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Abstract—Taxi GPS traces provide us with rich information
about the human mobility pattern in modern cities. Instead
of designing the bus route based on inaccurate human survey
regarding people’s mobility pattern, we intend to address the
night-bus route planning issue by leveraging taxi GPS traces.
In this paper, we propose a two-phase approach based on the
crowd-sourced GPS data for night-bus route planning. In the first
phase, we develop a process to cluster “hot” areas with dense
passenger pick-up/drop-off, and then propose effective methods
to split big ‘“hot” areas into clusters and identify a location in
each cluster as a candidate bus stop. In the second phase, given
the bus route origin, destination, candidate bus stops as well
as bus operation time constraints, we derive several effective
rules to build bus routing graph and prune the invalid stops and
edges iteratively. We further develop two heuristic algorithms to
automatically generate candidate bus routes, and finally we select
the best route which expects the maximum number of passengers
under the given conditions. To validate the effectiveness of the
proposed approach, extensive empirical studies are performed on
a real-world taxi GPS data set which contains more than 1.57
million passenger delivery trips, generated by 7,600 taxis for a
month in Hangzhou, China.

Index Terms—Taxi GPS Traces; Human Movement Patterns;
Bus Routes Planning

I. INTRODUCTION

Buses are a popular and economical way for people to
travel around the city, and they are generally “greener” than
cars and taxis as they help to decrease traffic congestion,
fuel consumption, carbon dioxide emission and travel cost.
Thus for sustainable city development, people are encouraged
to take public transportation for work, visit, etc. In many
cities, the daytime bus transportation systems are usually well
designed; however, during late night, most bus systems are out
of service, leaving taxis as the only way for getting around.
Many cities start to plan night-through bus systems to provide
cost-effective and environment friendly transport to citizens.

With the increasingly wide deployment of GPS devices and
pervasive sensors, more and more digital traces left by people
while interacting with cyber-physical spaces have been accu-
mulated [16], [17], [18]. For instance, taxis in many cities are
equipped with GPS devices nowadays, and rich information
about the taxis, including where and when passengers are
picked-up or dropped-off, which route a taxi takes for a certain
trip, can be collected and extracted. This big crowd-sourced
data collected using pervasive sensing contains passengers’

time-dependent mobility patterns in a city, making it possible
to optimally plan night-bus routes by estimating the number
of passengers expected along the routes. Previously, bus route
planning mainly relied on human surveys to understand the
people’s mobility patterns [7]. Although this approach was
proved to be workable, the time and cost spent in the survey
process are quite substantial. Pervasive sensing, communica-
tion and computing bring us new ways to sense the pulses of
the city at real-time and low cost, understand the situation
collectively and quantitatively, and create opportunities to
enable new applications in urban planning.

In this paper, we intend to explore the night-bus route
design problem leveraging the taxi GPS traces. First of all, we
need to identify the candidate bus stops which are associated
with locations having big number of taxi passenger pick-up
and drop-off records (PDRs), the bus stops should be evenly
distributed in the “hot” districts to facilitate people’s access.
After the candidate bus stops are fixed, the next step is to select
a bus route which connects the bus origin and a sequence of
bus stops to the destination, carrying the maximum number of
passengers within a defined time duration. Fortunately, the taxi
GPS traces contain quantitative spatial-temporal information
about all taxi trips. By mining the taxi GPS data, we can
inform where are the “hot” areas for taxi passengers and how
many passengers would potentially travel along a certain route.
Therefore, the night-bus route design becomes a problem of
comparing the number of passengers of all valid bus routes
giving certain time constraints.

However, identifying the candidate bus stops from taxi GPS
data and enumerating the top-ranked bus routes efficiently are
not trivial and straight-forward. To the best of our knowledge,
there is still no work reported on candidate bus stop identifica-
tion and bus route design leveraging taxi GPS data. Consider
the taxi GPS trajectories and the converted bus routing graph
shown in Fig. 1, seven dense taxi pick-up/drop-off locations
(i.e. C7 — C7) are identified as candidate bus stops, where
Cy and C7 are designated as the bus origin and destination,
respectively. The objective of bus route design is to find a bus
route from C7 to C; with maximum number of passengers
expected given the bus operation frequency and total travel
time. Apparently, to design an effective bus route, we need to
address the following research challenges:

First, the taxi passenger pick-up and drop-off points are



Fig. 1.  An illustrative example of the taxi GPS trajectories (left) and the
converted bus routing graph (right).

distributed in the whole city, with some areas having more
PDRs than other areas, but there is no clear guideline about
where the bus stops should be put. Thus there needs a method
to identify candidate bus stops from taxi passenger pick-
up/drop-off distributions.

