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Summary. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnew closed-form solution is obtained analytically for a B- 
polarization induction problem of geophysical interest, in which a local 
region of the Earth is represented by a generalized thin sheet at the surface of 
and in electrical contact with a uniformly conducting half-space. The 
generalized sheet, first introduced by Ranganayaki zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Madden, is a mathe- 
matical idealization of a double layer which consists, in this problem, of two 
adjacent half-planes with distinct conductances representing a surface 
conductivity discontinuity such as an ocean-coast boundary, underlain by a 
uniform sheet of finite integrated resistivity representing the lower crust. The 
resistive sheet exerts a considerable mathematical influence on the solution 
causing, under certain conditions, an additional pole to appear in one of the 
forms of contour integral by which the solution can be expressed; it also 
weakens or eliminates field singularities that would otherwise occur at the 
conductance discontinuity. A numerical calculation is made for model para- 
meters typifying an ocean-coast boundary underlain by a highly resistive 
crust. It is found that the residue of the pole associated with the resistive 
sheet dominates the solution for this example, the main consequence of 
which is a huge increase in the horizontal range over which the induced 
currents adjust themselves between the different ‘skin-effect’ distributions at 
infinity on either side of the model. Moreover the solution shows that this 
‘adjustment distance’ has a more complicated dependence on the conduc- 
tance and integrated resistivity of the sheet‘ than that given simply by the 
square root of their product which was the length parameter proposed by 
Ranganayaki & Madden. 

1 Introduction 

In a previous paper (Dawson & Weaver 1979), hereafter referred to as DW, we analysed the 
problem of B-polarization induction in two adjacent half-sheets of different conductances 
*Present address: National Geophysical Research Institute, Uppal Road, Hyderabad - 500007, India. 
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at the surface of, and in electrical contact with, a uniformly conducting half-space. This 
model is of geophysical interest since it can be regarded as a mathematical idealization of a 
region of the Earth where the surface layer possesses a lateral change in electrical conduc- 
tivity such as that occurring at an ocean-coast boundary. Since the B-polarization solution 
necessarily gives a constant magnetic field above and on the surface of the Earth it is 
possibly of less immediate practical interest than the corresponding E-polarization solution 
(Weidelt 1971) in which there appears the anomalous vertical magnetic field that is 
characteristic of the coast effect. Nevertheless, it does provide information on the behaviour 
of the apparent resistivity as measured by the magneto-telluric method with the telluric 
component in a direction normal to the conductivity boundary, and if one of the half-sheets 
represents an ocean, the solution on the underside of the sheet gives the variation of the 
electromagnetic field along the ocean floor. Moreover, in two-dimensional geometry it is 
only the B-polarization mode of induction that produces a poloidal current flow between 
the surface sheet and the underlying half-space and the importance of such currents is 
currently a matter of some interest (see Parkinson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Jones 1979, section 6 for a recent 
review). 

One difficulty we encountered in attempting to make sensible calculations on such a 
simplified model of the coast effect was the choice of an appropriate value for the 
conductivity of the lower half-space. The integrated conductivity of the half-sheet 
representing the ocean was taken to be 1.6 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo4 S which is about right for a layer of sea- 
water 4 km deep, and the other half-sheet representing the surface rocks of the upper crust 
on the landward side of the coastal boundary was assumed to have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan integrated conduc- 
tivity of 400s which is also a reasonable figure. However, the underlying half-space has two 
roles to play. It must have a sufficiently high conductivity to reproduce the attenuating 
effect of the conductive part of the mantle, and yet it must also serve as the electrical 
contact with the surface sheets. In the real Earth this contact is provided by a layer of the 
much more resistive material in the lower crust, and the influence it exerts is considerable 
since it virtually controls the flow of the poloidal currents. In DW the half-space was 
assigned a conductivity of 0.1 S rn-l which seems a reasonable average value for the mantle 
but is almost certainly too large for the lower crust. It is probable, therefore, that in the 
model calculations presented by DW the flow of electrical currents between the ocean and 
the mantle was exaggerated, and this in turn would have reduced the width of the zone in 
which field variations associated with the coast effect were important. 

In a recent investigation Ranganayaki & Madden (1980) have recognized the significance 
of the resistive lower crust and its influence on the magneto-telluric response of the Earth 
in regions where the surface conductivity is changing laterally. For the numerical modelling 
of such regions they proposed an ingenious method of incorporating the effect of the 
resistive layer directly into a thin sheet theory, by making the sheet anisotropic with a 
vertical resistivity that was different from the reciprocal of the horizontal conductivity, and 
by modifying the thin sheet boundary conditions accordingly. On the basis of some approxi- 
mate calculations in two-dimensional geometry they deduced that an important parameter 
for determining the ‘adjustment distance’ - the distance required by electric currents 
induced in the crust to adjust to changes in crustal conductance -was the square root of the 
conductivity- thickness product multiplied by the resistivity- thickness product for the crustal 
layer. Thus high values of the resistivity-thickness product were seen to be responsible for 
enormous increases in the adjustment distance. 

The anisotropic (or generalized) thin sheet can also be regarded as a thin double layer 
(with the conductive layer on top and the resistive one underneath as in the real Earth), and 
the boundary conditions stated by Ranganayaki & Madden can be slightly simplified if they zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. Dawson, J. i? Weaver and U. Raval 
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B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-polarization induction 21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

are reduced to the form obtained in the mathematical limit as the thickness of each layer 
approaches zero under the assumption that the conductivity-thickness and resistivity- 
thickness products both remain finite in the limit. It is then possible to obtain an exact 

analytical solution of the problem considered in DW extended to include a uniform resistive 
sheet beneath the two conductive half-sheets. 

The extended model is clearly a much better representation of the real Earth than the 
model considered in DW, and the analytical solution will reveal more precisely than the 
approximate calculations by Ranganayaki zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Madden exactly how the response of the Earth 
depends on the various parameters in the problem, especially on the integrated resistivity of 
the crust. Ideally it would be desirable to have the resistive sheet composed of two different 
half-sheets as well, since the resitivity of the sub-oceanic crust is thought to be smaller than 
that of the lower crust under the continents. However, it does not appear possible to solve 
the problem analytically unless the integrated resistivity of the lower sheet is uniform. 

It is our main purpose in this paper to develop the analytical solution in full, and only 
one numerical calculation will be presented to illustrate the effect of the resistive sheet on 
the induced field. In a subsequent paper we hope, with the aid of further calculations, to 
examine the solution in more detail, and in particular to determine more precisely how the 
adjustment distance varies with changing crustal conditions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 Basic equations and boundary conditions 

In Cartesian coordinates ( x , y ,  z )  the model under consideration consists of a uniform half- 
space z > 2~ of conductivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuo separated from a non-conducting half-space z < 0 by a thin 
region 0 < z < 2~ composed of a conducting layer 0 < z < E of conductivity K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( y ,  z )  over a 
resistive layer E < z < 2~ of resistivity p(z) .  

It is assumed that K and p are smooth functions of z and that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK is piecewise smooth iny .  
In the particular model to be investigated here, which is shown in Fig. 1, the upper layer 
is divided by y = 0 into two regions of different conductivities so that 

Ultimately we shall treat this double layer as a mathematical thin sheet in the plane z = 0 by 

Free Space ( U = O  , P O )  

B =  Bo e x p ( i w t )  

Surface double layer y 

E 

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z = 2 E  

Uniform half space (uo, pol 

s =)I2/wpL.uo 

Figure 1. The mathematical model: the generalized thin sheet in the plane z = 0 is obtained by letting 
e - 0 .  
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212 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADawson, J. T. Weaver and U. Raval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
assuming that the integrated conductivity and the integrated resistivity 

Keb ' )  = 1: K (U, Z) dz, 5, = 
- 

both tend to finite, non-vanishing values, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ(y) and 5 respectively, as E --f 0. (It would be 
possible, of course, to assume that the two layers have different thicknesses initially and to 
let each tend to zero separately, but the final results are the same.) Vacuum permeability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
po is assumed everywhere and all quantities are measured in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASI units. 

The inducing field is assumed independent of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and harmonic in time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt with angular 
frequency a. The resulting problem is strictly two-dimensional in the coordinates y and z .  

