [19]. Note that in the above expression corrections in the

light meson mass are neglected (m2
π/(mu +md), however, is expressed in terms of the

quark condensate and taken into account; this also removes any strong dependence on

the rather poorly known light quark masses). Their inclusion, of potential relevance

in B → K transitions, is not straightforward and requires an extension of the method

developed in Ref. [19] to include meson- and quark-mass corrections in the twist 4

distribution amplitudes. According to [20], the numerical impact on the form factors

is small, around 5%, and most pronounced at large q2.

It is convenient to calculate also the radiative corrections for arbitrary weak ver-

tex. To twist 2 accuracy, the light quarks are massless and carry only longitudinal

momentum. The one-loop calculation does not occasion any particular technical com-

plications, but results in bulky expressions which I refrain from quoting here.2 The

general structure is, as to be expected, similar to that for the form factor fπ+ obtained

in [15]. The separation of perturbative and non-perturbative contributions introduces

an arbitrary logarithmic (infra-red) factorization scale. The condition that the cor-

relation function be independent of that scale leads to an evolution equation for the

distribution amplitude, which was first derived and solved in [6] to leading logarith-

mic accuracy. In the present context, with full O(αs) corrections to the perturbative

part included, one has to use the next-to-leading order evolution of the distribution

amplitude, which was derived in closed form in [21]. A natural choice for the factor-

ization scale is the virtuality of the b quark, µ2
IR ∼ umb. For technical reasons it is,

however, more convenient to choose a fixed scale like µ2
IR = m2

B −m
2
b , which is of the

same order. The numerical impact of changing the scale is minimal.3 The penguin

form factor depends also on an ultra-violet scale, the renormalization-scale of the local

operator q̄σµνq
νb appearing in the effective weak Lagrangian. A natural choice for this

ultra-violet scale is µUV = mb.

As for the radiative corrections, it turns out that they are dominated by the correc-

tion to the pseudoscalar B vertex, which, as discussed below, yields large cancellations

against the corresponding corrections to the leptonic B decay constant fB.

Let me now derive the light-cone sum rules. The correlation functions CFΓ, calcu-

lated for unphysical p2
B, can also be written as dispersion relations over the physical

2The expressions were generated by a Mathematica-program which, together with the results,

can be obtained from the author upon request.
3This is in contrast to the π electromagnetic form factor, which is rather sensitive to the shape of

the distribution amplitude near the end-points.
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cut. Singling out the contribution of the B meson, one has for instance for Π+:

CFΠ+ =
m2
BfB

mb

f+(q2)
1

m2
B − p

2
B

+ higher poles and cuts, (6)

where fB is the leptonic decay constant of the B meson, fBm
2
B = mb〈B|j

†
B|0〉.

In order to enhance the ground-state B contribution to the right-hand side, I perform

a Borel-transformation:

B̂
1

s− p2
B

=
1

M2
exp(−s/M2), (7)

with the Borel parameter M2. The next step is to invoke quark-hadron duality to

approximate the contributions of hadrons other than the ground-state B meson, so

that finally

B̂ CFΠ+ =
1

M2

m2
BfB

mb

f+(q2) e−m
2
B/M

2

+
1

M2

1

π

∫ ∞
s0
ds ImCFΠ+(s) exp(−s/M2). (8)

This equation is the light-cone sum rule for f+; those for f0 and fT look similar. Here

s0 is the so-called continuum threshold, which separates the ground-state from the

continuum contributions; s0 and M2 are in principle free parameters of the light-cone

sum rules. As for s0, it turns out that eq. (8) and the corresponding relations for the

other form factors are largely independent of it (e.g. changing s0 within 30 and 100 GeV2

changes the result by only 10 to 15%, depending on q2). It is thus appropriate to fix s0

from the QCD sum rule for fB, by which one has to divide (8) in order to obtain the

form factor; from the analysis of the sum rule for fB, one finds s0 ≈ 34 GeV2. As for

M2, on the other hand, the QCD sum rule for fB is nearly independent of it, changing

by only 2% within the optimized range M2 ≈(4–8) GeV2 in which the sum rule is stable

(and yielding values for fB of (150–200) MeV, in perfect agreement with the results

from lattice simulations). It is thus appropriate to use the same values of the Borel

parameter both in (8) and the sum rules for fB, M2 ≈(4–8) GeV2, and to include the

remaining ±10% on it in the total theoretical uncertainty. Note also that subtraction of

the continuum contribution from both sides of (8) introduces a lower limit of integration

u ≥ (m2
b − q

2)/(s0 − q2) in (5), which behaves as 1 − ΛQCD/mb for large mb and thus

corresponds to the dynamical configuration of the Feynman mechanism.