Second, to deliver the maximum number of passengers, the
best bus route should leave from the bus origin C'y, go through
all the intermediate bus stops, and finally reach the destination
C7. That is, the bus route would follow the sequence of bus
stops as C; — Cy — Cs — C3 — Cy — Cg — C7. However,
the problem for this route is that the whole trip would take a
very long time to complete, which is intolerable if the number
of candidate bus stops is big. Thus, a non-trivial trade-off has
to be made between the number of passengers expected along
the route and the total time travelled.

Third, as there is no taxi passenger travelling from Cjy to
C7 in Fig. 1 (left), if we design the bus route as C; — Cy —
Cs — (7, then the significant passenger flow in paths Cy —
Cy4 and C'3 — C4 cannot be accommodated. Alternatively, by
including Cj in the planned bus route as C; — Cy — C3 —
Cy — (%, all the passenger flows in Cy — Cy, C35 — Cy,
Cy — C7 and C3 — (7 are accommodated with the cost of
adding one more stop. Therefore, even the path Cy — C7 has
no passenger flow, but adding it to the planned bus route would
lead to a better solution due to passenger flow accumulation
from all previous stops and paths.

Finally, besides the passenger flow accumulation along the
bus route, we also need to consider that the passenger flows are
usually different from time to time. For instance, the passenger
flow during 23:00-24:00 might be very different from that
during 3:00-4:00. Thus we have to consider the passenger
flows accumulated and the total number of passengers in all
concerned timeslots while selecting the planned bus route.

In this paper, we propose a two-phase approach to address
the above-mentioned challenges. In the first phase, we identify
the candidate bus stops leveraging the taxi GPS data. In the
second phase, with all the candidate bus stops identified and
the bus route OD designated, we develop effective rules and
heuristic algorithms to generate the bus route with maximum
number of passengers expected under the time constraints,
with the process shown in Fig. 2. In summary, the main
contributions of this paper include:

First, we propose a two-phase approach to tackle the night-
bus route design problem leveraging the taxi GPS data. To the
best of our knowledge, this is the first work on night bus route
design using the taxi travel speed, time and PDRs information.
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The two-phase bus route planning framework.

Fig. 2.

Second, we develop a novel process with effective methods
to cluster “hot” areas with dense passenger pick-up/drop-off,
split big “hot” areas into walkable size ones and identify
candidate bus stops. It is verified that the proposed method
outperforms the popular k-means method in terms of sound-
ness of selected bus stop location and evenness of selected bus
stop distribution.

Third, we derive several effective rules to build the di-
rected bus routing graph where nodes and edges represent
the candidate bus stops and valid connections among stops,
respectively. To ensure the bus would reach destination in the
end and reduce the computation complexity, we also develop
an iterative process to remove invalid nodes and edges.

Finally, we propose two heuristic algorithms for automati-
cally generating valid bus routes. One is the probability based
spreading algorithm which randomly selects the next stop
among the possible candidate stops in each step, giving the
candidate stop with high accumulated passenger flow a big
probability for random selection; the other is the top-k spread-
ing algorithm which selects k£ nodes with high accumulated
passenger flows as candidate stops in each step. It is verified
that the probability based spreading algorithm outperforms the
top-k approach in the selection of best bus routes.

II. RELATED WORK

Here, we briefly review the related work which can be
grouped into two categories. The first category is about making
use of taxi GPS traces for urban planning and traffic manage-
ment. The existing work includes automatic map construc-
tion [3], detecting hot spots and frequent travel patterns [8],
predicting road traffic conditions [4], informing land use and
function distribution [11], [13], uncovering inefficient road
network connectivity [18], planning optimal driving route [14]
and various applications such as next passenger finding [15],
anomalous trajectory discovery [17]. Among the taxi GPS
trace related papers, the work addressing ‘“hotspots” and
frequent travel OD patterns are relevant to our work for
identifying candidate bus stops and providing passenger flow
data among potential bus stops, but there is no paper except
one [2] using those data for bus route planning. The main
goal of [2] is to mine historic taxi GPS trips to suggest a
flexible bus route. The work first clusters trips with similar
starting time, duration, origin and destination; it then attempts
to identify the route that connects multiple dense taxi trip



clusters. The work is different from ours as it only chooses the
route which maximizes the sum of each connected trip cluster.
In another word, it does not consider the time constraints and
the accumulated effects among connection stops, thus it would
never include the path like Cy — C'; of Fig. 1 in the planned
bus route, while our approach might include the path as long
as the route expects the maximum number of accumulated
passengers and the total travel time constraint can be met.