The B-polarization field to be considered here has the single total magnetic field component 
B ( y ,  z) exp ( iot)  in the x-direction, and the electric field components V ( y ,  z) exp ( i w t )  
in the y-direction and W(y, z) exp (iot) in the (vertically downwards) z-direction. In the 
quasi-static approximation, the spatial parts of the field components are related by the 
simplified Maxwell equations 

(0 < z < E ) ,  

O(y, z, = { 'f:b" ( E  < z < 2 E ) ,  

\ (JO (2 > 2E). 

Equations (2.3) to (2.6) show that above the double layer the magnetic field has the 
constant value 

B ( y ,  z) = Bo (z < 01, (2.7) 

(az/ayz + a2/azz - 2 i / s 2 ) ~ ( y ,  Z) = o (Z > 2 ~ ) ,  (2.8) 

6 = (2/opo uo)1'2 (2.9) 

and that below the layer it satisfies 

where 

is the skin depth in the lower half-space. 

substitution of equation (2.5) that 
Within the conducting layer 0 < z < E it follows from a vertical integration of (2.3) and 

(2.10) 

where we have noted that V ( y ,  0-) = V ( y ,  0 t) by the continuity of the tangential 
electrical field across the boundary z = 0. Now the magnetic field B is continuous and 
bounded in the layer and the second term in the integrand above is also continuous except 
where K or a K / a y  has a horizontal discontinuity. Elsewhere the term is clearly bounded and 
it remains so, with the bound diminishing, as the layer approaches a thin sheet since 1 / ~  
must tend to zero as e + O  in order that the integrated conductivity may have a non- 
vanishing value in the limit. For the model shown in Fig. 1 the only discontinuity in K is at 
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B-polarization induction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA213 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 and the modulus of the integrand in (2.9) is therefore bounded for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy < 0 and y > 0. 
It follows that we may estimate the integral in (2.10) as O(z),  and since z < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE we deduce 
from (2.10) 

V(y ,  z )  - V ( y ,  0-) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(E) (0 < z < f). (2.1 1) 

When e + 0, this gives the familiar boundary condition that the tangential electric field is 
continuous across a conducting sheet. This condition was the basic assumption made by 
Price (1949) when he first developed the theory of induction in thin sheets. 

By integrating equation (2.4) across the thickness of the layer, substituting from (2.1 1) 
and (2.2), and noting that B ( y ,  0 +) = B ( y ,  0 -), and B ( y ,  E +) = B ( y ,  E -) by continuity 
of the tangential magnetic field across the surfaces z = 0 and z = E ,  we obtain 

N Y ,  f+)-B(rt O-)=E.cO~c(Y)V(Y,  0-1 + W e ) .  (2.12) 

A similar integration within the second layer E <  z < 2e together with the fact that B is 
continuous across z = 2e gives 

Here the integrand is just the current density which must be bounded because the layer is 
resistive. Thus we may write 

B ( y , 2 E + ) - B ( y , z ) = O ( € )  (E<Z<2€), (2.13) 

and since the horizontal second derivative of the current density is also bounded, 

a2~(u, 2€+)/ay2 - a2~(u, z)/av2 = o(E), 

Putting2 = E +  in (2.13) and adding it to (2.12) we obtain 

(E < z < 2 ~ ) .  (2.14) 

W Y ,  2e+)-B(y, 0-1 = E . c o W ) V ( Y ,  0-1 + W). (2.15) 

Finally, we integrate (2.3) across the second layer and substitute from equation (2.5) to 

get 

where this time we have noted that V ( y ,  e -) = V ( y ,  e +) and V ( y ,  2e -) = V ( y ,  2e +). 
Substituting from (2.13), (2.14) and the second definition (2.2), and adding the resulting 
equation to (2.1 1) evaluated at z = E - y  we obtain 

V(U, 2e +) - V ( Y ,  0 -) = - ( i ; , /~.c~)a~~(.~,  2e +)lay2 + o(E). (2.16) 

Equations (2.15) and (2.16) give the change in B and V across the double layer. In the 
limit as E + 0 they reduce to the boundary conditions satisfied by the tangential magnetic 
and electric fields across the generalized thin sheet comprising a non-uniform conducting 
sheet of integrated conductivity 2 ( y )  over a uniform resistive sheet of integrated resistivity 
5. For this mathematical idealization to apply to the real Earth it will be necessary for the 
two layers to be sufficiently thin that the horizontal electric field remains fairly uniform 
in the conducting layer and likewise for the horizontal magnetic field through the resistive 
layer. This will ensure that the basic conditions (2.11) and (2.13) of the thin sheet 
idealization are approximately satisfied, and will clearly impose limitations on the actual 
thicknesses permitted for a given frequency of the inducing field. The appropriate values 
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214 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiT and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ in a generalized thin sheet representing actual layers of thicknesses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdl and dz 
composed of materials whose conductivities are ul and u2 respectively would be oldl and 
d2/02  as indicated by the definitions (2.2). 

For the particular model shown in Fig. 1 equations (2.15) and (2.16) can be simplified by 
noting that B ( y ,  0 -) and B ( y ,  2~ t) satisfy equations (2.7) and (2.8) respectively. In 
addition V ( y ,  2~ t )  can be related to the vertical derivative of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB in the underlying half-space 
through equation (2.4).  Making these substitutions, eliminating V ( y ,  0 -) from (2.15) and 
(2.16), and finally taking the limit as E + 0 we obtain a single boundary condition on B at 
the lower surface of the generalized thin sheet in the form 

T. W. Dawson, J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. Weaver and U. Raval 

where 

(2.18) 

Here, and throughout the rest of this paper, we denote derivatives in z by primes on the 
function symbols. The parameters hl and h2 have been introduced as the integrated 
conductivities, normalized by the conductivity of the underlying half-space, of the half- 
sheets y > 0 and y < 0 that form the conducting layer in the generalized thin sheet. They 
have the dimensions of length, as does the normalized integrated resistivity r.  

The boundary condition (2.17) is valid at all pointsy in the regionsy > 0 andy < 0. The 
form it takes and the method of obtaining it are rather different from those given by 
Ranganayaki 8c Madden (1980). They proceeded by approximating the vertical derivatives in 
Maxwell's equations by finite differences and by using impedance boundary conditions on 
the top and bottom of the sheet. They also retained in their analysis some, but not all, of 
the (small) terms involving the thicknesses of the layers rather than taking the limit as these 
thicknesses tend to zero. (The integrated conductivity and resistivity of the two layers were 
simply taken as the conductivity- thickness and resistivity-thickness products of the 
respective layers.) The outcome was a general condition, involving several different terms, 
giving the tangential electric field on the top surface of a generalized thin sheet in terms of 
the inducing magnetic field and the impedances (expressed in terms of the model parameters 
and the wavenumbers of the field) of the upper and lower (layered) half-spaces. Although 
their result appears quite complicated, a number of terms drop out under the simplifying 
conditions pertaining to the model being discussed here, i.e. a strictly two-dimensional 
field in the B-polarization mode, a lower half-space of uniform conductivity, and a sheet 
of negligible thickness. If the simplified equation is then expressed in terms of the tangential 
magnetic field on the bottom of the sheet, rather than the electric field on the top, it is 
easy to show that their condition reduces to our (2.17). 