Let me now specify the non-perturbative input. For the b quark I use the one-

loop pole mass mb = (4.8± 0.1) GeV, which is consistent with a recent determination

from the Υ mesons [22]. For the light mesons, the distribution amplitudes need to

be specified. Fortunately, conformal symmetry of massless QCD combined with the

nonlocal string operators technique developed in [23], provides a very powerful tool

to describe higher twist distribution amplitudes in a mutually consistent and most

economic way (see [24] for a detailed discussion). The determination of the relevant non-

perturbative parameters from QCD sum rules was pioneered in [25]. In [19], the twist 3

and 4 π distribution amplitudes were obtained including contributions up to conformal

spin 11/2 in terms of 6 independent non-perturbative parameters whose values were

determined from QCD sum rules. The leading twist 2 distribution amplitude, on the

5
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other hand, can be expanded in Gegenbauer polynomials C
3/2
i :

φπ,K = 6u(1− u)

(
1 +

∞∑
i=1

ai(µ)C
3/2
i (2u− 1)

)
. (9)

The Gegenbauer moments ai renormalize multiplicatively. For π, all odd moments

vanish because of the π’s definite G-parity. In practice, one truncates the expansion

after the first few terms,

φπ,K(n) = 6u(1− u)

(
1 +

n∑
i=1

ai(µ)C
3/2
i (2u− 1)

)
,

with n = 4 (for π) or n = 2 (for K). I will discuss the impact of this truncation on the

form factors later. For now, I use the π distribution amplitude as obtained in [26] (see

also [27]),

aπ2 (1 GeV) = 0.44, aπ4 (1 GeV) = 0.25. (10)

For the K, on the other hand, the non-zero value of the strange quark mass induces

non-vanishing values of the odd moments. I use

aK1 (1 GeV) = 0.17, aK2 (1 GeV) = 0.2, (11)

where the first value was obtained in [25] and the second one comes from an analysis

of the sum rule for the π in [26], due account being taken of SU(3)-breaking effects.

The results are displayed in fig. 1. The form factor fπ+ coincides with the one

obtained in [15]. I plot each form factor using the twist 2 distribution amplitudes as

specified above and with and without O(αs) corrections, and also using the asymptotic

distribution amplitudes φπ,(0) and φK,(1) to illustrate the impact of non-asymptotic

contributions. The plotted curves were obtained with mb = 4.8 GeV, s0 = 33.5 GeV2

and M2 = 6 GeV2. The distribution amplitudes are evaluated at the scale µ2 = m2
B −

m2
b =: µ2

b . Apparently, the net effect of radiative corrections on the form factors is

rather small. This is due to an effect already observed in [15]: the radiative corrections

to the QCD sum rule for fB are rather large, which is due to the large vertex corrections

to the pseudoscalar B vertex. In the radiative corrections to the light-cone sum rules,

the same vertex appears with corrections of similar size, so that they cancel between

left- and right-hand side of (8), leaving a net effect of around 10%.

For all form factors, the effect of three-particle twist 3 and 4 quark-gluon contribu-

tions (and their induced effects in the two-particle distribution amplitudes) are small

(∼ 5%), so that the considerable theoretical uncertainty of these terms does not play.

This also shows that the expansion in contributions of increasing twist is under good

control. The remaining twist 3 contributions are proportional to the quark condensate,

which, as already noted in [15], introduces only a small uncertainty in the final results.

As is expected from the definition of f0, which refers to a scalar current, it increases

less sharply in q2 than the other form factors. A good parametrization for the q2

dependence can be given in terms of three parameters as

F (q2) =
F (0)

1− aF (q2/m2
B) + bF (q2/m2

B)
2 . (12)

6
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Figure 1: Form factors from light-cone sum rules in various approximations.

The parameters are given in Table 1 for central values of the input parameters.