The second category is about the bus network design,
which is an intensive studied area in urban planning and
transportation field. The bus network design is known to be
a complex, non-linear, non-convex, multi-objective NP-hard
problem [10], [9]. The aim is to determine bus routes and
operation frequencies that achieve certain objectives, subject
to the constraints and passenger flows. The popular objectives
include shortest route, shortest travel time, lowest operation
cost, maximum passenger flow, maximum area coverage and
maximum service quality while the constraints include time,
capacity and resources. However, the selection of the ob-
jectives should take care of the operator as well as user
requirements which are often conflicting, leading to design
trade-off rather than an optimal solution. As noted in [5],
early bus network design is mainly based on human survey
to get passenger flows and user demands, it relies heavily on
heuristics and intuitive principles developed by a designer’s
own experience and practice. Recent work on bus network
design also assumes that the passenger flows are given by user
survey or population estimation, the best solving algorithms
are based on heuristic procedures to find sub-optimal solutions.
A detailed review about route network design can be found
in [7].

Despite the renewed attention for bus network design, there
is still no work addressing the night-bus route design problem
leveraging the taxi passenger OD flow data. Different from
existing research, our work aims to find a bus route with a fixed
frequency, maximizing the number of passengers expected
along the route subject to the total travel time constraint. This
problem is different from the traditional Travelling Salesman
Problem (TSP) [1] in nature, which aims to find the shortest
path that visits each given location (node) exactly once.
TSP evaluates different routes with exact N locations, which
means all candidate stops should be included in the route.
Our problem is also different from the shortest path finding
problem [12], which intends to get the shortest path for a given
OD pair. In our case, we have to consider the accumulated
effect (passenger flows) from all previous stops to current stop
for choosing the bus route.

III. CANDIDATE BUS STOP IDENTIFICATION

In the proposed two-phase bus route planning framework,
the objective of phase one is to identify candidate bus stops
by exploiting the taxi PDRs. The whole process consists of
three steps: (1) Divide the whole city into small equal-sized
grid cells, mark those “hot” grid cells with high taxi PDRs
for further processing; (2) Merge the adjacent “hot” grid cells
to form “hot” areas, divide each big area into “walkable size”

Fig. 3. City partitions near Hangzhou Railway Station. Each city partition
is marked with a different color.

cluster; (3) Choose one grid cell as the candidate bus stop
location in each walkable size “hot” cluster, by assuming that
passengers from the same cluster would easily walk to the stop
to take the bus.

A. Hot Grid Cells and City Partitions

In this work, we first divide the city into equal-sized grid
cells, with each cell about 10m x 10m. In such a way, the
whole city is partitioned into 5000 x 2500 cells in total.
Out of all the grid cells, over 95% of them contain no taxi
passenger PDRs as they are either lakes, mountains, buildings,
and highways that cannot be reached or stopped by taxis, or
suburb areas that people seldom travel to. Only 0.11% of them
have more than 0.2 PDRs per hour on average if we only count
the PDRs in late night. And we name these grid cells as “hot”
ones.

As each grid cell has maximum eight neighbors, if we
define the connectivity degree (CD) of a “hot” grid cell as
the number of “hot” neighboring cells, the CD of any grid
cell will range from O to 8, where the “hot” grid cell with
CD equal to O is called isolated cell. As the city is composed
of mixed hot grid cells and common grid cells, both hot cells
and common cells form irregular “hot areas” and “common
areas” as a consequence of same type of cells being adjacent
to each other. These “hot areas” are also called city partitions,
as shown in Fig.3. Apparently, some small partitions (like the
small ones in Fig. 3) can be very close to some big ones (like
the black and red ones in Fig. 3). It would be necessary to
consider all the city partitions globally in order to plan the
bus stop locations, thus city partitions close to each other had
better merge to form big clusters for better overall bus stop
distribution. In the next section, we propose a simple strategy
to merge the close partitions into bigger clusters.

B. Cluster Merging and Splitting

We present the cluster merging and splitting approach in
Algorithm 1. After obtaining all city partitions, we sort them
in a descending order according to the number of PDRs
(Linel). To merge the partitions close to each other iteratively,
we propose to use the hottest partition to absorb its nearby
partitions according to the descending order of PDRs, until
no more nearby partitions meet the merging criteria (Line8).
Then we choose the next hottest partition to repeat the same



Algorithm 1 Merge Algorithm

Input: List of partitions {P; }

Output: List of clusters {C; }

1: P+ sort (P), (i=1,2,---
descending order

2: 4 = 13/ Initialization

3: while P # () do

,n) // Sort P according to amount of its PDRs by

4 Ci={P1};

S: P = P\{P:} // Remove P; from P

6: k=|P|;

7: for j := 1 to k do

8 if dist(Cy, P;) < th (we set th to 150 m) then
9: C; = C; U Pj llabsorb the closer partition
10: P = P\{P;} /[Remove P; from P

11: end if

12: end for

13: =14+ 1;

14: end while

Fig. 4. TIllustrative example of splitting. Big cluster formed via merging (left).
Big cluster split into 4 walkable size clusters (right, in four different colors).

process until all the partitions are checked (Line8~Linel?2).
The location of each partition is first initialized by computing
the weighted average location of all grid cells using the Eq. 1.