In our notation the tangential electric field V ( y ,  0-) on top of the sheet is given, 
through (2.4) and the limit of (2.16) as E + 0, by 

ccoooV(y, O - ) = B ' ( ~ ,  O t )  t r a 2 B ( y ,  o t ) / a y Z .  (2.19) 

As y -+ k 00 the model approaches distinct, strictly one-dimensional problems in z alone. 
All derivatives with respect to y vanish at infinity, and the limiting values of B ( y ,  z) are 
identical to those of DW, namely 

Bi(z)=Boexp[-(1 t i ) z / 6 ] / ( 1  t ( l  t i ) h i / 6 }  (z>O) (2.20) 
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B-polmization induction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA215 

for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 , 2  where Bl(z)  G B ( t  00, z )  and B2(z) E l l ( - - ,  z). The average and difference fields 

B(z)= % { B ~ ( z )  +Bz(z)}, AB(z) =Bi(z)-B,(z) (2.21) 

will prove useful later. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 Solution by the Wiener-Hopf technique 

The functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf+ and f- are defined by 

f+(u, z )  +f-(v, z )  = f(r, z) = B ( y ,  z )  -B,(z) (3.1) 

and f+ = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(y  < 0);  f- = 0 (y  > 0). It is clear from equations (3.1), (2.20) and (2.8) that f 
satisfies the differential equation 

(a2/ay2 t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa2/az2 - 2i/S2)f(y ,  Z )  = 0, (Z  > 0). (3.2) 

The boundary conditions on f* as y -+ +m can be deduced from equations (3.1) and (2.20). 
The anomalous field f+ on the right side of the model will decay exponentially within the 
conductor and we may therefore assert that 

f+(v, z) = 0 [exp (- CY)l (u + +=I, (3.3) 

where c > 0. The exact value of c depends on the skin depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, and on the integrated 
conductivities A l ,  A 2  and resistivity r ,  and is discussed in more detail in the Appendix. On 
the left side of the model, the limiting value is 

f-(v, z) - -AB(z) ,  (Y -+ -9. (3.4) 

It isclearfrom(3.1)thatf++Oasz-+t-.  

f*. It follows that 
The conditions on f at the surface can be derived by eliminating B in (2.17) in favour of 

(1-2irh1/5~)f+(Y, O + ) = A 1  { f : ( .Y ,  O+)-rf:'(.Y, O + ) )  

(1-2irX2/S2)f-(y,  O - ) = A 2 { f ! ( y ,  0t)-rfl '(y,Ot)) + i A A X f i  (3.6) 

A = (i- ~ ) B , ( o ) / ( s  fi), A A  = x1 -h2 ,  (3.7) 

(3.5) 

where 

and where primes again denote differentiation in z. 

defined by 
The above set of equations can be solved by introducing the Fourier transform in y 

1 -  
W ,  z) = - f(r, z> exp ( icy)  du = F+G, z) -+ F-C, z )  (3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa fi --OD 

where { = [ + i q  is complex. The second equality expresses F as the sum of the Fourier 
transforms F* of f* where F,  and F- are analytic in the respective half-planes q > - c and 
q < 0. The function F itself is analytic in the strip - c  < q < 0 of the complex {-plane. 

The solution that vanishes as z -+ i-00 of the differential equation (3.2), Fourier trans- 
formed by (3.8), is 

m, z) = FG,  0 +) exp [- z m 1  (- c < 9 < 01, (3.9) 

where 

{mI2 = t2 -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2i/S2, 

w i t h R e y a 0  in - c < q < O .  

(3.10) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/6
9
/1

/2
0
9
/5

6
1
9
7
6
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2
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From (3.9) we obtain the results 

F'K, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 +) = -mw, 0 +I, 
The boundary conditions (3.5) and (3.6) can be Fourier- transformed into 

(1  - 2 i r h l / t i 2 ) ~ + ( { ,  o t) = h l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{F:({, o t) -rF!({, o t)) 
(3.12) 

(1 - 2irh2/ t i2)F4{,  0 +) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 2  {F'({, 0 t) -rF!({, 0 t)} + A  AX/{. 

Equations (3.1 2) can be combined so that the terms F: - rF: add to give F' - rF", which 
in turn can be expressed in terms of F = F+ + F- by (3.1 1). The resulting equation is 

F+(S, 0 +)K,(S)/hl +F-G,  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+)K2(5)/A2 = A  AA/(A2!3 (3.13) 

where 

~ j ( { )  1 + Air({) + r h j t 2  ( j  = 1,2). (3.14) 

It should be noted that K1 and K 2  are the appropriate generalizations to this problem of the 
functions P and N respectively of DW, and they reduce to them when r -+ 0. From equation 
(3.14) and definition (3.7) we obtain the important result 

A1K,(S)-A2K,(S) = Ah. (3.15) 

The factorizations 

K j ( 0  = Kf(S)K;(S') (i = 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, (3.16) 

of the functions K j  into parts KT and K; analytic and zero-free in the half-planes q > - c 
and q < c respectively are considered in the Appendix. The ratio functions 

R(S') = Kl(S)/K2(S), R*(S) = G(!3/G(t) (3.17) 

are introduced for convenience in the algebra to follow. 
The elimination of AA from equations (3.13) and (3 .19,  and a division of both sides of 

the resulting equation by K ;  K: leads to the expression 

F+(t, 0 +)R+(t)/A1 + A  m+(c)-R+(o)}/t = G(t) (3.18) 

where 

Fff(S, 0 +) = {r(W2F(S, 0 +I. (3.1 1) 

(3.19) 

Arguments analogous to those used in DW show that equations (3.18) and (3.19) together 
define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG as a bounded entire function in the {-plane, and that G vanishes as {+- since 
F,({, 0+) = 0(1/{) for a magnetic field B ( y ,  0 t) that is bounded at the origin. Hence 
G({) 0 and we may then solve (3.19) for F-({, Ot), (3.18) for F+({, O t ) ,  and add the 
results to obtain, with the help of (3.19, 

(3.20) 

Equations (3.9) and (3.20) constitute the solution to the problem. Defining the functions 

k j K )  =~j( t ) /~ j (o) ,  k;(t) =K;(S)/K;(O) (i = 1,2), (3.21) 

we can simplify equation (3.20) to 
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B-polmization induction 217 

by liberal use of (3.21), (3.7), (2.20) and (2.21). The fundamental solution for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB(y ,  z) in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z >  0 follows by substitution of (3.22) into (3.9), Fourier inversion and subsequent 
elimination offwith equation (3.1). We find that 

(3.23) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 Evaluation of the integral 

As in DW, the integral (3.23) can be transformed to two useful forms, one with exponential 
decay in z and the other with exponential decay in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI. The most direct form is obtained 
by letting b + 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt in equation (3.23). The contribution from the pole at { = 0 is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAni 
exp [- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1  + i)z/6 J ,  and there remains an integral along the real axis evaluated as a Cauchy 
principal value. This integral can be simplified with equation (A29), and when account is 
taken of equations (2.20) and (2.21), the result can be expressed as 

This equation is identical in form to equation (4.3) of DW; it differs only in the nature of 
the functions k;. 

Alternative forms are obtained when the integral in (3.23) is evaluated by closing the 
contour outside the strip of analyticity - c < r, < 0. This can be done by analytic continua- 
tion of the function r({), defined by (3.10), into the whole complex plane in such a manner 
that its real part remains non-negative thereby preserving the convergence of the integral 
(3.23) for z > 0. If the principal value of the square root function in (3.10) is taken, it is 
necessary to cut the {-plane from the branch points { = f (1 -i)/6 to infinity along the 
hyperbolic arcs ( r ,  = - 1/6', Ir, I > I r; I, as shown in Fig. 2. 

For y<O the contour must be closed in the upper half-plane. If we substitute 
exp [h ( { ) ]  = kf({)/ki({) and K&) =Mz({ )Nz({ )  in the integrand of (3.23), where M z ,  N z  
and h are defined in equations (Alg), (A19) and (A30) of the Appendix, then the integral 
to be considered is 

The closed contour rz is shown in Fig. 2. It encloses a simple pole at { = 0 and possibly one 
other pole located in the upper half-plane, since it is shown in the Appendix (equation A19 
et se4.) that the factor 

= r(0 + x i  
in the denominator may have zeros at the points { = f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv; defined by 
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218 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. Dawson, J. T. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWeaver and Cr. Raval 

Figure 2. The complex S-plane showing the hyperbolic branch cuts, the contours r,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArz, and the poles 
enclosed by them. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Thus, if we define r2 xi/y(v;) = f 1 ,  as in (A20) we may write 

1 - r(5) - 72Y(&) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M 5 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5 - GI (5 + v;) 
_ _ -  

and it follows from (A15) that there is also a pole in the upper half-plane at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs' = - v;, except 
when T~ = t 1 in which case the numerator above also vanishes at 5 = - v; since y is an 
even function. 

A straightforward evaluation of the integral I by residues with the aid of (2.20) and 
(2.21) and the expressions (A12), (A19) and (A31) gives 

Z = AB(z) + %( 1 - 72) C2(y, Z) (4.4) 

where 

The factor %(1- in (4.4), which emerges quite naturally as part of the residue, ensures 
that the second term vanishes when T~ = + 1 .  