For comparison, I also give the results for fπ+ quoted in [12] and fK+ obtained in [13],

the latter being obtained in leading-logarithmic accuracy. The table confirms what

can also be inferred from the figure, namely that, for both π and K, mesons f+ and

fT nearly coincide. Comparison with the K form factors shows that the main SU(3)-

breaking effect is in the normalization F (0), whereas the q2 dependence is only slightly

modified. This can be understood from the fact that the formation of a π or K meson is

proportional to their respective decay constants fπ,K , so that one would naively expect

an enhancement ∼ fK/fπ = 1.2 of the K form factors (at least if the three-parton

states are not important), which is essentially what I find.
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fπ+ fK+ fπ0 fK0 fπT (mb) fKT (mb) fπ+ [12] fK,LO+ [13]

F (0) 0.305 0.341 ≡ fπ+(0) ≡ fK+ (0) 0.296 0.374 0.27± 0.05 0.33± 0.05

aF 1.29 1.41 0.266 0.410 1.28 1.42 1.50 1.14

bF 0.206 0.406 −0.752 −0.361 0.193 0.434 0.52 0.05

Table 1: Results for form factors with mb = 4.8 GeV, s0 = 33.5 GeV2 and M2 = 6 GeV2

in the parametrization of eq. (12). Renormalization scale for fT is µ = mb. The theoretical

uncertainty is ∼ 20 %.

q2 fπ+,latt(q
2)[4, 2] fπ+,LCSR(q2) fπ0,latt(q

2)[4, 2] fπ0,LCSR(q2)

14.9 GeV2 0.85± 0.20 0.85± 0.15 0.46± 0.10 0.5± 0.1

17.2 GeV2 1.10± 0.27 1.1± 0.2 0.49± 0.10 0.55± 0.15

20.0 GeV2 1.72± 0.50 1.6 0.56± 0.12 0.7

Table 2: Comparison of lattice results for B → π form factors with results from light-cone

sum rules. The errors for lattice results are those quoted in [2].

Varying all input parameters within their respective allowed ranges, I obtain uncer-

tainties between 10 and 15%. Combining this with the systematic uncertainty ∼10%

introduced by the need to separate the ground-state B contribution from that of higher

states, i.e. the uncertainty introduced by quark-hadron duality, the final uncertainty

of the form factors is ∼20%. A slight reduction of this uncertainty may be possible

if more accurate information on the twist 2 distribution amplitude becomes available,

for instance from lattice simulations, but it is in principle impossible to reduce the

uncertainty from using quark-hadron duality to isolate the B meson, which thus limits

the total accuracy of the method of light-cone sum rules. A calculation of radiative

corrections to the twist 3 contributions is in principle feasible, although complicated,

but will hardly reduce the uncertainty which is dominated by the one of the quark

condensate.

A comparison with lattice results from the UKQCD collaboration is given in Table 2.

The agreement with the lattice data is excellent, as it was also found for B → ρ,K∗

form factors in [16]. The LCSR point at q2 = 20 GeV2 is just for illustration, because

of which I also refrain from assigning it an error.

In the limit mb →∞, Isgur and Wise have obtained a relation between the semilep-

tonic and the penguin form factors [28]:

fT

mB +mP

=
1

2mb

{(
1 +

m2
b − q

2

q2

)
f+ −

m2
b − q

2

q2
f0

}
, (13)

which is strictly valid only near zero recoil (i.e. near q2 = m2
b). In Fig. 2 I plot the

left- and right-hand sides of eq. (13) over the full range of q2. The agreement between

the curves for all q2 is striking; they differ by 3% at q2 = 0 and by less than 1%

at q2 = 17 GeV2. A closer inspection of the underlying light-cone sum rules shows

8
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Figure 2: Isgur-Wise relation (13) between penguin and semileptonic form factors.

that to twist 2 accuracy (13) is valid exactly and for arbitrary mb already at the level

of correlation functions Π± and FT and thus — to that accuracy — is independent

of the details of the extraction of the B meson contribution. For the twist 3 and 4

contributions to Π± and FT , (13) holds in the kinematical regime characteristic for the

Feynman mechanism, i.e. near u ∼ 1, and up to terms which are suppressed by one

power of mb, which account for the 3% breaking of (13) by the light-cone sum rule

results.