S (PDRs(g;) * loc(g;))
SN PDRs(g;)

where loc(g;) refers to the longitude/latitude of the member
grid cell g;.

After merging one partition, the location of the combined
cluster is updated (Line9) and the absorbed partition is re-
moved from the partition list (Line 10). The dist function refers
to the distance between two given partitions. The algorithm
will be terminated until no partitions can be merged to a new
cluster (Line3).

However, some merged clusters may be too large, which can
set up more than one bus stop. Thus proper splitting should
be done for these big clusters. In general, the merged clusters
can be classified into three groups according to their size (the
size of cluster is defined as minimal rectangle which covers all
the grid cells): 1) with both height and width are greater than
500m; 2) with either height or width is greater than 500m;
and 3) with both height and width are less than 500m. We
find that only a very small number of clusters (around 10%,
group 1 and 2) need further splitting operations.

As for large clusters (group 1 and 2), we adopt a simple
strategy to split them. Specifically, for clusters in group 1, we
split the big cluster into a number of sub-clusters, aiming to
minimize the difference of PDRs of the resulted clusters both

loc(P) =

(1

in horizonal and vertical directions, while for clusters in group
2, we only need to split the cluster in one direction. Fig. 4
shows an illustrative example of splitting a cluster into four
sub-clusters with the proposed splitting strategy. The initial
cluster belongs to group 1 (Fig. 4 (left)), the splitting is first
done in horizontal direction to produce two sub-clusters with
similar PDRs. After the first splitting, two sub-clusters with
width greater than 500m are generated, thus both sub-clusters
require a further splitting in vertical direction. The final result
with four split sub-clusters is shown in Fig. 4 (right).

C. Candidate Bus Stop Location Selection

After merging and splitting operations, we obtain a big num-
ber of “hot” clusters with the size smaller than 500m x 500m.
The next step is to select a representative grid cell in each
cluster to serve as the candidate bus.
w0, x CD(i)+1 n nPDRs(z) .

0 S, (PDRs(i))

To select this representative grid cell, both connectivity
degree (CD) and the number of PDRs of each cell in the
cluster are taken into consideration. While the CD of a grid
cell characterizes the accessibility of the cell, the number of
PDRs is an indicator of its “hotness”. The grid cell having the
maximum value defined in the Eq. 2 in each cluster is selected
as the “center” of the cluster, marked as the location of the
candidate bus stop. We set w; = wo = 0.5 in the evaluation,
and totally we get 579 candidate bus stops in the city.

arg max wag X 2)

IV. BUS ROUTE SELECTION

After fixing the candidate bus stops in phase one, the aim
of phase two is to find the best bus route for a given OD,
expecting to maximize the expected number of passengers
under the time constraints.

Here, we first approximate the passenger flow and travel
time between any two candidate stops using taxi GPS traces,
then we present the bus route selection method which contains
the following three-steps: 1) Build the bus routing graph and
remove invalid nodes and edges iteratively based on certain
criteria; 2) Automatically generate candidate bus routes with
two proposed heuristic algorithms; 3) Select the bus route by
comparing the expected number of passengers under the same
total travel time constraint.

A. Passenger Flow and Travel Time Estimation

We record the travel demand and time information in two
matrix, named passenger flow matrix (FM) and bus travel
time matrix (TM). Each element in the matrix refers to the
number of passengers and bus travel time from one stop (ith)
to another stop (jth, @ # j). We count the total taxi trips from
ith cluster to jth cluster as each stop is responsible for its
cluster. We set the maximum waiting time for passengers at
the stop is 30 minutes, so any pick-up or drop-off events taking
place in this time window are counted. We simply assume the
passenger flows among candidate bus stops remain unchanged
during each 30-minutes duration. The final FM is got by



averaging all flow matrix at different bus frequencies. We also
assume TM keeps unchanged across the night time. tm(s;, s;)
is the average travel time multiply by «, which is a constant.
We set « = 1.5 to consider the speed difference between
taxis and bus. For the paths having no taxi trip occurring in
history (for instance, nobody travels by taxi due to too short
distance), we use Ddist(s;,s;)/v to approximate tm(s;,s;),
where Ddist(s;, s;) is the driving distance between s; and s;,
and v is set to 50 km/h.