The contribution to I from the semicircular portion of r2 clearly vanishes as the radius 
of the semicircle tends to infinity. Thus the integral in (3.23) is simply the value of I given 
by (4.4) less the contribution to I arising from that part of rz which runs alongside the 
branch cut in the upper half-plane. The integrals along these two hyperbolic paths can be 
transformed into new integrals, as in DW, by the substitution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu = (17' - l/(S4$)j I", which 
amounts to putting 5 = i y (u)  and replacing y(5) by +iu on the inside (facing the imaginary 
axis) of the branch cut, and by - iu on the outside of the cut. With these simplifications, 
substitution in (3.23) yields the final expression for the magnetic field iny < 0 as 

B(y,z)  = B & -  % ( 1 - 7 2 ) G ( Y , Z )  +PZdv,Z), (4.6) 
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B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-polarization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinduction 

where 

219 

(4.7) 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a2(u) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= I /  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 2  - r IY (UN2 (4.8) 

and g(u) 
A similar procedure is used to evaluate the integral in (3.23) when y > 0. The integrand 

is rearranged so that M1(c)Nl(c) appears in the denominator, and this gives, by (A29), a 
factor exp [ h ( -  c)] in the numerator. The closed contour rl in the lower half-plane is used. 
It encloses just one simple pole at 1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv; if =- 1, but none if T~ = t 1. On the branch cut 
we now have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc = -iy(u) and ~ ( e )  again takes the value tiu on the inside of the cut and 
- iu  on the outside. The final solution obtained from (3.23) for the magnetic field in the 
region y > 0 is very similar in form to the solution in y < 0 represented by (4.6), (4.7) and 
(4.8). In fact, with the understanding that j = 1 when y > 0 and j = 2 when y < 0, i.e. 

h [iy(u)] as defined in (A3 1). 

j = 2 - H ( y )  (4.9) 

where H is the Heaviside function, and that upper signs go with j = 1 and lower signs with 
j = 2, the solutions for y > 0 and y < 0 can be combined into the single set of formulae zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B ( Y ,  Z) = B j(z) f {%(I- Tj)  Cj<U, Z) - P ~ Y Y ,  z)> (4.10) 

where 

(4.1 1) 

Dj = AB(O)Kj(O)/Aj = AB(0) { l /h j  + (1 + i ) /6 )  (4.12) 

(4.13) 

aj(u) = l /x j  - r { ~ ( u ) } ' .  (4.14) 

The corresponding expressions for the electric field components in the half-space z > 0 
are readily found from the solutions above by means of the relations (2.4) and (2.5). From 
(4.1) and (4.2) we have 

(4.15) 

(4.16) 

The alternative forms of solutions based on equations (4.10) to (4.14) are 

Do 00 V ( U ,  Z) = - (1 t i)Bj(Z)/6 f {%( 1 - 7j )XT Cj(V,  z) - Qj(.Y, z)} (4.17) 

where 

and 

/ .IoOoW(Y, z) = %i( l -  7j)v/cj(y, z)-Pi'(y, z). 

(4.18) 

(4.19) 
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220 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In all of the above formulae the relation (4.9) and the associated sign convention is 
understood. 

Evaluated at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 + these solutions give the fields on the lower surface of the generalized 
thin sheet, or just underneath the resistive lower crust in the real Earth - hardly a region 
where actual field measurements are likely to be made! However, since the boundary 
condition (2.13) shows that the magnetic field is approximately constant across the resistive 
layer, the solutions (4.1) or (4.10) evaluated at z = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt may also be regarded as giving the 
horizontal magnetic field on the lower surface of the conductive layer, which could be of 
practical interest if the layer represents an ocean and magnetometers located on the ocean 
floor are used. Otherwise the only component that corresponds to a field that can be 
recorded in practice is the horizontal electrical field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV ( y ,  0-) on the surface of the Earth. 
Expressions for this component are obtained either by substituting (4.1) in (2.19) to obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P O O O W ,  0 -1 = - (1 + i)B(0)/6 + Li2(Y, 0) t r ~ , ( y ,  0) (4.20) 

or by substituting (4.10) in (2.19) and using (4.14), (A12) and (A13) to obtain the 
alternative form 

POOO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW ,  0 -1 = - (1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi)B/(0)/6 f (I/X/) {%( 1 - rj) C,(V, 0) - P j z ( ~ ,  O)}. (4.21) 

The boundary condition (2.11) shows that equations (4.20) and (4.21) also give 
approximately the horizontal electrical field at the bottom of the conductive layer, e.g. on 
the ocean floor. 

T. W. Dawson, J. T. Weaver and U. Raval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 Special cases 

In this section we shall examine the behaviour of the solutions for the limiting cases r -+ 00, 

r + 0, hl + - and h + 0. 
Assume first that XI and hz are non-zero and finite and that r + - .  In this limit the 

model consists of two conducting half-sheets electrically insulated from the underlying 
uniform half-space. With no vertical flow of current into or out of the sheet allowed, the 
problem becomes trivial. A line charge density will be formed on the boundary y = 0, 
z = 0 between the two half-sheets to ensure the continuity of the normal surface current 
density across the boundary and hence there will be a uniform surface current flow, 
harmonic in time, in the whole sheet. It follows from the boundary condition (2.15) that the 
magnetic field discontinuity across the sheet is everywhere the same, and since the magnetic 
field is uniform above the sheet it must therefore be also uniform in the plane z = t 0 on the 
other side of the sheet. This conclusion is confirmed by taking the limit as r -+- in the 
solution (4.10). We note first from (A13) and (A14) that -+ * ( l  + i ) / 6 ,  v; -+ 0, and hence 
by (A20) that rj = - 1 which shows that poles at v; and - v; contribute through the second 
term in (4.10) to the solution for the magnetic field. Moreover, since the neighbourhood of 
the origin belongs to the set d defined in the Appendix (equation A4 et seq. and Fig. Al) 
it follows from the definition (A24) that ?/ = T/ = - 1 .  This means that the leading term in 
the factorization formula (A28) does not vanish, but because this formula takes the same 
limiting form for both j = 1 and j = 2 we may deduce that & + &, and hence in (A30) that 
h ( { )  -+ 0, as r -+ 00. Furthermore, the integral Pr defined by (4.13) vanishes as r + - since 
the factor aj is O(r),  while the limiting value of the expression Cj(y,  z )  defiied by (4.1 1) 
can be written as -%AB(z )  by virtue of equations (2.20) and (2.21). Substituting these 
results in (4.10) and using (2.21) we have 

B ( y ,  4 = (r -+ 9, (5.1) 
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B-polarization induction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA22 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and the uniform field on the surface z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt is just zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB(0). The solution (5.1) represents the 
'skin effect' diffusion of this surface field into the conducting half-space below. 

When r = 0, there is in effect no resistive part of the sheet at all and the problem reduces 
to that considered by DW. As we let r -+ 0 in (A12) and (A13) we obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
xi = l/r- l/h, + O(r), xi  = l/h, + O(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v i  = l /r-l/hj t O(r), v; =(l/h,Z -2i/62)1/2 +O(r )  (5.3) 

Mi({) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,, q ( s )  = rm t l h , .  

K, (5)  = M/ ( W j  (5 )  = 1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh/Y (0 

(5.2) 

so that when r = 0, it follows from (A19) that 

Their product 

(5.4) 

is precisely of the form considered by DW, and indeed equation (5.4) can be obtained 
directly by letting r = 0 in the expression for K, quoted in (3.14). It also follows from 
(5.2) and (5.3) that if r = 0 then 

xi = r(v7) = l /hj, 

From the first of these statements we deduce that 7, = t 1, and from the second that v i  lies 
in the region 8 so that 7, = 7, = t 1 .  Thus in this example there is no pole at { = v; or 
{ = -v ;  contributing to the second term in the solution (4.10), nor is the first term in the 
factorization formula (A28) present. Finally, since ai(u) -+ ' /Xi as r -+ 0 in (4.14), the 
integral P,? given by (4.13) reduces to exactly the same form appearing in the solution given 
by DW. 