As the uncertainty associated with the twist 3 two-particle distribution amplitudes

and the higher twist amplitudes is small, and the form factor thus depends essentially

on the quality of information on the twist 2 distribution amplitude, it is worthwhile

to investigate in more detail the impact of truncating the series (9) after the first few

terms. Let me first recall that in [26] aπ2 (1 GeV) was determined from a QCD sum

rule for Gegenbauer moments of in principle arbitrary degree, whereas aπ4 was obtained

from requiring φπ(1/2, 1 GeV) = 1.2± 0.3, which follows from a QCD sum rule for the

πNN -coupling. The reason for not considering QCD sum rules for higher moments is

that they show a strong divergence with the degree n, rendering the series in (9) highly

divergent. In order to simulate possible effects of higher moments without distorting the

asymptotic u(1− u) behaviour near the end-points too much, I allow for a logarithmic

divergence of the sum in Gegenbauer polynomials, yielding the following models:

model I : φπ(1/2, µ = 1 GeV) = 1.2, aπ2 model-dependent:

φIπ(u, µ = µb) = 6u(1− u)− 0.95 · 6u(1− u)
3

5
ln u ln(1− u), (14)

model II : φπ(1/2, µ = 1 GeV) = 1.2, a2(1 GeV) = 0.44 :

φIIπ (u, µ = µb) = 6u(1− u){1 + 0.35C
3/2
2 (2u− 1)}

− 8.5 · 6u(1− u)
{

3

5
ln u ln(1− u) + 1 +

7

50
C

3/2
2 (2u− 1)

}
. (15)

The corresponding Gegenbauer-spectra fall off as 1/n3:

(I) : {an} = {1, 0.13, 0.030, 0.011, . . .}

(II) : {an} = {1, 0.35, 0.27, 0.10, 0.049, 0.027, . . .} .

9
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Figure 3: Dependence of fπ+ on the twist 2 π distribution amplitude.

In fig. 3 I plot the above model distribution amplitudes as well as the one suggested

by Braun and Filyanov [26], i.e. φπ(4). Although they look rather different, the result-

ing form factors fπ+, also shown in Fig. 3, vary by at most 10%, i.e. are within the

theoretical error. It is evident that the form factors do not depend on the details of

the Gegenbauer-spectrum, but are sensitive only to a few gross characteristics like the

value of the distribution amplitude at one point (different from the end-points) and

the first one or two moments. This is true as long as the distribution amplitudes are

folded with smooth functions (as it is the case for form factors), so that higher order

oscillatory Gegenbauer polynomials are effectively “washed out”. A determination of

the relevant few characteristics from an independent source, e.g. lattice simulations,

would evidently help to further increase the accuracy of form factors calculated from

light-cone sum rules.

Summarizing, I have calculated the semileptonic and penguin form factors of B → π

and B → K transitions from light-cone sum rules. A new feature was the inclusion

of one-loop radiative corrections to the leading twist contributions. The results are

summarized in Fig. 1 and Table 1. The impact of radiative corrections and higher

twist contributions is small, so that the achievable accuracy is limited by the inherent

systematic uncertainty of light-cone sum rules, which is associated with the extraction

of the B meson ground-state contribution out of the continuum of states coupling

to the same current. This uncertainty is estimated to be ∼ 10% and of the same

size as the uncertainty induced by the input parameters in the sum rule. Hence,

further refinement of the calculation by including higher twist contributions or two-loop

radiative corrections is not expected to yield higher accuracy of the result. It would,

however, be useful to have an independent determination of the few lowest moments

of the twist 2 π and K meson distribution amplitudes from lattice simulations. The

existing results [29] have large uncertainties, and in view of the recent improvements of

the methods of lattice QCD and the availability of much more powerful computers, more

accurate results seem within reach. Very recently [30], a new method was suggested to

calculate the leading twist distribution amplitude on the lattice directly as a function of

u. If feasible with statistical and systematic errors in the 20% range, this would help to

reduce the total uncertainty of the B → π,K form factors to ∼ 15%. The application

10
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of these lattice results would not be restricted to B meson decays, but also of direct

relevance to the description of other hard exclusive processes, for instance single-meson

production at HERA.
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