B. Bus Routing Graph Building and Pruning

Selecting the best bus route is a very challenging problem
as two conflicting requirements must be met: one is to ensure
that the bus route would traverse intermediate stops and finally
reach the destination within a limited time; the other is to
maximize the number of passengers accumulated along the
route. For example, if we choose the stop with the heaviest
passenger flow from the origin as the first node, and then
keep choosing the next stop following the heaviest passenger
flow principle, then we might neither reach the destination,
nor achieve the objective of having the maximum number of
passengers accumulated along the route. To meet the above
two requirements and follow the intuitive principles in bus
route design, some basic criterion should be set for bus routing
graph building and candidate bus route selection.

1) Routing graph building criteria: Obviously, there would
be numerous stop combinations for a given OD pair, and only a
small proportion of them meet the first or second requirement.
To reduce the search space of possible stops and routes, we can
build a bus routing graph starting from origin to destination
using heuristic rules. For instance, from the shortest travel time
perspective, the bus route should extend from origin towards
the direction of destination, it can be further converted into
three rules: each new selected stop should be farther from
the origin, closer to destination, and farther from previous
stop. From the intuitive bus route design principle, the bus
stops should not be too far from each other, also the bus route
should not comprise sharp zig-zag paths. These can also be
translated into two criterion in building the bus routing graph.
Specifically, given the OD pair (s1, s,,) and the candidate route
R = (s1,82, " ,8n), we should obey the following criterion
when building the bus routing graph.

o Criteria 1: Adequate stop distance

dist(siz1,8:) <6 (i=1,2,--- ,n—1)
where ¢ is a user-specified parameter. We set 6 = 1.5 km,
which means the maximum distance between two consec-

utive stops should be no more than 1.5 km.
o Criteria 2: Move forward

Tnew(l + 1) > Tpew(t) (=1,2,---,n—1)
ZTnew(1) = (1) cos 0 + y(i) sin 6
—1y(n)

0 = tan )

(z(2),y(i)) of the s; is got by simply subtracting the
longitude and latitude value to that of s1. Typey iS the

Fig. 5. Demonstration of Criteria 2 (left) and Criteria 5 (right).

value of X-axis of stop in the new coordination which is
with s; as the origin, and from s; to s, as the direction
of X-axis (see the left panel in Fig. 5). This criteria
guarantees the bus will always move forward along the
OD direction.

o Criteria 3: Source-farther

dist(siy1,s1) > dist(si,81) (i=1,2,--- ,n—1)

This ensures that the bus will move away from the origin
sy farther in each step.
e Criteria 4: Destination-closer

dist(siy1, Sn) < dist(s;, sp) (i=1,2,---,n—1)

This ensures the bus will move closer to the destination
sp in each step.

o Criteria 5: No zigzag route

arg min(dist(s;11,55)) =s; (j=1,2,---,1)

——

Sj

Criteria 5 ensures the smoothness of the route. There
would be no sharp zigzag path along the OD direction.
The route demonstrated in the right panel of Fig. 5 should
not happen, as it violates the no zigzag route criteria. We
can see arg min(dist(ss,s;)) = s1 # s2 (j =1,2), also
arg min(dist(sq,s;)) = s2 #s3 (j =1,2,3).

2) Graph building and pruning: The aim of graph building
is to construct a directed graph with nodes and links given an
OD pair, in which the nodes are the stops, and edges link the
stop to its next possible stops, regardless of passenger flows
among them. While the goal of graph pruning is to remove
invalid edges and nodes according to the proposed criterion.

Graph Building: Given the bus route OD, their locations
are firstly used to narrow down the choice of valid candidate
stops, only the candidate stops lying between them are under
consideration. For each stop within the range, we determine
links to its next possible stops according to the proposed
Criteria 1~4. As Criteria 5 is related to all stops in one bus
route, so we use it to prune the routing graph after it is built.
Fig. 6 (left) shows an illustrated example about a generated
bus routing directed graph.

Graph Pruning: Some nodes and edges can be further
pruned because they are not useful for valid candidate bus
route selection. To be specific, for nodes without in-coming
edges (if not origin) or out-going edges (if not destination),
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Fig. 6. A bus routing directed graph for a given OD.

as they will not form any valid routes with the bus route OD
pair, these edges and nodes should be deleted.

We first calculate all the nodes’ in-coming and out-going
degrees. And nodes (exclude the given OD) and corresponding
edges would be iteratively deleted from graph if their in-
coming or out-going degree is zero. At last graph with only
one zero in-coming degree (given origin) and one zero out-
going degree (given destination) would be generated. After
graph pruning, all the bus routes starting from the source
and following the edges in the graph would eventually reach
the destination. Fig. 6 (right) displays the resulted graph after
applying pruning to the graph in Fig. 6 (left).