For the remainder of this section we shall assume that r is finite and non-vanishing. 
Consider first the limiting case hl -+ m implying that the topside of the generalized thin sheet 
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy > 0 is perfectly conducting. From (A12) and (A13) we obtain 

- %n < arg v i  < 0. 

x: + 1/(2r) f r[1/(2r)l, v: -+ (xf/r)'" (5.5) 

and it can be seen immediately from the first of these limits that Rex;< 0 and Imx; < 0. 
Since, by definition, Re y (v ; )  must be non-negative it follows from (A20) that T~ = - 1 in 
this example. It can also be seen from (5.5) that - %n < argv; < - %n so that I Re v;  I < 
I Im v; 1, but it is not immediately apparent which of the regions & and @the pole v ;  lies 
in. However, it is a straightforward exercise to show that 

(Rev;)(Imv;)= - ( 4 / S 2 ) [ ( 1  t 64r4/a4)ln t ~ ] - l / ~ >  - i /s2 

which confirms that v;  E #according to the definition following equation (A4). Hence by 
(A24) we have = T~ = - 1 when hl -+ 00, which shows that for j = 1 there is a contribution 
from the pole to the field solution and also a non-vanishing leading term in the factorization 
formula (A28). The terms outside the integral in the solution (4.10) are much simplified in 
this case, for B l ( z )  vanishes as h1 -+m and we obtain with the help of (5.5), (4.11) and 
(4.12) 

The integrand of P:, the remaining part of the solution, is also simplified by the fact that 
al(u)  -+ -r(u2 + 2i/a2) when hl -+ 00 in (4.14). It is of further interest to note that 
V ( y ,  0 -) -+ 0 for y > 0 (i.e. j = 1)  as h1 -+ m in equation (4.20). This is the required result 
that the tangential electric field at the surface of a perfect conductor vanishes. 
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222 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi? W. Dawson, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. T. Weaver and U. Raval 

In the final special case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, the surface sheet in the half-plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy < 0, z = 0 is purely 
resistive. When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhz -+ 0 equations (A12) and (A13) give 

xf = f i ( h z  r1-l” + 1/21 t o(x!~”), v f  = f i (X2 r)-ln t 1/2r + o(x:~) (5.6) 

so that Rex;> 0 and T~ = t 1. On the other hand for sufficiently small X 2  the point V; 

clearly lies in the region 8 and remains there as Xz + 0. It follows, therefore, from (A24) 
that F2 = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA72 = - 1, which shows, incidentally, that the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 and ‘;i may differ in 
sign in some circumstances. Thus although the first term in the factorization expression will 
be retained it nevertheless vanishes as Xz + 0 along with the rest of (A28) because v i  = 
O(h;’O) by (5.6), and x:9(w, v a )  = 0 ( h i n  loghz) by (5.6), (A32), (A33) and (A6). This 
is expected for clearly K2({) 1 when h2  = 0 in (3.14). With the aid of these results applied 
to equations (4.12)-(4.14), (A31), (2.20) and (2.21), the solution (4.10) for the magnetic 
field i ny  < 0 becomes, when hz = 0, 

u sin zu exp [ y y ( u ) ]  
du. (5 -7) B ( y ,  z )  = Bo exp [- (1 t i )z /6 ]  - ~~ 

n6 (u2 t 2i/6’)kt[iy(u)] 

On z = 0 t this reduces to B ( y ,  O t )  = B o ,  ( y  < 0), which satisfies the requirement that the 
magnetic field must be continuous across the surface layer when there is no conducting sheet 
present to support a surface current. Substitution of this result in equation (2.5), and also in 
equation (2.19) combined with (2.4), shows that W(y, 0+) = 0 and V ( y ,  0 -) = V ( y ,  0 t) 
for y < 0. The first result is quite expected since there can be no flow of current into a 
purely resistive sheet. The second, which states that the horizontal electric field is continuous 
across a purely resistive sheet, is contrary to the boundary condition applying in general but 
is nonetheless plausible on physical grounds. When an overlying conducting sheet is present 
in the plane z = 0 - the distribution of surface charge in it will, in general, be different from 
that on the surface z = 0 t of the conducting half-space, in order that it may govern the flow 
of current across the intervening resistive sheet. This is consistent with the horizontal electric 
field being discontinuous across the resistive part of the generalized thin sheet. However, in 
the absence of an overlying conducting sheet capable of supporting a distribution of surface 
charge, the only accumulation of charge will be on the surface z = 0 + and it will then serve 
merely to prevent a normal flow of current from the half-space into the purely resistive 
sheet. In this event the horizontal electric field will be uniform across the resistive sheet in 
accordance with the revised boundary condition for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA z  = 0. 

6 Behaviour of the field at the origin 

The behaviour of the field components near the origin is governed by the convergence 
properties of the integrals as I y I -+ 0 on z = 0 +, as discussed by DW for the special case 
r = 0. For the present, we shall assume that h l ,  Xz and r are all non-zero and finite. By virtue 
of the estimate (A48) we may assert that as + m 

where the constants P1 and Pz are defined as in equation (A45). The integrands of L&(y,  0), 
LT2(y, 0) and L&(y, 0) defined by (4.2) and appearing in the solutions (4.1), (4.15) and 
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B -polarization induction 223 

(4.16) evaluated at z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 t ,  are seen by (6.1) and (6.2) to be U(f-3), U(f-') and O(f-l) 
respectively. These estimates are sufficient to ensure that each integral converges uniformly 
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ,  and as a result each field component is continuous and bounded everywhere, including 
the origin. 

The behaviour of the horizontal electric field above the surface sheet is different, and 
can be deduced from (4.20). The integrand of LLz is again U(f-') so that this part of the 
solution remains uniformly convergent for al ly, but the result (6.1) shows that the integrand 
of rL; has the asymptotic form (2ir siny[)/(PlP2t) t U([-' logf). Hence if the term 
( 2 i r ~ i n y f ) / @ , ~ ~ f )  is subtracted from the integrand of rL& the remainder will be U(E-2 
log f )  and the resulting integral will be uniformly convergent. Thus it becomes possible 
to separate out that part, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV*(y) say, of the solution (4.20) for V ( y ,  0-) that is bounded 
and continuous for ally, as follows 

This result shows that V ( y ,  0 -) has a finite jump discontinuity at the origin, the jump being 

since it was pointed out in the 
Appendix that the asymptotic forms of kif do not change in this limit, provided that r and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X2 are finite and non-vanishing. 

There are significant changes in the behaviour of the field near the origin when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 2  = 0. In 
this case, k$(f) = 1 and hence by (A48) we find that as f -+ m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r A W ) / ( P 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 2 ) .  

The behaviour described above is unaltered when X1 -+ 

in place of (6.1) and (6.2). The asymptotic behaviour (6.4) is still sufficient for the integral 
Liz in (4.2) to converge uniformly in y when z = 0 t ,  and so the magnetic field defined by 
(4.1) remains bounded and continuous at the origin. The integrand of L:l in the solution 
(4.16) for the vertical electric field on z = O t  is given by (6.5) when hz = 0 so that by 
analogy with (6.3), W(y ,  0 t) is finite but discontinuous at y = 0 (in fact W(y,  0 t) = 0 for 
y < 0 as shown in Section 5). The integrand of L t ,  in the solution (4.15) for the horizontal 
electric field is, by (6.4), U(t- '  cosy[) when z = 0 t ,  and as shown in DW, this is indicative 
of a log Iy 1 singularity. This can also be seen, somewhat differently, by examining the 
alternative form of solution given by (4.1 7) with X 2  = 0. In fact, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy < 0 the solution is 
most easily obtained by differentiation of (5.7) according to the relation (2.4), and it can 
be seen that the integrand becomes 

by (A48). A standard integral representation and expansion of the modified Bessel function 
of the second kind and order zero (see, e.g. Gradshteyn & Ryzhik 1980, sections 8.432 and 
8.447) gives 

[-yy(u)l du zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=KO[( 1 t i )  I y 1/61 = -log I y I t U(1) sop -Y@) 
(6.7) 
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224 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI + 0. This result confirms the logarithmic nature of the singularity in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV ( y ,  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt) as 
y +. 0 -. To determine the behaviour of V ( y ,  0 t) as y -+ 0 t, we return to the solution 
(4.17) and note that when Xz + 0 the integrand of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ l ( y ,  O+), defined in (4.18), has the 
asymptotic form 

T. W. Dawson, J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. Weaver and U. Raval 

u Z a 1 ( W [ i 7 ( 4 l  exp [-YT(U)l - $ 1  log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 

[uZ + {al(U))21 w);z r7(u) U 
- - - exp [-YY(U)l O( y) (6.8) 

for large u ,  by (A31), (A48) and (4.14). The dominant term here will again give alogarithmic 
singularity at the origin by analogy with (6.6). On the upper surface of the sheet the 
electric field V ( y ,  0 -) also has a logarithmic singularity as y -+ 0 - because, as we saw 
in Section 5 ,  it is continuous across the sheet when hz = 0. On the half-plane y > 0, 
however, V(y,O-) is given by equation (4.21) and its behaviour near the origin is 
determined by the convergence properties of the integral P:(y,O). Using the same 
substitutions and estimates as before we can express its integrand in the form 

which shows that the integral is uniformly convergent for y > 0 and hence that V ( y ,  0 -) 
remains finite as y + 0 t. This is a reasonable result since the conducting part of the 
generalized thin sheet i ny  > 0 will carry a surface current of finite density. 

simultaneously, the behaviour of the field described in the last 
paragraph is preserved except that V ( y ,  0-) is now not only finite, but in fact identically 
zero wheny > 0. 