C. Automatic Candidate Bus Route Generation

Probability based Spreading Algorithm: Though we have
removed invalid nodes and edges through graph pruning, the
problem of enumerating all possible routes from given source
to destination is proved to be NP hard. Indeed, it is also
unnecessary to enumerate all possible routes and compare
them all, because most of routes are dominated by few others.

DEFINITION 1. We say R; dominates R; iif: 1) T'(R;) <
T(R;); 2) Num(R;) > Num(R;).
where 7' and Num are the total travel time and number of
expected delivered passengers, which is computed based on
Eq. 3 and 4.

n—1

T = Z tm(sip1, 5i) + (n —2) x to (3)
i=1
Num = Z fm(s;, s;) 4

i35 (5>1)

where ty is the bus waiting time at each stop, and we set
it to 1.5 minutes. The definition is similar to the skyline
routes in [6], and the rational behind is that only routes with
less travel time but larger number of passengers should be
selected. Skyline detector [18] will prune the routes which are
dominated by skyline routes in the candidate set. Thus, the
comparison can be done among detected skyline routes.

The key idea of our proposed probability based spreading
algorithm is to randomly select the next stop among the
possible candidate stops in each step, where the candidate
stops having high accumulated passenger flow with previous
stops are given high probability for random selection. We
describe the approach in Algorithm 2. The spreading starts
from the given source (Line3). The next stop in the candidate

Algorithm 2 Probability based Spreading

Input: G(S, E); flow Matrix

Output: R*

I: R=0

. Repeat

. currentR = sq

: Choose the next stop s; with respect to currentR according to Eq. 5
R = currentR-s}

/- operation appends s; to currentR
: Repeat Lines 4~5 Until s} = s,
:R=RUR

: Get corresponding skyline routes R*
: Until R* keeps unchanged

NG NAWN

route is chosen based on Eq. 5.

gn:l fm(sm, 5:)

ZLiT a1 fm(sm, 57)
where fm(s,, s;) is the passenger flow from s,, to s¥, and
S* contains the next possible stops of s; (child nodes of s;
in routing graph).

We can see the selection of next stop in the candidate route
is not only determined by the current stop, but also all the
previous stops. The output of this algorithm is one candidate
bus route with the number of stops associated with the number
of spreading steps. The spreading would be terminated when
the given destination is reached (Line6). For each run, we get
either a repeated route or new route, thus the candidate route
set R would increase as the spreading algorithm is activated.
Then a question arises: how many times are sufficient to run
the spreading algorithm and get the best results ? Based on
Definition 1 about the skyline routes, we should consider if
the skyline route set R* remains changed or unchanged.

Theorem 1 below ensures that when the skyline route set
stays unchanged with the increase of spreading algorithm runs,
then the best route has been discovered.

P(sil{s1, 82,7+, 85)) =

&)

Theorem 1. R} and R3 are the detected skyline routes from
R1 and R respectively. If R1 C R, then we have: VR; €
1, dR; € R5; R; = R; or R; is dominated by R;.

In Algorithm 2, we have R:, C Ry, if the running time
t1 < t9, and the algorithm would be stopped when no better
skyline routes are returned with the increase of running times,
that is R, = R;, (Line9). Instead of choosing only one
stop randomly at each spreading step like in the probability
based spreading algorithm, an intuitive way is to select top-
k stops each time, where those k£ nodes should have highest
accumulated passenger flow with previous stops; In such a
way, the first step selects top-k nodes, thus leading to k
routes from the origin to those nodes; In the second step,
each £ nodes would select another top-k nodes, thus the
total candidate routes would be k2; Assume reaching the
destination needs n step spreading, then the total candidate
routes generated would be k™ in the end. We use this top-k
spreading method as the baseline.

D. Bus Route Selection

Given the bus operation frequency (once every 30 minutes)
and the taxi passenger flow from 21:30 to 5:30, we obtain the



Fig. 7. Comparison results with k-means. Results got by k-means (left) and
results got by our method (right).

candidate bus routes for a given OD pair and maximum travel
time using the two different heuristic spreading algorithms, the
skyline route which achieves the maximum expected number
of passengers will be selected as the operating route. With the
planned bus route consisting of the selected bus stops, the next
step is to find a physical bus route in the real setting, which
consists of road segments. The selection of each road segment
is done by following the dense and fine trajectories of taxis if
they allow buses to operate; Otherwise similar bus routes near
the planned ones can be adopted as a refined solution.

V. EXPERIMENTAL EVALUATION

Here, we validate the proposed approach with a large-scale
real-world taxi GPS dataset which was generated from 7,600
taxis in a large city in China (Hangzhou) for one month, with
more than 1.57 million of night passenger-delivering trips.