In the discussion above, it has been assumed that 0 < r < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00. As we have seen in Section 5 
the limiting case r + m  is trivial, and the case r-+ 0 reduces the problem to the one 
considered by DW. It is of interest to recall here the conclusions reached by DW in order to 
see how the generalized sheet considered in this paper modifies the behaviour of the electro- 
magnetic field components near the origin. DW found that when the thin sheet is purely 
conducting with Al and Xz non-vanishing, the magnetic field B ( y ,  0+) is continuous, the 
horizontal electric field V ( y ,  0 t) has a finite jump discontinuity, and the vertical electric 
field W(y, 0 t) has a logarithmic singularity, as I y I +. 0. When r is non-vanishing, however, 
we have seen that a l l  three of these components are bounded and continuous at the origin. 
By contrast, the behaviour of the horizontal electrical field on the upper side of the sheet 
(the surface of the Earth) remains unchanged whether r = 0 or r > 0; in both cases V ( y ,  0 -) 
has a finite jump discontinuity at the origin. The statements above continue to hold when 
hi +. m, but must be modified for hz = 0. In this case DW showed that B ( y ,  0 +) is bounded 
and continuous at the origin, V(y ,  0 t) is bounded asy -+ 0 t but has an algebraic singularity 
of the form O(l y rln) as y -+ 0 -, and W(y, 0 t) has the same algebraic singularity as 
y+Ot  but vanishes on y<O. As we have seen, the corresponding behaviour for a 
generalized thin sheet with non-vanishing r is that B(y ,  O t )  remains continuous, but 
V ( y ,  0+) is now singular as y +. 0 from both directions (although the severity of the 
singularity is reduced from algebraic to logarithmic) and W(y ,  0 +), which still vanishes for 
y < 0, has only a jump discontinuity at the origin. The surface electric field V ( y ,  0 -) 
behaves in much the same manner in both cases; it is bounded as y +. 0 t and singular as 
y -+ 0 -, with a singularity of type O(l y I - 1 n )  when r = 0 and O(1ogy) when r > 0. 

In general, then, the inclusion of a resistive sheet beneath the conducting sheet tends 
either to remove or reduce the severity of the singularities in the induced electromagnetic 
field at the origin. 

If hz = 0 and X1 +. t 
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B-polarization induction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA225 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA numerical calculation 

The field solutions on the surface z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= O k  have been evaluated for the dimensionless para- 
meter values X1/S = 8n/15, h2/6 = n/75 and r/6 = 1000n/3. For an inducing field of period 
1 h and an underlying half-space of conductivity 0.1 Sm-', the skin depth is 6 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(3/n) x lo5 m and the dimensionless values above correspond to actual conductances of 
1.6 x lo4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS and 400 S respectively, and an integrated resistivity of lo9 a m Z .  This value of 
r represents, for example, a resistive layer lOkm thick of resistivity lo5 a m ,  while as we 
mentioned in Section 1 the values chosen for the conductances are very reasonable ones for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
an ocean-continent model. The model calculations made by Ranganayaki & Madden (1980) 
were for crustal resistivities ranging from lo2-lo6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi-2 and they cited several references to 
support their assumption that a resistivity-thickness product of lo9 a m 2  is quite 
plausible for the continental crust. This figure is probably too large, however, for the oceanic 
crust, and Drury (1981) in particular has questioned Ranganayaki & Madden's conclusions 
based on such high resistivity values. He draws on his own and other measurements of 
laboratory samples, and on other evidence as well, to estimate a resistivity-thickness product 
of 106-107am2 for the oceanic crust. Nevertheless, the example we have chosen for 
numerical evaluation is an appropriate one, since it represents the other extreme case, at the 
opposite end of the spectrum of r values to the one investigated by DW in which it was 
implicit that r = 0. It is of interest to compare the calculations with the corresponding ones 
for the DW model since the true behaviour probably lies somewhere between these two 
extremes. 

IImv;lS =4 .076~10-~ ,  IImv;16 =1.541~10-' 

to four significant figures, and that T~ = T~ = F1 = F2 = - 1. Thus in this example the width of 
the strip of analyticity shown in Fig. 2 and defined by (A21) is c = 0.04076/6 and the 
possible poles at v; and -v; do indeed exist. Thus the terms arising from the residues of 
these poles are present in the form of the solution expressed by equations (4.10), (4.17) and 
(4.19). In fact the calculations showed that these residue terms completely dominate the 

For these particular values of the model parameters it was found that 

_ _ _ _ _ _ _ _ - -  _ _ _ _ - - -  -- 

- r - 0 5  s_ o'orl ....... - - -  '"5 6 - 0 ' 5 r [  - _ _  - - - -. 

-2.0 -1.0 

*s 6 -0.5' > 
E 

LL -1.5 
Z B  ; -1.0 - 

-1.5 

- 3  - 2  - I  0 1 2 3- -m -50 0 50 m 
Y Y 

m 

'0.50 
m 

' 0 .50  -0.15 B 
-0.2 

-0.20 025 0.25 
-3 -2  -1 0 I 2 3 

Y Y 

Figure 3. Variation of the real part (solid line and left vertical scale) and imaginary part (broken line and 
right vertical scale) of the horizontal electric field V ( y ,  0 -) on the surface z = 0 -, and of the magnetic 
field B ( y ,  0+) on the surface z = 0+, for a coast-effect model in which h ,  = 40 h ,  = (8n/15)6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV is 
given in units of wSB,, B in units of B , ,  and the horizontal distance y in units of the skin-depth 6 .  The 
diagrams on the iert are for the model investigated by Dawson & Weaver (1979) in which r = 0; those on 
the right are for the generalized thin sheet with r = (1000 n/3)6.  
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solution in this example. The contributions from the integrals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPi, Q, and Pi affected only 
the fourth decimal place in the numerical results. 

In Fig. 3 we have plotted the variation of the horizontal electric field along the surface 
of the Earth (z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 -) and the magnetic field along the ocean floor (the same as the field on 
z = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO t  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy >  0). Of less practical interest are the variations shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 of the 
horizontal and vertical electric fields along the surface z = 0 t, i.e. beneath the resistive 
sheet. Both real and imaginary parts of the field components are plotted with the left and 
right vertical scales referring to the real and imaginary parts respectively. Note that the 
variations of the horizontal electric field V for the DW model ( r  = 0) are the same in Figs 
3 and 4, i.e. for both z = 0 t and z = 0-. This is of course expected since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV is continuous 
across a purely conductive sheet. 

The most striking feature apparent from Figs 3 and 4 is the enormous increase in adjust- 
ment distance caused by the resistive sheet, as indicated by the very different horizontal 
scales required for plotting the graphs in the two models. For example, in the DW model 
the effect of the ocean on land-based magneto-telluric measurements is felt only at distances 
less than a skin-depth (i.e. less than lOOkm) from the coastal boundary, whereas in the 
presence of a highly resistive lower crust this effect appears to spread out to about 10 
skin-depths (Fig. 3). The influence of the coastline on seafloor magnetic measurements 
is even more spectacularly extended by a resistive suboceanic crust to a distance of over 
50 skin-depths. Otherwise the corresponding field variations depicted by the curves in 
Fig. 3 for the two different models are very similar in shape and magnitude. It appears that 
the increase in adjustment distance is the only significant effect of the resistive sheet. 

The same cannot be said about its influence on the fields below the generalized thin sheet 
on the surface of the uniform half-space. In addition to the enlargement of the adjustment 
distance the graphs in Fig. 4 show that the variation of the horizontal electric field 
Y ( y ,  0 t) is completely different for the two models (as expected, of course, because Y is 
discontinuous across the resistive sheet) and the singularity at the origin in the vertical 
electric field in the DW model has been reduced to a finite cusp of very small magnitude 
when the resistive sheet is present. 