A. The Identification of Candidate Bus Stops

We compare the bus stop results generated with our method
with that generated by the popular k-means clustering method.
We set £ = 579, which is the same as our method. We adopt
the Eulerian distance as the similarity metric. The centroid of
each cluster is selected as the stop. Fig. 7 shows the compar-
ison results. Comparing with the popular k-means approach,
our proposed candidate bus stop identification method has two
advantages: 1) the centroid of each cluster got by k-means is
the average location of all its members, and it may fall into
non-reachable places like river, as highlighted by the green
circle in Fig. 7 (left). In our proposed method, both hotness
and connectivity of each grid cell is considered for bus stop
location selection, and the selected bus stops are meaningful
and stoppable places; 2) Several identified stops by k-means
fall into a small area (highlighted by the blue circles) as
the size of clusters got by k-means is very different, while
our proposed method generates candidate bus stops that are
evenly distributed in the hot areas, which meets better the
commonsense design criteria of bus stops.

B. Evaluation of the Probability based Spreading Algorithm

We evaluate our probability based spreading approach. We
first show the convergence of the proposed algorithm. Then we
perform a quantitative statistical analysis of all the candidate
routes generated for three given OD pairs. We will also give
the computed skyline route results. Finally, we validate that
our proposed bus route generation approach outperforms the
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Fig. 8. Convergence study of the proposed spreading algorithm.

TABLE 1
DETAILED INFORMATION ABOUT STUDIED OD PAIRS

OD Pairs Distance (km) Number of Stops
1 ZJU - Railway 5.70 104
2 Railway - East Railway 5.86 75
3 East Railway - ZJU 8.80 144

baseline approach. Table I shows the details of three OD pairs
for night-bus route design experiment, where more than 70
candidate bus stops are in the candidate bus route selection
list.

1) Convergence Study: As illustrated in Algorithm 2, our
proposed bus route generation process would be terminated
if the resulted skyline routes keep unchanged. We study the
similarity of consecutively generated skyline routes from 5,000
to 150,000 runs, with a constant interval of 5,000 runs. We
measure the similarity (sim) of two sets A and B as follows:

_ |AnB|
- JAUB]

The similarity results of the consecutively generated skyline
routes with a 5,000 run interval are shown in Fig. 8, the
time cost is put in the diagram as well. In this study, we
can see sim values gradually reach 1 with the increase of
runs for all three OD pairs, meaning that in all three cases
the best bus route converges to one. Also the time cost is
almost linearly increased with the number of runs, suggesting
that the spreading time cost at each run is almost constant.
It is also noted that the three curves for three OD pairs have
different slopes, the reason is probably because the bus routes
corresponding to different ODs have different lengths and
varied number of candidate bus stops, thus the spreading time
and candidate bus stop selection time should be also different.

2) Candidate Routes Statistics: Fig. 9 shows the statistical
information about the number of stops of candidate routes.
Several interesting observations can be made:

sim(A, B) (6)

e For OD pair 1, routes with 8~10 stops take up over 80%
of the cases (both origin and destination are included).
Few routes can reach the destination by traversing only
4 stops, or passing more than 11 stops.

e For OD pair 2, over 60% of the routes contain 9 or 10
stops. Similar to the case of OD pair 1, some routes can
reach the destination by passing 4 stops.

o For OD pair 3, most of the routes contain 10 to 18 stops
due to the longer OD distance, and almost half of the
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Fig. 10. Detected skyline routes and other candidate routes.

routes include 13 or 14 stops.

o The statistical results comply with the intuition that the
longer distance of a given OD pair, the more stops the
route would contain.

3) Skyline Routes: We show the skyline routes for the OD
pair 2 in Fig. 10. Each point in the plane represents a candidate
route. The x-axis stands for the total travel time of candidate
route, while the y-axis represents the expected number of
passengers. From Fig. 10, we can see that the skyline routes
are connected to form a curve above all the points representing
common routes, and over 99% of the routes are dominated by
the few skyline routes. Specifically, we get 40 skyline routes
across all the travel time frames, out of hundreds of thousands
of routes for the case of OD pair 2. Similar phenomena have
been observed for other two cases as well.

4) Comparison with top-k spreading algorithm: In top-k
spreading algorithm, the selection of k is vital to the skyline
routes generated as well as the time needed to generate all
the candidate routes. In particular, when k; < ko, we have
Ri, € Ri,(k1 < k2). Theorem 1 guarantees that a bigger
k would lead to a better set of skyline routes. However, the
greater k also results in significantly increase of time cost.
We compare the skyline routes generated from the probability
based spreading method with that from the top-k spreading
method with different k& value, which is shown in Fig. 11.
We can see that the probability based spreading approach
outperforms the top-k algorithms even when k is set to 5.