Finally, lines of constant magnetic field in the conducting half-space z > 0, which are the 
same as the streamlines of the induced currents, have been plotted in Fig. 5 at intervals of 

T. W. Dawson, J. T. Weaver and U. Raval 

0.0 . . . . . - - . . . . . 0.0 

6 1 > s -0.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11- 0.25 b^ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B -04 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 

____..._- - 
-0.5 a50 
-I00 -50 0 50 KM 

Y 

Y Y 

Figure 4. As in Fig. 3, but depicting the variations of the horizontal and vertical electric field components, 
V(y,  0 + )  and W ( y ,  O + ) ,  on the surface z = O + .  
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B-polarization induction 227 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 .c 

1.5 

0.5 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.o 

1.5 =-I-) P-7/16 1 
-00 -40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 40 00 -00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-40 0 40 00 

Y (skin depths) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 5 .  Streamlines of the electric currents (i.e. lines of constant magnetic field) induced in the half- 
space z > 0 beneath the generalized thin sheet, plotted at fractional intervals P of one period of the 
oscillation. The line separation corresponds to a change in magnetic field of 0.049B0. 

T/16, from P =  0 to P =  7/16, where T is the period of the inducing field and P =  t/T is a 
dimensionless time parameter. These diagrams show very clearly how the pattern of induced 
current flow changes during a complete half-cycle, and may be compared with similar 
diagrams in DW, and also in an earlier paper by Bailey (1977) in which the ocean was taken 
to be perfectly conducting. The main feature to observe is again the very great width of the 
region needed by the currents in order to adjust themselves between the different purely 
horizontal flows that must obtain as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy + f 00. For y > 0 the out-of-phase currents (P = 1/4) 
appear to be largely confined to the ocean. 

8 Concluding remarks 

The rather lengthy mathematical discourse presented in this paper has led to a new exact 
solution of the coast-effect problem in the B-polarization mode for a mathematical model 
which we believe represents a region of the real Earth near a conductivity boundary more 
faithfully than any previous model that has been solved analytically. This is because the 
model has included, for the first time, the effect of both the conductive and resistive 
components of the Earth's crust combined together in a single generalized thin sheet of the 
type first suggested by Ranganayaki & Madden (1980). A numerical calculation has 
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confirmed the general conclusions reached by Ranganayaki zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Madden concerning the effect 
of the resistive lower crust on the magneto-telluric response of the Earth near a coastline or 
other lateral change in the conductivity of the surface layer. 

The advantage of having available a solution to this problem in closed analytical form is 
not simply that it gives the induced field to any desired degree of accuracy but rather that 
it shows the exact mathematical dependence of the solution on the various parameters that 
defiie the model. In this regard we recall that the solution calculated for the particular set of 
model parameters representing a coastal boundary with a highly resistive lower crust 
considered in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 was given to a high degree of accuracy by the first two terms in 
equations (4.10), (4.17) and (4.19) alone. Thus very approximately the solution can be 
expressed in an entirely algebraic form and the dependence on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is given by the factor 
exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( - iyv; )  when y > 0 and exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(iy v ; )  when y < 0 appearing in the expression (4.1 1) for 
q ( y ,  z), ( j =  1,2). This shows that the exponential decay of the anomalous field on either 
side of the conductivity discontinuity is governed by the attenuation constants - Im v ;  for 
y > 0 and - Im v; for y < 0, both positive by virtue of (AlS), and their reciprocals should 
be compared with the corresponding adjustment distances, fi and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa respectively, 
defined by Ranganayaki & Madden (1980). It seems that the adjustment distance depends 
on the integrated conductivity and resistivity of the generalized thin sheet in a more 
complicated manner than is indicated by the simple parameter introduced by Ranganayaki 
& Madden. In fact it can be seen that (- ImvY)-’, ( j  = 1,2), reduces to fi only if the 
term x;/r in the definition (A13) is negligible compared with l/(Ajr). 

However, a more detailed examination of adjustment distance and of other points of 
interest arising from the analytical solution must be deferred to a subsequent paper. 

T. W. Dawson, J. T. Weaver and U Raval 
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Appendix 

In order to obtain the factorizations o f K l  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK2 introduced in equation (3.16) it is helpful 
to review first the factorization, discussed by DW and in more detail by Dawson (1979), of 
the function 

K(S) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA {s t W j ,  I 7) I < 1/6 (Al l  
into a product of functions K ,  and K- analytic and zero-free in the regions q > - 1/6 and 
q < l/S respectively of the complex {-plane where { = E t iq. The quantities A and s are real 
and positive (in fact As = 1 in DW but we prefer to retain the more general form (A2) here). 
Since K is obviously analytic and non-zero within the strip zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlq I < l/S, the function 

K’(WK(5) = K:(S)/K+(S) + K’(C)/K-(S) (A2) 

must also be analytic in this strip, and by the definitions of K ,  and K- the first and second 
terms in the right side of (A2) are analytic in the regions q > - l/S and q < l/S respectively. 
The general formula (Noble 1958, p. 13) for the separation of an analytic function in this 
manner gives 

where - l/S < b ,  < b-  < l/S. The integrals can be evaluated by closing the contours in the 
upper and lower half-planes respectively (Fig. Al )  and using Cauchy’s theorem of residues. 

t ”  

E 

Figure A l .  The complex f-plane showing the diagonal branch cuts and the contours r+ and r- used in 
the factorization of Kj(f). The shaded area is the region Y where f has a negative real part. 
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It is necessary, therefore, to find an appropriate analytic continuation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ( { )  out of the 
strip zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1/6 into the whole complex {-plane. 

It turns out that the analytic continuation of r({) as the principal square root function 
({’ + 2i/6’)ln defined in the cut p1ar.e illustrated in Fig. 2 is not the most suitable one to 
choose for the factorization integrals. As in DW, it is more convenient to define a second 
branch, denoted by ?({I, which agrees with r({) within the strip lq I < 1/6 and which is 
continued into the complex {-plane now cut from the branch points { = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (1 -i)/S to 
infinity along the rays zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, I q I > 1/6 (see Fig. Al). 

This new branch is analytic in the cut plane, is a solution of equation (3.10), and is 
related to the original branch by the equation 

T. W. Dawson. J. T. Weaver and U. Raval 

where CY = (5  + iq  II 5 I < Iq I, [q < - 1/6’} defines the set of points { in the regions of the 
complex plane shown shaded in Fig. A1 . The set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 is the complement of CY in the cut plane. 
Writing v = (sz - 2i/6’)”’, with the principal value of the square root understood, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee 
immediately that s = ~ ( u )  = y(u),  the values of the two branches being equal at { = v since 
v E 3. Thus K may also be written as 

K(S)  = X m )  +5W) (A51 

and in this form it continues analytically into the complex {-plane cut as in Fig. A l .  It is 
also clear from (A5) that K has no zeros anywhere in the {-plane in contrast to K 1  and Kz 
of (3.14), as we shall see later. This means that there are no poles of K‘/K whose residues 
contribute to the integrations around the closed contours r+ and r- shown in Fig. A1 . Thus 
the integrals (A3) are transformed by Cauchy’s theorem into integrals along the branch 
cuts in Fig. A l ,  and these integrals can be evaluated by a change of variable in terms of the 
function 

which is discussed in DW (see also Dawson 1979). The function I) is analytic in the entire 
{-plane except for a simple pole at the lower branch point { = (1 - i ) / S  of y, and satisfies 

$ [(i - 11/81 = ’A(1 - i)6, $(5) + $(- 0 = */?(S). (A71 

The final results are then conveniently expressed as 

where 

2**(S,v) = [ I ) ( 5 ) - $ ( V ) l l G - V )  + [ $ ( 5 ) - I ) ( - V ) l m - + V ) .  (A91 

An integration of (A8) gives the required factorization of (Al) in the form 

We next consider the functions Ki ( j  = 1,2) defined, as in equation (3.14) by 

Kj(S) = 1 + xjr({) + XjrS”. ( A l l )  
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We define also the auxiliary parameters 

where principal values of the square roots are understood, so that 

Furthermore, it is easily shown that 

and also that 

With the aid of the results (A17) it is easy to show that Kj may be written as the product 

where 

M/(S)=X/r{r(S)+X;), N/(s)=Y(Wxj. 
Now from (A14) and (A16) it is readily seen that 