C. Comparison with Real Routes

As the taxi GPS dataset we have was collected from April
2009 to March 2010, we are very interested in knowing if there
was any new night-bus route created during this year and how
the planned bus route generated with our approach compares
with the manually created route. Fortunately we were told that
a night-bus route was created in February 2010, we could
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Fig. 11. Comparison results with baseline under different k values.

access all the taxi passenger flows before the route started
date. It is noted that the route is designed by local experts and
the user demands are obtained from expensive human survey.
We first draw the newly started night-bus route on Google
map as shown in Fig. 12 (left bottom), then we draw our
proposed night-bus route R; in Fig. 12 (left top). Through
comparison we see that they are quite different. With the newly
started route, we decide to take a similar route in our selected
candidate bus routes (not the best one), and we find Ry as
shown in Fig. 12 (left top). It is noted that the main difference
between R, and the newly started route is that R, includes
an additional Stop J in the route. By comparing the passenger
flow in segment I—-K with that in segment J—K at different
time slots, it is found that the passenger flow in path J-K is
even greater than [—K in the first two time slots, as shown
in Fig. 12 (right top). Considering further the accumulation
effects, including Stop J in the bus route would significantly
increase the expected number of passengers along the route.
Thus, our candidate bus route 25 would outperform the newly
added bus route, at the cost of adding one more bus stop and
more travel time.

We also compare our proposed best route R; with the
candidate route Ry. The difference between R; and R,
lies in two different paths taken from C to H. While R,
passes the famous shopping street (Yan’an Road) in Hangzhou
(C - EF — F — H), Ry traverses the famous night-club
areas along the West Lake. If we compare the number of
passengers in R; and Rj, it can be seen from Fig. 12 (right
bottom) that the passenger flow of Ry is heavier than that of
R only around 22:00, and it is much lighter soon after 23:00.
With the rest of the stops being the same for both R; and R»,
there is no doubt about why I?; has been selected as the best
night-bus route. If we take a closer look at Ry, R, and the
newly started route, as R; takes a much shorter route than
Rs and needs similar travel time as the newly started route
does, but R, expects much more passengers than R, and the
newly started route, thus it is reasonable to conclude that the
selected night-bus route with our proposed approach is better
than the current route-in-service in terms of travel time as well
as expected number of passengers.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the problem of night-
bus route design by leveraging the taxi GPS traces, which
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is motivated by the needs of applying pervasive sensing,
communication and computing technology for sustainable city
development. To solve the problem, we propose a two-phase
approach for night-bus route planning. In the first phase, we
devise method to identify locations of the candidate bus stops,
with the passenger pick-ups and drop-offs as inputs. In the
second phase, with the bus route origin, destination, and can-
didate bus stops as inputs, we develop two heuristic algorithms
to automatically generate candidate bus routes, and finally we
select the best route which expects the maximum number of
passengers under the given conditions. On a real-world dataset
which contains more than 1.57 million passenger delivery
trips, we compare our proposed candidate bus stop identifi-
cation method with the popular k-means clustering method
and show that our method can generate more reasonable
and meaningful results. We further extensively evaluate our
proposed probability based spreading algorithm for automatic
bus route generation and validate its effectiveness as well as
its superior performance over the heuristic top-k spreading
algorithm. Further more, we show the selected night-bus route
with our proposed approach is better than a newly started
night-bus route-in-service in Hangzhou, China.

This work is among our initial attempts to apply pervasive
computing techniques in achieving better urban planning of
smart cities. With the constraints of the approach and the
acquired data, this work still has several limitations: 1) Human
mobility patterns uncovered by taxi GPS traces are biased
and incomplete, thus the designed bus route might not be the
best, considering the fact that taxi traffic does not reflect the
whole passenger flow and people taking taxis might not be
willing to switch to public transport for various reasons; 2)
The work makes some assumptions in problem formulation
and evaluation, for example, for bus stop determination we
set the walkable distance as 500 meters and the threshold for
cluster split and merge is 150 meters, apparently the choice
of those parameters would affect the results, but a study of
the parameter sensitivity is not provided due to the space

limitation; 3) Currently we only explore the issue of designing
the best bus route for a given OD pair, the proposed approach
is still unable to tackle the design of a bus route network.

In the future, we plan to broaden and deepen this work in
several directions. First, we attempt to investigate the optimal
bus route design with more real-life assumptions such as varied
bus operation frequency and limited bus capacity; Second, we
plan to study the impact of parameter change on the bus route
design and the added bus route on the taxi services along the
bus route; Third, we would like to develop practical systems
leveraging on taxi GPS traces, enabling a series of pervasive
smart transportation services.
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