Here the uncertainty in the sign of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 is a consequence of the fact that Re xs, conspicuously 
absent from (A14), may be positive or negative depending on the values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXI and r.  
Equations (A19) and (A20) show that Mi,  and also zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZVi when 71 = +1, are non-vanishing but 
that Ni has zeros at the points { = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv; when T~ = - 1 .  Thus the strip parallel to the real axis 
in which the functions K//K/ ( j  = 1 ,  2) are analytic may (depending on where the possible 
zeros of Nj, and hence of Kj, lie) be narrower than the strip I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg I < l/S in which the functions 
Kj are analytic. Specifically we can state that both K : / K ,  and K:/K2 are analytic in 
the strip I g I < c where 

c = min (1/6, cl, c2) (A211 

with cl ( j  = 1,2) defined by c/ = ?4(l -T/) I Imu/ I t %(1+ q ) / S .  It follows that K; obtained 
by the factorization procedure described earlier will be analytic and zero-free in the half- 
plane g > - c,  and therefore, by a well-known property of the Fourier integral (Noble 1958, 
p. 25), the value of c defined by equation (A2 1)  also provides an estimate of the attenuation 
of the anomalous field asy -+ t 

It is now possible to obtain the required factorization of Ki by inspection. Following the 
reasoning that led to K being written in the form (AS) we can analytically continue the 
functions Kj into the cut plane of Fig. A1 by replacing r({) by ?({) everywhere. Moreover, 
since it is obvious from (A15) that u j  E @, we deduce from (A4) and (A20) that 

in the manner anticipated by the assertion (3.3). 

xf = %v;). ( A m  
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232 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Thus the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMi in (A19) becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. W. Dawson, J. T. Weaver zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand U. Raval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Mj(5) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ajr") +%v;)I? 

and defining 

where the equality with k T~ follows from (A4) and (A20), we can also rewrite Ni in (A19) 
as 

Nj(5) = T(5) + ? j % q .  (A29  

The expressions (A23) and (A25) are analytic in the cut plane and agree, of course, with 
the original definitions of Mj and N j  within the strip 11) I < 1/6. They are also written 
precisely in the form of (AS) (unless =- 1 in the case of N j )  so that the required factoriza- 
tions are given immediately by the formula (A10). Even when 7, = - 1 ,  a simple algebraic 
rearrangement of (A25) gives 

NjW = < s - q < s  + q/cm + % V / ) )  

in which the divisor is again of the form (A5) and the rest of the expression is already 
factored in the appropriate manner since it is clear from (A15) and (A21) that the zeros of 
5 - vf and 5 + v 7  are in the half-planes p < - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc and 1) > c respectively. 

Combining the separate factorizations of Mi and Nj in equation (A 18) and defining 

k; (5)  = K ;  (5)lK; (0) (A26) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as in (3.21), we obtain 

Expressing the first factor above as an exponential function, and simplifying with the aid of 
(A22) and (A24), we can write this result in the more compact form 

where 

@; (w) = - @j(-  W) = ?4 (1  - Fj)  (W - v;)-' - X; \k (w, u;) - x 7 q  (W 3 ~ 7 ) .  

k; (- 5)  = kf(5). 

exp [ h  (511 = R+(S)/R+(O) = kf(S)/W) 

(A281 

(A291 

An immediate deduction from (A27) and (A28) is 

A useful function for the computation of the field integrals is h defined by 

the second identity resulting from (3.17) and (A26). It follows from (A27) that 

h(5) = Jb' c@t(w>-@b(w)}dw. (A301 

In particular it is convenient to write 

g(u)=h[ir(u)l, 
where u is a real variable. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/6
9
/1

/2
0
9
/5

6
1
9
7
6
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



B- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApolarization induction 233 

The asymptotic behaviour of the functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkj({) for large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI { I was required in the 
discussion of the convergence properties of the field integrals. We shall show here that they 
are both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO({) ,  provided that r is non-zero and finite. (We may restrict ourselves to such 
values of r since it was shown in Section 5 that r = 0 reduces the problem to that of DW, 
while r + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm is a trivial problem.) In addition we require, for the present, that both XI  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hz are non-zero and finite. 

With the help of equation (A7) we can write (A9) in the useful alternative form 

" r a ) W ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa)= - w, a) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?4{/(5' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-aZ) 

2 n W , Q >  = - ?(a) $5  J/ (6)  -a J/ (a) a J /  (-a)) /(t' - a'), 

(A321 

(A331 

where we have defined 

and where a is a complex parameter with I m a Z 0 .  It is obvious from (A6) that {$({)- 
O(1og {) as I { I + 00, whence 

O({, a) = o(5-2 log{). (-434) 

Thus we can define 

the path of integration being the real axis. We now let E be a large positive real number, 
where for convenience we assume ( * I a I, and consider the equation 

- r ( a )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj: \k (u,a)du = J(a)-  e(u,a)du + M logt-?4 log(-a') t ?4 log 

('436) 
obtained by integration of (A32) and some manipulation of the logarithm. From the 
estimate (A34), it is evident that the integral in (A36) is O(E-' log t) ,  so that we can write 

where ~ ( a )  = J(a)-  ?4 log(-a') is a complex constant. 
We now consider the behaviour of the integral (A36) for complex { of large modulus. We 

put { = R exp (i@) where R * I a I and we consider only the upper half-plane 0 G $J G n. The 
function \k({, a)  is analytic in the upper half-plane, and so by Cauchy's theorem we may 
write 

s R 

\k(w,a)dw= [ \ k (u ,a )du+ iR  s," \k[Rexp(iB),a] exp(i0)dO. (A381 
. o  - 0  

The asymptotic form of the first term follows immediately from equation (A37). In the 
second term we substitute from (A32) and note that 

R s," OIR exp (ie), a ]  exp (ie) de = 0 - eR) 
by (A34). There remains only the integral 

@ R' exp(2iB)de -?4 exp(2i$)-a2/R' -%i$  

RZexp(2iB)-a2 ?(a) 1 - a'/R ?(a) 
+ O(l/R'). - - -  -- - log 
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234 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Combining (A37), (A38), (A39) and (A40) we obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. W. Dmvson, J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. Weaver and U. Ravul 

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-?(a) Jb \k(w, a)  d w  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 'A log I { I + ?4 i arg 5 + a(u) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO f ! )  (0 < arg { < n). (A41) 

The asymptotic form of k;({) is now easily found with the aid of equation (A41). With 
reference to (A28), (A22) and (A24) we write 

(A421 
where as above, { is in the upper half-plane, and we assume for convenience that 
I{ I * max { l u l l ,  I v i  I}. It is readily shown that 

= log { - log (- v j )  + O( 115). 

Substitution of equations (A41) and (A43) in (A42) yields 

where we have defined 

log@; =a(.;) +?~a(v;)- 'A(1-?~)log(-v;) ,  (A451 

a constant that depends only on the parameters of the problem. From (A44) and (A37) it 
follows that 

ki+(t)=Pj5{1 +w-' logf)} (A461 

kj(S) = Pi5 (1 + W-l log{)), 

as I 5 I + 00 with 0 G arg 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG R. The analogous result 

(A471 

as I {  I + 00 with - n G arg { G 0 can be derived in a similar manner. Now k i  and k j  are 
related by equation (A29) and since 0; depend only on the model parameters we must have 
0' I = -07 = Pi (say). Therefore we may write the required asymptotic forms in the single 
expression 

k;({) = f P i  { { 1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ({-' log {)} (A481 

when I 5 I + - in the appropriate half-plane. 
Equation (A48) holds provided that r and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhi are non-zero and finite. From the discussion 

of Section 5 it is clear that it continues to hold as Ai -+ -. However, when A/ = 0, we have 
K,({) 1 by (A1 1), and hence k;(f) = 1 .  Finally, for Xi > 0 it follows from (A44) and the 
definitions (A30) and (A3 1)  that 

h(5) = W), g(u) = O(1), (A491 

as l { l+-  and u + -  respectively. In the special case A 2  = O  (say), the corresponding 
asymptotic behaviour is 

h(5) = O(logS'), g(u) = O(l0gu). (A501 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/6
9
/1

/2
0
9
/5

6
1
9
7
6
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2


